EP1506827B1 - Casting system and method of casting non-ferrous metals - Google Patents

Casting system and method of casting non-ferrous metals Download PDF

Info

Publication number
EP1506827B1
EP1506827B1 EP03017412A EP03017412A EP1506827B1 EP 1506827 B1 EP1506827 B1 EP 1506827B1 EP 03017412 A EP03017412 A EP 03017412A EP 03017412 A EP03017412 A EP 03017412A EP 1506827 B1 EP1506827 B1 EP 1506827B1
Authority
EP
European Patent Office
Prior art keywords
section
casting system
submerged pipe
lip
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03017412A
Other languages
German (de)
French (fr)
Other versions
EP1506827A1 (en
Inventor
Leon Raphael Lucienne G. Cloostermans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MKM Mansfelder Kupfer und Messing GmbH
Original Assignee
Hof Te Fiennes NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hof Te Fiennes NV filed Critical Hof Te Fiennes NV
Priority to SI200330104T priority Critical patent/SI1506827T1/en
Priority to EP03017412A priority patent/EP1506827B1/en
Priority to ES03017412T priority patent/ES2250796T3/en
Priority to DE50301315T priority patent/DE50301315D1/en
Priority to AT03017412T priority patent/ATE305834T1/en
Priority to PE2004000628A priority patent/PE20050116A1/en
Priority to US10/888,714 priority patent/US6994149B2/en
Priority to CA2473316A priority patent/CA2473316C/en
Priority to MXPA04007200A priority patent/MXPA04007200A/en
Priority to ARP040102672A priority patent/AR045136A1/en
Priority to JP2004221773A priority patent/JP2005193296A/en
Priority to CNB2004100588043A priority patent/CN100345646C/en
Priority to BR0403171-7A priority patent/BRPI0403171A/en
Priority to RU2004123355/02A priority patent/RU2373019C2/en
Priority to KR1020040060700A priority patent/KR20050016086A/en
Publication of EP1506827A1 publication Critical patent/EP1506827A1/en
Application granted granted Critical
Publication of EP1506827B1 publication Critical patent/EP1506827B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles

Definitions

  • the invention relates to a casting system for casting non-ferrous molten metals, in particular copper or copper alloys, for the manufacture of flat products, consisting of a tundish with at least one, preferably obliquely downwardly extending dip tube, which in the in a thin-slab mold immersed melt bath, as well as a method for Shed.
  • the cross section of the flow opening on To keep inlet end of the pouring tube by means of a narrowing smaller than the cross section the flow opening at the outlet end of the spout to one opposite build up the pressure in the melt stream at atmospheric pressure.
  • the Spout of the metallurgical vessel and the pouring tube are over a conical Seal set interconnected.
  • a submersible pouring tube with a funnel-shaped design arranged at the tube end Verwirbelungshunt is known from DE 101 13 026 A1, wherein at the transition from Pipe section to Verwirbelungshunt a tear-off edge is provided.
  • EP 0 925 132 B1 discloses an immersion casting tube for the continuous casting of thin slabs known as a pipe with a circular cross-section, in vertical Arrangement, is connected to the ladle.
  • the pouring tube is at its lower End with a flattened distribution area, a so-called diffuser, formed, which dips into the melt of the mold.
  • a so-called diffuser formed, which dips into the melt of the mold.
  • In the diffuser is an in Direction of flow tapered separating body arranged through the two partial flows be formed.
  • the cross section of the diffuser is smaller above the separating body as the cross section of the upper pouring pipe section.
  • the side walls of the diffuser diverge at the same angle as the outside Side walls of the separator inside.
  • Vortex and turbulence in the bathroom mirror should be avoided.
  • the disadvantage is that the melt flow still reaches deep into the bath of the mold, and thereby the degassing takes place inside the mold bath.
  • Tauchg bankrohre are for the vertical Casting, in particular of molten steel, intended for relatively thick slabs. Of the Melt flow is in the shortest path, in the vertical direction, in the Kokillenbad injected and usually only shortly before entering the mold bath fluidly affected.
  • the invention is based on the object of a casting system for casting non-ferrous metal melts, especially copper or copper alloys, to create that one trouble-free introduction of the melt into the mold and a degassing at the ensures a free surface of the mold, the formation of a negative pressure in the Immersion tube avoids and is characterized by a simple structural design distinguished. Furthermore, a suitable method for casting non-ferrous molten metals be created.
  • the casting system is designed so that the in the tundish molten metal, preferably obliquely down, in the lower-lying Mold flows.
  • the casting angle can be in a range of 2 ° to 90 °.
  • At the in departure direction pointing end face of the distribution vessel is at least one obliquely downward, in arranged given pouring angle extending dip tube.
  • the dip tube consists of a first section with a preferably in Flow direction of the melt continuously tapered inner wall and a second section that forms the dip tube tip.
  • the inner wall of the first Section does not necessarily have to be rejuvenated and can be different have appropriate geometric design.
  • This or the initial section of the first section are is poured in a use of refractory concrete of the distribution vessel.
  • the first section extends from the distribution vessel to directly to the bath surface the mold.
  • the rejuvenation leads to a change in cross section with a decreasing cross-sectional area.
  • the rejuvenation can be formed differently. Starting from a circular cross-section at the The beginning of this section is e.g.
  • This section closes in the melt bath of a mold submerged dip tube tip. This is closed at its free end, e.g. by means of a plug, and has at its towards the mold base facing wall at least one, a first change in direction of the melt flow causing discharge opening, which in the operating state below the Kokillenbadober Structure is located.
  • the entire dip tube can be made of a piece of pipe, wherein the Dip tube tip is formed in the same way as the previous one Section and at the end an elliptical or circular cross section or a Has cross-section in the form of a slot. About the length of the dip tube tip Thus, the cross-sectional shape changes to a small extent.
  • the dip tube tip as a separate component with a almost constant or decreasing cross-sectional area to produce and on to fix the deformed section, z. B by welding.
  • the section conical and at this a dip tube tip with attach a slot shape the dip tube tip a short transition section for the transition from the circular cross-sectional shape in the slot shape has.
  • the formed as a separate component dip tube tip can also be made of a different refractory material than the itself rejuvenating section.
  • dip tube tip is formed in cross section as a slot, so should the two opposite parallel wall sections a distance of at least one Third of the diameter of the cross section at the beginning of the tapered trained Have section of the dip tube.
  • the located at the bottom of the dip tube tip discharge port for the Melt is preferably formed as a slot.
  • a long hole can also have two circular openings, immediately one behind the other, be arranged.
  • the first section of the dip tube is characterized by the continuously decreasing cross section ensures that the melt in constant contact with the Inner wall of the dip tube is and in the dip tube no air bubbles or cavities can form.
  • the length and the degree of rejuvenation of this Sections are of the properties of the molten metal and the respective Casting angle dependent.
  • the dip tubes have a constant wall thickness.
  • the free end of the dip tube tip is closed, takes place at the level of the discharge opening or the outflow openings a first deflection of the melt flow order at least 90 °, based on the casting angle.
  • the melt flow forced change of direction is essential to a gentle initiation of To ensure melt in the mold.
  • the cross-sectional area should the outflow opening or the sum of the cross-sectional areas of the outflow openings 80% to 98% of the cross-sectional area of the dip tube tip amount. In For certain applications, this can be greater than 100%.
  • the cross-sectional shape the outflow openings can be designed differently.
  • the immersion tube should be fully filled with melt during operation and during the Casting process, the melt should not from the inner wall of the dip tube can replace. As a result, there is a risk of a negative pressure excluded and in the melt, there may be no undesirable degassing come. By the intended deflection or change in direction of the melt Upon entry into the melt bath, a so-called “shot-in" of the melt and thus prevents excessive formation of bubbles.
  • the lip is dimensioned in its dimensions so that the tread surface is equal to or greater than the discharge opening.
  • the lip is in a defined arranged parallel distance or inclined to the discharge opening, preferably should be at least 5 mm. In an inclined arrangement, the distance is at its largest point at least 5 mm. In the operating state are the Outlet openings and the lip completely below the Schmelzenbadspiegels the mold.
  • the melt emerging from the outflow opening first hits the lip slowed down, and again deflected by at least 90 ° and laterally distributed in the melt bath.
  • This second, second, change of direction causes a particularly gentle introduction of the melt into the mold.
  • the division of the Melt after hitting the lip in two laterally directed streams favors the migration of still existing bubbles to the bath surface of the mold.
  • Flow rate of the molten metal on entering the melt a value of ⁇ 0.5 m / s can be reduced.
  • the speed of the melt flow increasing as a function of the casting angle reduced in the dip tube and prior to introduction into the melt bath the mold is slowed down and the melt flow at least twice in their Flow direction is deflected by at least 90 °.
  • the measures according to the invention lead to a significant improvement in quality the microstructure of the semi-finished products to be produced. Unwanted inclusions of Gas or air bubbles are avoided. Due to the two-time change of direction the melt and thereby causing significant reduction in Flow rate before introducing the melt into the mold Damage to the mold walls largely avoided.
  • the tapered portion and the dip tube tip of the dip tube are preferably made of one and the same heat-resistant material, but can also be made of different ones Be made of materials such. a combination of ceramics and made of metal.
  • a additional heating means e.g. an electrical resistance heating, equipped.
  • the proposed casting system makes it possible to produce thin-walled strips of non-ferrous metals, especially copper and copper alloys, with an excellent Produce quality.
  • dip tubes In a vertical arrangement of the dip tubes has the dip tube tip at least two opposing outflow openings, each of a spaced-apart lip are covered, so that the melt flow is deflected twice by at least 90 ° before being introduced into the mold bath, and is significantly reduced in their speed.
  • Fig. 1 is a casting system for casting copper strip by means of a strip casting mold represented, which is also referred to as casting with revolving mold.
  • a strip casting mold represented, which is also referred to as casting with revolving mold.
  • the tundish 1 which is in the example shown equipped with a spout 2.
  • Immersion tubes 6 are arranged side by side in a defined casting angle of about 10 °, e.g. 6, 8 or 10. The distances between the individual dip tubes 6 can be different be. In the view shown in Fig. 1 only one dip tube 6 can be seen.
  • the Diving tubes 6 are with their cylindrical connector 7 (Fig.
  • the Mold 3 is between the circumferential Kokillenoberband 4 and the circulating Kokillenunterband 5 arranged, each by means of drive and pulleys are curious. In Fig. 1, only the two front pulleys 4a and 5a shown. Also, the side walls and back wall of the mold, which can reach a height of up to 70 mm can not be seen in the drawing.
  • the casting system is Part of a plant for the continuous production of copper strips. In the X marked line is the longitudinal center axis of the mold. 3
  • the copper melt located in the tundish 1 flows through the adjacent hydrostatic pressure through the dip tubes 6 in the mold 3. Due to the process inclined arrangement of the dip tubes 6, in a predetermined casting angle, the flow rate of the copper melt is influenced.
  • the dip tube 6 extending from the spout 2 to the bath surface of the mold 3 extends.
  • FIG 2 is a first embodiment of a dip tube 6 as a single part shown enlarged.
  • the dip tube 6 has a cylindrical connection piece 7, on followed by a continuously tapering section 8 in the flow direction, which has a diameter D1 immediately at the beginning, which is equal to the diameter of the connecting piece 7 is identical.
  • To the section 8 with the length L1 closes the dip tube tip 9 with the length L2 on.
  • the ratio of L1: L2 is e.g. 8.3.
  • the connecting piece 7, the section 8 and the dip tube tip 9 are made of a tubular piece made of heat resistant metal that in the area of Section 8 and the dip tube tip 9 continuously by pressing flat in one Tool is formed, with the section 8 in the beginning still a circular Cross-section D1 has, in the flow direction increasingly by a deformation merges in a plane in a defined slot shape, at the end of the dip tube tip 9 is reached (Fig. 4).
  • This deformation becomes a continuous one Taper, a cross-sectional change with a reduction in cross-sectional area, reached.
  • the cross-sectional area at the end of the dip tube tip 9 is about 1/3 smaller than the cross-sectional area with the diameter D1 at the beginning of Section 8.
  • the formed at the end of the dip tube tip 9 slot 10 is through a welded closure plug 11 or in any other suitable manner locked.
  • the slot 10 is by two each other opposite parallel straight wall sections 10a, 10b and two formed semicircular wall sections 10c, 10d, wherein the distance at least one third between the two straight wall sections 10a and 10b the diameter D1 of section 8 is, in the present example it is approx. 10 mm.
  • Wall section 10a of the dip tube tip 9 is a slot-like outflow opening 12th introduced for the exit of the molten copper.
  • a slot 12 can also have two circular outflow openings 12a and 12b are arranged directly behind one another, as shown in FIG. 7 is shown.
  • the outflow openings 12 and 12a and 12b are connected by a parallel Lips 13 is covered, wherein "cover” in this case means that the lip 13th their width dimension is equal to or greater than the opening width of the elongated hole 12th or the diameter, in an arrangement of circular outflow openings.
  • the lip 13 is with its spacers 13a welded to the dip tube tip 9. The distance between the discharge opening 12 and the lip 13 should be at least 5 mm.
  • a further variant of a dip tube 6a is shown, with a continuous conical formation of the section 8 and the dip tube tip 9, starting from Diameter D1 of the continuous by reducing the circular cross-sectional area reduced to a diameter D2 to the end of the dip tube tip becomes.
  • the circular opening of the Tauchrohspitze 9 is through a plug 11th locked.
  • the difference between the diameter D1 and the diameter D2 is about 45%.
  • the outflow opening for the melt and the lip 13 are formed analogously as in the embodiment variant shown in Fig. 2.
  • Compared to the dip tube shown in Fig. 2 have this no separate connector.
  • the spacer 13 a is the lip 13th arranged at a distance 5 mm to the wall of the dip tube tip and runs diagonally upwards, to the end of the dip tube tip.
  • the lip 13 is at the dip tube tip welded. Otherwise, this dip tube tip is analogous to how the dip tube tip of the dip tube shown in Fig. 2.
  • Fig. 7 a formed as a separate component immersion tube tip 9 a is shown on the end of a conically extending portion of a dip tube accordingly the embodiment shown in Fig. 5 can be plugged and by welding this is attached.
  • the dip tube tip 9a has a constant cross section in FIG Form of a slot 10, which at the end pointing in the flow direction by a Plug 11 is closed.
  • the dip tube tip 9a a transition piece 14, for the transition from the slot shape to the circular Shape, fitting to the appropriate section 6 of the dip tube Voted.
  • At the bottom of the dip tube tip 9a are two in a row arranged outflow openings 12a and 12b, which through a parallel extending lip 13, 13a are covered.
  • the lip 13 is at the dip tube tip 9a molded, which can be prepared as follows.
  • the tube tip of the dip tube which in the raw state has a circular cross-section is in a pressing tool by a "flat press” reshaped to the desired cross-section in the form of a "slot", with a short Transition portion 14 of the circular shape in oblong shape is formed. Then takes place in a the length of the lip corresponding distance from Tube end a cross-sectional separation without completely cutting through the tube, and a longitudinal section to the cross-sectional joint.
  • the pipe tip has now a longitudinally pointing lip.
  • the holes 12a and 12b introduced for the outflow openings of the melt.
  • the Opening the elongated hole 10 at the end of the tube tip by welding a Closure cap 11 closed.
  • the lip 13 has a length of about 80 mm and is with its opposite to the flow direction pointing end to the adjacent wall portion of the dip tube tip 9a welded.
  • these are equipped with additional stabilization, e.g. one or more Stiffening ribs.
  • the inventive design of the dip tubes is in practical use the inclined flow of copper melt from the tundish into the mold is very favorably influenced.
  • the conditional by the inclined arrangement of the dip tubes increasing flow velocity of the melt is due to the two times Change of direction of the flow so reduced that a gentle introduction into the Mold bath is guaranteed.
  • the continuous taper in particular of section 8, with a change in cross section and reducing the cross-sectional area, causes the Melt on the inner wall of the dip tube rests and in the dip tube no Air bubbles or cavities may arise. This also applies to the dip tube tip 9, 9a, due to the change made in the cross-sectional shape (Circle / slot) or the continuing further rejuvenation. Because the end of Dip tube tip 9, 9a is closed, the melt is a deflection imposed at least 90 °, leading to a first reduction in the flow rate leads.
  • a deflection or a first Direction change is achieved by at least 90 ° of the melt stream and additionally by the arrangement of the lip 13 below the outflow openings yet a second change of direction or deflection of the melt flow in lateral Direction, combined with a further reduction of the flow velocity.
  • the melt flow is uniform and on both sides of the lip 13 significantly reduced flow velocity below the bath level of the mold introduced into the melt bath.
  • the flow rate of the melt can thus reduced to a value of ⁇ 0.5 m / s and does not shoot with high Speed, as is the case with conventional dip tubes, in the mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

