EP1517405A1 - Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof - Google Patents

Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof Download PDF

Info

Publication number
EP1517405A1
EP1517405A1 EP03078003A EP03078003A EP1517405A1 EP 1517405 A1 EP1517405 A1 EP 1517405A1 EP 03078003 A EP03078003 A EP 03078003A EP 03078003 A EP03078003 A EP 03078003A EP 1517405 A1 EP1517405 A1 EP 1517405A1
Authority
EP
European Patent Office
Prior art keywords
strip
steel
thickness
copper clad
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03078003A
Other languages
German (de)
French (fr)
Inventor
Peter Arthur Boehmer
Hans Günter Steinmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trierer Walzwerk GmbH
Original Assignee
Trierer Walzwerk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trierer Walzwerk GmbH filed Critical Trierer Walzwerk GmbH
Priority to EP03078003A priority Critical patent/EP1517405A1/en
Priority to PCT/EP2004/010458 priority patent/WO2005029648A1/en
Priority to TW093128453A priority patent/TW200520320A/en
Publication of EP1517405A1 publication Critical patent/EP1517405A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/16Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the invention relates to an electrical connector or electrical terminal comprising an electrically conductive metallic element, wherein the metallic element comprises a steel backing component and a metal component having a high electrical conductivity.
  • the invention also relates to a metal sheet or strip for the manufacture of such metallic elements for electrical connectors or electrical terminals.
  • One-component connectors combine the electrically conductive element and backing element in one metal component, which is usually a copper alloy.
  • the connector should have, copper-beryllium, CuNi9Sn2, CuFe2P, CuNiSi, CuSn6, CuNi12Zn24 or another copper alloy is used.
  • the higher the amount of alloying elements in the copper alloy the lower the electrical conductivity will be, but the higher the mechanical strength and string back property of the component will be.
  • the best alloying element is beryllium, the copper-beryllium alloy combining a reasonable conductivity with excellent mechanical properties, but beryllium is regarded as carcinogenic and therefore the use of beryllium is banned.
  • two-component connectors consisting of two separate components: an outside clamp housing and an inside copper connector part.
  • the mechanical strength and the spring back property are usually provided by a high strength stainless spring steel (like e.g. 1.4310) housing and the electrical conductivity is provided by a pure copper component in the housing.
  • a high strength stainless spring steel like e.g. 1.4310
  • the electrical conductivity is provided by a pure copper component in the housing.
  • the drawback of this known two-component connector is that the manufacturing costs of such a two-component connector are high due to the pressing of two components and the low speed of such pressing, the expensive design of such a connector, et cetera.
  • an electrical connector or electrical terminal comprising an electrically conductive metallic element, wherein the metallic element has been manufactured from a copper clad steel sheet or strip, wherein the steel is a stainless steel or a high strength steel and the copper clad layer has a purity of 92,0 % Cu or higher.
  • This connector or terminal thus has a metallic element that does not consist of two separate components, but of one component made from a copper clad steel sheet or strip.
  • a metallic element which forms the heart of an electrical connector or terminal, is far easier to produce and handle than a metallic element consisting of two separate parts.
  • the producer of the connector or terminal now only has to cut the metallic element from the clad sheet or strip and form it into the desired shape, whereas for the known connectors the producer has to cut two components from two sheets or strips, has to form both components and had to combine those components as well. Though the clad sheet or strip could be more expensive than the two separate sheets or strips, the production costs for producing connectors or terminals from one sheet or strip are far lower.
