EP1511934B1 - Injektor zum einspritzen von kraftstoff - Google Patents

Injektor zum einspritzen von kraftstoff Download PDF

Info

Publication number
EP1511934B1
EP1511934B1 EP03756968A EP03756968A EP1511934B1 EP 1511934 B1 EP1511934 B1 EP 1511934B1 EP 03756968 A EP03756968 A EP 03756968A EP 03756968 A EP03756968 A EP 03756968A EP 1511934 B1 EP1511934 B1 EP 1511934B1
Authority
EP
European Patent Office
Prior art keywords
diameter
inlet
outlet
injector according
spray orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03756968A
Other languages
English (en)
French (fr)
Other versions
EP1511934A1 (de
Inventor
Andreas Fath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1511934A1 publication Critical patent/EP1511934A1/de
Application granted granted Critical
Publication of EP1511934B1 publication Critical patent/EP1511934B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/007Cleaning
    • F02M65/008Cleaning of injectors only

Definitions

  • the present invention relates to an injector for injection of fuel in a combustion chamber of an internal combustion engine through at least one spray hole.
  • injectors for injecting fuel in a combustion chamber are injection holes, through which the fuel is injected into the combustion chamber, usually cylindrical educated. So far, here were one or two Spray holes provided. For an improved exhaust behavior To achieve the internal combustion engine has been proposed, the To manufacture injection holes of smaller diameter and at the same time increase the number of spray holes. extensive However, motor investigations have shown that when using contaminated fuel, which for example an increased concentration of co-formulants like Zinc, copper, etc. as well as their compounds contains deposits (Coking) at the outlet opening of the spray holes form. This will cause the flow through the spray holes decreases, so that the injection quantity decreases in the engine and the power of the engine thus continuously decreases. This problem occurs especially at large and maximum Load conditions where very high temperatures prevail.
  • the document DE 198 54 828 A1 discloses an injector for injecting of fuel in a combustion chamber known which at least one injection hole with an inlet opening and a Has outlet opening.
  • the injection hole cross section expands facing outward in the direction of the valve seat surface Page, d. H. towards the combustion chamber of the internal combustion engine, which makes it possible already in the injection port to generate a cavitation or turbulence, so that the Fuel jet significantly closer to the nozzle decays.
  • each injection hole with a device for the targeted generation of cavitation provided at the outlet opening to be stored in operation Remove deposits or the formation of deposits to prevent.
  • the invention is thus aware of cavitation generated, i. it will be deliberately steam bubbles at the injection hole generated by falling below the vapor pressure, which then targeted at the outlet of the injection hole, where the unwanted deposits occur to be imploded. in this connection arise at these points pressure waves of several thousand bar, whereby the spray holes freed of deposits or a deposit is prevented from the beginning.
  • a device for self-cleaning the outlet openings of the spray nozzles are provided.
  • the device for targeted production cavitation by design of the geometric dimensions the injection hole integrated into the injection hole.
  • the injection hole shape is somewhat unfavorable in terms of flow designed so that to a certain extent a targeted cavitation occurs.
  • This is a flow-related Cavitation achieved by virtue of the shape the spray hole the flow is no longer able to follow the given geometry of the injection hole, so that cavitation occurs.
  • the injection hole has on average a barrel-like shape on. Under a barrel-like shape according to the invention thereby a form understood, which is in the direction of flow first expanded and then rejuvenated. hereby can by simple geometric design of the spray hole the imploding of the cavitation bubbles to the outlet opening of the spray hole are laid to the unwanted deposits to avoid.
