EP1502475B1 - Verfahren und system zum repräsentieren eines schallfeldes - Google Patents

Verfahren und system zum repräsentieren eines schallfeldes Download PDF

Info

Publication number
EP1502475B1
EP1502475B1 EP03749929A EP03749929A EP1502475B1 EP 1502475 B1 EP1502475 B1 EP 1502475B1 EP 03749929 A EP03749929 A EP 03749929A EP 03749929 A EP03749929 A EP 03749929A EP 1502475 B1 EP1502475 B1 EP 1502475B1
Authority
EP
European Patent Office
Prior art keywords
representative
parameters
acquisition
sensors
acquisition means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03749929A
Other languages
English (en)
French (fr)
Other versions
EP1502475B8 (de
EP1502475A1 (de
Inventor
Rémy BRUNO
Arnaud Laborie
Sébastian Montoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinnov Audio
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1502475A1 publication Critical patent/EP1502475A1/de
Application granted granted Critical
Publication of EP1502475B1 publication Critical patent/EP1502475B1/de
Publication of EP1502475B8 publication Critical patent/EP1502475B8/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • the present invention relates to a method and a representation device an acoustic field from signals delivered by means acquisition.
  • the acquisition means are, for example, constituted of a set measuring elements or elementary sensors arranged in specific places of space and exhibiting electro-acoustic characteristics intrinsic acquisition.
  • these systems represent the sound environment by a modeling of virtual sources whose angular distribution around the center theoretically allows to obtain such a sound environment.
  • the acquisition is based on the measurement, in a plan, of representative information of the sound environment to acquire.
  • the object of the invention is to solve this problem by providing a method and a device delivering a representation of the acoustic field substantially independent of the characteristics of the means of acquisition.
  • the invention also relates to a computer program comprising program code instructions for executing the steps of the method, as previously described when said program is executed on a computer.
  • the invention also relates to a mobile support of the type comprising at least one processing processor and a non-volatile memory element, characterized in that said memory comprises a program comprising code instructions for performing the steps of the method as described above when said processor executes said program.
  • the invention also relates to a device for representing a acoustic field connectable to acquisition means formed of one or more elementary sensors delivering measurement signals when exposed acoustic field, characterized in that it comprises a module of measurement signal processing by applying representative encoding filters at least structural characteristics of said acquisition means to these measurement signals to deliver a signal that has a finite number of representative coefficients in time and in all three dimensions of space said acoustic field, said coefficients making it possible to obtain a representation of said acoustic field substantially independent of the characteristics said acquisition means,
  • FIG. 1 there is shown a conventional spherical landmark of to specify the coordinate system referred to in the text.
  • This reference is an orthonormal reference, of origin O and having three axes ( OX ), ( OY ) and ( OZ ).
  • a noted position x is described by means of its spherical coordinates ( r , ⁇ , ⁇ ), where r denotes the distance from the origin O , ⁇ the orientation in the vertical plane and ⁇ the orientation in the horizontal plane.
  • an acoustic field is known if one defines at every point at each instant t the acoustic pressure denoted by p (r, ⁇ , ⁇ , t ), whose Fourier transform is denoted P ( r, ⁇ , ⁇ , f ) where f is the frequency.
  • the method of the invention is based on the use of spatio-temporal functions to describe any acoustic field in the time and in the three dimensions of space.
  • these functions are functions so-called Fourier-Bessel spherical of the first kind, later called Fourier-Bessel functions.
  • the functions of Fourier-Bessel correspond to the solutions of the wave equation and constitute a base that generates all the acoustic fields produced by sources located outside this area.
  • Any three-dimensional acoustic field can therefore be expressed by a linear combination of the Fourier-Bessel functions, according to the expression of the inverse Fourier-Bessel transform which expresses:
  • the Fourier-Bessel coefficients are also expressed in the time domain by the coefficients p l , m ( t ) corresponding to the inverse time Fourier transform of the coefficients P l , m ( f ).
  • the acoustic field is decomposed based on functions, where each of the functions is expressed by a possibly infinite linear combination of Fourier-Bessel functions.
  • FIG. 2 diagrammatically shows acquisition means 1 formed of N elementary sensors 2 1 to 2 N.
  • These elementary sensors are arranged at specific points of the space around a predetermined point 4 designated as the center of the means of acquisition 1.
  • each elementary sensor can be expressed in the space in a spherical coordinate system such as that described with reference to FIG. centered on the center 4 of the acquisition means 1.
  • each sensor 2 n of acquisition means 1 When exposed to an acoustic field P, each sensor 2 n of acquisition means 1 delivers a measurement signal c n which corresponds to the measurement made by this sensor in the acoustic field P.
  • the acquisition means 1 deliver a plurality of signals c 1 to c N which are the measurement signals of the acoustic field P by the acquisition means 1.
  • FIG. 3 shows a general flow chart of the process of the invention.