  • IACS is the abbreviation of International Annealed Copper Standard.
  • the copper clad layer has a purity of 99,0 % Cu or higher.
  • a purity of 99,0 % Cu or higher provides an electrical conductivity that is still higher, being equivalent to at least 52 m/Ohm ⁇ mm 2 (90 % IACS).
  • the copper has a purity of 99,5 % Cu or higher, being equivalent to at least at least 55 m/Ohm x mm 2 (95 % IACS), still more preferably 99,9 % Cu or higher, being equivalent to at least 58 m/Ohm x mm 2 (100 % IACS). These purities are for special purposes.
  • the copper clad layer has a purity of 92,0 % Cu or higher, the copper clad layer comprises nickel, tin, zinc and/or iron. These elements are environment friendly.
  • the copper clad layer preferably consists of CuSn2, Cu Fe2P, CuZn8, CuNi3Si, CuAg0,1Cr1Zr or CuCo2. These are known copper alloys that can be clad.
  • the copper layer clad onto the steel sheet or strip is Cu-HCP, Cu-PHC, Cu-DHP or Cu-OF copper strip. These are known international standards for copper strip. See standard EN 13599 and EN 1652.
  • the copper clad layer is present on both sides of the steel sheet or strip. This is often preferred over a single-sided clad layer in view of the electrical connection.
  • the stainless steel is ferritic stainless steel.
  • Ferritic stainless steel has a good corrosion resistance and provides reasonable mechanical strength properties at a reasonable price level.
  • the stainless steel is austenitic stainless steel. This type of steel is often more expensive, but can be more suitable in certain cases.
  • the stainless steel is type 301 stainless steel (ASTM). This is a commercially available stainless steel type, 1.4310 (EN 10088-2). This steel type shows excellent mechanical and spring properties, is extremely corrosion resistant, but shows poor electrical conductivity (approximately 5 % IACS). It is the preferred stainless steel type for connectors at a higher price level.
  • the high strength steel is a carbon steel, for instance C30 or C60.
  • This steel type (all grades in EN 10132) is cheaper and can be used in many applications.
  • the high strength steel is a high strength low alloy (HSLA) steel, for instance ZE 800 (EN 10268) or a dual phase (DP) steel, for instance S690 (EN 10149-2).
  • HSLA high strength low alloy
  • DP dual phase steel
  • S690 EN 10149-2
  • An electrical connector or terminal according to the invention using HSLA or DP steel will have good electrical properties and result in major cost savings, and encapsulation in plastic or installation in less corrosive environments will overcome the disadvantage of the lower corrosion resistance.
  • the metallic element has a gauge of 0.1 to 0.5 mm, preferably 0.15 to 0.3 mm. This gauge is preferred for producing connectors or terminals.
  • the copper clad layer has been applied on one side of the steel sheet or strip, the copper clad layer having a thickness of 1 to 70 % of the total thickness of the steel sheet or strip, preferably a thickness of 5 to 40 % of the thickness of the steel sheet or strip, more preferably a thickness of 10 to 30 % of the thickness of the steel sheet or strip. These thicknesses depend on the use of the connector or terminal.
  • the copper clad layer has been applied on both sides of the steel sheet or strip, the copper clad layers together having a thickness of 2 to 70 % of the total thickness of the copper clad steel sheet or strip, preferably the copper clad layers together having a thickness of 10 to 50 % of the total thickness of the steel sheet or strip, more preferably together having a thickness of 20 to 30 % of the total thickness of the steel sheet or strip.
  • the metallic element will need a copper clad layer on both sides of the steel layer when the connection to be made by the connector or terminal needs a good electrical conductivity on both sides of the metallic element.
  • the copper clad layers could for example each have a thickness of 10 % of the total thickness of the sheet or strip.