Die Erfindung bezieht sich auf ein Gießsystem zum Vergießen von NE-Metallschmelzen, insbesondere Kupfer oder Kupferlegierungen, zur Herstellung von Flachprodukten, bestehend aus einem Verteilergefäß (Tundish) mit mindestens einem, vorzugsweise schräg nach unten verlaufenden Tauchrohr, das in das in einer Dünnbrammen-Kokille befindliche Schmelzenbad eintaucht, sowie ein Verfahren zum Vergießen.The invention relates to a casting system for casting non-ferrous molten metals, in particular copper or copper alloys, for the manufacture of flat products, consisting of a tundish with at least one, preferably obliquely downwardly extending dip tube, which in the in a thin-slab mold immersed melt bath, as well as a method for Shed.

Tauchgießrohre zur Einleitung einer Metallschmelze in eine Kokille sind bereits in verschiedenen Ausführungen bekannt. Die Tauchgießrohre sollen für eine gleichmäßige und turbulenzarme Verteilung der Schmelze in der Kokille sorgen. Weiterhin soll durch den Einsatz von Tauchrohren ein Kontakt mit der Schmelzeströmung unterhalb der Badoberfläche mit Luftsauerstoff verhindert werden. Der in dem Tundish herrschende hydrostatische Druck wird dabei ausgenutzt, um der Schmelze die erforderliche Strömungsgeschwindigkeit zu verleihen. Die Strömungsgeschwindigkeit erhöht sich dabei in Abhängigkeit vom Gießwinkel. Bei in der Praxis zum Einsatz kommenden Tauchgießrohren zeigte sich, dass durch die zunehmende Beschleunigung der Schmelze im Tauchrohr ein Unterdruck erzeugt wird, und dadurch Turbulenzen in der in der Kokille befindlichen Schmelze entstehen und als Folge Badspiegelschwankungen auftreten. Außerdem laufen beim Gießen von Metall, insbesondere von Kupfer oder Kupferlegierungen, eine Vielzahl chemischer und physikalischer Prozesse ab, insbesondere eine intensive Wechselwirkung zwischen den gasförmigen und festen Bestandteilen der Schmelze. Diese Randbedingungen werden u.a. vom Temperaturverlauf und dem Schmelzedruck beeinflusst. Entsteht in dem Tauchgießrohr ein Unterdruck, so kann es zum Freisetzens von in der Schmelze befindlichen gasförmigen Substanzen, wie z.B. Wasserstoff, und SO2 kommen. Durch das Entweichen von Gasen besteht die Gefahr, dass sich während der Erstarrungsphase der Schmelze poröse Bereiche ausbilden, die sich nachteilig auf die Qualität der Endprodukte auswirken.Immersion tubes for introducing a molten metal into a mold are already known in various designs. The Tauchgießrohre should ensure a uniform and low turbulence distribution of the melt in the mold. Furthermore, contact with the melt flow below the bath surface with atmospheric oxygen should be prevented by the use of dip tubes. The prevailing in the tundish hydrostatic pressure is exploited to give the melt the required flow rate. The flow rate increases depending on the casting angle. When used in practice Tauchgießrohren showed that a negative pressure is generated by the increasing acceleration of the melt in the dip tube, and thereby turbulence in the melt contained in the mold arise and as a result Badspiegelschwankungen occur. In addition, in the casting of metal, especially copper or copper alloys, a variety of chemical and physical processes take place, in particular an intensive interaction between the gaseous and solid components of the melt. These boundary conditions are influenced, among other things, by the temperature profile and the melt pressure. If a negative pressure arises in the submersible pouring tube, it may cause the release of melted gaseous substances such as hydrogen and SO 2 . By the escape of gases, there is the danger that form during the solidification phase of the melt porous areas that adversely affect the quality of the final products.

Zur Vermeidung von Strömungsunterdrücken in einem Gießrohr wird in der DE 40 34 652 A1 vorgeschlagen, den Querschnitt der Durchflussöffnung am Einlaufende des Gießrohres mittels einer Verengung kleiner zu halten als den Querschnitt der Durchflussöffnung am Auslaufende des Ausgusses, um ein gegenüber dem atmosphärischen Druck höheren Druck im Schmelzestrom aufzubauen. Der Ausguss des metallurgischen Gefäßes und das Gießrohr sind über einen konischen Dichtungssatz miteinander verbunden.To avoid flow suppression in a pouring tube is in the DE 40 34 652 A1, the cross section of the flow opening on To keep inlet end of the pouring tube by means of a narrowing smaller than the cross section the flow opening at the outlet end of the spout to one opposite build up the pressure in the melt stream at atmospheric pressure. Of the Spout of the metallurgical vessel and the pouring tube are over a conical Seal set interconnected.

In der DE 197 38 385 C2 ist ein Tauchgießrohr beschrieben, das an seinem unteren Ende ein Bodenelement besitzt und mindestens zwei seitliche Austrittsöffnungen oberhalb des Bodenelementes. An der Innenwandung des Tauchrohres befinden sich spezielle Strömungsleitkörper.In DE 197 38 385 C2 a Tauchgießrohr is described which at its lower End has a bottom element and at least two lateral outlet openings above the floor element. On the inner wall of the dip tube are special flow guide.

