EP1504458A1 - Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer k lteeinheit - Google Patents

Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer k lteeinheit

Info

Publication number
EP1504458A1
EP1504458A1 EP03752654A EP03752654A EP1504458A1 EP 1504458 A1 EP1504458 A1 EP 1504458A1 EP 03752654 A EP03752654 A EP 03752654A EP 03752654 A EP03752654 A EP 03752654A EP 1504458 A1 EP1504458 A1 EP 1504458A1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
superconducting
winding
pipeline
cold head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03752654A
Other languages
English (en)
French (fr)
Other versions
EP1504458B1 (de
Inventor
Peter Van Hasselt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1504458A1 publication Critical patent/EP1504458A1/de
Application granted granted Critical
Publication of EP1504458B1 publication Critical patent/EP1504458B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems

Definitions

  • the invention relates to a device of superconductivity technology
  • metal oxide superconductor materials have been known since 1987 with transition temperatures T c of over 77 K. The latter materials are also referred to as high (high) T c superconductor materials or HTS materials.
  • cryocoolers For cooling windings with HTS conductors, refrigeration units in the form of so-called cryocoolers with a closed helium compressed gas circuit are preferably used in the temperature range mentioned. Such cryocoolers are in particular of the Gifford-McMahon or Stirling type or are designed as so-called pulse tube coolers. Corresponding cooling units also have the advantage that the cooling capacity is available at the push of a button and the user is spared the handling of cryogenic liquids. When using such cooling units, e.g. a superconducting magnetic coil winding is only indirectly cooled by heat conduction to a cold head of a refrigerator and is therefore free of refrigerants (see also the text from ICEC 16).
  • refrigerator cooling has already been implemented using good heat-conducting connections such as, for example, in the form of possibly also flexible copper pipes between a cold head of a corresponding cooling unit and the superconducting winding of the magnet (cf. the above-mentioned literature from ICEC 16 , especially pages 1113 to 1116).
  • good heat-conducting connections such as, for example, in the form of possibly also flexible copper pipes between a cold head of a corresponding cooling unit and the superconducting winding of the magnet (cf. the above-mentioned literature from ICEC 16 , especially pages 1113 to 1116).
  • the large cross sections required for good thermal coupling then lead to a considerable increase in cold mass. This is disadvantageous in particular in the case of the spatially extended magnetic systems that are customary in MRI applications, because of the longer cooling times.
  • a line system can also be provided in which a He gas stream circulates (cf. e.g. US 5,485,730).
  • the object of the present invention is to provide a device for superconducting technology with the features mentioned at the beginning, in which the effort for cooling a superconducting winding is reduced.
  • the thermal coupling means between the at least one winding and the at least one cold head should be designed as a line system with at least one pipeline for a refrigerant circulating therein according to a thermosiphon effect.
  • a cold head is understood here to mean any cold surface of a refrigeration unit via which the refrigeration output is given directly or indirectly to the refrigerant.
  • Such a piping system has at least one closed pipeline that runs at a slope between the cold head and the superconducting winding.
  • the gradient is at least in some parts of the pipeline generally more than 0.5 °, preferably more than 1 ° with respect to the horizontal.
  • the refrigerant in this pipeline recondenses on a cold surface of the refrigeration unit or cold head and from there reaches the area of the superconducting winding, where it heats up and generally evaporates.
  • the refrigerant thus evaporated then flows back into the area within the pipeline Cold surface of the cold head.
  • the corresponding circulation of the refrigerant takes place on the basis of a so-called “thermosiphon effect *.
  • thermosiphon (as a corresponding line system is also called) for transferring the cooling capacity to the winding
  • the required circulating amount of the cryogenic refrigerant is considerably reduced compared to a bath cooling system, for example by a factor of about 100. Since also If the liquid only circulates in pipelines with comparatively small diameters, which are generally of the order of a few centimeters, the pressure build-up in a quench is technically manageable without problems.
  • the reduction in the amount of liquid refrigerant in the system especially when using helium or neon as the refrigerant, is also a significant cost advantage.
  • a thermosiphon also offers the advantage of good thermal coupling regardless of the spatial distance between the cold head and the object to be cooled.
  • the line system can have two or more pipes which are filled with different refrigerants with different condensation temperatures. Depending on the requirements of the application, this enables working temperatures to be graded accordingly, for example for pre-cooling, a quasi-continuous thermal coupling or a quasi-continuous thermal coupling through overlapping working temperature ranges of the refrigerants.
  • the subsystems can either be connected to a common cold head or be thermally coupled to separate cold heads of a refrigeration unit.
  • the superconducting magnet of the device can particularly advantageously contain a winding which has superconducting HTS material and in particular can also be kept at a temperature below 77K.
  • a device according to the invention of superconductivity technology must also be designed for LTS magnets.
  • FIG. 1 shows the cooling of an MRI magnet with two windings
  • FIG. 2 shows the cooling of another MRI magnet with four windings.
  • the superconducting technology device which is generally designated 2 in FIG. 1 and is only executed in its details that are essential to the invention, can in particular be part of an MRI magnet system.
  • Embodiments known per se with a so-called C magnet are assumed (see e.g. DE 198 13 211 C2 or
  • This system therefore contains a non-detailed, preferably superconducting magnet 3 with an upper superconducting winding 4a lying in a horizontal plane and a lower superconducting winding 4b arranged parallel thereto.