  • the copper clad layer on one side of the steel sheet or strip has a thickness that is different from the thickness of the copper clad layer on the other side of the steel sheet or strip. This can be useful when the requirements of conductivity for one side of the metallic element differ from those for the other side.
  • the copper clad layer on one side has a thickness of 10 to 50 % and the copper clad layer on the other side has a thickness of 0 to 5 % of the total thickness of the sheet or strip.
  • the metallic element is coated with a tin or tin alloy layer on both sides, the tin layer preferably having a thickness of 1 to 10 ⁇ m on each side, preferably a thickness of 2 to 4 ⁇ m.
  • a tin or tin alloy layer is applied for lubrication, contact resistance and corrosion protection.
  • a clad metal sheet or strip for the manufacture of metallic elements for electrical connectors or electrical terminals according to the first aspect of the invention, wherein the clad metal sheet or strip is a copper clad sheet or strip comprising a steel core layer, wherein the steel is a stainless steel or a high strength steel, and a copper clad layer, the copper having a purity of 92,0 % Cu or higher, on at least one side of the steel core layer.
  • the sheet or strip according to the second aspect of the invention can be directly use for manufacturing the electrical connectors and electrical terminals according to the first aspect of the invention, and as such replaces the two sheets or strips (a steel strip and a copper or copper alloy strip) that until now have to be used for the manufacture of such connectors or terminals.
  • the steel sheet or strip has a thickness of 0.5 to 3.0 mm, preferably 0.7 to 1.3 mm.
  • a copper strip is clad and rolled to a desired thickness for manufacturing the electrical connectors or terminals according to the first aspect of the invention.
  • the clad metal sheet or strip has been annealed and rolled to a thickness of 0.1 to 0.5 mm, preferably to a thickness of 0.15 to 0.3 mm. These thicknesses are commonly used for manufacturing electrical connectors and terminals; in most cases a thickness of 0.15 to 0.3 mm is used.
  • a tin or tin alloy layer is present on both sides of the clad metal sheet or strip, each tin or tin alloy layer preferably having a thickness of 1 to 10 ⁇ m, more preferably 2 to 4 ⁇ m.
  • the tin or tin alloy layer has been provided on the clad metal sheet or strip to provide a better lubrication, contact resistance and corrosion resistance of the electrical connectors or terminal manufactured from the sheet or strip.
  • a copper clad steel strip is manufactured starting from a steel strip having a width of 500 mm and a thickness of 1,0 mm, and a copper strip Cu-HCP having a purity of 99,5 %, having a width of 540 mm and a thickness of 0,1 mm.
  • the sides that have to contact each other are subjected to a pretreatment with a chemical alkaline cleaner and a mechanical brushing.
  • the two strips are clad under the usual condition with a reduction of 25 to 60 %.
  • the strip After cladding the strip is cold rolled and annealed under protective gas atmosphere (nitrogen/hydrogen or pure hydrogen, for instance) and recrystallised at approximately 800° C for high strength steel (for instance C30, Z800 or S690) or at approximately 900 to 1000° C for stainless steel type 301 (1.4310 EN 10088-2).
  • protective gas atmosphere nitrogen/hydrogen or pure hydrogen, for instance
  • a final cold rolling step is applied with a reduction of at least 5 %, to provide a final thickness of 0,25 mm.
  • the width of the strip remains 500 mm.
  • a coating with a thin tin or tin alloy layer (1 to 10 ⁇ m) is provided, for instance by hot dipping or electrolytic coating.
  • the clad strip is slit into strips of smaller width before it is packed and sent to the manufacturer of electrical connectors or electrical terminals. There, the clad strips are (partially) cut into the desired form and formed into the desired shape as metallic element for the electrical connector or terminal.

