EP1501832A1 - Triazolopyrimidine - Google Patents

Triazolopyrimidine

Info

Publication number
EP1501832A1
EP1501832A1 EP03722463A EP03722463A EP1501832A1 EP 1501832 A1 EP1501832 A1 EP 1501832A1 EP 03722463 A EP03722463 A EP 03722463A EP 03722463 A EP03722463 A EP 03722463A EP 1501832 A1 EP1501832 A1 EP 1501832A1
Authority
EP
European Patent Office
Prior art keywords
formula
plants
triazolopyrimidines
methyl
acid addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03722463A
Other languages
English (en)
French (fr)
Inventor
Olaf Gebauer
Nico Jörg GREUL
Ulrich Heinemann
Fritz Maurer
Bernd-Wieland Krüger
Hans-Ludwig Elbe
Herbert Gayer
Ralf Dunkel
Arnd Voerste
Stefan Hillebrand
Christiane Boie
Ulrike Wachendorff-Neumann
Astrid Mauler-Machnik
Karl-Heinz Kuck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Publication of EP1501832A1 publication Critical patent/EP1501832A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system

Definitions

  • the present invention relates to new triazolopvrimidines, a process for their preparation and their use for controlling unwanted microorganisms.
  • G represents optionally substituted, mono- or polycyclic, saturated, unsaturated or aromatic heterocyclyl which is bonded via a nitrogen atom, this nitrogen atom in the heterocycle being connected to a further nitrogen or oxygen atom, and where the heterocycle may also contain one or contains two further oxygen, nitrogen and / or sulfur atoms, but no two oxygen atoms can be directly adjacent,
  • R represents aryl which is optionally mono- to pentasubstituted and X represents halogen
  • G represents optionally substituted, mono- or polycyclic, saturated or unsaturated heterocyclyl which is bonded via a nitrogen atom, this nitrogen atom in the heterocycle being connected to a further nitrogen atom, and where the heterocycle optionally also has one or two further oxygen, nitrogen and / or contains sulfur atoms, but no two oxygen atoms can be directly adjacent,
  • the compounds according to the invention can optionally be mixtures of various possible isomeric forms, in particular stereoisomers, such as e.g. E and Z, threo and erythro, and optical isomers, but optionally also of tautomers are present. If R is unequally substituted on both atoms which are adjacent to the binding site, the compounds in question can exist in a special form of stereoisomerism, namely as atropisomers.
  • Y represents halogen
  • triazolopyrimidines of the formula (I) or their acid addition salts are very suitable for controlling unwanted microorganisms. Above all, they show a strong fungicidal activity and can be used both in crop protection and in material protection.
  • the triazolopyrimidines of the formula (I) according to the invention have a significantly better microbicidal activity than the constitutionally similar, previously known substances with the same direction of action.
  • the triazolopyrimidines according to the invention are generally defined by the formula (I).
  • G preferably represents mono- or bicyclic, saturated, unsaturated or aromatic heterocyclyl with a total of up to 12 members, which has a Nitrogen atom is bound, this nitrogen atom in the heterocycle being connected to a further nitrogen or oxygen atom, and wherein the heterocycle optionally also contains one or two further oxygen, nitrogen and / or sulfur atoms, but no two oxygen atoms are directly adjacent can,
  • heterocycles can be monosubstituted to trisubstituted, identical or different, by cyano, halogen, alkyl having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms or by alkoxycarbonyl
  • phenyl is preferably phenyl, which is optionally monosubstituted to tetrasubstituted by:
  • Haloalkylthio, haloalkylsulfinyl or haloalkylsulfonyl each having 1 to 6 carbon atoms and 1 to 13 identical or different halogen atoms; each straight-chain or branched haloalkenyl or haloalkenyloxy each having 2 to 6 carbon atoms and 1 to 11 identical or different halogen atoms;
  • alkylamino straight-chain or branched alkylamino, dialkylamino, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, alkylsulfonyloxy, hydroximinoalkyl or alkoximinoalkyl each having 1 to 6 carbon atoms in the individual alkyl parts;
  • X preferably represents fluorine, chlorine or bromine.
  • # stands for the point of attachment and where each of the radicals can be monosubstituted to triple, identical or differently substituted by cyano, fluorine, chlorine, methyl, ethyl, methoxycarbonyl and / or ethoxycarbonyl,
  • phenyl which can be monosubstituted to tetrasubstituted, identical or different, by fluorine, chlorine, bromine, cyano, nitro, formyl, methyl, ethyl, n- or i-propyl, n-, i-, s- or t- Butyl, allyl, propargyl,