  • These windings can in particular be made with conductors made of high-T c superconductor material, such as (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O x , for reasons of a high current carrying capacity can be kept at an operating temperature below 77 K.
  • the windings have a ring shape. They are each housed in a corresponding vacuum housing, not shown.
  • the cooling capacity for cooling the windings 4a and 4b is provided by a cooling unit (not shown in detail) with at least one cold head 6 located at its cold end.
  • This cold head has a cold surface 7 to be kept at a predetermined temperature level or is thermally connected to it.
  • the interior of a condenser chamber 8 is thermally coupled to this cold surface; for example, the cold surface 7 forms a wall of this room. According to the exemplary embodiment shown, the interior of this condenser chamber 8 is divided into two compartments 9a and 9b.
  • a pipeline 10a of a pipeline system 10 is connected to the (first) subspace 9a.
  • This pipeline first leads from the part space 9a into the area of the superconducting winding 4a, where it is in good heat-conducting contact with the winding.
  • the pipeline 10a runs in spiral windings along the inside of the winding.
  • the attachment on the inside is not mandatory; it is only important that the pipeline reaches the entire circumference of the winding with a permanent slope and is thermally well coupled there to the parts to be cooled or the conductor of the winding.
  • the pipeline 10a includes at least the most essential parts with the horizontal h an incline (or inclination) angle ⁇ of more than 0.5 °, preferably more than 1 °.
  • the gradient angle ⁇ in the area of the winding 4a is approximately 3 °.
  • a first refrigerant kl for example neon (Ne)
  • Ne is located in the pipeline 10a laid with the slope.
  • the refrigerant kl circulates in the pipeline 10a including the associated subspace 9a due to a thermosiphon effect known per se.
  • the refrigerant condenses in the sub-space 9a on the cold surface 7 and reaches the area of the superconducting windings in liquid form.
  • the refrigerant heats up, for example with at least partial evaporation, and flows back in the pipeline 10a into the subspace 9a, where it is recondensed.
  • the line system 10 comprises a second pipeline 10b, which runs parallel to the first pipeline 10a and is filled with a further refrigerant k2.
  • This refrigerant is different from the first refrigerant kl, ie it has a different, preferably higher, condensation temperature.
  • nitrogen (N 2 ) is selected for the refrigerant k2.
  • the pipeline 10b is connected to the (second) sub-space 9b of the condenser chamber 8.
  • the second refrigerant k2 also circulates in the closed pipeline 10b and the sub-space 9b due to a thermosiphon effect. When the magnet windings cool down, the second refrigerant k2 is first condensed, the
  • Windings can be pre-cooled to about 70 to 80 K, for example if N 2 is used as the refrigerant k2.
  • the first refrigerant kl located in the pipeline 10a then condenses with the comparatively lower condensation temperature and thus leads to a further cooling to the intended operating temperature of, for example, 20 K (when using Ne as the first refrigerant kl).
  • the second refrigerant k2 can be frozen out at this operating temperature in the area of the partial space 9b.
  • the device 2 according to the invention for superconducting technology can of course also have only one line system with only a single pipeline.
  • thermosiphon pipeline which is filled with N 2 or Ar, for example - in addition to the thermal connection to the second stage - also connect to the first (warmer) stage.
  • thermosiphon cooling can also be used for magnets that have vertically arranged windings.
  • An embodiment of a device according to the invention with corresponding windings is indicated in Figure 2.
  • a spiral shape as in the case of the exemplary embodiment according to FIG.
  • each pipeline 15i can therefore be dispensed with here and the gradient angle in large parts of the line system generally designated by 20 is approximately 90 °.
  • a condenser chamber 18 and a cold head are generally placed above the windings to provide the required slope.
  • At least one pipeline 15i is required per winding since, in contrast to horizontally arranged windings, not one pipeline can reach all windings while maintaining the gradient.
  • the entire pipeline system 20 formed from the pipelines 15i must either be designed as a system of communicating tubes and be completely flooded with the liquid refrigerant in the area of the windings 14. This is indicated in FIG. 2 by a darker coloring of the refrigerant kl, while the evaporated refrigerant is colored lighter and labeled kl ⁇ .
  • each pipeline 15i must have a separate condenser (partial) chamber on the cold head.
  • a line system with parallel pipes filled with different refrigerants (kl or k2) can also be provided.
  • a device according to the invention for superconducting technology can have a line system with at least one pipeline, in which there is also a mixture of two refrigerants with different condensation temperatures. Then, with a gradual cooling, the gas with the highest condensation temperature can initially condense and form a closed circuit for heat transfer to a winding to be cooled. After this winding has been pre-cooled to the triple point temperature of this gas, it will then freeze out in the region of the condenser chamber, whereupon the other gas mixture component with the lower condensation temperature ensures further cooling to the operating temperature.
  • the gases He, H 2 , Ne, 0 2 , N 2 , Ar and various hydrocarbons are suitable as refrigerants.
  • the cold gas is selected in such a way that operating temperature, the refrigerant is both gaseous and liquid. This ensures circulation using a thermosiphon effect.
  • Warm and / or cold expansion tanks can be provided on the line system for targeted adjustment of the filling quantity while simultaneously limiting the system pressure.
  • refrigerant also depends on the superconductor material used. If an LTS material such as Nb 3 Sn is provided, only He can be used as a refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Die Einrichtung (2) enthält einen supraleitenden Magneten (3) mit mindestens einer kältemittelfreien supraleitenden Wicklung (4a, 4b) und eine Kälteeinheit mit mindestens einem Kaltkopf (6). Zur thermischen Ankopplung der Wicklung (4a, 4b) an den Kaltkopf (6) dient ein Leitungssystem (10) mit wenigstens einer Rohrleitung (10a, 10b) für ein darin nach einem Thermosyphon-Effekt zirkulierendes Kältemittel (k1, k2).