Ein Tauchgießrohr mit einer am Rohrende angeordneten trichterförmig ausgebildeten Verwirbelungskammer ist aus der DE 101 13 026 A1 bekannt, wobei am Übergang vom Rohrabschnitt zur Verwirbelungskammer eine Abrisskante vorgesehen ist.A submersible pouring tube with a funnel-shaped design arranged at the tube end Verwirbelungskammer is known from DE 101 13 026 A1, wherein at the transition from Pipe section to Verwirbelungskammer a tear-off edge is provided.

Aus der EP 0 925 132 B1 ist Tauchgießrohr zum Stranggießen von Dünnbrammen bekannt, das als Rohr mit einem kreisförmigen Querschnitt, in senkrechter Anordnung, mit der Gießpfanne verbunden ist. Das Gießrohr ist an seinem unteren Ende mit einem abgeflachten Verteilungsbereich, einem sogenannten Diffusor, ausgebildet, der in die Schmelze der Kokille eintaucht. In dem Diffuser ist ein sich in Strömungsrichtung verjüngender Trennkörper angeordnet, durch den zwei Teilströme gebildet werden. Der Querschnitt des Diffusors ist oberhalb des Trennkörpers kleiner als der Querschnitt des oberen Gießrohrabschnittes.EP 0 925 132 B1 discloses an immersion casting tube for the continuous casting of thin slabs known as a pipe with a circular cross-section, in vertical Arrangement, is connected to the ladle. The pouring tube is at its lower End with a flattened distribution area, a so-called diffuser, formed, which dips into the melt of the mold. In the diffuser is an in Direction of flow tapered separating body arranged through the two partial flows be formed. The cross section of the diffuser is smaller above the separating body as the cross section of the upper pouring pipe section.

Die Seitenwände des Diffusors divergieren im gleichen Winkel nach außen wie die Seitenwände des Trennkörpers nach innen. Durch die vorgesehenen Maßnahmen sollen Wirbel und Turbulenzen im Badspiegel vermieden werden. Von Nachteil ist, dass die Schmelzeströmung immer noch tief in das Bad der Kokille gelangt, und dadurch die Entgasung im Inneren des Kokillenbades erfolgt. Die aus dem vorgenannten Stand der Technik bekannten Tauchgießrohre sind für das vertikale Gießen, insbesondere von Stahlschmelzen, für relativ dicke Brammen bestimmt. Der Schmelzestrom wird auf dem kürzesten Weg, in vertikaler Richtung, in das Kokillenbad injiziert und in der Regel erst kurz vor dem Eintritt in das Kokillenbad strömungstechnisch beeinflusst.The side walls of the diffuser diverge at the same angle as the outside Side walls of the separator inside. By the measures provided Vortex and turbulence in the bathroom mirror should be avoided. The disadvantage is that the melt flow still reaches deep into the bath of the mold, and thereby the degassing takes place inside the mold bath. The from the known prior art Tauchgießrohre are for the vertical Casting, in particular of molten steel, intended for relatively thick slabs. Of the Melt flow is in the shortest path, in the vertical direction, in the Kokillenbad injected and usually only shortly before entering the mold bath fluidly affected.

Der Erfindung liegt die Aufgabe zugrunde, ein Gießsystem zum Vergießen von NE-Metallschmelzen, insbesondere Kupfer oder Kupferlegierungen, zu schaffen, das eine störungsfreie Einleitung der Schmelze in die Kokille sowie eine Entgasung an der freien Oberfläche der Kokille gewährleistet, die Entstehung eines Unterdruckes im Tauchrohr vermeidet und sich durch einen einfachen konstruktiven Aufbau auszeichnet. Ferner soll ein geeignetes Verfahren zum Vergießen von NE-Metallschmelzen geschaffen werden.The invention is based on the object of a casting system for casting non-ferrous metal melts, especially copper or copper alloys, to create that one trouble-free introduction of the melt into the mold and a degassing at the ensures a free surface of the mold, the formation of a negative pressure in the Immersion tube avoids and is characterized by a simple structural design distinguished. Furthermore, a suitable method for casting non-ferrous molten metals be created.

Erfindungsgemäß wird die Aufgabe durch die im Anspruch 1 angegebenen Merkmale gelöst. Geeignete Ausgestaltungen und Weiterbildungen sind Gegenstand der Ansprüche 2 bis 14. Die vorgeschlagene Verfahrensweise ist im Anspruch 15 angegeben und entsprechende Ausgestaltungen in den Ansprüchen 16 und 17.According to the invention, the object is achieved by the features specified in claim 1 solved. Suitable embodiments and developments are the subject of Claims 2 to 14. The proposed procedure is in claim 15 indicated and corresponding embodiments in claims 16 and 17.

Das Gießsystem ist so ausgelegt, dass die in dem Verteilergefäß bzw. Tundish befindliche Metallschmelze, vorzugsweise schräg nach unten, in die tiefer gelegene Kokille strömt.The casting system is designed so that the in the tundish molten metal, preferably obliquely down, in the lower-lying Mold flows.

Der Gießwinkel kann in einem Bereich von 2° bis 90° liegen. An der in Abzugsrichtung zeigenden Stirnseite des Verteilergefäßes ist mindestens ein schräg nach unten, im vorgegebenen Gießwinkel verlaufendes Tauchrohr angeordnet. Zum Gießen von in der Breite größeren Flachprodukten, die in ihrer Breite ≥ 1,5 H sind, wobei H die Höhe bzw. Dicke ist, können in dem Verteilergefäß auch mehrere identische Tauchrohre in vorgegebenen Abständen nebeneinander eingebunden sein.The casting angle can be in a range of 2 ° to 90 °. At the in departure direction pointing end face of the distribution vessel is at least one obliquely downward, in arranged given pouring angle extending dip tube. For pouring in the Width larger flat products, which are in their width ≥ 1.5 H, where H is the height or Thickness can, in the distribution vessel also several identical dip tubes in predetermined intervals adjacent to each other.

Das Tauchrohr besteht aus einem ersten Abschnitt mit einer vorzugsweise sich in Strömungsrichtung der Schmelze kontinuierlich verjüngenden Innenwandung und einem zweiten Abschnitt, der die Tauchrohrspitze bildet. Die Innenwandung des ersten Abschnittes muss nicht unbedingt verjüngt ausgebildet sein und kann auch andere geeignete geometrische Ausbildung aufweisen. Gegebenenfalls kann an dem ersten Abschnitt, vor der einsetzenden Verjüngung noch ein kurzes rohrförmiges Anschlussstück angeordnet sein. Dieses oder das Anfangsteilstück des ersten Abschnittes sind in einem Einsatz aus feuerfesten Beton des Verteilergefäßes eingegossen ist. Der erste Abschnitt erstreckt sich ausgehend vom Verteilergefäß bis unmittelbar zur Badoberfläche der Kokille. Durch die Verjüngung kommt es zu einer Querschnittsänderung mit einer sich verringernden Querschnittsfläche. Die Verjüngung kann unterschiedlich ausgebildet sein. Ausgehend von einem kreisrunden Querschnitt am Beginn dieses Abschnittes erfolgt z.B. durch flach drücken eines Rohres eine Umformung in eine Querschnittsform die am Ende des Abschnittes die Form eines Langloches aufweist. Die Umformung kann auch so erfolgen, dass die Querschnittsform am Ende des Abschnittes elliptisch oder der gesamte Abschnitt als hexagonale Verjüngung ausgebildet ist. Eine andere Variante ist eine konische Ausführung dieses Abschnittes. An diesen Abschnitt schließt sich die in das Schmelzenbad einer Kokille eintauchenden Tauchrohrspitze an. Diese ist an ihrem freien Ende verschlossen, z.B. mittels eines Stopfens, und besitzt an ihrer in Richtung zur Kokillenunterseite zeigenden Wandung mindestens eine, eine erste Richtungsänderung der Schmelzeströmung bewirkende Ausströmöffnung, die sich im Betriebszustand unterhalb der Kokillenbadoberfläche befindet.The dip tube consists of a first section with a preferably in Flow direction of the melt continuously tapered inner wall and a second section that forms the dip tube tip. The inner wall of the first Section does not necessarily have to be rejuvenated and can be different have appropriate geometric design. Optionally, at the first Section, before the onset of rejuvenation nor a short tubular fitting be arranged. This or the initial section of the first section are is poured in a use of refractory concrete of the distribution vessel. Of the The first section extends from the distribution vessel to directly to the bath surface the mold. The rejuvenation leads to a change in cross section with a decreasing cross-sectional area. The rejuvenation can be formed differently. Starting from a circular cross-section at the The beginning of this section is e.g. by pushing a tube flat one Forming in a cross-sectional shape at the end of the section the shape of a Langloches has. The deformation can also be done so that the cross-sectional shape at the end of the section elliptical or the entire section as hexagonal Rejuvenation is formed. Another variant is a conical version of this Section. This section closes in the melt bath of a mold submerged dip tube tip. This is closed at its free end, e.g. by means of a plug, and has at its towards the mold base facing wall at least one, a first change in direction of the melt flow causing discharge opening, which in the operating state below the Kokillenbadoberfläche is located.

Das gesamte Tauchrohr kann aus einem Rohrstück hergestellt werden, wobei die Tauchrohrspitze in gleicher Weise mit umgeformt wird wie der vorhergehende Abschnitt und am Ende einen elliptischen oder kreisrunden Querschnitt oder einen Querschnitt in Form eines Langloches besitzt. Über die Länge der Tauchrohrspitze verändert sich somit die Querschnittsform in geringem Maße.The entire dip tube can be made of a piece of pipe, wherein the Dip tube tip is formed in the same way as the previous one Section and at the end an elliptical or circular cross section or a Has cross-section in the form of a slot. About the length of the dip tube tip Thus, the cross-sectional shape changes to a small extent.

Es besteht auch die Möglichkeit, die Tauchrohrspitze als gesondertes Bauteil mit einer nahezu konstanten oder sich verringernden Querschnittsfläche herzustellen und an dem umgeformten Abschnitt zu befestigen, z. B durch Schweißen. In diesem Fall ist es möglich, den Abschnitt konisch auszubilden und an diesem eine Tauchrohrspitze mit einer Langlochform zu befestigen, wobei die Tauchrohrspitze einen kurzen Übergangsabschnitt für den Übergang von der kreisrunden Querschnittsform in die Langlochform besitzt. Die als separates Bauteil ausgebildete Tauchrohrspitze kann auch aus einem anderen hitzebeständigen Material hergestellt werden als der sich verjüngende Abschnitt.It is also possible, the dip tube tip as a separate component with a almost constant or decreasing cross-sectional area to produce and on to fix the deformed section, z. B by welding. In this case it is possible to form the section conical and at this a dip tube tip with attach a slot shape, the dip tube tip a short transition section for the transition from the circular cross-sectional shape in the slot shape has. The formed as a separate component dip tube tip can also be made of a different refractory material than the itself rejuvenating section.