Abstract

The invention relates to an electrical connector or electrical terminal comprising an electrically conductive metallic element.
The invention is characterized in that the metallic element has been manufactured from a copper clad steel sheet or strip, wherein the steel is a stainless steel or a high strength steel and the copper clad layer has a purity of 92,0 % Cu or higher, preferably 99,0 % Cu or higher.
The invention also relates to a metal sheet or strip for the manufacture of such metallic elements for electrical connectors or electrical terminals.

Description

  • The invention relates to an electrical connector or electrical terminal comprising an electrically conductive metallic element, wherein the metallic element comprises a steel backing component and a metal component having a high electrical conductivity. The invention also relates to a metal sheet or strip for the manufacture of such metallic elements for electrical connectors or electrical terminals.
  • Electrical connectors (and electrical terminals) are known in principle in two types: one-component connectors and two-component connectors. One-component connectors combine the electrically conductive element and backing element in one metal component, which is usually a copper alloy. Depending on the properties the connector should have, copper-beryllium, CuNi9Sn2, CuFe2P, CuNiSi, CuSn6, CuNi12Zn24 or another copper alloy is used. The higher the amount of alloying elements in the copper alloy, the lower the electrical conductivity will be, but the higher the mechanical strength and string back property of the component will be. The best alloying element is beryllium, the copper-beryllium alloy combining a reasonable conductivity with excellent mechanical properties, but beryllium is regarded as carcinogenic and therefore the use of beryllium is banned.
  • To overcome the drawbacks of the one-component connector, two-component connectors have been invented, consisting of two separate components: an outside clamp housing and an inside copper connector part. The mechanical strength and the spring back property are usually provided by a high strength stainless spring steel (like e.g. 1.4310) housing and the electrical conductivity is provided by a pure copper component in the housing. However, the drawback of this known two-component connector is that the manufacturing costs of such a two-component connector are high due to the pressing of two components and the low speed of such pressing, the expensive design of such a connector, et cetera.
  • It is an object of the invention to provide electrical connectors and terminals that will be more simple in design and production than the known electrical connectors and terminals.
  • It is another object of the invention to provide electrical connectors and terminals that are cheaper to produce than the known electrical connectors and terminals.
  • It is yet another object of the invention to provide electrical connectors and terminals which are environmentally safe to use.
  • According to a first aspect of the invention one or more of these objects are reached with an electrical connector or electrical terminal comprising an electrically conductive metallic element, wherein the metallic element has been manufactured from a copper clad steel sheet or strip, wherein the steel is a stainless steel or a high strength steel and the copper clad layer has a purity of 92,0 % Cu or higher.
  • This connector or terminal thus has a metallic element that does not consist of two separate components, but of one component made from a copper clad steel sheet or strip. Such a metallic element, which forms the heart of an electrical connector or terminal, is far easier to produce and handle than a metallic element consisting of two separate parts. The producer of the connector or terminal now only has to cut the metallic element from the clad sheet or strip and form it into the desired shape, whereas for the known connectors the producer has to cut two components from two sheets or strips, has to form both components and had to combine those components as well. Though the clad sheet or strip could be more expensive than the two separate sheets or strips, the production costs for producing connectors or terminals from one sheet or strip are far lower.
  • With this electrical connector or terminal according to the invention both the required electrical, mechanical and corrosion protection properties and the one-component manufacturing process are attained.