  • the method starts with a step 10 of entering parameters and a step 20 of calibrating the acquisition means, which make it possible to define a set parameters representative of the structural characteristics and / or electro-acoustic acquisition means 1.
  • Electroacoustic characteristics are dependent on frequency.
  • the input step 10 and the calibration step 20, which is described more in detail with reference to FIG. 4, can be carried out simultaneously or in any order.
  • the method of the invention may comprise only step 10 input.
  • the parameters ⁇ ( f ), L ( f ) and ⁇ ( l k , m k ) ⁇ ( f ) are representative of the optimization strategies making it possible to control the extraction of spatio-temporal information from the acoustic field P from the measurement signals c 1 to c N and are input during the input step 10.
  • the other parameters can be entered during the input step or determined during the calibration step.
  • the method of the invention is realized only with the parameters ⁇ ( f ), L ( f ) and all the parameters. x n or all the parameters B n , l , m ( f ) or a combination of parameters x n and B n , l , m ( f ), so as to have at least one parameter per elementary sensor 2 n .
  • the process comprises a step 30 of determining encoding filters representative of features at least structural and advantageously electro-acoustic acquisition means 1.
  • This step 30 described in more detail with reference to FIG. to take into account all the parameters determined during the input steps 10 and / or calibration.
  • These encoding filters are therefore representative of at least the positional characteristics of the elementary sensors 2 n with respect to the reference point 4 of the acquisition means 1.
  • these filters are also representative of other structural characteristics of the acquisition means 1, such as the orientation of the elementary sensors 2 1 to 2 N or their mutual influences, as well as their electroacoustic acquisition capabilities and especially their background noise, their directivity pattern, their frequency response, ...
  • the encoding filters obtained at the end of step 30 can be stored, so that steps 10, 20 and 30 are repeated only in case of modification of acquisition means 1 or optimization strategies.
  • These encoding filters are applied during a step 40 of processing signals c 1 to c N from the elementary sensors 2 1 to 2 N.
  • This treatment corresponds to a filtering of the signals and to combinations filtered signals.
  • coefficients are so-called Fourier-Bessel coefficients, noted P l , m ( f ) and correspond to a representation of the acoustic field P substantially independent of the characteristics of the acquisition means 1.
  • FIG. 4 shows a flowchart of an embodiment of step 20 of calibration.
  • the calibration step 20 makes it possible to directly determine the coefficients B n , l , m ( f ) representative of the acquisition capacities of the acquisition means 1.
  • This step 20 begins with a sub-step 22 of issuing a specific acoustic field towards the acquisition means 1 and by a substep 24 acquisition of measurement signals by the acquisition means 1 exposed to the acoustic field emitted.
  • the calibration step 20 is implemented using means for generating an acoustic field that comprise only a loudspeaker fixed, assumed punctual and flat frequency response, the speaker and the acquisition means 1 being placed in an anechoic environment.
  • the speaker emits the same acoustic field and the acquisition means 1 are placed in the same position but they are oriented in different and known directions.
  • the speaker is in a position ( r hp / q , ⁇ hp / q , ⁇ hp / q ) different for each generated q field.
  • the acquisition means 1 are thus exposed to an acoustic field q whose Fourier-Bessel coefficients P l , m , q ( f ), in the reference of the acquisition means 1, are known up to a given order, noted L 3 .
  • the measurement signals delivered following the acquisition substep 24 are a finite number of coefficients representative of the acoustic field q generated, as well as acquisition capacities of the acquisition means 1. .
  • the method comprises a modeling sub-step 26 for determining a representation of the Q acoustic fields emitted during the sub-step 22.
  • a modeling matrix P representative of all the known fields Q to which the acquisition means 1 are successively exposed is determined.
  • This matrix P is a matrix of size ( L 3 +1) 2 on Q consisting of the elements P l , m , q ( f ), the indices ( l , m ) denoting the line l 2 + l + m and the index q designating the column q .
  • the matrix P thus has the following form:
  • the acoustic field produced by the loudspeaker is modeled by spherical radiation, thus, in the reference of the acquisition means 1, the coefficients P l , m , q ( f ) of each acoustic field.
  • the coefficients obtained during the substep 26 are then used during a substep 28 to determine parameters representative of structural and / or acoustic characteristics of the acquisition means 1.
  • this substep 28 also uses the modeling matrix P determined during the substep 26.
  • This substep 28 begins with the determination of a matrix C representative of all the signals c n , q ( t ) collected at the output of the N sensors in response to the Q known fields.
  • This matrix C is a matrix of size N on Q consisting of the elements C n , q ( f ), the index n designating the line n and the index q designating the column q .
  • the elements C n , q ( f ) are deduced from the signals c n , q ( t ) by Fourier transform.
  • the matrix C thus has the following form:
  • the matrix C is representative of the acquisition capabilities of the acquisition means 1 and the Q transmitted acoustic fields.
  • the coefficients B n , l , m ( f ) are determined from matrices C and P using conventional generalized matrix inversion methods applied to the relationship between C to P.
  • the coefficients B n, l, m (f) are arranged in a matrix B determined by the following relationship:
  • B CP T ( PP T ) -1