  • the injection hole preferably has a symmetrical Barrel shape up. More preferably, the inlet cross-sectional area the barrel-shaped injection run greater or equal the outlet cross-sectional area. Further preferred are the inlet cross-sectional area and the outlet cross-sectional area respectively circular, wherein an inlet diameter is equal to or larger than an outlet diameter.
  • the ratio of the inlet diameter to a maximum Diameter of the barrel-shaped injection hole between 0.9 and 0.95. It is at a ratio inlet diameter to maximum diameter of the barrel-shaped injection hole of 0.91 a safe prevention of deposits possible.
  • the inlet diameter is between 5 ⁇ m to 25 ⁇ m smaller than the maximum diameter of the barrel Injection port. At a difference of the inlet diameter to the maximum diameter of at least 10 microns can deposits safely prevented. Further preferred is Ratio of the inlet diameter to the outlet diameter of the barrel-shaped injection hole between 1 and 1.3, in particular at 1.1.
  • the injection hole is the ratio of the injection hole length to a mean diameter of the spray hole less than or equal 6.5.
  • the average diameter is the average Diameter over the length of the spray hole.
  • Invention can the coking tendency of the spray hole thereby be reduced, that at the outlet opening a sharp edge is formed. That is, at the outlet port no rounding of the edge is made, so that one sharp transition between the spray hole and the combustion chamber is available. This sharp transition prevents deposition co-formulants while ensuring that that cavitation bubbles occur at the injection hole edge and there can implode.
  • the present invention can be used both with injectors Seat hole nozzles (VCO) as well as injectors with blind hole nozzles be used.
  • VCO Vehicle Operator
  • injectors with blind hole nozzles be used.
  • the injection hole 1 has a symmetrical barrel shape.
  • the injection hole 1 is symmetrical both to a plane containing the center axis of the spray hole as well as in a plane imaginary by the maximum diameter D max of the injection hole 1 level.
  • the injection hole 1 has an inlet opening 2 and an outlet opening 3.
  • the diameter D A of the inlet port 2 equal to the diameter D of the outlet opening 3, wherein the openings 2, 3 are circular.
  • the injection hole 1 is in a known manner in a nozzle body 6 formed and at an injection-side end of a blind hole arranged.
  • the blind hole comprises a valve seat surface, which released by means of a valve needle or is closed to perform an injection.
  • the fuel enters the injection port at the inlet port 2 1 and flows from the outlet port 3 in a Combustion chamber 10 of an internal combustion engine a.
  • the maximum diameter D max of the injection hole 1 is arranged at half the length L / 2 of the total length L of the injection hole.
  • the ratio of the inlet diameter D Ein to the maximum diameter D max is 0.91. Since the inlet diameter D equal to the outlet diameter D A is Off, the ratio of inlet diameter to outlet diameter. 1
  • the flow direction and the deflections at the injection hole 1 of the flow are indicated by the arrows in the figure. Due to the geometric shaping of the injection hole in barrel form, a strong deflection of the flow is generated at the inlet opening 2, so that cavitation bubbles 7 are formed.
  • the inlet edge 4 of the inlet opening 2 is rounded with a predetermined radius R.
  • the resulting cavitation bubbles 7 are entrained by the flow. Due to the large pressure differences in the injection hole 1, the cavitation bubbles implode, which is indicated in the figures by the reference numeral 8.
  • the outlet opening 3 is freed from the deposits 9 occurring there.
  • a self-cleaning of the injection hole 1 is possible.
  • the inclination of the cavitation bubbles 7 for imploding at the outlet opening 3 can also be adjusted in a targeted manner by forming a sharp outlet edge 5.
  • the outlet edge 5 is formed as a sharp edge.
  • the injection hole 1 according to the second embodiment substantially corresponds to the first embodiment, with the difference that it is formed only symmetrically with respect to a plane through the center axis of the injection hole and asymmetrical with respect to a level equal to the length L / 2 of the wall thickness L of the nozzle body 6.
  • the maximum diameter D max of the barrel-shaped injection hole 1 according to the second embodiment is arranged between the inlet opening 2 and the half length L / 2 of the injection hole 1 (see FIG.