  • The copper clad layer has a purity of 92,0 % Cu or higher in view of the desired electrical conductivity: more than 8 m/Ohm x mm2, preferably at least 15 m/Ohm x mm2 which is equivalent to 26 % IACS (100 % IACS is equivalent to the conductivity of pure copper = 58 m/Ohm x mm2). IACS is the abbreviation of International Annealed Copper Standard.
  • Preferably the copper clad layer has a purity of 99,0 % Cu or higher. Such a high purity provides an electrical conductivity that is still higher, being equivalent to at least 52 m/Ohm × mm2 (90 % IACS).
  • More preferably, the copper has a purity of 99,5 % Cu or higher, being equivalent to at least at least 55 m/Ohm x mm2 (95 % IACS), still more preferably 99,9 % Cu or higher, being equivalent to at least 58 m/Ohm x mm2 (100 % IACS). These purities are for special purposes.
  • If the copper clad layer has a purity of 92,0 % Cu or higher, the copper clad layer comprises nickel, tin, zinc and/or iron. These elements are environment friendly.
  • In this case the copper clad layer preferably consists of CuSn2, Cu Fe2P, CuZn8, CuNi3Si, CuAg0,1Cr1Zr or CuCo2. These are known copper alloys that can be clad.
  • Preferably, the copper layer clad onto the steel sheet or strip is Cu-HCP, Cu-PHC, Cu-DHP or Cu-OF copper strip. These are known international standards for copper strip. See standard EN 13599 and EN 1652.
  • According to a preferred embodiment the copper clad layer is present on both sides of the steel sheet or strip. This is often preferred over a single-sided clad layer in view of the electrical connection.
  • According to a preferred embodiment the stainless steel is ferritic stainless steel. Ferritic stainless steel has a good corrosion resistance and provides reasonable mechanical strength properties at a reasonable price level.
  • According to another preferred embodiment the stainless steel is austenitic stainless steel. This type of steel is often more expensive, but can be more suitable in certain cases.
  • Preferably the stainless steel is type 301 stainless steel (ASTM). This is a commercially available stainless steel type, 1.4310 (EN 10088-2). This steel type shows excellent mechanical and spring properties, is extremely corrosion resistant, but shows poor electrical conductivity (approximately 5 % IACS). It is the preferred stainless steel type for connectors at a higher price level.
  • According to still another preferred embodiment the high strength steel is a carbon steel, for instance C30 or C60. This steel type (all grades in EN 10132) is cheaper and can be used in many applications.
  • Preferably the high strength steel is a high strength low alloy (HSLA) steel, for instance ZE 800 (EN 10268) or a dual phase (DP) steel, for instance S690 (EN 10149-2). These are commercially available steel types having good mechanical properties, but the corrosion protection of HSLA and DP steel is lower than the corrosion protection of stainless steel. An electrical connector or terminal according to the invention using HSLA or DP steel will have good electrical properties and result in major cost savings, and encapsulation in plastic or installation in less corrosive environments will overcome the disadvantage of the lower corrosion resistance.
  • According to a preferred embodiment the metallic element has a gauge of 0.1 to 0.5 mm, preferably 0.15 to 0.3 mm. This gauge is preferred for producing connectors or terminals.
  • According to a preferred embodiment the copper clad layer has been applied on one side of the steel sheet or strip, the copper clad layer having a thickness of 1 to 70 % of the total thickness of the steel sheet or strip, preferably a thickness of 5 to 40 % of the thickness of the steel sheet or strip, more preferably a thickness of 10 to 30 % of the thickness of the steel sheet or strip. These thicknesses depend on the use of the connector or terminal.
  • According to another preferred embodiment, the copper clad layer has been applied on both sides of the steel sheet or strip, the copper clad layers together having a thickness of 2 to 70 % of the total thickness of the copper clad steel sheet or strip, preferably the copper clad layers together having a thickness of 10 to 50 % of the total thickness of the steel sheet or strip, more preferably together having a thickness of 20 to 30 % of the total thickness of the steel sheet or strip. The metallic element will need a copper clad layer on both sides of the steel layer when the connection to be made by the connector or terminal needs a good electrical conductivity on both sides of the metallic element. The copper clad layers could for example each have a thickness of 10 % of the total thickness of the sheet or strip.