Ist die Tauchrohrspitze im Querschnitt als Langloch ausgebildet, so sollten die beiden gegenüberliegenden parallelen Wandabschnitte einen Abstand von mindestens einem Drittel des Durchmessers des Querschnittes am Anfang des verjüngt ausgebildeten Abschnittes des Tauchrohres aufweisen.If the dip tube tip is formed in cross section as a slot, so should the two opposite parallel wall sections a distance of at least one Third of the diameter of the cross section at the beginning of the tapered trained Have section of the dip tube.

Die an der Unterseite der Tauchrohrspitze befindliche Ausströmöffnung für die Schmelze ist vorzugsweise als Langloch ausgebildet. An Stelle eines Langloches können auch zwei kreisrunde Öffnungen, unmittelbar hintereinanderliegend, angeordnet sein.The located at the bottom of the dip tube tip discharge port for the Melt is preferably formed as a slot. In place of a long hole can also have two circular openings, immediately one behind the other, be arranged.

In dem ersten Abschnitt des Tauchrohres wird durch den sich kontinuierlich verringernden Querschnitt erreicht, dass die Schmelze in ständigem Kontakt mit der Innenwandung des Tauchrohres steht und sich in dem Tauchrohr keine Luftblasen oder Hohlräume bilden können. Die Länge und der Grad der Verjüngung dieses Abschnittes sind von den Eigenschaften der Metallschmelze und dem jeweiligen Gießwinkel abhängig. Die Tauchrohre besitzen eine konstante Wanddicke.In the first section of the dip tube is characterized by the continuously decreasing cross section ensures that the melt in constant contact with the Inner wall of the dip tube is and in the dip tube no air bubbles or cavities can form. The length and the degree of rejuvenation of this Sections are of the properties of the molten metal and the respective Casting angle dependent. The dip tubes have a constant wall thickness.

Da die Schmelze in der Tauchrohrspitze nicht in axialer Richtung abströmen kann, das freie Ende der Tauchrohrspitze ist verschlossen, erfolgt in Höhe der Ausströmöffnung bzw. der Ausströmöffnungen eine erste Umlenkung der Schmelzeströmung um mindestens 90°, bezogen auf den Gießwinkel. Die der Schmelzeströmung aufgezwungene Richtungsänderung ist wesentlich, um eine schonende Einleitung der Schmelze in die Kokille zu gewährleisten. Vorzugsweise soll die Querschnittsfläche der Ausströmöffnung oder die Summe der Querschnittsflächen der Ausströmöffnungen 80 % bis 98 % der Querschnittsfläche der Tauchrohrspitze betragen. In bestimmten Anwendungsfällen kann diese auch größer als 100% sein. Die Querschnittsform der Ausströmöffnungen kann unterschiedlich ausgebildet sein.Since the melt in the dip tube tip can not flow off in the axial direction, the free end of the dip tube tip is closed, takes place at the level of the discharge opening or the outflow openings a first deflection of the melt flow order at least 90 °, based on the casting angle. The melt flow forced change of direction is essential to a gentle initiation of To ensure melt in the mold. Preferably, the cross-sectional area should the outflow opening or the sum of the cross-sectional areas of the outflow openings 80% to 98% of the cross-sectional area of the dip tube tip amount. In For certain applications, this can be greater than 100%. The cross-sectional shape the outflow openings can be designed differently.

Das Tauchrohr soll im Betriebszustand voll mit Schmelze gefüllt sein und während des Gießprozesses sollte sich die Schmelze nicht von der Innenwandung des Tauchrohres ablösen können. Demzufolge ist die Gefahr des Entstehens eines Unterdruckes ausgeschlossen und in der Schmelze kann es zu keiner unerwünschten Entgasung kommen. Durch die vorgesehene Umlenkung bzw. Richtungsänderung der Schmelze beim Eintritt in das Schmelzenbad wird ein sogenanntes "Einschießen" der Schmelze und damit eine zu starke Bildung von Blasen verhindert.The immersion tube should be fully filled with melt during operation and during the Casting process, the melt should not from the inner wall of the dip tube can replace. As a result, there is a risk of a negative pressure excluded and in the melt, there may be no undesirable degassing come. By the intended deflection or change in direction of the melt Upon entry into the melt bath, a so-called "shot-in" of the melt and thus prevents excessive formation of bubbles.

Weiterhin ist als wesentliches Merkmal vorgesehen, dass unterhalb der Ausströmöffnung bzw. Ausströmöffnungen eine diese überdeckende Lippe beabstandet angeordnet ist. Dadurch wird eine zweite Richtungsänderung der Schmelzeströmung erzielt. Die Lippe ist in ihren Abmessungen so dimensioniert, dass die Auftrittsfläche gleich oder größer ist als die Abströmöffnung. Die Lippe ist in einem definierten parallelen Abstand oder geneigt zur Ausströmöffnung angeordnet, der vorzugsweise mindestens 5 mm betragen sollte. Bei einer geneigten Anordnung beträgt der Abstand an seiner größten Stelle mindestens 5 mm. Im Betriebszustand befinden sich die Ausströmöffnungen und die Lippe vollständig unterhalb des Schmelzenbadspiegels der Kokille.Furthermore, it is provided as an essential feature that below the discharge opening or outflow openings a lip covering this overlapping is arranged. This will cause a second change of direction of the melt flow achieved. The lip is dimensioned in its dimensions so that the tread surface is equal to or greater than the discharge opening. The lip is in a defined arranged parallel distance or inclined to the discharge opening, preferably should be at least 5 mm. In an inclined arrangement, the distance is at its largest point at least 5 mm. In the operating state are the Outlet openings and the lip completely below the Schmelzenbadspiegels the mold.

Die aus der Ausströmöffnung austretende Schmelze trifft erst auf die Lippe, wird dadurch abgebremst, und nochmals um mindestens 90° umgelenkt und jeweils seitlich in dem Schmelzenbad verteilt. Diese nochmalige, zweite, Richtungsänderung bewirkt eine besonders schonende Einleitung der Schmelze in die Kokille. Die Aufteilung der Schmelze nach dem Auftreffen auf die Lippe in zwei seitlich gerichtete Teilströme begünstigt das Wandern noch vorhandener Blasen zur Badoberfläche der Kokille. In praktischen Versuchen hat sich gezeigt, dass durch vorgenannte Maßnahmen die Strömungsgeschwindigkeit der Metallschmelze beim Eintritt in das Schmelzebad auf einen Wert von ≤ 0,5 m/s reduziert werden kann.The melt emerging from the outflow opening first hits the lip slowed down, and again deflected by at least 90 ° and laterally distributed in the melt bath. This second, second, change of direction causes a particularly gentle introduction of the melt into the mold. The division of the Melt after hitting the lip in two laterally directed streams favors the migration of still existing bubbles to the bath surface of the mold. In Practical tests have shown that the measures mentioned above Flow rate of the molten metal on entering the melt a value of ≤ 0.5 m / s can be reduced.

Gemäß der vorgeschlagenen Verfahrensweise ist von entscheidender Bedeutung, dass die in Abhängigkeit vom Gießwinkel zunehmende Geschwindigkeit der Schmelzeströmung in dem Tauchrohr reduziert und vor dem Einleitens in das Schmelzenbad der Kokille abgebremst und die Schmelzeströmung mindestens zweimal in ihrer Strömungsrichtung um mindestens 90° umgelenkt wird.According to the proposed procedure, it is crucial that the speed of the melt flow increasing as a function of the casting angle reduced in the dip tube and prior to introduction into the melt bath the mold is slowed down and the melt flow at least twice in their Flow direction is deflected by at least 90 °.

Die Kombination dieser zweimaligen Richtungsänderung der Schmelze vor dem Einleiten in das Schmelzebad führt zu einer deutlichen Verringerung der Strömungsgeschwindigkeit in einer Größenordnung von ca. 50 %.The combination of this two-time change of direction of the melt before the Introduction into the melt bath leads to a significant reduction in the flow rate in the order of about 50%.

Durch die seitliche, quer zur Längsachse der Kokille erfolgende Einleitung der in zwei Teilströme aufgeteilten Schmelze wird erreicht, dass sich die im Bereich der Kokillenwand befindliche Schmelze ständig mit heißer Schmelze in Berührung gelangt und sich demzufolge kein Erstarrungsfilm bilden kann. Außerdem wird vermieden, dass die heiße Schmelze unmittelbar auf die Kokillenwand trifft. Eventuell noch vorhandene Gasblasen können unmittelbar an der Kokillenwand entweichen. By the lateral, transversely to the longitudinal axis of the mold taking place the introduction of two Partial streams split melt is achieved, that in the area of the mold wall melt constantly in contact with hot melt in contact and Consequently, no solidification film can form. It also avoids that hot melt hits directly on the mold wall. Possibly still existing Gas bubbles can escape directly at the mold wall.

Die erfindungsgemäßen Maßnahmen führen zu einer deutlichen Qualitätsverbesserung der Gefügestruktur der herzustellenden Halbzeuge. Unerwünschte Einschlüsse von Gas- oder Luftblasen werden vermieden. Aufgrund der zweimaligen Richtungsänderung der Schmelze und der dadurch bewirkten erheblichen Reduzierung der Strömungsgeschwindigkeit vor dem Einleiten der Schmelze in die Kokille werden Beschädigungen an den Kokillenwänden weitestgehend vermieden.The measures according to the invention lead to a significant improvement in quality the microstructure of the semi-finished products to be produced. Unwanted inclusions of Gas or air bubbles are avoided. Due to the two-time change of direction the melt and thereby causing significant reduction in Flow rate before introducing the melt into the mold Damage to the mold walls largely avoided.

Der verjüngte Abschnitt und die Tauchrohrspitze des Tauchrohres bestehen vorzugsweise aus ein und demselben hitzebeständigen Material, können aber auch aus unterschiedlichen Materialien hergestellt sein, wie z.B. einer Kombination aus Keramik und aus Metall. Für den Anfahrprozess ist es von Vorteil, wenn das Tauchrohr mit einer zusätzlichen Heizeinrichtung, wie z.B. einer elektrischen Widerstandsheizung, ausgerüstet ist.The tapered portion and the dip tube tip of the dip tube are preferably made of one and the same heat-resistant material, but can also be made of different ones Be made of materials such. a combination of ceramics and made of metal. For the starting process, it is advantageous if the dip tube with a additional heating means, e.g. an electrical resistance heating, equipped.

Mit dem vorgeschlagenen Gießsystem lassen sich dünnwandige Bänder aus NE-Metallen, insbesondere Kupfer und Kupferlegierungen, mit einer ausgezeichneten Qualität herstellen.The proposed casting system makes it possible to produce thin-walled strips of non-ferrous metals, especially copper and copper alloys, with an excellent Produce quality.