Description

Beschreibung
Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit
Die Erfindung bezieht sich auf eine Einrichtung der Supraleitungstechnik
- mit einem Magneten, der mindestens eine supraleitfähige, kältemittelfreie Wicklung enthält, - mit einer Kälteeinheit, die mindestens einen Kaltkopf aufweist, und
- mit Mitteln zur thermischen Ankopplung der mindestens einen Wicklung an den mindestens einen Kaltkopf. Entsprechende Einrichtungen der Supraleitungstechnik gehen z.B. aus „Proc. 16th Int. Cryog. Engng. Conf. [ICEC 16]*, Ki- takyushu, JP, 20. 24.05.1996, Verlag Elsevier Science, 1997, Seiten 1109 bis 1132 hervor.
Neben den seit langem bekannten metallischen Supraleitermaterialien wie z.B. NbTi oder Nb3Sn, die sehr niedrige Sprungtemperaturen Tc besitzen und deshalb auch als Niedrig (Low) - Tc-Supraleitermaterialien oder LTS-Materialien bezeichnet werden, kennt man seit 1987 metalloxidische Supraleitermate- rialien mit Sprungtemperaturen Tc von über 77 K. Letztere Materialien werden auch als Hoch (High) -Tc-Supraleitermate- rialien oder HTS-Materialien bezeichnet.
Mit Leitern unter Verwendung solcher HTS-Materialien versucht man auch, supraleitende Magnetwicklungen zu erstellen. Wegen ihrer bislang noch verhältnismäßig geringen Stromtragfähigkeit in Magnetfeldern, insbesondere mit Induktionen im Tesla- Bereich, werden vielfach die Leiter solcher Wicklungen trotz der an sich hohen Sprungtemperaturen Tc der verwendeten Mate- rialien dennoch auf einem unterhalb von 77 K liegenden Temperaturniveau, beispielsweise zwischen 10 und 50 K gehalten, um so bei höheren Feldstärken wie z.B. von einigen Tesla nennenswerte Ströme tragen zu können.
Zur Kühlung von Wicklungen mit HTS-Leitern kommen in dem ge- nannten Temperaturbereich bevorzugt Kälteeinheiten in Form von sogenannten Kryokühlern mit geschlossenem Helium-Druckgaskreislauf zum Einsatz. Solche Kryokühler sind insbesondere vom Typ Gifford-McMahon oder Stirling oder sind als sogenannte Pulsröhrenkühler ausgebildet. Entsprechende Kälteeinheiten haben zudem den Vorteil, dass die Kälteleistung quasi auf Knopfdruck zur Verfügung steht und dem Anwender die Handhabung von tiefkalten Flüssigkeiten erspart wird. Bei einer Verwendung solcher Kälteeinheiten wird z.B. eine supraleitende Magnetspulenwicklung nur durch Wärmeleitung zu einem Kalt- köpf eines Refrigerators indirekt gekühlt, ist also kältemittelfrei (vgl. auch die genannte Textstelle aus ICEC 16).
Die Kühlung supraleitender Magnetsysteme insbesondere von MRI (Magnetresonance Imaging) -Anlagen ist derzeit bei helium- gekühlten Magneten in der Regel als Badkühlung ausgeführt (vgl. US 6,246,308 Bl) . Hierfür ist als Vorrat eine vergleichsweise große Menge an flüssigem Helium erforderlich, beispielsweise einige 100 Liter. Dieser Vorrat führt in einem Quenchfall des Magneten, d.h. bei einem Übergang von zunächst supraleitenden Teilen seiner Wicklung in den normalleitenden Zustand, zu einem unerwünschten Druckaufbau in einem erforderlichen Kryostaten.
Bei LTS-Magneten wurden bereits Refrigerator-Kühlungen unter Verwendung von gut-wärmeleitenden Verbindungen wie z.B. in Form von gegebenenfalls auch flexibel ausgeführten Cu-Rohren zwischen einem Kaltkopf einer entsprechenden Kälteeinheit und der supraleitenden Wicklung des Magneten realisiert (vgl. die genannte Literaturstelle aus ICEC 16, insbesondere Seiten 1113 bis 1116) . Je nach Abstand zwischen dem Kaltkopf und dem zu kühlenden Objekt führen dann aber die für eine gute thermische Ankopplung erforderlichen großen Querschnitte zu einer beträchtlichen Vergrößerung der Kaltmasse. Insbesondere bei den in MRI-Anwendungen üblichen, räumlich ausgedehnten Magnetsystemen ist dies auf Grund der verlängerten Abkühlzeiten von Nachteil .
Statt einer solchen thermischen Ankopplung der mindestens einen Wicklung an den mindestens einen Kaltkopf über wärmeleitende Festkörper kann auch ein Leitungssystem vorgesehen sein, in dem ein He-Gasstrom zirkuliert (vgl. z.B. US 5,485,730) .
Aufgabe der vorliegenden Erfindung ist es, eine Einrichtung der Supraleitungstechnik mit den eingangs genannten Merkmalen anzugeben, bei dem der Aufwand zur Kühlung einer supraleiten- den Wicklung verringert ist.
Diese Aufgabe wird erfindungsgemäß mit den in Anspruch 1 angegebenen Maßnahmen gelöst. Demgemäss sollen die thermischen Ankopplungsmittel zwischen der mindestens einen Wicklung und dem mindestens einen Kaltkopf als ein Leitungssystem mit wenigstens einer Rohrleitung für ein darin nach einem Thermo- syphon-Effekt zirkulierendes Kältemittel ausgebildet sein. Unter einem Kaltkopf sei hierbei jede beliebige Kaltfläche einer Kälteeinheit verstanden, über die die Kälteleistung an das Kältemittel direkt oder indirekt abgegeben wird.
Ein derartiges Leitungssystem weist wenigstens eine geschlossene Rohrleitung auf, die zwischen dem Kaltkopf und der supraleitenden Wicklung mit einem Gefälle verläuft. Das Gefälle beträgt dabei zumindest in einigen Teilen der Rohrleitung im Allgemeinen mehr als 0,5°, vorzugsweise mehr als 1° gegenüber der Horizontalen. Das in dieser Rohrleitung befindliche Kältemittel rekondensiert an einer Kaltfläche der Kälteeinheit bzw. des Kaltkopfes und gelangt von dort in den Bereich der supraleitenden Wicklung, wo es sich erwärmt und dabei im Allgemeinen verdampft. Das so verdampfte Kältemittel strömt dann innerhalb der Rohrleitung wieder zurück in den Bereich der Kaltfläche des Kaltkopfes. Die entsprechende Zirkulation des Kältemittels erfolgt demnach auf Grund eines sogenannten „Thermosyphon-Effektes* .