  • the ratio of the inlet diameter D Ein to the maximum diameter D max is 0.94. Further, the ratio of the inlet diameter D. A to the outlet diameter D of 1.05. Otherwise, this embodiment corresponds to the first embodiment, so that reference may be made to the description there.
  • this is between the outer surface the nozzle body 6 and the injection hole 1 at the outlet opening 3 an outlet edge 5 is formed at an angle ⁇ , so that a sharp-edged transition from the spray hole to the combustion chamber 10 results.
  • the injection hole is 1 widening in the direction of flow, more precisely conically widening, formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die vorliegende Erfindung betrifft einen Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine durch wenigstens ein Spritzloch.
Bei bekannten Injektoren zum Einspritzen von Kraftstoff in einen Brennraum sind Einspritzlöcher, durch welche der Kraftstoff in den Brennraum eingespritzt wird, üblicherweise zylindrisch ausgebildet. Bisher wurden hierbei ein oder zwei Spritzlöcher vorgesehen. Um ein verbessertes Abgasverhalten der Brennkraftmaschine zu erreichen, wurde vorgeschlagen, die Spritzlöcher mit kleinerem Durchmesser zu fertigen und gleichzeitig die Anzahl der Spritzlöcher zu erhöhen. Umfangreiche motorische Untersuchungen haben jedoch gezeigt, dass bei einem Einsatz von kontaminiertem Kraftstoff, welcher beispielsweise eine erhöhte Konzentration von Beistoffen wie Zink, Kupfer, usw. sowie deren Verbindungen enthält, sich Ablagerungen (Verkokungen) an der Auslassöffnung der Spritzlöcher bilden. Dadurch wird der Durchfluss durch die Spritzlöcher verringert, so dass die Einspritzmenge in den Motor abnimmt und die Leistung des Motors somit kontinuierlich sinkt. Dieses Problem tritt insbesondere bei großen und maximalen Lastbedingungen auf, bei denen sehr hohe Temperaturen herrschen.
Aus dem Dokument DE 198 54 828 A1 ist ein Injektor zum Einspritzen von Kraftstoff in einem Brennraum bekannt, welcher wenigstens ein Einspritzloch mit einer Einlassöffnung und einer Auslassöffnung aufweist. Der Spritzlochquerschnitt erweitert sich nach Außen in Richtung der der Ventilsitzfläche abgewandten Seite, d. h. hin zum Brennraum der Brennkraftmaschine, wodurch es möglich ist, bereits im Spritzlocheinlauf eine Kavitation oder Turbulenz zu erzeugen, so dass der Kraftstoffstrahl deutlich näher an der Düse zerfällt.
Es ist daher Aufgabe der vorliegenden Erfindung, einen Injekor mit einem Spritzloch zum Einspritzen von Kraftstoff bereitzustellen, welcher bei einfachem Aufbau und einfacher, kostengünstiger Herstellbarkeit eine Verkokung von Spritzlöchern sicher verhindern kann.
Diese Aufgabe wird durch einen Injektor mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche zeigen vorteilhafte Weiterbildungen der Erfindung.
Erfindungsgemäß wird daher vorgeschlagen, jedes Spritzloch mit einer Einrichtung zur gezielten Erzeugung von Kavitation an der Auslassöffnung zu versehen, um im Betrieb angelagerte Ablagerungen zu entfernen bzw. das Entstehen der Ablagerungen zu verhindern. Erfindungsgemäß wird somit bewusst Kavitation erzeugt, d.h. es werden am Spritzloch gezielt Dampfblasen durch Unterschreitung des Dampfdrucks erzeugt, welche dann gezielt am Auslass des Spritzlochs, wo die unerwünschten Ablagerungen auftreten, zum Implodieren gebracht werden. Hierbei entstehen an diesen Stellen Druckwellen von mehreren tausend bar, wodurch die Spritzlöcher von Ablagerungen befreit werden bzw. eine Ablagerung von Anfang an verhindert wird. Somit kann erfindungsgemäß eine Einrichtung zur Selbstreinigung der Auslassöffnungen der Spritzdüsen bereitgestellt werden.
Besonders bevorzugt ist die Einrichtung zur gezielten Erzeugung von Kavitation durch Ausgestaltung der geometrischen Abmessungen des Spritzlochs in das Spritzloch integriert. Um hierbei die Kavitationsneigung des Spritzlochs zu steigern, wird somit die Spritzlochform strömungstechnisch etwas ungünstiger gestaltet, so dass in einem gewissen Umfang eine gezielte Kavitation auftritt. Dabei wird eine strömungsbedingte Kavitation dadurch erreicht, dass aufgrund der Form des Spritzlochs die Strömung nicht länger in der Lage ist, der vorgegebenen Geometrie des Einspritzlochs zu folgen, so dass Kavitation auftritt.