Bei einer vertikalen Anordnung der Tauchrohre besitzt die Tauchrohrspitze mindestens zwei einander gegenüberliegende Ausströmöffnungen, die jeweils von einer beabstandet angeordneten Lippe überdeckt sind, sodass die Schmelzeströmung vor dem Einleiten in das Kokillenbad zweimal um mindestens 90° umgelenkt wird und in ihrer Geschwindigkeit deutlich reduziert wird.In a vertical arrangement of the dip tubes has the dip tube tip at least two opposing outflow openings, each of a spaced-apart lip are covered, so that the melt flow is deflected twice by at least 90 ° before being introduced into the mold bath, and is significantly reduced in their speed.

Die Erfindung soll nachstehend näher erläutert werden. In der zugehörigen Zeichnung zeigen

Fig. 1
das Gießsystem in vereinfachter Darstellung als Längsschnitt,
Fig. 2
eine erste Ausführungsvariante eines Tauchrohres in perspektivischer Darstellung,
Fig. 3
die Einzelheit "X" gemäß Fig. 2 in vergrößerter Darstellung,
Fig. 4
die Vorderansicht des Tauchrohres gemäß Fig. 2 in vergrößerter Darstellung,
Fig. 5
eine zweite Ausführungsvariante eines Tauchrohres in perspektivischer Darstellung,
Fig. 6
eine Tauchrohrspitze mit einer geneigten Lippe als Längsschnitt und
Fig. 7
eine Tauchrohrspitze als separates Bauteil mit angeformter Lippe in perspektivischer Darstellung.
The invention will be explained in more detail below. In the accompanying drawing show
Fig. 1
the casting system in a simplified representation as a longitudinal section,
Fig. 2
a first embodiment of a dip tube in perspective view,
Fig. 3
the detail "X" of FIG. 2 in an enlarged view,
Fig. 4
the front view of the dip tube of FIG. 2 in an enlarged view,
Fig. 5
a second embodiment of a dip tube in perspective view,
Fig. 6
a dip tube tip with an inclined lip as a longitudinal section and
Fig. 7
a dip tube tip as a separate component with molded lip in perspective view.

In der Fig. 1 ist ein Gießsystem zum Gießen von Kupferband mittels einer Bandgießkokille dargestellt, das auch als Gießen mit mitlaufender Kokille bezeichnet wird. Nach dem Schmelzen von Kupfer gelangt dieses aus dem Gießofen in den Tundish 1, der im gezeigten Beispiel mit einer Gießschnauze 2 ausgerüstet ist. In Abhängigkeit von der Breite des zu gießenden Bandes sind in der Gießschnauze 2 mehrere identische Tauchrohre 6 in einem definierten Gießwinkel von ca. 10° nebeneinander angeordnet, z.B. 6, 8 oder 10. Die Abstände zwischen den einzelnen Tauchrohren 6 können unterschiedlich sein. In der in Fig. 1 gezeigten Ansicht ist nur ein Tauchrohr 6 zu sehen. Die Tauchrohre 6 sind mit ihrem zylindrischen Anschlussstück 7 (Fig. 2) in einem Einsatz aus feuerfesten Beton eingegossen, der Bestandteil des Verteilergefäßes 1 ist. Die Kokille 3 ist zwischen dem umlaufenden Kokillenoberband 4 und dem umlaufenden Kokillenunterband 5 angeordnet, die jeweils mittels Antriebs- und Umlenkrollen gespannt sind. In der Fig. 1 sind nur die beiden vorderen Umlenkrollen 4a und 5a gezeigt. Auch die Seitenwände und Rückwand der Kokille, die eine Höhe von bis zu 70 mm aufweisen können, sind in der Zeichnung nicht zu sehen. Das Gießsystems ist Bestandteil einer Anlage zur kontinuierlichen Herstellung von Kupferbändern. Bei der mit X gekennzeichnete Linie handelt es sich um die Längsmittelachse der Kokille 3. Die in dem Tundish 1 befindliche Kupferschmelze strömt durch den anliegenden hydrostatischen Druck durch die Tauchrohre 6 in die Kokille 3. Durch die verfahrensbedingt geneigte Anordnung der Tauchrohre 6, in einem vorgegebenen Gießwinkel, wird die Strömungsgeschwindigkeit der Kupferschmelze beeinflusst.In Fig. 1 is a casting system for casting copper strip by means of a strip casting mold represented, which is also referred to as casting with revolving mold. To from the melting of copper, it passes from the casting furnace into the tundish 1, which is in the example shown equipped with a spout 2. Depending on the Width of the belt to be cast in the casting spout 2 are several identical Immersion tubes 6 are arranged side by side in a defined casting angle of about 10 °, e.g. 6, 8 or 10. The distances between the individual dip tubes 6 can be different be. In the view shown in Fig. 1 only one dip tube 6 can be seen. The Diving tubes 6 are with their cylindrical connector 7 (Fig. 2) in an insert poured from refractory concrete, which is part of the distribution vessel 1. The Mold 3 is between the circumferential Kokillenoberband 4 and the circulating Kokillenunterband 5 arranged, each by means of drive and pulleys are curious. In Fig. 1, only the two front pulleys 4a and 5a shown. Also, the side walls and back wall of the mold, which can reach a height of up to 70 mm can not be seen in the drawing. The casting system is Part of a plant for the continuous production of copper strips. In the X marked line is the longitudinal center axis of the mold. 3 The copper melt located in the tundish 1 flows through the adjacent hydrostatic pressure through the dip tubes 6 in the mold 3. Due to the process inclined arrangement of the dip tubes 6, in a predetermined casting angle, the flow rate of the copper melt is influenced.

Unmittelbar nach dem relativ kurzen Anschlussstück 7 mit einem kreisrunden Querschnitt beginnt der sich in Strömungsrichtung kontinuierlich verjüngende Abschnitt 8 des Tauchrohres 6, der sich von der Gießschnauze 2 bis zur Badoberfläche der Kokille 3 erstreckt. Der vordere Teil des Tauchrohres 6, die Tauchrohrspitze 9, taucht im Betriebszustand vollständig in das Schmelzenbad der Kokille 3 ein.Immediately after the relatively short connector 7 with a circular cross-section begins the continuously tapered in the flow direction section 8 the dip tube 6 extending from the spout 2 to the bath surface of the mold 3 extends. The front part of the dip tube 6, the dip tube tip 9, dives in Operating state completely in the melt bath of the mold 3 a.

In der Figur 2 ist eine erste Ausführungsvariante eines Tauchrohres 6 als Einzelteil vergrößert dargestellt. Das Tauchrohr 6 besitzt ein zylindrisches Anschlussstück 7, an den sich ein in Strömungsrichtung kontinuierlich verjüngender Abschnitt 8 anschließt, der unmittelbar am Anfang einen Durchmesser D1 aufweist, der mit dem Durchmesser des Anschlussstückes 7 identisch ist. An den Abschnitt 8 mit der Länge L1 schließt sich die Tauchrohrspitze 9 mit der Länge L2 an. Das Verhältnis von L1 : L2 beträgt z.B. 8,3. Das Anschlussstück 7, der Abschnitt 8 und die Tauchrohrspitze 9 sind aus einem rohrförmigen Stück aus hitzebeständigem Metall gefertigt, dass im Bereich des Abschnittes 8 und der Tauchrohrspitze 9 kontinuierlich durch flach drücken in einem Werkzeug umgeformt ist, wobei der Abschnittes 8 am Anfang noch einen kreisrunden Querschnitt D1 besitzt, der in Strömungsrichtung zunehmend durch eine Verformung in einer Ebene in eine definierte Langlochform übergeht, die am Ende der Tauchrohrspitze 9 erreicht ist (Fig. 4). Durch diese Verformung wird eine kontinuierliche Verjüngung, eine Querschnittsänderung mit einer Verringerung der Querschnittsfläche, erreicht. Die Querschnittsfläche am Ende der Tauchrohrspitze 9 ist um ca. 1/3 kleiner als die Querschnittsfläche mit dem Durchmesser D1 am Anfang des Abschnittes 8. Das am Ende der Tauchrohrspitze 9 gebildete Langloch 10 ist durch einen eingeschweißten Verschlussstopfen 11 oder auf andere geeignete Art und Weise verschlossen. Wie in Fig. 3 deutlich zu sehen, ist das Langloch 10 durch zwei einander gegenüberliegenden parallel verlaufende, gerade Wandabschnitte 10a, 10b und zwei halbkreisförmig ausgebildete Wandabschnitte 10c, 10d gebildet, wobei der Abstand zwischen den beiden geraden Wandabschnitten 10a und 10b mindestens ein Drittel des Durchmessers D1 des Abschnittes 8 beträgt, im vorliegenden Beispiel sind es ca. 10 mm.In the figure 2 is a first embodiment of a dip tube 6 as a single part shown enlarged. The dip tube 6 has a cylindrical connection piece 7, on followed by a continuously tapering section 8 in the flow direction, which has a diameter D1 immediately at the beginning, which is equal to the diameter of the connecting piece 7 is identical. To the section 8 with the length L1 closes the dip tube tip 9 with the length L2 on. The ratio of L1: L2 is e.g. 8.3. The connecting piece 7, the section 8 and the dip tube tip 9 are made of a tubular piece made of heat resistant metal that in the area of Section 8 and the dip tube tip 9 continuously by pressing flat in one Tool is formed, with the section 8 in the beginning still a circular Cross-section D1 has, in the flow direction increasingly by a deformation merges in a plane in a defined slot shape, at the end of the dip tube tip 9 is reached (Fig. 4). This deformation becomes a continuous one Taper, a cross-sectional change with a reduction in cross-sectional area, reached. The cross-sectional area at the end of the dip tube tip 9 is about 1/3 smaller than the cross-sectional area with the diameter D1 at the beginning of Section 8. The formed at the end of the dip tube tip 9 slot 10 is through a welded closure plug 11 or in any other suitable manner locked. As clearly seen in Fig. 3, the slot 10 is by two each other opposite parallel straight wall sections 10a, 10b and two formed semicircular wall sections 10c, 10d, wherein the distance at least one third between the two straight wall sections 10a and 10b the diameter D1 of section 8 is, in the present example it is approx. 10 mm.

An dem im Betriebszustand in Richtung zum Kokillenunterband 5 zeigenden, ebenen Wandabschnitt 10a der Tauchrohrspitze 9 ist eine langlochartige Ausströmöffnung 12 für den Austritt der Kupferschmelze eingebracht. Im Rahmen praktischer Versuche hat sich herausgestellt, dass es von Vorteil ist, wenn diese vorzugsweise 90 % bis 98 % der Querschnittsfläche des Strömungsquerschnittes am Ende der Tauchrohrspitze 9 beträgt. An Stelle eines Langloches 12 können auch zwei kreisrunde Ausströmöffnungen 12a und 12b unmittelbar hintereinander angeordnet werden, wie dies in Fig. 7 gezeigt ist.At the operating state in the direction of Kokillenunterband 5 facing, even Wall section 10a of the dip tube tip 9 is a slot-like outflow opening 12th introduced for the exit of the molten copper. As part of practical experiments has it turned out to be an advantage if they were preferably 90% to 98% the cross-sectional area of the flow cross-section at the end of the dip tube tip. 9 is. Instead of a slot 12 can also have two circular outflow openings 12a and 12b are arranged directly behind one another, as shown in FIG. 7 is shown.