  • It is also possible to use a copper clad steel sheet or strip of which the copper clad layer on one side of the steel sheet or strip has a thickness that is different from the thickness of the copper clad layer on the other side of the steel sheet or strip. This can be useful when the requirements of conductivity for one side of the metallic element differ from those for the other side. For instance, the copper clad layer on one side has a thickness of 10 to 50 % and the copper clad layer on the other side has a thickness of 0 to 5 % of the total thickness of the sheet or strip.
  • Preferably the metallic element is coated with a tin or tin alloy layer on both sides, the tin layer preferably having a thickness of 1 to 10 µm on each side, preferably a thickness of 2 to 4 µm. A tin or tin alloy layer is applied for lubrication, contact resistance and corrosion protection.
  • According to a second aspect of the invention there is provided a clad metal sheet or strip for the manufacture of metallic elements for electrical connectors or electrical terminals according to the first aspect of the invention, wherein the clad metal sheet or strip is a copper clad sheet or strip comprising a steel core layer, wherein the steel is a stainless steel or a high strength steel, and a copper clad layer, the copper having a purity of 92,0 % Cu or higher, on at least one side of the steel core layer.
  • The sheet or strip according to the second aspect of the invention can be directly use for manufacturing the electrical connectors and electrical terminals according to the first aspect of the invention, and as such replaces the two sheets or strips (a steel strip and a copper or copper alloy strip) that until now have to be used for the manufacture of such connectors or terminals.
  • According to a preferred embodiment, the steel sheet or strip has a thickness of 0.5 to 3.0 mm, preferably 0.7 to 1.3 mm. On this steel sheet or strip a copper strip is clad and rolled to a desired thickness for manufacturing the electrical connectors or terminals according to the first aspect of the invention.
  • According to a preferred embodiment the clad metal sheet or strip has been annealed and rolled to a thickness of 0.1 to 0.5 mm, preferably to a thickness of 0.15 to 0.3 mm. These thicknesses are commonly used for manufacturing electrical connectors and terminals; in most cases a thickness of 0.15 to 0.3 mm is used.
  • Preferably a tin or tin alloy layer is present on both sides of the clad metal sheet or strip, each tin or tin alloy layer preferably having a thickness of 1 to 10 µm, more preferably 2 to 4 µm. The tin or tin alloy layer has been provided on the clad metal sheet or strip to provide a better lubrication, contact resistance and corrosion resistance of the electrical connectors or terminal manufactured from the sheet or strip.
  • The invention will be elucidated with reference to the following example.
  • A copper clad steel strip is manufactured starting from a steel strip having a width of 500 mm and a thickness of 1,0 mm, and a copper strip Cu-HCP having a purity of 99,5 %, having a width of 540 mm and a thickness of 0,1 mm. The sides that have to contact each other are subjected to a pretreatment with a chemical alkaline cleaner and a mechanical brushing. The two strips are clad under the usual condition with a reduction of 25 to 60 %.
  • After cladding the strip is cold rolled and annealed under protective gas atmosphere (nitrogen/hydrogen or pure hydrogen, for instance) and recrystallised at approximately 800° C for high strength steel (for instance C30, Z800 or S690) or at approximately 900 to 1000° C for stainless steel type 301 (1.4310 EN 10088-2).
  • A final cold rolling step is applied with a reduction of at least 5 %, to provide a final thickness of 0,25 mm. The width of the strip remains 500 mm.
  • Optionally a coating with a thin tin or tin alloy layer (1 to 10 µm) is provided, for instance by hot dipping or electrolytic coating.
  • Usually, the clad strip is slit into strips of smaller width before it is packed and sent to the manufacturer of electrical connectors or electrical terminals. There, the clad strips are (partially) cut into the desired form and formed into the desired shape as metallic element for the electrical connector or terminal.