Durch die Verwendung eines solchen Thermosyphons (wie ein entsprechendes Leitungssystem auch bezeichnet wird) zur Übertragung der Kälteleistung an die Wicklung wird die erforderliche umlaufende Menge des kryogenen Kältemittels im Vergleich zu einer Badkühlung erheblich reduziert, beispielswei- se um einen Faktor von etwa 100. Da außerdem die Flüssigkeit nur in Rohrleitungen mit vergleichsweise kleinen Durchmessern, die im Allgemeinen in der Größenordnung von wenigen Zentimetern liegen, zirkuliert, ist der Druckaufbau in einem Quenchfall ohne Probleme technisch beherrschbar. Neben den Sicherheitsaspekten ist die Verringerung der Menge an flüssigem Kältemittel im System, insbesondere bei einer Verwendung von Helium oder Neon als Kältemittel, außerdem ein deutlicher Kostenvorteil. Im Vergleich zu einer Kühlung mit wärmeleitenden Verbindungskörpern bietet ein Thermosyphon außerdem den Vorteil einer guten thermischen Ankopplung unabhängig von der räumlichen Entfernung zwischen dem Kaltkopf und dem zu kühlenden Objekt.
Vorteilhafte Ausgestaltungen der Einrichtung der Supralei- tungstechnik nach der Erfindung gehen aus den abhängigen Ansprüchen hervor.
So kann das Leitungssystem insbesondere zwei oder mehr Rohrleitungen aufweisen, die mit verschiedenen Kältemitteln mit unterschiedlicher Kondensationstemperatur gefüllt sind. Damit sind je nach Anforderung der Anwendung entsprechend abgestufte Arbeitstemperaturen, z.B. für eine Vorkühlung, eine quasi kontinuierliche thermische Ankopplung oder eine quasi kontinuierliche thermische Ankopplung durch überlappende Arbeits- temperaturbereiche der Kältemittel möglich. Die Teilsysteme können dabei entweder an einen gemeinsamen Kaltkopf oder auch an getrennte Kaltköpfe einer Kälteeinheit thermisch angekoppelt sein.
Besonders vorteilhaft kann der supraleitende Magnet der Einrichtung eine Wicklung enthalten, die supraleitendes HTS- Material aufweist und insbesondere auch auf einer Temperatur unter 77 K zu halten ist. Selbstverständlich ist aber eine erfindungsgemäße Einrichtung der Supraleitungstechnik auch für LTS-Magnete auszulegen.
Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Einrichtung gehen aus den vorstehend nicht angesprochenen abhängigen Ansprüchen hervor.
Nachfolgend werden bevorzugte Ausführungsbeispiele von Einrichtungen der Supraleitungstechnik nach der Erfindung an Hand der Zeichnung noch weiter erläutert. Dabei zeigen jeweils schematisch im Schnitt deren Figur 1 die Kühlung eines MRI-Magneten mit zwei Wick- lungen und deren Figur 2 die Kühlung eines anderen MRI-Magneten mit vier Wicklungen.
Bei der in der Figur 1 allgemein mit 2 bezeichneten und nur in ihren für die Erfindung wesentlichen Details ausgeführten Einrichtung der Supraleitungstechnik kann es sich insbesondere um einen Teil einer MRI-Magnetanlage handeln. Dabei wird von an sich bekannten Ausführungsformen mit einem sogenannten C-Magneten ausgegangen (vgl. z.B. DE 198 13 211 C2 oder
EP 0 616 230 AI) . Diese Anlage enthält deshalb einen nicht näher ausgeführten, vorzugsweise supraleitenden Magneten 3 mit einer oberen, in einer horizontalen Ebene liegenden supraleitenden Wicklung 4a und einer dazu parallel angeordneten, unteren supraleitenden Wicklung 4b . Diese Wicklungen können insbesondere mit Leitern aus Hoch-Tc-Supraleitermaterial wie z.B. (Bi,Pb) 2Sr2Ca2Cu3Ox erstellt sein, das aus Gründen einer hohen Stromtragfähigkeit auf einer Betriebstemperatur unter 77 K gehalten werden kann. Die Wicklungen weisen eine Ring- Form auf. Sie sind jeweils in einem entsprechenden, nicht dargestellten Vakuumgehäuse untergebracht.
Die Kälteleistung zur Kühlung der Wicklungen 4a und 4b wird von einer nicht näher dargestellten Kälteeinheit mit wenigstens einem an ihrem kalten Ende befindlichen Kaltkopf 6 bereit gestellt. Dieser Kaltkopf weist eine auf einem vorbe- stimmten Temperaturniveau zu haltende Kaltfläche 7 auf oder ist mit dieser thermisch verbunden. An diese Kaltfläche ist thermisch der Innenraum einer Kondensorkammer 8 angekoppelt; beispielsweise bildet die Kaltfläche 7 eine Wand dieses Raumes. Gemäß dem dargestellten Ausführungsbeispiel ist der In- nenraum dieser Kondensorkammer 8 in zwei Teilräume 9a und 9b unterteilt. An den (ersten) Teilraum 9a ist eine Rohrleitung 10a eines Rohrleitungssystems 10 angeschlossen. Diese Rohrleitung führt zunächst von dem Teilraum 9a in den Bereich der supraleitenden Wicklung 4a, wo sie mit der Wicklung in gut wärmeleitendem Kontakt steht. Beispielsweise führt die Rohrleitung 10a in spiralförmigen Windungen an der Innenseite der Wicklung entlang. Die Anbringung auf der Innenseite ist nicht zwingend; wichtig ist nur, dass die Rohrleitung mit permanentem Gefälle den gesamten Umfang der Wicklung erreicht und dort thermisch gut an die zu kühlenden Teile bzw. Leiter der Wicklung angekoppelt ist. Die Rohrleitung 10a schließt zumindest mit ihren wesentlichsten Teilen mit der Horizontalen h einen Gefälle- (oder Neigungs-) Winkel α von mehr als 0,5°, vorzugsweise mehr als 1° ein. So beträgt z.B. der Gefällwin- kel α im Bereich der Wicklung 4a etwa 3°. Die Rohrleitung
10a führt dann in den Bereich der unteren Wicklung 4b, wo sie in entsprechender Weise angeordnet ist. Sie ist an ihrem Ende 11 abgeschlossen. Der das Kältemittel kl aufnehmende Querschnitt q der Rohrleitung 10a kann vorteilhaft klein gehalten werden und insbesondere unter 10 cm2 liegen. Bei dem dargestellten Ausführungsbeispiel beträgt q etwa 2 cm2. In der mit dem Gefälle verlegten Rohrleitung 10a befindet sich ein erstes Kältemittel kl, beispielsweise Neon (Ne) . Das Kältemittel kl zirkuliert dabei in der Rohrleitung 10a einschließlich dem damit verbundenen Teilraum 9a auf Grund eines an sich bekannten Thermosyphon-Effektes . Hierbei kondensiert das Kältemittel in dem Teilraum 9a an der Kaltfläche 7 und gelangt in flüssiger Form in den Bereich der supraleitenden Wicklungen. Dort erwärmt sich das Kältemittel, beispielsweise unter zumindest teilweiser Verdampfung, und strömt in der Rohrleitung 10a zurück in den Teilraum 9a, wo es rekondensiert wird.