Die Ausströmöffnungen 12 sowie 12a und 12b sind durch eine parallel verlaufende Lippe 13 überdeckt ist, wobei "überdecken" in diesem Fall bedeutet, dass die Lippe 13 ihrem Breitenmaß gleich oder größer ist als die Öffnungsbreite des Langloches 12 bzw. des Durchmessers, bei einer Anordnung von kreisförmigen Ausströmöffnungen. Bei der Ausführungsvariante gemäß Fig. 3 ist die Lippe 13 mit ihren Abstandhaltern 13a an der Tauchrohrspitze 9 angeschweißt. Der Abstand zwischen der Ausströmöffnung 12 und der Lippe 13 sollte mindestens 5 mm betragen.The outflow openings 12 and 12a and 12b are connected by a parallel Lips 13 is covered, wherein "cover" in this case means that the lip 13th their width dimension is equal to or greater than the opening width of the elongated hole 12th or the diameter, in an arrangement of circular outflow openings. In the embodiment according to FIG. 3, the lip 13 is with its spacers 13a welded to the dip tube tip 9. The distance between the discharge opening 12 and the lip 13 should be at least 5 mm.

In Fig. 5 ist eine weitere Variante eines Tauchrohres 6a gezeigt, mit einer durchgehend konischen Ausbildung des Abschnittes 8 und der Tauchrohrspitze 9, ausgehend vom Durchmesser D1 der kontinuierlich durch eine Verringerung der kreisförmigen Querschnittsfläche bis zum Ende der Tauchrohrspitze auf einen Durchmesser D2 reduziert wird. Die kreisrunde Öffnung der Tauchrohspitze 9 ist durch einen Stopfen 11 verschlossen. Der Unterschied zwischen dem Durchmesser D1 und dem Durchmesser D2 beträgt ca. 45 %. Die Ausströmöffnung für die Schmelze und die Lippe 13 sind analog wie bei der in Fig. 2 gezeigten Ausführungsvariante ausgebildet. Im Vergleich zu dem in Fig. 2 gezeigten Tauchrohr besitz dieses kein gesondertes Anschlussstück. Bei der in Fig. 6 gezeigten Tauchrohrspitze 9, ist die die Ausströmöffnung 12 überdeckende Lippe 13 geneigt angeordnet. Durch den Abstandshalter 13a ist die Lippe 13 in einem Abstand 5 mm zur Wandung der Tauchrohrspitze angeordnet und verläuft schräg nach oben, bis zum Ende der Tauchrohrspitze. Die Lippe 13 ist an der Tauchrohrspitze angeschweißt. Ansonsten ist diese Tauchrohrspitze analog ausgeführt wie die Tauchrohrspitze des in Fig. 2 gezeigten Tauchrohres.In Fig. 5, a further variant of a dip tube 6a is shown, with a continuous conical formation of the section 8 and the dip tube tip 9, starting from Diameter D1 of the continuous by reducing the circular cross-sectional area reduced to a diameter D2 to the end of the dip tube tip becomes. The circular opening of the Tauchrohspitze 9 is through a plug 11th locked. The difference between the diameter D1 and the diameter D2 is about 45%. The outflow opening for the melt and the lip 13 are formed analogously as in the embodiment variant shown in Fig. 2. Compared to the dip tube shown in Fig. 2 have this no separate connector. In the immersion pipe tip 9 shown in Fig. 6, which is the discharge opening 12 overlapping Lippe 13 arranged inclined. By the spacer 13 a is the lip 13th arranged at a distance 5 mm to the wall of the dip tube tip and runs diagonally upwards, to the end of the dip tube tip. The lip 13 is at the dip tube tip welded. Otherwise, this dip tube tip is analogous to how the dip tube tip of the dip tube shown in Fig. 2.

In Fig. 7 ist eine als separates Bauteil ausgebildete Tauchrohrspitze 9a gezeigt, die auf das Ende eines konisch verlaufenden Abschnittes eines Tauchrohres entsprechend der in Fig. 5 gezeigten Ausführung aufgesteckt werden kann und durch Schweißen an diesem befestigt ist. Die Tauchrohrspitze 9a besitzt einen konstanten Querschnitt in Form eines Langloches 10, das am in Strömungsrichtung zeigenden Ende durch einen Stopfen 11 verschlossen ist. Am gegenüberliegenden Ende weist die Tauchrohrspitze 9a ein Übergangstück 14 auf, für den Übergang von der Langlochform auf die kreisrunde Form, passgenau auf den entsprechenden Abschnitt 6 des Tauchrohres abgestimmt. An der Unterseite der Tauchrohrspitze 9a befinden sich zwei hintereinander angeordnete Ausströmöffnungen 12a und 12b, die durch eine parallel verlaufende Lippe 13, 13a überdeckt sind. Die Lippe 13 ist an der Tauchrohrspitze 9a angeformt, die wie folgt hergestellt werden kann.In Fig. 7 a formed as a separate component immersion tube tip 9 a is shown on the end of a conically extending portion of a dip tube accordingly the embodiment shown in Fig. 5 can be plugged and by welding this is attached. The dip tube tip 9a has a constant cross section in FIG Form of a slot 10, which at the end pointing in the flow direction by a Plug 11 is closed. At the opposite end, the dip tube tip 9a a transition piece 14, for the transition from the slot shape to the circular Shape, fitting to the appropriate section 6 of the dip tube Voted. At the bottom of the dip tube tip 9a are two in a row arranged outflow openings 12a and 12b, which through a parallel extending lip 13, 13a are covered. The lip 13 is at the dip tube tip 9a molded, which can be prepared as follows.

Die Rohrspitze des Tauchrohres, die im Rohzustand einen kreisförmigen Querschnitt aufweist, wird in einem Presswerkzeug durch ein "Flach drücken" umgeformt, um den gewünschten Querschnitt in Form eines "Langloch" zu erhalten, wobei ein kurzer Übergangsabschnitt 14 von der kreisrunden Form in Langloch-Form entsteht. Anschließend erfolgt in einem der Länge der Lippe entsprechenden Abstand vom Rohrende ein Trennschnitt in Querrichtung, ohne das Rohr vollständig durchzutrennen, und ein Längsschnitt bis zur Querschnittsfuge. Die Rohrspitze besitzt nunmehr eine in Längsrichtung zeigende Lippe. Danach werden die Bohrungen 12a und 12b für die Ausströmöffnungen der Schmelze eingebracht. Anschließend wird die Öffnung des Langloches 10 am Ende der Rohrspitze durch Einschweißen einer Verschlusskappe 11 geschlossen. Danach wird die vorstehende Lippe in Richtung der eingebrachten Ausströmöffnungen umgebogen, derart, dass diese die Ausströmöffnungen 12a und 12b in dem vorgesehenen Abstand überdeckt. Die Lippe 13 besitzt eine Länge von ca. 80 mm und ist mit ihrem entgegengesetzt zur Strömungsrichtung zeigenden Ende an dem benachbarten Wandabschnitt der Tauchrohrspitze 9a angeschweißt.The tube tip of the dip tube, which in the raw state has a circular cross-section is in a pressing tool by a "flat press" reshaped to the desired cross-section in the form of a "slot", with a short Transition portion 14 of the circular shape in oblong shape is formed. Then takes place in a the length of the lip corresponding distance from Tube end a cross-sectional separation without completely cutting through the tube, and a longitudinal section to the cross-sectional joint. The pipe tip has now a longitudinally pointing lip. Thereafter, the holes 12a and 12b introduced for the outflow openings of the melt. Subsequently, the Opening the elongated hole 10 at the end of the tube tip by welding a Closure cap 11 closed. Thereafter, the protruding lip in the direction of introduced outflow openings bent, such that these the outflow openings Covered 12a and 12b in the designated distance. The lip 13 has a length of about 80 mm and is with its opposite to the flow direction pointing end to the adjacent wall portion of the dip tube tip 9a welded.

Um im Betriebszustand eine Durchbiegung der Tauchrohre zu vermeiden, können diese mit zusätzlichen Stabilisierung ausgerüstet werden, wie z.B. einer oder mehreren Versteifungsrippen.In order to avoid a deflection of the dip tubes in the operating state, can these are equipped with additional stabilization, e.g. one or more Stiffening ribs.

Durch die erfindungsgemäße Ausbildung der Tauchrohre wird im praktischen Einsatz der geneigte Strömungsverlauf der Kupferschmelze vom Tundish in die Kokille sehr günstig beeinflusst. Die bedingt durch die geneigte Anordnung der Tauchrohre zunehmende Strömungsgeschwindigkeit der Schmelze wird durch die zweimalige Richtungsänderung der Strömung so reduziert, dass eine schonende Einleitung in das Kokillenbad gewährleistet ist.The inventive design of the dip tubes is in practical use the inclined flow of copper melt from the tundish into the mold is very favorably influenced. The conditional by the inclined arrangement of the dip tubes increasing flow velocity of the melt is due to the two times Change of direction of the flow so reduced that a gentle introduction into the Mold bath is guaranteed.

Die kontinuierliche Verjüngung, insbesondere des Abschnittes 8, mit einer Querschnittsänderung und Verringerung der Querschnittsfläche, führt dazu, dass die Schmelze an der Innenwandung des Tauchrohres anliegt und sich im Tauchrohr keine Luftblasen oder Hohlräume entstehen können. Dies trifft auch auf die Tauchrohrspitze 9, 9a zu, bedingt durch die vorgenommene Veränderung der Querschnittsform (Kreis/Langloch) oder die sich fortsetzende weitere Verjüngung. Da das Ende der Tauchrohrspitze 9, 9a verschlossen ist, wird der Schmelze eine Umlenkung um mindestens 90° aufgezwungen, die zu einer ersten Reduzierung der Strömungsgeschwindigkeit führt.The continuous taper, in particular of section 8, with a change in cross section and reducing the cross-sectional area, causes the Melt on the inner wall of the dip tube rests and in the dip tube no Air bubbles or cavities may arise. This also applies to the dip tube tip 9, 9a, due to the change made in the cross-sectional shape (Circle / slot) or the continuing further rejuvenation. Because the end of Dip tube tip 9, 9a is closed, the melt is a deflection imposed at least 90 °, leading to a first reduction in the flow rate leads.