Gemäß einer bevorzugten Ausgestaltung der vorliegenden Erfindung weist das Spritzloch im Schnitt eine tonnenartige Form auf. Unter einer tonnenartigen Form wird erfindungsgemäß dabei eine Form verstanden, welche sich in Durchflussrichtung zuerst erweitert und anschließend wieder verjüngt. Hierdurch kann durch einfache geometrische Gestaltung des Spritzlochs das Implodieren der Kavitationsblasen an die Auslassöffnung des Spritzlochs gelegt werden, um die unerwünschten Ablagerungen zu vermeiden. Um eine einfache Herstellbarkeit aufzuweisen, weist das Spritzloch vorzugsweise eine symmetrische Tonnenform auf. Weiter bevorzugt ist die Einlassquerschnittsfläche des tonnenförmigen Einspritzlaufs größer oder gleich der Auslassquerschnittsfläche. Weiter bevorzugt sind die Einlassquerschnittsfläche und die Auslassquerschnittsfläche jeweils kreisförmig, wobei ein Einlassdurchmesser gleich oder größer einem Auslassdurchmesser ist. Vorzugsweise ist dabei das Verhältnis des Einlassdurchmessers zu einem maximalen Durchmesser des tonnenförmigen Spritzlochs zwischen 0,9 und 0,95. Dabei ist bei einem Verhältnis Einlassdurchmesser zum maximalem Durchmesser des tonnenförmigen Spritzlochs von 0,91 eine sichere Verhinderung von Ablagerungen möglich. Besonders vorteilhaft ist der Einlassdurchmesser zwischen 5 µm bis 25 µm kleiner als der maximale Durchmesser des tonnenförmigen Spritzlochs. Bei einem Unterschied des Einlassdurchmessers zum maximalen Durchmesser von mindestens 10 µm können Ablagerungen sicher verhindert werden. Weiterhin bevorzugt ist das Verhältnis des Einlassdurchmessers zum Auslassdurchmesser des tonnenförmigen Spritzlochs zwischen 1 und 1,3, insbesondere bei 1,1.
Gemäß einer anderen bevorzugten geometrischen Ausgestaltung des Spritzlochs ist das Verhältnis der Spritzlochlänge zu einem mittleren Durchmesser des Spritzlochs kleiner oder gleich 6,5. Dabei ist der mittlere Durchmesser der durchschnittliche Durchmesser über die Länge des Spritzlochs. Durch Auslegung des Spritzlochs gemäß der obigen Formel kann das gezielte Auftreten von Kavitation in einem vorbestimmten Umfang erreicht werden.
Gemäß einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung kann die Verkokungsneigung des Spritzlochs dadurch reduziert werden, dass an der Auslassöffnung eine scharfe Kante ausgebildet ist. D.h., an der Auslassöffnung wird keine Verrundung der Kante vorgenommen, so dass ein scharfer Übergang zwischen dem Spritzloch und dem Brennraum vorhanden ist. Dieser scharfe Übergang verhindert das Ablagern der Beistoffe, wobei gleichzeitig gewährleistet wird, dass Kavitationsblasen am Spritzlochrand auftreten und dort implodieren können.
Es sei angemerkt, dass bei Verwendung von Kraftstoff ohne Verunreinigungen durch Zink, Kupfer usw. trotz der Einrichtung zur gezielten Erzeugung von Kavitation an der Auslassöffnung kein Kavitationsverschleiß an der Auslassöffnung selbst auftritt, da erfindungsgemäß die Kavitation so genau eingestellt werden kann, dass ausschließlich bei Auftreten von Ablagerungen diese entfernt werden. Weiterhin werden die aus Verkokungen bestehenden Ablagerungen leichter herausgeschlagen als das Material, in welchem das Spritzloch gebildet ist, da dieses Material widerstandsfähiger gegen Kavitation ist.
Die vorliegende Erfindung kann sowohl bei Injektoren mit Sitzlochdüsen (VCO) als auch bei Injektoren mit Sacklochdüsen verwendet werden.
Nachfolgend wird die vorliegende Erfindung anhand von bevorzugten Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. In der Zeichnung ist:
Figur 1
eine schematische Schnittansicht eines Spritzlochs gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung,
Figur 2
eine vergrößerte Ansicht der Auslasskante des Spritzlochs von Figur 1,
Figur 3
eine schematische Schnittansicht eines Spritzlochs gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung und
Figur 4
eine schematische Schnittansicht eines Spritzlochs gemäß einem nicht erfindungsgemäßen Beispiel.
Nachfolgend wird unter Bezugnahme auf die Figuren 1 und 2 ein Spritzloch 1 gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung beschrieben. Wie aus Figur 1 ersichtlich ist, weist das Spritzloch 1 eine symmetrische Tonnenform auf. Das Spritzloch 1 ist dabei sowohl zu einer die Mittelachse des Spritzlochs enthaltenden Ebene symmetrisch als auch in einer durch den maximalen Durchmesser Dmax des Spritzlochs 1 gedachten Ebene symmetrisch. Das Spritzloch 1 weist eine Einlassöffnung 2 und eine Auslassöffnung 3 auf. Hierbei ist der Durchmesser DEin der Einlassöffnung 2 gleich wie der Durchmesser DAus der Auslassöffnung 3, wobei die Öffnungen 2, 3 kreisförmig sind.