Gemäß dem dargestellten Ausführungsbeispiel umfasst das Leitungssystem 10 eine zweite Rohrleitung 10b, die parallel zu der ersten Rohrleitung 10a führt und mit einem weiteren Kältemittel k2 gefüllt ist. Dieses Kältemittel ist von dem ersten Kältemittel kl verschieden, d.h., es hat eine andere, vorzugsweise höhere Kondensationstemperatur. Beispielsweise wird für das Kältemittel k2 Stickstoff (N2) gewählt. Die Rohrleitung 10b ist dabei an den (zweiten) Teilraum 9b der Kondensorkammer 8 angeschlossen. Das zweite Kältemittel k2 zirkuliert dabei ebenfalls auf Grund eines Thermosyphon- Effektes in der geschlossenen Rohrleitung 10b und dem Teilraum 9b. Bei einer Abkühlung der Magnetwicklungen wird dann zuerst das zweite Kältemittels k2 kondensiert, wobei die
Wicklungen z.B. im Falle einer Verwendung von N2 als Kältemittel k2 auf etwa 70 bis 80 K vorgekühlt werden können. Mit weiterer Abkühlung der Kaltfläche 7 kondensiert dann das erste, in der Rohrleitung 10a befindliche Kältemittel kl mit der vergleichsweise niedrigeren Kondensationstemperatur und führt so zu einer weiteren Abkühlung auf die vorgesehene Betriebstemperatur von beispielsweise 20 K (bei Verwendung von Ne als erstem Kältemittel kl) . Das zweite Kältemittel k2 kann bei dieser Betriebstemperatur im Bereich des Teilraums 9b ausge- froren sein. Abweichend von dem in Figur 1 dargestellten Ausführungsbei- spiel kann die erfindungsgemäße Einrichtung 2 der Supralei- turigstechnik selbstverständlich auch nur ein Leitungssystem mit nur einer einzigen Rohrleitung aufweisen. Sieht man eine größere Anzahl von Rohrleitungen vor, so können mehrere Rohrleitungen thermisch auch an separate Kaltköpfe oder an auf verschieden Temperaturniveaus liegende Stufen einer Kälteeinheit angekoppelt sein. Bei zweistufigen Kälteeinheiten bzw. Kaltköpfen, wie sie insbesondere zur Kühlung von thermischen Schilden eingeplant werden, würde man zu einer schnelleren Vorkühlung mit einer weiteren Thermosyphon-Rohrleitung, die beispielsweise mit N2 oder Ar gefüllt ist, die Magnetwicklungen - neben der thermischen Anbindung an die zweite Stufe - auch an die erste (wärmere) Stufe ankoppeln.
Selbstverständlich ist die vorbeschriebene Thermosyphon- Kühlung auch für Magnete anwendbar, die vertikal angeordnete Wicklungen aufweisen. Ein Ausführungsbeispiel einer Einrichtung nach der Erfindung mit entsprechenden Wicklungen ist in Figur 2 angedeutet. Die allgemein mit 12 bezeichneten Einrichtung enthält einen solenoidförmigen Supraleitungsmagneten 13, der z.B. vier in Achsrichtung hintereinander liegende supraleitende Wicklungen 14j (mit j = 1...4) aufweist. Die einzelnen Wicklungen werden dabei z.B. jeweils an beiden Stirnseiten über zumindest im wesentlichen vertikal verlaufende Rohrleitungen 15i (mit i = 1....8) gekühlt, die z. B. mit einem Kältemittel kl gefüllt sind. Hier kann also auf eine Spiralform wie im Falle des Ausführungsbeispiels nach Figur 1 verzichtet werden und der Gefällewinkel beträgt in großen Teilen des allgemein mit 20 bezeichneten Leitungssystems etwa 90°. Eine Kondensorkammer 18 und ein Kaltkopf werden im Allgemeinen oberhalb der Wicklungen angeordnet, um so das erforderliche Gefälle zu gewährleisten. Pro Wicklung ist mindestens eine Rohrleitung 15i erforderlich, da im Gegensatz zu horizontal angeordneten Wicklungen nicht eine Rohrleitung alle Wicklungen unter Beibehaltung des Gefälles erreichen kann. Um sicherzustellen, dass jede Rohrleitung 15i genügend rekondensiertes Kältemittel kl erhält, muss das gesamte, aus den Rohrleitungen 15i gebildete Rohrleitungssystem 20 entweder als ein System kommunizierender Röhren ausgeführt sei und im Bereich der Wicklungen 14 komplett mit dem flüssigen Kältemittel geflutet sein. Dies ist in der Figur 2 durch eine schwärzere Einfärbung des Kältemittels kl angedeutet, während das verdampfte Kältemittel heller eingefärbt und mit kl Λ be- zeichnet ist. Oder aber jede Rohrleitung 15i muss eine separate Kondensor (teil) kammer an dem Kaltkopf erhalten.
Selbstverständlich kann für die in Figur 2 angedeutete Ausführungsform einer Einrichtung 12 'nach der Erfindung auch ein Leitungssystem mit parallel verlaufenden, mit unterschiedlichen Kältemitteln (kl bzw. k2) gefüllten Rohrleitungen vorgesehen werden.
Abweichend von den dargestellten Ausführungsbeispielen kann eine erfindungsgemäße Einrichtung der Supraleitungstechnik ein Leitungssystem mit mindestens einer Rohrleitung aufweisen, in der auch in Gemisch aus zwei Kältemitteln mit unterschiedlichen Kondensationstemperaturen vorhanden ist. Dann kann folglich bei einer allmählichen Abkühlung zunächst das Gas mit der höchsten Kondensationstemperatur kondensieren und einen geschlossenen Kreislauf zur Wärmeübertragung an eine zu kühlende Wicklung ausbilden. Nach einer Vorkühlung dieser Wicklung bis zur Tripelpunkttemperatur dieses Gases wird dieses dann im Bereich der Kondensorkammer ausfrieren, worauf die andere Gasgemischkomponente mit der niedrigeren Kondensationstemperatur die weitere Abkühlung auf die Betriebstemperatur gewährleistet.
In der Praxis kommen als Kältemittel je nach gewünschter Ar- beitstemperatur die Gase He, H2, Ne, 02, N2, Ar sowie verschiedene Kohlenwasserstoffe in Frage. Die Auswahl des jeweiligen Kaltgases erfolgt so, dass bei der vorgesehenen Be- triebstemperatur das Kältemittel gleichzeitig gasförmig und flüssig vorliegt. Auf diese Weise ist eine Zirkulation unter Ausnutzung eines Thermosyphon-Effektes zu gewährleisten. Zur gezielten Einstellung der Füllmenge bei gleichzeitiger Be- grenzung des Systemdrucks können warme und/oder kalte Ausgleichsbehälter an dem Leitungssystem vorgesehen werden.
Selbstverständlich hängt die Wahl des Kältemittels auch von dem verwendeten Supraleitermaterial ab. Wird ein LTS-Material wie Nb3Sn vorgesehen, kommt nur He als Kältemittel in Frage.