Wesentlich ist, dass durch die Anordnung der Ausströmöffnung bzw. der Ausströmöffnungen an der Unterseite der Tauchrohrspitze 9 eine Umlenkung bzw. eine erste Richtungsänderung um mindestens 90° des Schmelzenstromes erzielt wird und zusätzlich durch die Anordnung der Lippe 13 unterhalb der Ausströmöffnungen noch eine zweite Richtungsänderung bzw. Ablenkung der Schmelzenströmung in seitlicher Richtung, verbunden mit einer weiteren Reduzierung der Strömungsgeschwindigkeit. Die Schmelzenströmung wird nach beiden Seiten der Lippe 13 gleichmäßig und mit deutlich reduzierter Strömungsgeschwindigkeit unterhalb des Badspiegels der Kokille in das Schmelzenbad eingeleitet. Die Strömungsgeschwindigkeit der Schmelze kann somit auf einen Wert von ≤ 0,5 m/s reduziert werden und schießt nicht mit hoher Geschwindigkeit, wie dies bei herkömmlichen Tauchrohren der Fall ist, in die Kokille. Dadurch wird die Bildung von Blasen erheblich reduziert und noch vorhandene Blasen können an den Seitenwänden der Kokille entweichen, sodass eine Bildung von Luft-oder Gaseinschlüssen in der Bramme vermieden wird. Weiterhin wird eine unerwünschte Injektion der Schmelze tief in die Kokille verhindert. Die Schmelzenströmung wird unmittelbar unterhalb der Oberfläche des Schmelzenbades injiziert und kann dort entgasen, so dass sich während des Erstarrungsprozesses eine glatte Oberfläche ausbilden kann. Es findet keine Verwirbelung der Schmelze im Bereich der Badoberfläche statt. Die so vorgenommene Einleitung der Schmelze in das Kokillenbad schließt auch die Gefahr einer Beschädigung der Kokillenwände aus.It is essential that by the arrangement of the outflow or the outflow at the bottom of the dip tube tip 9 a deflection or a first Direction change is achieved by at least 90 ° of the melt stream and additionally by the arrangement of the lip 13 below the outflow openings yet a second change of direction or deflection of the melt flow in lateral Direction, combined with a further reduction of the flow velocity. The melt flow is uniform and on both sides of the lip 13 significantly reduced flow velocity below the bath level of the mold introduced into the melt bath. The flow rate of the melt can thus reduced to a value of ≤ 0.5 m / s and does not shoot with high Speed, as is the case with conventional dip tubes, in the mold. This significantly reduces the formation of bubbles and any remaining bubbles can escape on the sidewalls of the mold, creating a formation of air or Gas inclusions in the slab is avoided. Furthermore, a unwanted injection of the melt deep into the mold prevented. The melt flow is injected immediately below the surface of the melt bath and can degas there, leaving a smooth surface during the solidification process can train. There is no swirling of the melt in the area of Bath surface instead. The thus made introduction of the melt in the Kokillenbad also eliminates the risk of damaging the mold walls.

Claims (17)

  1. Casting system for the pouring of nonferrous metal molten masses, in particular copper or copper alloys, consisting of a tundish (1) at which is attached at least one submerged pipe (6, 6a) that runs in an inclined arrangement with a pre-defined pouring angle, with a first section (8) and a second section comprising the submerged pipe's tip nozzle (9, 9a) that submerges into the molten bath of the mould (3), with the submerged pipe's tip nozzle (9, 9a) being sealed off at its free end (10, 11), having at its wall that faces the moulds bottom side (5) at least one discharge opening (12, 12a, 12b) that effects a first change in the direction of flow of the molten mass, and a lip (13, 13a) that is arranged at the submerged pipe's tip nozzle (9, 9a) where it overlaps the discharge opening (12,12a, 12b) in a pre-defined distance and through which the molten mass experiences a second change in the direction of flow and is distributed in crosswise direction, seen from mould's (3) longitudinal axis, with the discharge opening (12, 12a, 12b) together with the lip (13, 13a) in operating state being situated in the mould bath in a subsurface position.
  2. Casting system according to claim 1, characterized in that the lip (13) runs parallel to the discharge opening (12, 12a, 12b).
  3. Casting system according to one of the claims 1 or 2, characterized in that the lip (13, 13a) is in an inclined arrangement seen from the discharge opening (12, 12a, 12b).
  4. Casting system according to one of the claims 1 to 3, characterized in that the discharge opening has the form of a long hole (12).
  5. Casting system according to one of the claims 1 to 4, characterized in that the cross-sectional area of the discharge opening (12), or the total of all cross-sectional areas of all discharge openings (12a, 12b) is from 80% to 98% of the cross-sectional area as it is measured at the end of the submerged pipe's tip nozzle (9, 9a).
  6. Casting system according to one of the claims 1 to 5, characterized in that the greatest distance (13a) between the discharge opening (12, 12a, 12b) and the lip (13) overlapping the latter is not less than 5 mm.
  7. Casting system according to one of the claims 1 to 6, characterized in that the first section (8) has gradually narrowing internal walls seen in the direction of flow of the molten mass.
  8. Casting system according to one of the claims 1 to 7, characterized in that the tapering section (8) has a circular cross section at its beginning (D1), whereat the cross section as its end has the shape of a long hole.
  9. Casting system according to one of the claims 1 to 8, characterized in that the section (8) has a conical shape.
  10. Casting system according to one of the claims 1 to 9, characterized in that the submerged pipe's tip nozzle (9) undergoes a further gradually narrowing seen in downstream direction.
  11. Casting system according to one of the claims 1 to 10, characterized in that the submerged pipe's tip nozzle (9a) is made as a separate component part attached to the end of the submerged pipe's (6) tapering section (8).
  12. Casting system according to one of the claims 1 to 11, characterized in that length and tapering of the submerged pipe (6, 6a) are matched as a function of the pouring angle so that the flow rate of the molten mass after flowing against the lip (13, 13a) does not exceed 0.5 metre per second.
  13. Casting system according to one of the claims 1 to 12, characterized in that the submerged pipe (6, 6a) is equipped with an resistance heating so as to allow heating up the same.
  14. Casting system according to one of the claims 1 to 13, characterized in that the section (8) and the submerged pipe's (6) tip nozzle (9) are made of different refractory materials.
  15. Method for pouring nonferrous metal molten masses, in particular copper or copper alloy, from a tundish (1) by means of a submerged pipe (6, 6a) that runs at a pre-defined pouring angle preferably in an inclined arrangement down into the molten bath of a mould (3), characterized in that the increased flow rate of the molten mass is significantly reduced due to at least two changes in the direction of flow of the molten mass, both occurring in the mould bath in a subsurface position in form of a deflection by least 90°.
  16. Method according to claim 15, characterized in that after the first change in the direction of flow the stream of molten mass is separated into two lateral part streams and at the same is experiences a second deflection by at least 90°.
  17. Method according to one of the claims 15 or 16, characterized in that the stream of molten mass is influenced by the geometric shape of the submerged pipe (6, 6a) in such a way as to ensure that the submerged pipe (6, 6a) in operating state is completely filled with molten mass, where the molten mass is kept in constant contact with the submerged pipe's (6, 6a) internal walls, and the flow rate of the metal melt is reduced so as to slow it down to 0.5 metre per second or less by the time of discharging into the molten bath of the mould (3).
EP03017412A 2003-08-01 2003-08-01 Casting system and method of casting non-ferrous metals Expired - Lifetime EP1506827B1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
SI200330104T SI1506827T1 (en) 2003-08-01 2003-08-01 Casting system and method of casting non-ferrous metals
EP03017412A EP1506827B1 (en) 2003-08-01 2003-08-01 Casting system and method of casting non-ferrous metals
ES03017412T ES2250796T3 (en) 2003-08-01 2003-08-01 SYSTEM AND PROCEDURE OF COLADA OF NON-FERRIC METALS.
DE50301315T DE50301315D1 (en) 2003-08-01 2003-08-01 Casting system and method for casting non-ferrous molten metals
AT03017412T ATE305834T1 (en) 2003-08-01 2003-08-01 CASTING SYSTEM AND METHOD FOR CASTING NON-FERROUS METAL MELTS
PE2004000628A PE20050116A1 (en) 2003-08-01 2004-06-30 MOLDING SYSTEM AND PROCEDURE FOR MOLDING NON-FERRIC METAL CASTINGS
US10/888,714 US6994149B2 (en) 2003-08-01 2004-07-08 Casting system and method for pouring nonferrous metal molten masses
CA2473316A CA2473316C (en) 2003-08-01 2004-07-09 Casting system and method for pouring nonferrous metal molten masses
MXPA04007200A MXPA04007200A (en) 2003-08-01 2004-07-26 Casting system and method of casting non-ferrous metals.
ARP040102672A AR045136A1 (en) 2003-08-01 2004-07-27 MOLDING AND PROCEDURE SYSTEM FOR MOLDING NON-FERROUS METAL SWORDS
JP2004221773A JP2005193296A (en) 2003-08-01 2004-07-29 Casting system and method for pouring non-ferrous metal molten material
CNB2004100588043A CN100345646C (en) 2003-08-01 2004-07-30 Casting system and method for pouring nonferrous metal molten masses
BR0403171-7A BRPI0403171A (en) 2003-08-01 2004-07-30 Leakage system and process for casting nonferrous metal castings
RU2004123355/02A RU2373019C2 (en) 2003-08-01 2004-07-30 Casting system and casting method of molten non-ferrous metals
KR1020040060700A KR20050016086A (en) 2003-08-01 2004-07-31 Casting system and method for pouring nonferrous metal molten masses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03017412A EP1506827B1 (en) 2003-08-01 2003-08-01 Casting system and method of casting non-ferrous metals

Publications (2)

Publication Number Publication Date
EP1506827A1 EP1506827A1 (en) 2005-02-16
EP1506827B1 true EP1506827B1 (en) 2005-10-05

Family

ID=33560762

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03017412A Expired - Lifetime EP1506827B1 (en) 2003-08-01 2003-08-01 Casting system and method of casting non-ferrous metals

Country Status (15)

Country Link
US (1) US6994149B2 (en)
EP (1) EP1506827B1 (en)
JP (1) JP2005193296A (en)
KR (1) KR20050016086A (en)
CN (1) CN100345646C (en)
AR (1) AR045136A1 (en)
AT (1) ATE305834T1 (en)
BR (1) BRPI0403171A (en)
CA (1) CA2473316C (en)
DE (1) DE50301315D1 (en)
ES (1) ES2250796T3 (en)
MX (1) MXPA04007200A (en)
PE (1) PE20050116A1 (en)
RU (1) RU2373019C2 (en)
SI (1) SI1506827T1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2450890C2 (en) * 2007-01-20 2012-05-20 Мкм Мансфельдер Купфер Унд Мессинг Гмбх Method and device for teeming nonferrous metal melt, particularly, copper or copper alloy melts
RU2471588C2 (en) * 2007-11-19 2013-01-10 Смс Зимаг Аг Casting machine with feed onto casting belt
DE102017106456A1 (en) 2017-03-27 2018-09-27 Mkm Mansfelder Kupfer Und Messing Gmbh Ceramic tube and casting system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548582B2 (en) * 2010-10-25 2014-07-16 本田技研工業株式会社 Mold design apparatus, mold design method, mold design system, and mold design program
EP2656945A1 (en) * 2012-04-26 2013-10-30 SMS Concast AG Fire-proof cast pipe for a mould for strand casting metal melt