  • B is a matrix of size N over ( L 3 +1) 2 made up of the coefficients B n , l , m ( f ), the index n denoting the line n and the indices ( l , m ) denoting the column l 2 + l + m .
  • the matrix B thus has the following form:
  • the substeps 26 and 28 of the calibration step 20 can be performed in different ways, depending on the parameters to be determined.
  • the substeps 26 and 28 exploit the delays of the waves emitted by the loudspeakers to reach the sensors 2 n .
  • the position of each sensor 2 n is determined using at least three propagation time measurements according to triangulation methods.
  • the substeps 26 and 28 make it possible to determine, from the signals c n , q ( t ), the impulse responses of each sensor 2 n when the loudspeaker emits a given pulse.
  • impulse responses such as MLS (Maximum Lenght Sequence).
  • the calibration step 20 allows the determination of electro-acoustic characteristics of the sensors. It then begins by determining the directivity diagram of each sensor 2 n for each frequency f considered, for example, by determining the frequency response of each sensor 2 n for several directions.
  • This parameter d n ( f ) can be determined using the usual parameter estimation methods, for example by applying a least squares method providing the value of d n ( f ) which minimizes the error between the real directivity and the modeled directivity diagram.
  • the calibration step 20 also makes it possible to determine the parameter ⁇ 2 n ( f ) corresponding to the spectral power density of the background noise of the sensors.
  • the signal delivered by the sensor 2 n is collected in the absence of an acoustic field.
  • the parameter ⁇ 2 n ( f ) is determined by means of power spectral density estimation methods, for example the so-called periodogram method.
  • all or part of the sub-steps 22 to 28 is repeated, for example to allow the determination of several types parameters, some substeps that may be common to the determination different types of parameters.
  • the calibration step 20 can also be carried out by means other than those described such as direct measurements, for example by means of optical measurement means of the position of each elementary sensor 2 n with respect to the center 4 of the sensors. means of acquisition 1.
  • the calibration step 20 can implement a simulation, for example using a computer, of signals representative of the acquisition capabilities of the elementary 2 n sensors.
  • this calibration step 20 makes it possible to determine all or part of the parameters representative of the structural characteristics and / or electro-acoustic acquisition means 1, which are used during step 30 of determining the encoding filters.
  • FIG. 5 shows a flowchart of an embodiment of step 30 of determining the encoding filters.
  • Step 30 comprises a substep 32 for determining a matrix B representative of the acquisition capacities of the acquisition means 1 or sampling matrix.
  • the matrix B is determined from the parameters x n , H n ( f ), d n ( f ), ⁇ n ( f ) and B n , l , m ( f ) and is a matrix of size N on ( L ( f ) +1) 2 consisting of elements B n , l , m ( f ), the index n denoting the line n and the indices ( l , m ) denoting the column l 2 + l + m .
  • the matrix B thus has the following form:
  • Some elements of the matrix B can be directly determined during steps 10 or 20.
  • the matrix B is then completed with elements determined from a modeling of the sensors.
  • each sensor n is modeled by a point sensor placed at the position x n , Having directivity composed of a combination of diagrams omnidirectional and bidirectional proportion d n (f) oriented in the direction ⁇ n (f) and having a frequency response H n (f).
  • Step 30 then comprises a sub-step 34 for determining an intercorrelation matrix A representative of the resemblance between the signals c 1 to c N delivered by the sensors 2 1 to 2 N due to the fact that these sensors 2 1 at 2 N make measurements on the same acoustic field P.
  • the matrix A is determined from the sampling matrix B.
  • the matrix A is determined more precisely by using a matrix B completed to an order L 2 according to the method of the preceding step.
  • the sub-step 34 for determining the intercorrelation matrix A can be considered as an intermediate calculation step and can, as such, be integrated into another sub-step. step of step 30.
  • Step 30 then comprises a substep 36 for determining an encoding matrix E ( f ) representative of the encoding filters for a given frequency.
  • the matrix E ( f ) is determined from the matrices A and B and the parameters L ( f ), ⁇ ( f ), ⁇ ( l k , m k ) ⁇ ( f ) and ⁇ 2 / n ( f ).
  • the matrix E ( f ) is a matrix of size ( L ( f ) +1) 2 on N consisting of elements E l , m , n ( f ), the indices ( l , m ) denoting the line l 2 + l + m and the index n designating the column n.
  • the matrix E ( f ) thus has the following form:
  • the matrix E ( f ) is determined line by line. For each operating frequency f , each line E l , m of index ( l , m ) of the matrix E ( f ) takes the following form: [ E l , m , 1 ( f ) E l , m 2 ( f ) ⁇ E L M n ( f )]
  • B l , m is the column ( l , m ) of the matrix B and ⁇ N is a diagonal matrix of size N on N representative of the background noise of the sensors where the element n of the diagonal is ⁇ 2 / n ( f ).
  • the substeps 32, 34 and 36 for determining the matrices A, B and E ( f ) are repeated for each operating frequency f .
  • the parameters are independent of the frequency and the substeps 32, 34 and 36 are performed once.
  • Sub-step 36 then directly allows the determination of a matrix E independent of the frequency.
  • FD parameters representative of the encoding filters are determined from the matrix E ( f ).
  • Each element E l , m , n ( f ) of the matrix E ( f ) represents the frequency response of an encoding filter.
  • Each encoding filter can be described by the FD parameters in different forms.