Das Spritzloch 1 ist in bekannter Weise in einem Düsenkörper 6 gebildet und an einem einspritzseitigen Ende einer Sacklochbohrung angeordnet. Die Sacklochbohrung umfasst eine Ventilsitzfläche, welche mittels einer Ventilnadel freigegeben bzw. verschlossen wird, um eine Einspritzung auszuführen.
Der Kraftstoff tritt an der Einlassöffnung 2 in das Spritzloch 1 ein und strömt aus der Auslassöffnung 3 in einen Brennraum 10 einer Brennkraftmaschine ein.
Wie aus Figur 1 ersichtlich ist, ist der maximale Durchmesser Dmax des Spritzlochs 1 an der halben Länge L/2 der Gesamtlänge L des Spritzlochs angeordnet.
Gemäß dem ersten Ausführungsbeispiel beträgt das Verhältnis des Einlassdurchmessers DEin zum maximalen Durchmesser Dmax 0,91. Da der Einlassdurchmesser DEin gleich dem Auslassdurchmesser DAus ist, beträgt das Verhältnis Einlassdurchmesser zu Auslassdurchmesser 1.
Die Durchströmungsrichtung sowie die Umlenkungen am Spritzloch 1 der Strömung sind durch die Pfeile in der Figur angedeutet. Durch die geometrische Formung des Spritzlochs in Tonnenform wird an der Einlassöffnung 2 eine starke Ablenkung der Strömung erzeugt, so dass Kavitationsbläschen 7 entstehen. Um an der Einlassöffnung 2 eine möglichst gute Strömung zu erreichen, ist die Einlasskante 4 der Einlassöffnung 2 mit einem vorbestimmten Radius R gerundet. Abhängig vom Durchmesser DEin und der Abrundung R der Einlasskante wird dabei die Kavitationsneigung durch entsprechende Beeinflussung von Druck und Strömungsgeschwindigkeit gezielt erhöht. Die entstandenen Kavitationsbläschen 7 werden von der Strömung mitgerissen. Durch die großen Druckunterschiede im Spritzloch 1 implodieren die Kavitationsbläschen, was in den Figuren mit dem Bezugszeichen 8 gekennzeichnet ist. Aufgrund der implodierenden Kavitationsbläschen 8 entstehen Druckwellen von mehreren 1000 bar, wodurch die Auslassöffnung 3 von den dort auftretenden Ablagerungen 9 befreit wird. Somit ist eine Selbstreinigung des Spritzlochs 1 möglich. Es sei angemerkt, dass die Neigung der Kavitationsbläschen 7 zum Implodieren an der Auslassöffnung 3 weiterhin durch Ausbilden einer scharfen Auslasskante 5 ebenfalls gezielt eingestellt werden kann. Im vorliegenden Ausführungsbeispiel ist die Auslasskante 5 als scharfe Kante ausgebildet.
Nachfolgend wird unter Bezugnahme auf Figur 3 ein Spritzloch 1 gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung beschrieben. Dabei sind gleiche Teile mit den gleichen Bezugszeichen wie im ersten Ausführungsbeispiel bezeichnet.
Das Spritzloch 1 gemäß dem zweiten Ausführungsbeispiel entspricht im Wesentlichen dem ersten Ausführungsbeispiel, mit dem Unterschied, dass es nur symmetrisch hinsichtlich einer Ebene durch die Mittelachse des Spritzlochs ausgebildet ist und unsymmetrisch hinsichtlich einer Ebene in Höhe der haben Länge L/2 der Wandstärke L des Düsenkörpers 6. Mit anderen Worten ist der maximale Durchmesser Dmax des tonnenförmigen Spritzlochs 1 gemäß dem zweiten Ausführungsbeispiel zwischen der Einlassöffnung 2 und der halben Länge L/2 des Spritzlochs 1 angeordnet (vgl. Figur 3). Das Verhältnis des Einlassdurchmessers DEin zum maximalen Durchmesser Dmax beträgt dabei 0,94. Weiterhin beträgt das Verhältnis des Einlassdurchmessers DEin zum Auslassdurchmesser DAus 1,05. Ansonsten entspricht dieses Ausführungsbeispiel dem ersten Ausführungsbeispiel, so dass auf die dortige Beschreibung verwiesen werden kann.
Nachfolgend wird unter Bezugnahme auf Figur 4 ein weiteres Beispiel beschrieben, wobei gleich Teile mit den gleichen Bezugszeichen wie in den vorhergehenden Ausführungsbeispielen bezeichnet sind.
Wie aus Figur 4 ersichtlich ist, ist dabei zwischen der Aussenfläche des Düsenkörpers 6 und dem Spritzloch 1 an der Auslassöffnung 3 eine Auslasskante 5 mit einem Winkel α ausgebildet, so dass sich ein scharfkantiger Übergang vom Spritzloch zum Brennraum 10 ergibt.
Wie in Figur 4 gezeigt, ist das Spritzloch 1 in Durchströmungsrichtung sich erweiternd, genauer sich konisch erweiternd, ausgebildet. Wie bei den vorhergehenden Ausführungsbeispielen werden dabei an der Einlassöffnung Kavitationsbläschen 7 erzeugt, welche infolge des Druckanstiegs beim Austritt aus dem Spritzloch 1 kavitieren, so dass eventuell vorhandene Ablagerungen 9 mittels der implodierenden Kavitationsbläschen 8 entfernt werden können.