Claims (21)

  1. Electrical connector or electrical terminal comprising an electrically conductive metallic element, characterized in that the metallic element has been manufactured from a copper clad steel sheet or strip, wherein the steel is a stainless steel or a high strength steel and the copper clad layer has a purity of 92,0 % Cu or higher.
  2. Electrical connector or electrical terminal according to claim 1, wherein the copper clad layer has a purity of 99,0 % Cu or higher.
  3. Electrical connector or electrical terminal according to claim 2, wherein the copper clad layer has a purity of 99,5 % Cu or higher, preferably 99,9 % Cu or higher.
  4. Electrical connector according to claim 1, wherein the copper clad layer comprises nickel, tin, zinc and/or iron.
  5. Electrical connector according to claim 4, wherein the copper clad layer consists of CuSn2, Cu Fe2P, CuZn8, CuNi3Si, CuAg0,1Cr1Zr or CuCo2.
  6. Electrical connector or electrical terminal according to claim 2 or 3, wherein the copper clad layer clad onto the steel sheet or strip is Cu-HCP, Cu-PHC, Cu-DHP or Cu-OF copper strip.
  7. Electrical connector or electrical terminal according to any one of the preceding claims, wherein the copper clad layer is present on both sides of the steel sheet or strip.
  8. Electrical connector or electrical terminal according to any one of the preceding claims, wherein the stainless steel is ferritic stainless steel.
  9. Electrical connector or electrical terminal according to any one of the claims 1 - 7, wherein the stainless steel is austenitic stainless steel.
  10. Electrical connector or electrical terminal according to claim 8 or 9, wherein the stainless steel is type 301 stainless steel.
  11. Electrical connector or electrical terminal according to any one of the claims 1 - 7, wherein the high strength steel is a carbon steel, for instance C30 or C60.
  12. Electrical connector or electrical terminal according to claim 11, wherein the high strength steel is a high strength low alloy (HSLA) steel, for instance ZE 800, or wherein the high strength steel is a dual phase steel, for instance S690.
  13. Electrical connector or electrical terminal according to any one of the preceding claims, wherein the metallic element has a gauge of 0.1 to 0.5 mm, preferably 0.15 to 0.3 mm.
  14. Electrical connector or electrical terminal according to any one of the claims 1 - 13, wherein the copper clad layer has been applied on one side of the steel sheet or strip, the copper clad layer having a thickness of 1 to 70 % of the total thickness of the copper clad steel sheet or strip, preferably a thickness of 5 to 40 % of the total thickness of the steel sheet or strip, more preferably a thickness of 10 to 30 % of the total thickness of the steel sheet or strip.
  15. Electrical connector or electrical terminal according to any one of the claims 1 - 13, wherein the copper clad layer has been applied on both sides of the steel sheet or strip, the copper clad layers together having a thickness of 2 to 70 % of the total thickness of the copper clad steel sheet or strip, preferably the copper clad layers together having a thickness of 10 to 50 % of the total thickness of the steel sheet or strip, more preferably together having a thickness of 20 to 30 % of the total thickness of the steel sheet or strip.
  16. Electrical connector or electrical terminal according to claim 16, wherein the copper clad layer on one side of the steel sheet or strip has a thickness that is different from the thickness of the copper clad layer on the other side of the steel sheet or strip.
  17. Electrical connector or electrical terminal according to any one of the preceding claims, wherein the metallic element is coated with a tin or tin alloy layer on both sides, the tin or tin alloy layer preferably having a thickness of 1 to 10 µm on each side, preferably a thickness of 2 to 4 µm.
  18. Clad metal sheet or strip for the manufacture of metallic elements for electrical connectors or electrical terminals according to any one of claims 1 - 17, characterized in that the clad metal sheet or strip is a copper clad sheet or strip comprising a steel core layer, wherein the steel is a stainless steel or a high strength steel, and a copper clad layer, the copper having a purity of 92,0 % Cu or higher, on at least one side of the steel core layer.
  19. Clad metal sheet or strip according to claim 18, wherein the steel sheet or strip has a thickness of 0.5 to 3.0 mm, preferably 0.7 to 1.3 mm.
  20. Clad metal sheet or strip according to claim 18, wherein the clad metal sheet or strip has been annealed and rolled to a thickness of 0.1 to 0.5 mm, preferably to a thickness of 0.15 to 0.3 mm.
  21. Clad metal sheet or strip according to claim 20, wherein a tin or tin alloy layer is present on both sides of the clad metal sheet or strip, each tin or tin alloy layer preferably having a thickness of 1 to 10 µm, more preferably 2 to 4 µm.
EP03078003A 2003-09-22 2003-09-22 Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof Withdrawn EP1517405A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03078003A EP1517405A1 (en) 2003-09-22 2003-09-22 Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof
PCT/EP2004/010458 WO2005029648A1 (en) 2003-09-22 2004-09-14 Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof
TW093128453A TW200520320A (en) 2003-09-22 2004-09-20 Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03078003A EP1517405A1 (en) 2003-09-22 2003-09-22 Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof

Publications (1)

Publication Number Publication Date
EP1517405A1 true EP1517405A1 (en) 2005-03-23

Family

ID=34178546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03078003A Withdrawn EP1517405A1 (en) 2003-09-22 2003-09-22 Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof

Country Status (3)