  • the step 30 for determining the encoding filters delivers FD parameters describing encoding filters representative of the at least structural and / or electroacoustic capabilities of the acquisition means 1.
  • FIG. 6 shows the detail of an embodiment of step 40 of processing the measurement signals delivered by the means acquisition 1 by applying the encoding filters to these signals and by summation filtered signals.
  • step 40 the coefficients p and l , m ( t ) representative of the acoustic field P are deduced from the signals c 1 to c N originating from the elementary sensors 2 1 to 2 N , by the application of the filters d frequency response encoding E l , m , n ( f ) as follows: where P l , m ( f ) is the Fourier transform of p and l, m ( t ) and C n ( f ) is the Fourier transform of c n ( t ).
  • coefficients p and l , m are a finite number of coefficients representative in time and in the three dimensions of the space of the acoustic field and constitute a faithful representation of this acoustic field.
  • the invention makes it possible to faithfully represent a acoustic field by a representation substantially independent of the characteristics acquisition means in the form of Fourier-Bessel coefficients.
  • the method of the invention can be implemented using only the knowledge of the parameters.
  • x n representative of the position of the sensors 2 n with respect to the center 4 of the acquisition means 1 and the parameters ⁇ and L relating to the optimization strategy.
  • the matrices A and B are calculated simultaneously or sequentially in any order during the substeps 32 and 34.
  • the elements A n 1 , n 2 ( f ) of the matrix A are determined with a better precision by the relation: where L 2 is the order in which the determination of the matrix A is conducted and is an integer greater than L. Plus L 2 will be chosen large, plus the calculation of the A n 1 , n 2 ( f ) will be precise but long.
  • the substeps 32, 34 and 36 for determining the matrices A and B then E are repeated for all the operating frequencies f .
  • Each element E l , m , n ( f ) corresponds to an encoding filter that integrates the spatial distribution of the sensors 2 n as well as the optimization strategy.
  • the signals c 1 to c N coming from the sensors 2 1 to 2 N are filtered using the encoding filters described by the parameters FD.
  • Each coefficient p and l , m ( t ) delivered is deduced from the signals c 1 to c N by the application of the filters as follows: where P and l , m ( f ) is the Fourier transform of p and l , m ( t ) and C n ( f ) is the Fourier transform of c n ( t ).
  • the coefficients p and l , m ( t ) are determined by means of filtering methods in the frequency domain, such as block convolution techniques.
  • the representation of the acoustic field therefore takes into account the position selected sensors and optimization parameters and constitutes an estimate faithful of the acoustic field.
  • FIG. 7 shows a block diagram of a device adapted for the implementation of the method of the invention.
  • a device 50 for representing the acoustic field P is connected to the acquisition means 1 as described with reference to FIG. 2.
  • the device 50 or encoding device is also connected as input to means 60 for determining the parameters representative of the characteristics structural and / or electro-acoustic acquisition means 1.
  • These means 60 comprise, in particular, means 62 for inputting parameters and calibration means 64 which are adapted to implement respectively the steps 10 and 20 of the method of the invention as described previously.
  • the encoding device 50 receives, determination means 60 parameters, a plurality of parameters representative of the characteristics acquisition means 1 distributed between a signal CL defining the characteristics structures and a signal CP of parameterization of the structural characteristics and / or electro-acoustic.
  • the device also receives parameters relating to the strategies of representation in an OS optimization signal.
  • this device 50 comprises means 51 for shaping the input signals adapted to deliver from the signals c 1 to c N , a correspondingly shaped signal SI.
  • the means 51 comprise analog-digital converters, amplifiers or filtering systems.
  • the device 50 furthermore comprises means 52 for determining the encoding filters which comprise a module 55 for calculating the sampling matrix B , a module 56 for calculating the matrix A for intercorrelation, which are both connected to a module 57 for calculating the matrix E ( f ) encoding.
  • This encoding matrix E ( f ) is used by a coding filter determining module 58 which delivers a signal S FD which contains the parameters FD representative of the encoding filters.
  • This signal S FD is used by a processing module 59 which applies the encoding filters to the signal S1 in order to deliver an IF signal FB which comprises the Fourier-Bessel coefficients representative of the acoustic field P.
  • the device 50 comprises a non-volatile memory in which are stored the parameters which constitute the signal S FD which have been determined beforehand.
  • the acquisition means 1 are tested and calibrated by their manufacturer in order to directly supply a memory comprising all the parameters of the signal S FD that should be integrated into an encoding device in order to realize the acquisition of the acoustic field P and to deliver a faithful representation of the latter.
  • this memory comprises only the matrices B and possibly A and the device 50 comprises means for inputting the parameters constituting the optimization signal OS in order to implement the determination of the matrix E ( f ) d. encoding and determination of FD parameters representative of the encoding filters.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Control Of Eletrric Generators (AREA)
  • Circuits Of Receivers In General (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Claims (22)