Claims (9)

  1. Injektor zum Einspritzen von Kraftstoff in einen Brennraum (10) durch wenigstens ein Spritzloch (1) mit einer Einlassöffnung (2) und einer Auslassöffnung (3), wobei das Spritzloch (1) eine Einrichtung zur gezielten Erzeugung von Kavitation an der Auslassöffnung (3) aufweist, um im Betrieb auftretenden Ablagerungen (9) an der Auslassöffnung (3) zu entfernen, wobei
    die Einrichtung zur gezielten Erzeugung von Kavitation durch spezielle geometrische Ausbildung der Form des Einspritzlochs in das Einspritzloch integriert ist,
    dadurch gekennzeichnet, dass das Spritzloch (1) eine im Schnitt tonnenartige Form aufweist, welcher sich in Durchflussrichtung erst erweitert und dann wieder verjüngt.
  2. Injektor nach Anspruch 1, dadurch gekennzeichnet, dass eine Einlassquerschnittsfläche des tonnenförmigen Spritzlochs (1) größer oder gleich einer Auslassquerschnittsfläche ist.
  3. Injektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Spritzloch (1) eine symmetrische Tonnenform aufweist.
  4. Injektor nach Anspruch 3, dadurch gekennzeichnet, dass die Einlassquerschnittsfläche und die Auslassquerschnittsfläche kreisförmig sind und ein Einlassdurchmesser (DEin) gleich einem Auslassdurchmesser (DAus) ist.
  5. Injektor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Verhältnis des Einlassdurchmessers (DEin) zu einem maximalen Durchmesser (Dmax) des Spritzlochs (1) zwischen 0,9 und 0,95, insbesondere bei 0,91, liegt.
  6. Injektor nach einem der Ansprüche 1 bis4, dadurch gekennzeichnet, dass der Einlassdurchmesser (DEin) zwischen 5 µm bis 25 µm kleiner, insbesondere um 10 µm kleiner, als der maximale Durchmesser (DMAX) ist.
  7. Injektor nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass das Verhältnis des Einlassdurchmessers (DEin) zum Auslassdurchmesser (DAus) zwischen 1 und 1,1, insbesondere bei 1,05, liegt.
  8. Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verhältnis der Spritzlochlänge (L) zu einem mittleren Durchmesser kleiner oder gleich 6,5 ist, wobei der mittlere Durchmesser ein durchschnittlicher Durchmesser über die Länge (L) des Spritzlochs (1) ist.
  9. Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der Auslassöffnung (3) eine scharfe Kante (5) ausgebildet ist und an der Kante (4) der Einlassöffnung (2) eine vorbestimmte Verrundung (R) ausgebildet ist.
EP03756968A 2002-06-10 2003-06-03 Injektor zum einspritzen von kraftstoff Expired - Fee Related EP1511934B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2002125683 DE10225683A1 (de) 2002-06-10 2002-06-10 Injektor zum Einspritzen von Kraftstoff
DE10225683 2002-06-10
PCT/DE2003/001879 WO2003104640A1 (de) 2002-06-10 2003-06-03 Injektor zum einspritzen von kraftstoff