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE576793A (en) * 1958-03-17
DE1939170B2 (en) * 1969-07-29 1971-04-22 Mannesmann Ag DEVICE FOR DISTRIBUTING A MELT IN A PLANT FOR CONTINUOUS STEEL CASTING
JPS5117939B1 (en) * 1971-04-15 1976-06-05
BE794857A (en) * 1972-02-03 1973-05-29 Voest Ag PROCESS FOR SEPARATING NON-METALLIC INCLUSIONS IN FUSION METALS, AND CASTING TUBES FOR COMPLETING THE PROCESS
JPS49139322U (en) * 1973-04-04 1974-11-30
SE7409971L (en) * 1973-09-11 1975-03-12 Voest Ag
JPS5085525A (en) * 1973-12-03 1975-07-10
JPS55141365A (en) * 1979-04-20 1980-11-05 Nippon Steel Corp Continuous casting method
DE3311090C2 (en) * 1983-03-26 1985-04-04 Fried. Krupp Gmbh, 4300 Essen Feeding device for introducing molten steel into double belt casting machines
EP0194327A1 (en) * 1985-03-09 1986-09-17 Fried. Krupp Gesellschaft mit beschränkter Haftung Apparatus for regulating the position of the liquid metal level within a double belt continuous casting mould
JPS61205647U (en) * 1985-06-11 1986-12-25
JPS6272753U (en) * 1985-10-22 1987-05-09
DE3623660A1 (en) * 1986-07-12 1988-01-14 Thyssen Stahl Ag FIREPROOF PIPE
JPS6352756A (en) * 1986-08-21 1988-03-05 Nippon Steel Corp Submerged nozzle for continuous casting
US4949778A (en) * 1987-12-16 1990-08-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting
DE3810302A1 (en) * 1988-03-24 1989-10-12 Mannesmann Ag CASTING DEVICE FOR THE CONTINUOUS PRODUCTION OF METAL STRIP
JPH01273654A (en) * 1988-04-25 1989-11-01 Kawasaki Steel Corp Nozzle for pouring molten metal
JPH0698467B2 (en) * 1989-12-06 1994-12-07 株式会社日立製作所 Pouring device for continuous casting machine
DE4034652A1 (en) 1990-10-31 1992-05-07 Didier Werke Ag CONNECTION BETWEEN SPOUT AND PIPE PIPE ON METALLURGICAL VESSELS
JPH0518743U (en) * 1991-08-26 1993-03-09 愛知製鋼株式会社 Immersion nozzle for continuous casting with shield cylinder
JP3130152B2 (en) * 1992-12-25 2001-01-31 株式会社日立製作所 Twin belt type continuous casting machine and pouring method thereof
JP2976833B2 (en) * 1995-02-01 1999-11-10 株式会社神戸製鋼所 Method of pouring molten steel into large section mold
JP2796524B2 (en) * 1996-04-11 1998-09-10 品川白煉瓦株式会社 Composite immersion nozzle
IT1284035B1 (en) 1996-06-19 1998-05-08 Giovanni Arvedi DIVER FOR CONTINUOUS CASTING OF THIN SLABS
US5871660A (en) * 1997-03-26 1999-02-16 The Regents Of The University Of California Liquid metal delivery system for continuous casting
DE19818028C2 (en) * 1997-04-22 2001-11-29 Toshiba Ceramics Co Integrated immersion nozzle and process for its manufacture
DE19738385C2 (en) 1997-09-03 2000-02-24 Schloemann Siemag Ag Immersion pouring tube for introducing melt from a casting or intermediate container into a mold
US6016941A (en) * 1998-04-14 2000-01-25 Ltv Steel Company, Inc. Submerged entry nozzle
DE10113026C2 (en) 2001-03-17 2003-03-27 Thyssenkrupp Stahl Ag Immersion tube for pouring molten metal, especially molten steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2450890C2 (en) * 2007-01-20 2012-05-20 Мкм Мансфельдер Купфер Унд Мессинг Гмбх Method and device for teeming nonferrous metal melt, particularly, copper or copper alloy melts
RU2471588C2 (en) * 2007-11-19 2013-01-10 Смс Зимаг Аг Casting machine with feed onto casting belt
DE102017106456A1 (en) 2017-03-27 2018-09-27 Mkm Mansfelder Kupfer Und Messing Gmbh Ceramic tube and casting system
EP3381588A1 (en) 2017-03-27 2018-10-03 MKM Mansfelder Kupfer Und Messing Gmbh Casting system for casting of copper melts

Also Published As

Publication number Publication date
ATE305834T1 (en) 2005-10-15
CN1579677A (en) 2005-02-16
PE20050116A1 (en) 2005-02-25
EP1506827A1 (en) 2005-02-16
AR045136A1 (en) 2005-10-19
US6994149B2 (en) 2006-02-07
US20050022961A1 (en) 2005-02-03
CA2473316A1 (en) 2005-02-01
JP2005193296A (en) 2005-07-21
CN100345646C (en) 2007-10-31
RU2004123355A (en) 2006-02-10
CA2473316C (en) 2012-01-03
MXPA04007200A (en) 2005-06-08
ES2250796T3 (en) 2006-04-16
DE50301315D1 (en) 2006-02-16
BRPI0403171A (en) 2005-05-24
KR20050016086A (en) 2005-02-21
SI1506827T1 (en) 2006-02-28
RU2373019C2 (en) 2009-11-20

Similar Documents

Publication Publication Date Title
EP1742752B1 (en) Method for casting components from light alloys according to the tilt pouring concept
DE2240643C3 (en) Nozzle stone for ladles on metal atomization systems
EP0254909B1 (en) Refractory pouring nozzle
EP0111213B1 (en) Apparatus and method for pouring molten metal
DE1817067B1 (en) DEVICE FOR SEPARATING POLLUTIONS FROM LIQUID STEEL DURING CONTINUOUS CASTING AND A PROCESS FOR IT
EP2111313B1 (en) Method and device for casting non-ferrous metal melts, in particular copper or copper alloys
EP1506827B1 (en) Casting system and method of casting non-ferrous metals
EP2140956B1 (en) Pouring device for metal melts
DE4032521C2 (en)
EP1932605B1 (en) Method and device for manufacturing wide strips made of copper or copper alloys
DE60114779T2 (en) IMPROVED DIVING TUBE FOR CONTINUOUS CASTING
EP2355946B1 (en) Immersion nozzle
DE2632253B2 (en) Method and device for casting a strand in a continuous caster
AT404105B (en) METHOD FOR CONTINUOUSLY casting a METAL MELT
DE20318675U1 (en) System for casting non-ferrous metal melts, especially copper or copper alloys comprises a tundish having an immersion pipe running downward at an angle with a first section and a second section forming the tip of the immersion pipe
DE2250048A1 (en) Refractory pouring pipe for continuous casting of molten metals
EP0433419B1 (en) Device for slag-free casting on in continuous casting installations
EP1465743B1 (en) Submerged nozzle for a metallurgic container placed upstream from a casting device
DE19710887C2 (en) Use of a mold for the production of bars from light metal or a light metal alloy, in particular from magnesium or a magnesium alloy
DE1817067C (en) Device for separating impurities from liquid steel during continuous casting and a method therefor
DE2304943B2 (en) Immersion outlet for continuous casting of steel
WO1998053938A1 (en) Submerged nozzle for slab continuous casting moulds
DE2166230A1 (en) Continuous casting - using closed bottom melt feed funnel
DE2426692C3 (en) Method and device for cooling the strand forming in an oscillating mold during the continuous casting of steel
DE1213090B (en) Method and device for the continuous casting of metal bars

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060105

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060104

REF Corresponds to:

Ref document number: 50301315

Country of ref document: DE

Date of ref document: 20060216

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050403855

Country of ref document: GR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E000173

Country of ref document: HU

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2250796

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

26N No opposition filed

Effective date: 20060706

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20080723

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: MKM MANSFELDER KUPFER UND MESSING GMBH

Effective date: 20081016

REG Reference to a national code

Ref country code: HU

Ref legal event code: GB9C

Owner name: MKM MANSFELDER KUPFER UND MESSING GMBH, DE

Free format text: FORMER OWNER(S): HOF TE FIENNES N.V., BE

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): DR. KRAJNYAK ANDRAS, DR. ASBOTH, DR. BICZI & TARSA UEGYVEDI ES SZABADALMI IRODA, HU

Representative=s name: DR. ASBOTH-DR.KRAJNYAK & TARSA UEGYVEDI ES SZA, HU

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: MKM MANSFELDER KUPFER UND MESSING GMBH; DE

Effective date: 20090120

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: MKM MANSFELDER KUPFER UND MESSING GMBH, DE

Effective date: 20091021

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20100304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090802

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50301315

Country of ref document: DE

Representative=s name: WEIDNER STERN JESCHKE PATENTANWAELTE PARTNERSC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50301315

Country of ref document: DE

Representative=s name: BOCKERMANN KSOLL GRIEPENSTROH OSTERHOFF, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50301315

Country of ref document: DE

Representative=s name: BOCKERMANN KSOLL GRIEPENSTROH OSTERHOFF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50301315

Country of ref document: DE

Owner name: KME MANSFELD GMBH, DE

Free format text: FORMER OWNER: MKM MANSFELDER KUPFER UND MESSING GMBH, 06333 HETTSTEDT, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220719

Year of fee payment: 20

Ref country code: SK

Payment date: 20220719

Year of fee payment: 20

Ref country code: SE

Payment date: 20220823

Year of fee payment: 20

Ref country code: RO

Payment date: 20220727

Year of fee payment: 20

Ref country code: PT

Payment date: 20220718

Year of fee payment: 20

Ref country code: IT

Payment date: 20220819

Year of fee payment: 20

Ref country code: GB

Payment date: 20220823

Year of fee payment: 20

Ref country code: FI

Payment date: 20220818

Year of fee payment: 20

Ref country code: ES

Payment date: 20220908

Year of fee payment: 20

Ref country code: DE

Payment date: 20220826

Year of fee payment: 20

Ref country code: CZ

Payment date: 20220729

Year of fee payment: 20

Ref country code: BG

Payment date: 20220822

Year of fee payment: 20

Ref country code: AT

Payment date: 20220818

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20220801

Year of fee payment: 20

Ref country code: GR

Payment date: 20220822

Year of fee payment: 20

Ref country code: FR

Payment date: 20220824

Year of fee payment: 20

Ref country code: BE

Payment date: 20220825

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50301315

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20230731

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230731

Ref country code: SK

Ref legal event code: MK4A

Ref document number: E 476

Country of ref document: SK

Expiry date: 20230801

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20230801

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230825

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 305834

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230801

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230810

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230731

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230802

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230801