  1. Verfahren zur Darstellung eines akustischen Feldes mit einem Schritt der Erfassung von Messsignalen (cn), die von Erfassungsvorrichtungen (1) ausgesandt werden, welche von einem oder mehreren elementaren Sensoren (2n) gebildet sind, die dem akustischen Feld (P) ausgesetzt sind, dadurch gekennzeichnet, dass es aufweist:
    einen Schritt (30) zur Bestimmung von Verschlüsselungsfiltem, die repräsentativ für zumindest strukturelle Eigenschaften der Erfassungsvorrichtungen (1) sind; und
    einen Schritt (40) zur Verarbeitung der Messsignale (cn) durch Anwendung der Verschlüsselungsfilter auf diese Signale (cn) zur Bestimmung einer begrenzten Anzahl von repräsentativen Koeffizienten des akustischen Feldes (P) in der Zeit und in den drei Dimensionen des Raumes, wobei die Koeffizienten ermöglichen, eine Darstellung des akustischen Feldes (P) zu erhalten, die praktisch unabhängig von den Eigenschaften der Erfassungsvorrichtungen (1) ist.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die strukturellen Eigenschaften zumindest Positionseigenschaften der elementaren Sensoren (2n) bezüglich eines vorbestimmten Bezugspunktes der Erfassungsvorrichtungen (1) umfassen.
  3. Verfahren gemäß irgendeinem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Verschlüsselungsfilter außerdem repräsentativ für elektro-akustische Eigenschaften der Erfassungsvorrichtungen (1) sind.
  4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass die elektro-akustischen Eigenschaften zumindest Eigenschaften aufweisen, die mit dem eigentlichen elektro-akustischen Erfassungsvermögen der elementaren Sensoren (2n) verbunden sind.
  5. Verfahren gemäß irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Koeffizienten, die ermöglichen eine Darstellung des akustischen Feldes (P) zu erhalten, so genannte Fourier-Bessel-Koeffizienten und/oder lineare Kombinationen von Fourier-Bessel-Koeffizienten sind.
  6. Verfahren gemäß irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Schritt (30) zur Bestimmung der Verschlüsselungsfilter umfasst:
    einen Unterschritt (30) zur Bestimmung einer Signalabtastmatrix (B), die repräsentativ für das Erfassungsvermögen der Erfassungsvorrichtungen (1) ist;
    einen Unterschritt (34) zur Bestimmung einer Interkorrelationsmatrix (A), die repräsentativ für die Ähnlichkeit zwischen den Messsignalen (cn) ist, welche von den die Erfassungsvorrichtungen (1) bildenden elementaren Sensoren (2n) geliefert werden; und
    einen Unterschritt (36) zur Bestimmung einer Verschlüsselungsmatrix (E(f); E) auf der Basis der Signalabtastmatrix (B), der Interkorrelationsmatrix (A) und eines Parameters (µ(f)), der repräsentativ für einen gewünschten Kompromiss zwischen der Darstellungsgenauigkeit des akustischen Feldes und der Minimierung des von den Erfassungsvorrichtungen (1) erzeugten Grundrauschens ist, wobei die Matrix repräsentativ für die Verschlüsselungsfilter ist.
  7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, dass die Unterschritte zur Bestimmung der Matrices für eine begrenzte Anzahl von Betriebsfrequenzen durchgeführt werden.
  8. Verfahren gemäß irgendeinem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass der Schritt (32) zur Bestimmung der Signalabtastmatrix (B) für jeden der elementaren Sensoren (2n), welche die Erfassungsvorrichtungen (1) bilden, durchgeführt wird, und zwar ausgehend von:
    Parametern (
    Figure 00320001
    ), die repräsentativ für die Position des Sensors (2n) bezüglich des Mittelpunktes (4) der Erfassungsvorrichtungen (1) sind; und/oder
    einer begrenzten Anzahl von Koeffizienten (Bn,l,m(f)), die repräsentativ für das Erfassungsvermögen des Sensors (2n) sind.
  9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass der Schritt zur Bestimmung der Signalabtastmatrix (B) außerdem auf der Basis zumindest eines Parameters durchgeführt, der stammt aus:
    Parametern (Hn(f)), die repräsentativ für die Durchlassbereiche aller oder eines Teils der Sensoren (2n) sind;
    Parametern (dn(f)), die repräsentativ für die Richtwirkungsdiagramme aller oder eines Teils der Sensoren (2n) sind;
    Parametern (αn(f)), die repräsentativ für die Ausrichtungen aller oder eines Teil der Sensoren (2n) sind, nämlich für die Ausrichtung ihrer maximalen Empfindlichkeit;
    Parametern (σ2 n(f)), die repräsentativ für die spektralen Leistungsdichten des Grundrauschens aller oder eines Teils der Sensoren (2n) sind;
    einem Parameter (L(f)), der die Reihenfolge, in welcher die Darstellung ausgeführt wird, spezifiziert; und
    einem Parameter ({(lk,mk)}(f)), der repräsentativ für eine Liste von Koeffizienten ist, von denen verlangt wird, dass die Leistung gleich der Leistung des entsprechenden Koeffizienten in dem darzustellenden akustischen Feld (P) ist.
  10. Verfahren gemäß irgendeinem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es einen Kalibrierschritt umfasst, der ermöglicht, alle oder einen Teil der in dem Schritt (30) zur Bestimmung der Verschlüsselungsfilter verwendeten Parameter zu liefern.
  11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass der Kalibrierschritt (20) für zumindest einen der die Erfassungsvorrichtungen (1) bildenden elementaren Sensoren (2n) umfasst:
    einen Unterschritt (24) zur Erfassung von Signalen, die repräsentativ für das Erfassungsvermögen des zumindest einen Sensors (2n) sind; und
    einen Unterschritt (28) zur Bestimmung von Parametern, die repräsentativ für elektro-akustische und/oder strukturelle Eigenschaften des zumindest einen Sensors (2n) sind.
  12. Verfahren gemäß Anspruch 11, dadurch gekennzeichnet, dass der Kalibrierschritt (20) außerdem umfasst:
    einen Unterschritt (22) zum Aussenden eines spezifischen akustischen Feldes zu dem zumindest einen Sensor (2n), wobei der Unterschritt (24) der Erfassung der Erfassung der von diesem Sensor (2n), gelieferten Signale entspricht, wenn dieser dem spezifischen akustischen Feld ausgesetzt ist; und