Claims

Patentansprüche
1. Einrichtung der Supraleitungstechnik
- mit einem Magneten, der mindestens eine supraleitfähige, kältemittelfreie Wicklung enthält,
- mit einer Kälteeinheit, die mindestens einen Kaltkopf aufweist, und
- mit Mitteln zur thermischen Ankopplung der mindestens einen Wicklung an den mindestens einen Kaltkopf, d a d u r c h g e k e n n z e i c h n e t , dass die thermischen Ankopplungsmittel als ein Leitungssystem (10) mit wenigstens einer Rohrleitung (10a, 10b; 15i) für ein darin nach einem Thermosyphon-Effekt zirkulierendes Kältemittel (kl, kl ; k2) ausgebildet sind.
2. Einrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Leitungssystem (10) zwei Rohrleitungen (10a, 10b) aufweist, die mit verschiedenen Käl- temitteln (kl bzw. k2) mit unterschiedlichen Kondensationstemperaturen gefüllt sind.
3. Einrichtung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass die Rohrleitungen (10a, 10b) an einen gemeinsamen Kaltkopf (6) thermisch angekoppelt sind.
4. Einrichtung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass die Rohrleitungen an getrennte Kaltköpfe thermisch angekoppelt sind.
5. Einrichtung nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass zumindest Teile der mindestens einen Rohrleitung (10a, 10b) ein Gefälle gegenüber der Horizontalen (h) von mehr als 0,5°, vorzugsweise mehr als 1°, aufweisen.
6. Einrichtung nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Querschnitt (q) der das Kältemittel (kl, kl ; k2) führenden zumindest einen Rohrleitung (10a, 10b) unter 10 cm2 liegt.
7. Einrichtung nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die supraleitende Wicklung (4a, 4b; 14j) Hoch-Tc-Supraleitermaterial enthält.
8. Einrichtung nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , dass das Supraleitermaterial auf einer Temperatur unter 77 K zu halten ist.
9. Einrichtung nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass als Kältemittel (kl bzw. k2) ein Gemisch aus mehreren Kältemittelkomponenten mit unterschiedlichen Kondensationstemperaturen vorgesehen ist.
10. Einrichtung nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der supraleitende Magnet (3, 13) Teil einer MRI-Anlage ist.
EP03752654A 2002-05-15 2003-04-29 Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit Expired - Fee Related EP1504458B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10221639A DE10221639B4 (de) 2002-05-15 2002-05-15 Einrichtung der Supraleitungstechnik mit einem supraleitenden Magneten und einer Kälteeinheit
DE10221639 2002-05-15
PCT/DE2003/001378 WO2003098645A1 (de) 2002-05-15 2003-04-29 Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit

Publications (2)

Publication Number Publication Date
EP1504458A1 true EP1504458A1 (de) 2005-02-09
EP1504458B1 EP1504458B1 (de) 2007-07-18

Family

ID=29285434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03752654A Expired - Fee Related EP1504458B1 (de) 2002-05-15 2003-04-29 Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit

Country Status (6)