Publications (2)

Publication Number Publication Date
EP1511934A1 EP1511934A1 (de) 2005-03-09
EP1511934B1 true EP1511934B1 (de) 2005-12-07

Family

ID=29718925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03756968A Expired - Fee Related EP1511934B1 (de) 2002-06-10 2003-06-03 Injektor zum einspritzen von kraftstoff

Country Status (4)

Country Link
EP (1) EP1511934B1 (de)
JP (1) JP4288233B2 (de)
DE (2) DE10225683A1 (de)
WO (1) WO2003104640A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502007005272D1 (de) * 2006-08-29 2010-11-18 Continental Automotive Gmbh Verfahren zur reduzierung von ablagerungen innerhalb eines spritzlochs einer kraftstoffeinspritzvorrichtung
DE102008055069A1 (de) * 2008-12-22 2010-07-01 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102009009796B3 (de) * 2009-02-20 2010-10-07 L'orange Gmbh Verfahren zur Diagnose und/oder Steuerung von Brennkraftmaschinen, insbesondere Diesel-Brennkraftmaschinen
JP5392026B2 (ja) * 2009-11-24 2014-01-22 トヨタ自動車株式会社 内燃機関の制御装置
JP5830891B2 (ja) * 2011-03-25 2015-12-09 トヨタ自動車株式会社 燃料噴射弁

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2921455A1 (de) * 1979-05-26 1980-11-27 Daimler Benz Ag Kraftstoffeinspritzventil fuer luftverdichtende einspritzbrennkraftmaschinen
DE19854828A1 (de) * 1998-11-27 2000-05-31 Bosch Gmbh Robert Kraftstoffeinspritzdüse für selbstzündende Brennkraftmaschinen
DE10116714A1 (de) * 2001-04-04 2002-10-10 Volkswagen Ag Kraftstoffeinspritzventil für Brennkraftmaschinen, vorzugsweise für hohe Strahlgeschwindigkeiten

Also Published As

Publication number Publication date
WO2003104640A1 (de) 2003-12-18
JP2005534844A (ja) 2005-11-17
DE10225683A1 (de) 2004-01-08
EP1511934A1 (de) 2005-03-09
DE50301874D1 (de) 2006-01-12
JP4288233B2 (ja) 2009-07-01

Similar Documents

Publication Publication Date Title
EP0980474B1 (de) Kraftstoffeinspritzdüse für selbstzündende brennkraftmaschinen
DE4039520B4 (de) Kraftstoff-Einspritzventil
EP1076772A1 (de) Kraftstoffeinspritzdüse für eine brennkraftmaschine
DE3217844A1 (de) Kraftstoffeinspritzduese fuer dieselmaschinen
EP1546547B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19815918A1 (de) Brennstoffeinspritzvorrichtung
DE10105674A1 (de) Kraftstoffeinspritzdüse für eine Brennkraftmaschine
DE19507171C1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1511934B1 (de) Injektor zum einspritzen von kraftstoff
EP1408231B1 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff
DE10315967A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102016224084B4 (de) Kraftstoffinjektor
EP2478211B1 (de) Düsenbaugruppe für ein einspritzventil und einspritzventil
DE102017101813A1 (de) Kraftstoffeinspritzdüse
EP2904259A1 (de) Düsenbaugruppe für einen fluidinjektor und fluidinjektor
DE102009041028A1 (de) Düsenbaugruppe für ein Einspritzventil und Einspritzventil
WO2012084515A1 (de) Düsenkörper mit einem einspritzloch mit mindestens zwei eintrittsöffnungen
WO2004061291A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2000032928A1 (de) Kraftstoffeinspritzdüse für selbstzündende brennkraftmaschinen
EP1655483B1 (de) Ventil zum Einspritzen von Brennstoff
DE10351680A1 (de) Ventil für eine Kraftstoffeinspritzpumpe
WO2015052031A1 (de) Düsenkörper für ein einspritzventil und einspritzventil
EP3073107B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen und verwendung des kraftstoffeinspritzventils
EP1358403A1 (de) Kraftstoffeinspritzventil für eine brennkraftmaschine
WO2018153741A1 (de) Düsenkörper für einen kraftstoffinjektor und kraftstoffinjektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051207

REF Corresponds to:

Ref document number: 50301874

Country of ref document: DE

Date of ref document: 20060112

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060908

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110825 AND 20110831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180626

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180627

Year of fee payment: 16

Ref country code: GB

Payment date: 20180620

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50301874

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190603

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630