Country Link
EP (1) EP1517405A1 (en)
TW (1) TW200520320A (en)
WO (1) WO2005029648A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067850A1 (en) * 2007-11-28 2009-06-04 Shihuang Li A conductor of plug, socket or connector that is improved by conducting material
DE102013103090A1 (en) * 2013-03-26 2014-10-16 Borgwarner Beru Systems Gmbh glow plug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB475644A (en) * 1935-02-14 1937-11-15 Thomas B Chace Improvements in and relating to the production of metal clad iron or steel
US4467954A (en) * 1981-10-05 1984-08-28 Olin Corporation Process for obtaining a composite article
US5224884A (en) * 1990-01-22 1993-07-06 Digital Equipment Corporation High current, low voltage drop, separable connector
EP0645843A2 (en) * 1993-09-28 1995-03-29 The Whitaker Corporation Electrical terminal and method of making the same
EP1020247A1 (en) * 1998-06-03 2000-07-19 Sumitomo Special Metals Company Limited Clad material and method of manufacturing the material
US20030010410A1 (en) * 2000-02-23 2003-01-16 Veikko Polvi Method for making a joint between copper and stainless steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB475644A (en) * 1935-02-14 1937-11-15 Thomas B Chace Improvements in and relating to the production of metal clad iron or steel
US4467954A (en) * 1981-10-05 1984-08-28 Olin Corporation Process for obtaining a composite article
US5224884A (en) * 1990-01-22 1993-07-06 Digital Equipment Corporation High current, low voltage drop, separable connector
EP0645843A2 (en) * 1993-09-28 1995-03-29 The Whitaker Corporation Electrical terminal and method of making the same
EP1020247A1 (en) * 1998-06-03 2000-07-19 Sumitomo Special Metals Company Limited Clad material and method of manufacturing the material
US20030010410A1 (en) * 2000-02-23 2003-01-16 Veikko Polvi Method for making a joint between copper and stainless steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067850A1 (en) * 2007-11-28 2009-06-04 Shihuang Li A conductor of plug, socket or connector that is improved by conducting material
DE102013103090A1 (en) * 2013-03-26 2014-10-16 Borgwarner Beru Systems Gmbh glow plug
US9273662B2 (en) 2013-03-26 2016-03-01 Borgwarner Ludwigsburg Gmbh Glow plug control device
DE102013103090B4 (en) * 2013-03-26 2016-07-14 Borgwarner Ludwigsburg Gmbh glow plug

Also Published As

Publication number Publication date
WO2005029648A1 (en) 2005-03-31
TW200520320A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP5458931B2 (en) Electric wire with terminal
KR100434617B1 (en) Electric distribution assembly
CN100528550C (en) Heat resistant film, its manufacturing method, and electrical and electronic parts
EP1352993B1 (en) A method for preparation of metal-plated material
WO2015045856A1 (en) Electric contact material for connector, and method for producing same
JP2009079250A (en) Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
JP6361477B2 (en) Connector terminal
CN102439796A (en) Connector terminal
US9884467B2 (en) Copper-based material and method for producing the same
JP6060875B2 (en) Board terminals and board connectors
JPH0364969B2 (en)
US6641930B2 (en) Electrically conductive metal tape and plug connector
US7015406B2 (en) Electric contact
JP5261278B2 (en) Connectors and metal materials for connectors
US20170162969A1 (en) Terminal pair and connector
EP1517405A1 (en) Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof
JP2005344188A (en) Method for producing plating material and electrical/electronic component using the plating material
CN109715864B (en) Conductive strip
JP6553333B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP2003328157A (en) Plated material, production method thereof and electrical and electronic parts obtained by using the same
JP2014075255A (en) Connector terminal and material for the same
JPH10223290A (en) Connecting terminal
WO2013115079A1 (en) Terminal
JP6053564B2 (en) Terminal and terminal manufacturing method
WO2022181445A1 (en) Metal material, connection terminal, and method for manufacturing metal material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050924