    einen Unterschritt (26) zur Umformung des spezifischen akustischen Feldes in eine begrenzte Anzahl von Koeffizienten, um die Durchführung des Unterschrittes (28) zur Bestimmung von Parametern zu ermöglichen, die repräsentativ für elektro-akustische und/oder strukturelle Eigenschaften des Sensors (2n) sind.
  13. Verfahren gemäß irgendeinem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der Kalibrierschritt (20) einen Unterschritt des Empfangs einer begrenzten Anzahl von Signalen umfasst, die repräsentativ für die elektro-akustischen und strukturellen Eigenschaften der die Erfassungsvorrichtungen (1) bildenden Sensoren (2n) sind, wobei diese Signale direkt während des Unterschrittes zur Bestimmung der elektro-akustischen und/oder strukturellen Eigenschaften der Erfassungsvorrichtungen (1) verwendet werden.
  14. Verfahren gemäß irgendeinem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass es einen Erfassungsschritt (10) umfasst, der ermöglicht, alle oder einen Teil der während des Schrittes (30) zur Bestimmung der Verschlüsselungsfilter eingesetzten Parameter zu bestimmen.
  15. Computerprogramm mit Programmcodeanweisungen zur Durchführung der Schritte des Verfahrens gemäß irgendeinem der Ansprüche 1 bis 14, wenn das Programm auf einem Computer ausgeführt wird.
  16. Mobiler Träger der Art mit zumindest einem Verarbeitungsprozessor und einem nicht-flüchtigen Speicherelement, dadurch gekennzeichnet, dass der Speicher ein Programm umfasst, welches Codeanweisungen für die Durchführung der Schritte des Verfahrens gemäß irgendeinem der Ansprüche 1 bis 14 aufweist, wenn der Prozessor das Programm ausführt.
  17. Vorrichtung zur Darstellung eines akustischen Feldes, welche an Erfassungsvorrichtungen (1) angeschlossen werden kann, die von einem oder mehreren elementaren Sensoren (2n) gebildet sind, die Messsignale (cn) liefern, wenn sie dem akustischen Feld (P) ausgesetzt sind, dadurch gekennzeichnet, dass sie ein Modul (59) aufweist zur Verarbeitung der Messsignale (cn) durch Anwendung von Verschlüsselungsfiltem, die repräsentativ für zumindest strukturelle Eigenschaften der Erfassungsvorrichtungen (1) sind, auf diese Messsignale (cn), um ein Signal (SIFB) zu liefern, das eine begrenzte Anzahl von Koeffizienten umfasst, die repräsentativ in der Zeit und in den drei Dimensionen des Raumes des akustischen Feldes (P) sind, wobei die Koeffizienten ermöglichen, eine Darstellung des akustischen Feldes (P) zu erhalten, die praktisch unabhängig von den Eigenschaften der Erfassungsvorrichtungen (1) ist.
  18. Vorrichtung gemäß Anspruch 17, dadurch gekennzeichnet, dass die Verschlüsselungsfilter außerdem repräsentativ für elektro-akustische Eigenschaften der Erfassungsvorrichtungen (1) sind.
  19. Vorrichtung gemäß irgendeinem der Ansprüche 17 oder 18, dadurch gekennzeichnet, dass sie außerdem Vorrichtungen (52) zur Bestimmung der Verschlüsselungsfilter aufweist, die repräsentativ für strukturelle und/oder elektro-akustische Eigenschaften der Erfassungsvorrichtungen (1) sind.
  20. Vorrichtung gemäß Anspruch 19, dadurch gekennzeichnet, dass die Vorrichtungen (52) zur Bestimmung von Verschlüsselungsfiltern am Eingang zumindest einen der Parameter empfangen, der aus den folgenden Parametern stammt:
    Parametern ( ), die repräsentativ für die Positionen aller oder eines Teils der Sensoren (2n) bezüglich des Mittelpunktes der Erfassungsvorrichtungen (1) sind;
    einer begrenzten Anzahl von Koeffizienten (Bn,l,m(f)), die repräsentativ für das Erfassungsvermögen aller oder eines Teils der Sensoren (2n) sind;
    Parametern (Hn(f)), die repräsentativ für die Durchlassbereiche aller oder eines Teils der Sensoren (2n) sind;
    Parametern (dn(f)), die repräsentativ für die Richtwirkungsdiagramme aller oder eines Teils der Sensoren (2n) sind;
    Parametern (αn(f)), die repräsentativ für die Ausrichtungen aller oder eines Teil der Sensoren (2n) sind, nämlich für die Ausrichtung ihrer maximalen Empfindlichkeit;
    Parametern (σ2 n(f)), die repräsentativ für die spektralen Leistungsdichten des Grundrauschens aller oder eines Teils der Sensoren (2n) sind;
    einem Parameter (µ(f)), der repräsentativ für den gewünschten Kompromiss zwischen der Darstellungsgenauigkeit des akustischen Feldes und der Minimierung des von den Erfassungsvorrichtungen (1) erzeugten Grundrauschens ist;
    einem Parameter (L(f)), der die Reihenfolge, in welcher die Darstellung ausgeführt wird, spezifiziert; und
    einem Parameter ({(lk,mk)}(f)), der repräsentativ für eine Liste von Koeffizienten ist, von denen verlangt wird, dass die Leistung gleich der Leistung des entsprechenden Koeffizienten in dem darzustellenden akustischen Feld (P) ist.
  21. Vorrichtung gemäß Anspruch 20, dadurch gekennzeichnet, dass sie mit Vorrichtungen (60) zur Bestimmung aller oder eines Teils der von den Vorrichtungen (52) zur Bestimmung der Verschlüsselungsfilter empfangenen Parameter verbunden ist, wobei die Vorrichtungen (60) zumindest eines der folgenden Elemente aufweisen:
    Vorrichtungen (62) zur Erfassung der Parameter; und/oder
    Kalibriervorrichtungen (64).
  22. Vorrichtung gemäß irgendeinem der Ansprüche 17 bis 21, dadurch gekennzeichnet, dass sie mit Vorrichtungen (51) zur Formgebung der Messsignale (c1 bis cN) verbunden ist, um ein in die entsprechende Form gebrachtes Signal (SI) zu liefern.
EP03749929A 2002-05-07 2003-05-06 Verfahren und system zum repräsentieren eines schallfeldes Expired - Lifetime EP1502475B8 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0205741 2002-05-07
FR0205741A FR2839565B1 (fr) 2002-05-07 2002-05-07 Procede et systeme de representation d'un champ acoustique
PCT/FR2003/001410 WO2003096742A1 (fr) 2002-05-07 2003-05-06 Procede et systeme de representation d'un champ acoustique