Country Link
US (1) US7260941B2 (de)
EP (1) EP1504458B1 (de)
JP (1) JP4417247B2 (de)
CN (1) CN100354992C (de)
DE (2) DE10221639B4 (de)
WO (1) WO2003098645A1 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057204B4 (de) * 2004-11-26 2012-06-14 Siemens Ag Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
DE102004058006B3 (de) * 2004-12-01 2006-06-08 Siemens Ag Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
DE102005028414B4 (de) * 2005-06-20 2011-12-08 Siemens Aktiengesellschaft Einrichtung zur Erzeugung eines gepulsten Magnetfelds
US7053740B1 (en) * 2005-07-15 2006-05-30 General Electric Company Low field loss cold mass structure for superconducting magnets
US7626477B2 (en) * 2005-11-28 2009-12-01 General Electric Company Cold mass cryogenic cooling circuit inlet path avoidance of direct conductive thermal engagement with substantially conductive coupler for superconducting magnet
CN101236239B (zh) * 2007-01-30 2012-01-25 西门子(中国)有限公司 磁共振***的超导磁体的电流引线
US20080209919A1 (en) * 2007-03-01 2008-09-04 Philips Medical Systems Mr, Inc. System including a heat exchanger with different cryogenic fluids therein and method of using the same
CN101299060B (zh) * 2007-04-30 2011-04-06 西门子(中国)有限公司 一种磁共振成像***的通风方法及通风***
US7449889B1 (en) * 2007-06-25 2008-11-11 General Electric Company Heat pipe cooled superconducting magnets with ceramic coil forms
US7477055B1 (en) * 2007-08-21 2009-01-13 General Electric Company Apparatus and method for coupling coils in a superconducting magnet
US7728592B2 (en) * 2008-09-17 2010-06-01 Time Medical Holdings Company Limited Integrated superconductor MRI imaging system
US7772842B2 (en) * 2008-09-17 2010-08-10 Time Medical Holdings Company Limited Dedicated superconductor MRI imaging system
US20100242502A1 (en) * 2009-03-31 2010-09-30 General Electric Company Apparatus and method of superconducting magnet cooling
US8238988B2 (en) * 2009-03-31 2012-08-07 General Electric Company Apparatus and method for cooling a superconducting magnetic assembly
JP5450224B2 (ja) * 2009-05-29 2014-03-26 株式会社東芝 磁気共鳴イメージング装置
CN102054554B (zh) * 2009-10-30 2015-07-08 通用电气公司 超导磁体的制冷***和制冷方法
US8676282B2 (en) * 2010-10-29 2014-03-18 General Electric Company Superconducting magnet coil support with cooling and method for coil-cooling
US8332004B2 (en) 2010-12-23 2012-12-11 General Electric Company System and method for magnetization of rare-earth permanent magnets
CN102110510B (zh) * 2010-12-24 2012-07-04 中国科学院深圳先进技术研究院 磁共振成像***的线圈、线圈的冷却装置及方法
DE102011005685A1 (de) * 2011-03-17 2012-09-20 Siemens Aktiengesellschaft Vorrichtung zur Kühlung eines Bulk-Supraleiters oder einer supraleitenden Spule einer Magnetresonanzeinrichtung, Magnetresonanzeinrichtung und Magnetlager
JP5852425B2 (ja) 2011-12-01 2016-02-03 株式会社日立製作所 超電導電磁石装置、その冷却方法、および磁気共鳴イメージング装置
US9570220B2 (en) * 2012-10-08 2017-02-14 General Electric Company Remote actuated cryocooler for superconducting generator and method of assembling the same
US10224799B2 (en) * 2012-10-08 2019-03-05 General Electric Company Cooling assembly for electrical machines and methods of assembling the same
DE102014224363A1 (de) * 2014-11-28 2016-06-02 Siemens Aktiengesellschaft Vorrichtung der Supraleitungstechnik mitSpuleneinrichtungen und Kühlvorrichtung sowie damitausgestattetes Fahrzeug
US20160262284A1 (en) * 2015-03-03 2016-09-08 Asia Vital Components (China) Co., Ltd. Cold plate structure
CN107991635B (zh) * 2017-11-24 2021-03-19 上海联影医疗科技股份有限公司 一种用于磁共振***的冷却组件及磁共振***
US11187381B2 (en) 2017-09-29 2021-11-30 Shanghai United Imaging Healthcare Co., Ltd. Cryostat devices for magnetic resonance imaging and methods for making
WO2019198266A1 (ja) * 2018-04-09 2019-10-17 三菱電機株式会社 超電導磁石装置
JP6556414B1 (ja) * 2018-04-09 2019-08-07 三菱電機株式会社 超電導磁石装置
JP2020180728A (ja) * 2019-04-24 2020-11-05 株式会社デンソー 機器温調装置
CN110600220A (zh) * 2019-09-04 2019-12-20 中国科学院合肥物质科学研究院 一种用于超导磁体的双回路低温***

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146998A (en) * 1977-02-16 1979-04-03 Teco, Inc. Position responsive valve for controlling the retraction rate of a lower boom in an articulated boom assembly
DE3015682A1 (de) * 1980-04-23 1981-10-29 Siemens AG, 1000 Berlin und 8000 München Anordnung zur kuehlung einer supraleitenden magnetwicklung
JPS5862055U (ja) 1981-10-21 1983-04-26 松下電器産業株式会社 太陽熱集熱器のヒ−トパイプ
JPS6171608A (ja) * 1984-09-17 1986-04-12 Toshiba Corp 超電導装置
FR2578638B1 (fr) * 1985-03-08 1989-08-18 Inst Francais Du Petrole Procede de transfert de chaleur d'un fluide chaud a un fluide froid utilisant un fluide mixte comme agent caloporteur
JPS62166473A (ja) 1986-01-20 1987-07-22 Hitachi Ltd 陰影図形発生装置
JPS63129280A (ja) * 1986-11-18 1988-06-01 株式会社東芝 ヘリウム冷却装置
US4995450A (en) * 1989-08-18 1991-02-26 G.P. Industries, Inc. Heat pipe
US5070702A (en) * 1990-05-07 1991-12-10 Jackson Henry W Continuously operating 3 HE evaporation refrigerator for space flight
US5193349A (en) * 1991-08-05 1993-03-16 Chicago Bridge & Iron Technical Services Company Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures
DE59406586D1 (de) * 1993-03-15 1998-09-10 Siemens Ag Homogenfeldmagnet mit über Korrekturluftspalte beabstandeten Polplatteneinrichtungen seiner Polschuhe
JPH06342721A (ja) * 1993-05-31 1994-12-13 Tokin Corp 超電導マグネット装置
US5485730A (en) * 1994-08-10 1996-01-23 General Electric Company Remote cooling system for a superconducting magnet
JP3423514B2 (ja) * 1995-11-30 2003-07-07 アネスト岩田株式会社 スクロール流体機械
DE19813211C2 (de) * 1998-03-25 2000-05-18 Siemens Ag Supraleitende Einrichtung mit Leitern aus Hoch-T¶c¶-Supraleitermaterial
US6376943B1 (en) * 1998-08-26 2002-04-23 American Superconductor Corporation Superconductor rotor cooling system
US6181228B1 (en) * 1999-11-09 2001-01-30 General Electric Company Superconductive magnet including a cryocooler coldhead
DE10018169C5 (de) * 2000-04-12 2005-07-21 Siemens Ag Vorrichtung zur Kühlung mindestens eines elektrischen Betriebselements in mindestens einem Kryostaten
DE10039964A1 (de) * 2000-08-16 2002-03-07 Siemens Ag Supraleitungseinrichtung mit einer Kälteeinheit zur Kühlung einer rotierenden, supraleitenden Wicklung
DE10057664A1 (de) * 2000-11-21 2002-05-29 Siemens Ag Supraleitungseinrichtung mit einem thermisch an eine rotierende,supraleitende Wicklung angekoppelten Kaltkopf einer Kälteeinheit
US6783059B2 (en) * 2002-12-23 2004-08-31 General Electric Company Conduction cooled passively-shielded MRI magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03098645A1 *

Also Published As

Publication number Publication date
JP4417247B2 (ja) 2010-02-17
US7260941B2 (en) 2007-08-28
CN100354992C (zh) 2007-12-12
DE10221639B4 (de) 2004-06-03
JP2005530976A (ja) 2005-10-13
WO2003098645A1 (de) 2003-11-27
US20050252219A1 (en) 2005-11-17
CN1653564A (zh) 2005-08-10
EP1504458B1 (de) 2007-07-18
DE50307708D1 (de) 2007-08-30
DE10221639A1 (de) 2003-11-27

Similar Documents

Publication Publication Date Title
EP1504458B1 (de) Einrichtung der supraleitungstechnik mit einem supraleitenden magneten und einer kälteeinheit
DE19648253C2 (de) Pulsröhrenkühler und Verwendung desselben
DE102004061869B4 (de) Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
DE102005028414B4 (de) Einrichtung zur Erzeugung eines gepulsten Magnetfelds
EP1336236B1 (de) Supraleitungseinrichtung mit einem thermisch an eine rotierende, supraleitende wicklung angekoppelten kaltkopf einer kälteeinheit
DE69838866T2 (de) Verbesserungen in oder mit Bezug auf Kryostatsystemen
EP1655616B1 (de) NMR-Spektrometer mit Refrigeratorkühlung
WO2008040609A1 (de) Kälteanlage mit einem warmen und einem kalten verbindungselement und einem mit den verbindungselementen verbundenen wärmerohr
DE112011100875T5 (de) Verfahren und Vorrichtung zum Regeln der Temperatur in einem auf tiefe Temperaturen gekühlten Kyrostaten unter Verwendung von stehendem und sich bewegendem Gas
DE102016214731B3 (de) NMR-Apparatur mit supraleitender Magnetanordnung sowie gekühlten Probenkopfkomponenten
DE102007013350B4 (de) Stromzuführung mit Hochtemperatursupraleitern für supraleitende Magnete in einem Kryostaten
DE102006012511B3 (de) Kryostat mit einem Magnetspulensystem, das eine unterkühlte LTS- und eine in einem separaten Heliumtank angeordnete HTS-Sektion umfasst
EP1504516B1 (de) Supraleitungseinrichtung mit thermisch an eine rotierende supraleitende wicklung angekoppeltem kaltkopf einer kälteeinheit
DE19704485C2 (de) Stromzuführungsvorrichtung für eine gekühlte elektrische Einrichtung
DE102006059139A1 (de) Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
DE10211568B4 (de) Kälteanlage für zu kühlende Teile einer Einrichtung
EP0789368B1 (de) Anlage der Supraleitungstechnik mit einer indirekt zu kühlenden supraleitenden Einrichtung und einer Stromzuführungsvorrichtung
DE102005002361B3 (de) Kälteanlage eines Gerätes der Supraleitungstechnik mit mehreren Kaltköpfen
WO2003079522A1 (de) Supraleitungseinrichtung mit einem thermisch an eine rotierende, supraleitende wicklung angekoppelten kaltkopf einer kälteeinheit mit thermosyphoneffekt
EP3467852A1 (de) Magnetanordnung mit kryostat und magnetspulensystem, mit kältespeichern an den stromzuführungen
DE19813211C2 (de) Supraleitende Einrichtung mit Leitern aus Hoch-T¶c¶-Supraleitermaterial
DE4223145C2 (de) Stromzuführungsvorrichtung für eine auf Tieftemperatur zu haltende, insbesondere supraleitende Einrichtung
DE102015202638A1 (de) Stromzuführung für eine supraleitende Spuleneinrichtung
DE10211363A1 (de) Supraleitungseinrichtung mit einem thermisch an eine rotierende, supraleitende Wicklung angekoppelten Kaltkopf einer Kälteeinheit mit Thermosyphoneffekt
DE19938985A1 (de) Einrichtung der Supraleitungstechnik mit einer rotierenden, supraleitenden Wicklung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FI FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070718

REF Corresponds to:

Ref document number: 50307708

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20090407

Year of fee payment: 7

Ref country code: FR

Payment date: 20090424

Year of fee payment: 7

Ref country code: IT

Payment date: 20090428

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190402

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200429