Publications (3)

Publication Number Publication Date
EP1502475A1 EP1502475A1 (de) 2005-02-02
EP1502475B1 true EP1502475B1 (de) 2005-07-27
EP1502475B8 EP1502475B8 (de) 2005-09-28

Family

ID=29286370

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03749929A Expired - Lifetime EP1502475B8 (de) 2002-05-07 2003-05-06 Verfahren und system zum repräsentieren eines schallfeldes

Country Status (12)

Country Link
US (1) US7212956B2 (de)
EP (1) EP1502475B8 (de)
JP (1) JP4293986B2 (de)
KR (1) KR100972419B1 (de)
CN (1) CN1659926B (de)
AT (1) ATE300852T1 (de)
AU (1) AU2003255562B2 (de)
CA (1) CA2484588C (de)
DE (1) DE60301146T2 (de)
DK (1) DK1502475T3 (de)
FR (1) FR2839565B1 (de)
WO (1) WO2003096742A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8073157B2 (en) * 2003-08-27 2011-12-06 Sony Computer Entertainment Inc. Methods and apparatus for targeted sound detection and characterization
US7783061B2 (en) * 2003-08-27 2010-08-24 Sony Computer Entertainment Inc. Methods and apparatus for the targeted sound detection
US8947347B2 (en) * 2003-08-27 2015-02-03 Sony Computer Entertainment Inc. Controlling actions in a video game unit
US7809145B2 (en) * 2006-05-04 2010-10-05 Sony Computer Entertainment Inc. Ultra small microphone array
US8233642B2 (en) 2003-08-27 2012-07-31 Sony Computer Entertainment Inc. Methods and apparatuses for capturing an audio signal based on a location of the signal
US8139793B2 (en) * 2003-08-27 2012-03-20 Sony Computer Entertainment Inc. Methods and apparatus for capturing audio signals based on a visual image
US7803050B2 (en) 2002-07-27 2010-09-28 Sony Computer Entertainment Inc. Tracking device with sound emitter for use in obtaining information for controlling game program execution
US8160269B2 (en) 2003-08-27 2012-04-17 Sony Computer Entertainment Inc. Methods and apparatuses for adjusting a listening area for capturing sounds
US9174119B2 (en) 2002-07-27 2015-11-03 Sony Computer Entertainement America, LLC Controller for providing inputs to control execution of a program when inputs are combined
US20070223732A1 (en) * 2003-08-27 2007-09-27 Mao Xiao D Methods and apparatuses for adjusting a visual image based on an audio signal
GB0523946D0 (en) * 2005-11-24 2006-01-04 King S College London Audio signal processing method and system
US20140167972A1 (en) * 2012-12-13 2014-06-19 General Electric Company Acoustically-responsive optical data acquisition system for sensor data
EP2765791A1 (de) * 2013-02-08 2014-08-13 Thomson Licensing Verfahren und Vorrichtung zur Bestimmung der Richtungen dominanter Schallquellen bei einer Higher-Order-Ambisonics-Wiedergabe eines Schallfelds
CN104935913B (zh) * 2014-03-21 2018-12-04 杜比实验室特许公司 处理多个装置采集的音频或视频信号
CN105898668A (zh) * 2016-03-18 2016-08-24 南京青衿信息科技有限公司 一种声场空间的坐标定义方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060850A (en) * 1977-04-25 1977-11-29 The United States Of America As Represented By The Secretary Of The Navy Beam former using bessel sequences
JPH0728470B2 (ja) * 1989-02-03 1995-03-29 松下電器産業株式会社 アレイマイクロホン
US5216640A (en) * 1992-09-28 1993-06-01 The United States Of America As Represented By The Secretary Of The Navy Inverse beamforming sonar system and method
US6201872B1 (en) * 1995-03-12 2001-03-13 Hersh Acoustical Engineering, Inc. Active control source cancellation and active control Helmholtz resonator absorption of axial fan rotor-stator interaction noise
US6216540B1 (en) * 1995-06-06 2001-04-17 Robert S. Nelson High resolution device and method for imaging concealed objects within an obscuring medium
US7348181B2 (en) * 1997-10-06 2008-03-25 Trustees Of Tufts College Self-encoding sensor with microspheres
JP3584800B2 (ja) * 1999-08-17 2004-11-04 ヤマハ株式会社 音場再現方法およびその装置

Also Published As

Publication number Publication date
KR20050010784A (ko) 2005-01-28
ATE300852T1 (de) 2005-08-15
JP4293986B2 (ja) 2009-07-08
KR100972419B1 (ko) 2010-07-27
DE60301146T2 (de) 2006-06-01
AU2003255562A1 (en) 2003-11-11
FR2839565B1 (fr) 2004-11-19
DK1502475T3 (da) 2005-11-28
CA2484588A1 (fr) 2003-11-20
CN1659926A (zh) 2005-08-24
AU2003255562B2 (en) 2009-04-23
EP1502475B8 (de) 2005-09-28
US20050177606A1 (en) 2005-08-11
CA2484588C (fr) 2013-03-12
EP1502475A1 (de) 2005-02-02
WO2003096742A1 (fr) 2003-11-20
US7212956B2 (en) 2007-05-01
CN1659926B (zh) 2010-05-12
DE60301146D1 (de) 2005-09-01
FR2839565A1 (fr) 2003-11-14
JP2005531016A (ja) 2005-10-13

Similar Documents

Publication Publication Date Title
EP1502475B1 (de) Verfahren und system zum repräsentieren eines schallfeldes
EP1479266B1 (de) Verfahren und vorrichtung zur steuerung einer anordnung zur wiedergabe eines schallfeldes
EP0790753B1 (de) System für Raumklangeffekt und Verfahren dafür
EP1546916B1 (de) Verfahren und vorrichtung zum verarbeiten einer darstellung eines akustischen feldes
EP2898707B1 (de) Optimierte kalibrierung eines klangwiedergabesystems mit mehreren lautsprechern
EP1586220B1 (de) Verfahren und einrichtung zur steuerung einer wiedergabeeinheitdurch verwendung eines mehrkanalsignals
WO2006075077A2 (fr) Procede et dispositif d’individualisation de hrtfs par modelisation
EP1946612A1 (de) Hrtfs-individualisierung durch modellierung mit finiten elementen gekoppelt mit einem revidierungsmodell
EP1652406B1 (de) System und verfahren zur bestimmung einer repräsentation eines akustischen feldes
EP3895446B1 (de) Verfahren zur interpolation eines schallfeldes und zugehöriges computerprogrammprodukt und vorrichtung
WO2018050292A1 (fr) Dispositif et procede de captation et traitement d'un champ acoustique tridimensionnel
EP3384688B1 (de) Aufeinanderfolgende dekompositionen von audiofiltern
WO2023110549A1 (fr) Procédé d'estimation d'une pluralité de signaux représentatifs du champ sonore en un point, dispositif électronique et programme d'ordinateur associés
EP3934282A1 (de) Verfahren zur umwandlung eines ersten satzes repräsentativer signale eines schallfelds in einen zweiten satz von signalen und entsprechende elektronische vorrichtung
FR3072820A1 (fr) Procede de modelisation et de simulation en temps reel de sources acoustiques dans un environnement par decomposition en sources elementaires
FR3120449A1 (fr) Procédé de détermination d’une direction de propagation d’une source sonore par création de signaux sinusoïdaux à partir des signaux sonores reçus par des microphones.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20041101

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050727

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60301146

Country of ref document: DE

Date of ref document: 20050901

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TRINNOV AUDIO

RIN2 Information on inventor provided after grant (corrected)

Inventor name: MONTOYA, SEBASTIAN

Inventor name: BRUNO, REMY

Inventor name: LABORIE, ARNAUD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051027

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051027

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: TRINNOV AUDIO

Effective date: 20050914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051107

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060128

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060712

Year of fee payment: 4

BERE Be: lapsed

Owner name: MONTOYA, SEBASTIAN

Effective date: 20070531

Owner name: LABORIE, ARNAUD

Effective date: 20070531

Owner name: BRUNO, REMY

Effective date: 20070531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220519

Year of fee payment: 20

Ref country code: FR

Payment date: 20220411

Year of fee payment: 20

Ref country code: DK

Payment date: 20220426

Year of fee payment: 20

Ref country code: DE

Payment date: 20220511

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60301146

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Expiry date: 20230506

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230505