  • trimethylene (propane-l, 3-diyl) substituted in the 2,3-position or 3,4-position substituted by fluorine, chlorine, methyl, trifluoromethyl, ethyl, n- or i-propyl, in each case optionally one or more times, identically or differently.
  • Methylenedioxy or ethylenedioxy and
  • X represents bromine or chlorine.
  • G and X have the meanings which have already been mentioned as particularly preferred, and
  • R represents phenyl, which can be monosubstituted to tetrasubstituted, identical or different, by fluorine, chlorine, trifluoromethyl, trifluoromethoxy and / or trifluoromethylthio, or
  • Acid addition salts of those compounds of the formula (I) in which G is mono- or bicyclic, saturated or unsaturated are also preferred Heterocyclyl with up to 12 ring members, which is bonded via a nitrogen atom, this nitrogen atom in the heterocycle being connected to a further nitrogen atom, and wherein the heterocycle optionally contains one or two further oxygen, nitrogen and or sulfur atoms, but none two oxygen atoms can be directly adjacent, where the heterocycles can be monosubstituted to trisubstituted, identical or different by cyano, halogen, alkyl having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms or by alkoxycarbonyl 1 to 4 carbon atoms in the alkoxy group, and R and X have those meanings which have been mentioned as preferred for these radicals.
  • the acids that can be added preferably include hydrohalic acids, e.g. hydrochloric acid and hydrobromic acid, in particular hydrochloric acid, also phosphoric acid, nitric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, salicylic acid, sorbic acid and lactic acid, as well as sulfonic acids, e.g. p-toluenesulfonic acid, 1,5-naphthalenedisulfonic acid, saccharin and thiosaccharin.
  • hydrohalic acids e.g. hydrochloric acid and hydrobromic acid, in particular hydrochloric acid, also phosphoric acid, nitric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid
  • salts which are formed by adding hydrochloric acid, phosphoric acid, p-toluenesulfonic acid, 1,5-naphthalenedisulfonic acid or saccharin to triazolopyrimidines of the formula (I) in which
  • radicals can be substituted once to three times, identically or differently, by cyano, fluorine, chlorine, methyl, ethyl, methoxycarbonyl and / or ethoxycarbonyl, and
  • R and X have the meanings which have been mentioned as particularly preferred for these radicals.
  • Formula (II) provides a general definition of the dihalotriazolopyrimidines required as starting materials for carrying out the process according to the invention.
  • R and X preferably, or in particular, have those meanings which have already been given as preferred or as particularly preferred for R and X in connection with the description of the compounds of the formula (I) according to the invention.
  • Y preferably represents fluorine, chlorine or bromine, in particular fluorine or chlorine.
  • the dihalotriazolopyrimidines of the formula (II) are known or can be prepared by known methods (see, for example, US Pat. No. 5,612,345).
  • Formula (III) provides a general definition of the heterocycles required as starting materials for carrying out the process according to the invention.
  • G preferably, or in particular, has the meaning which has already been stated as preferred or as particularly preferred for G in connection with the description of the compounds of the formula (I) according to the invention.
  • heterocycles of the formula (III) are known or can be prepared by known methods (cf., for example, BJ Chem. Soc. 1942, 432; Can. J. Chem. (1976), 54 (6), 867-70; Tetrahedron Lett. (1993), 34 (36), 5673-6; Tetrahedron Lett. (1973), 30, 2859-2862).
  • heterocycles of the formula (III) can also be used in the form of their acid addition salts when carrying out the process according to the invention.
  • Acid addition salts are preferably those compounds which result from the addition of those acids, which have already been mentioned in connection with the description of the acid addition salts according to the invention, to heterocycles of the formula (III). Hydrochlorides and acetates of heterocycles of the formula (III) are preferred.
  • Suitable diluents for carrying out the process according to the invention are all inert organic solvents.
  • Aliphatic, alicyclic or aromatic hydrocarbons such as, for example, petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, can preferably be used.
  • halogenated hydrocarbons such as chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane
  • Ethers such as diethyl ether, diisopropyl ether, methyl t-butyl ether, methyl t-amyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane or anisole
  • Amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-
  • Methylformanilide N-methylpyrrolidone or hexamethylphosphoric triamide
  • Esters such as methyl acetate or ethyl acetate
  • Sulfoxides such as dimethyl sulfoxide
  • Sulfones such as sulfolane.
  • Ammonia or tertiary amines such as trimethylamine, triethylamine, tributylamine, N, N-dimethylaniline, N, N-dimethylbenzylamine, pyridine, N-methylpiperidine, N-methylmorpholine, N, N-dimethylaminopyridine, diazabicyclooctane (DABCO ), Diazabicyclonones (DBN) or diazabicycloundecene (DBU).
  • DABCO diazabicyclooctane
  • DBN Diazabicyclonones
  • DBU diazabicycloundecene
  • alkaline earth metal or alkali metal hydrides such as sodium hydride, sodium amide, sodium methylate, sodium ethylate, potassium tert-butoxide, sodium hydroxide, potassium hydroxide, sodium acetate, potassium acetate, calcium acetate, sodium carbonate, potassium carbonate, potassium hydrogen carbonate and sodium hydrogen carbonate.
  • reaction temperatures can be varied within a substantial range when carrying out the process according to the invention. In general, temperatures between 0 ° C and 150 ° C, preferably between 0 ° C and 80 ° C.
  • the acid addition salts of the compounds of formula (I) can be easily prepared by conventional salt formation methods, e.g. by disconnecting the
  • Formula (I) can be obtained in a suitable inert solvent and addition of the acid, for example hydrochloric acid, and isolated in a known manner, for example by filtering off, and optionally purified by washing with an inert organic solvent.
  • the substances according to the invention have a strong microbicidal action and can be used to control unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides can be used to control Plasmodiophoromycetes
  • Bactericides can be used in crop protection to combat Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Xanthomonas species such as, for example, Xanthomonas campestris pv. Oryzae;
  • Pseudomonas species such as, for example, Pseudomonas syringae pv. Lachrymans;
  • Erwinia species such as, for example, Erwinia amylovora;
  • Pythium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or
  • Plasmopara species such as, for example, Plasmopara viticola
  • Bremia species such as, for example, Bremia lactucae
  • Peronospora species such as, for example, Peronospora pisi or P. brassicae;
  • Erysiphe species such as, for example, Erysiphe graminis
  • Sphaerotheca species such as, for example, Sphaerotheca fuliginea
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. graminea
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Cochliobolus species such as, for example, Cochliobolus sativus
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species such as, for example, Uromyces appendiculatus
  • Puccinia species such as, for example, Puccinia recondita
  • Sclerotinia species such as, for example, Sclerotinia sclerotiorum
  • Tilletia species such as, for example, Tilletia caries
  • Ustilago species such as, for example, Ustilago nuda or Ustilago avenae;
  • Pellicularia species such as, for example, Pellicularia sasakii
  • Pyricularia species such as, for example, Pyricularia oryzae
  • Fusarium species such as, for example, Fusarium culmorum
  • Botrytis species such as, for example, Botrytis cinerea
  • Septoria species such as, for example, Septoria nodorum
  • Leptosphaeria species such as, for example, Leptosphaeria nodorum;
  • Cercospora species such as, for example, Cercospora canescens
  • Alternaria species such as, for example, Alternaria brassicae;
  • Pseudocercosporella species such as, for example, Pseudocercosporella he ⁇ otrichoides.
  • the active compounds according to the invention also have a very good strengthening effect in plants. They are therefore suitable for mobilizing the plant's own defenses against attack by unwanted microorganisms.
  • Plant-strengthening (resistance-inducing) substances are to be understood in the present context as those substances which are able to stimulate the defense system of plants in such a way that - " the treated plants develop extensive resistance to these microorganisms when they are subsequently inoculated with undesirable microorganisms.
  • Undesired microorganisms are to be understood in the present case as phytopathogenic fungi, bacteria and viruses.
  • the substances according to the invention can therefore be used to protect plants against attack by the named pathogens within a certain period of time after the treatment.
  • the period, within which protection is brought about generally ranges from 1 to 10 days, preferably 1 to 7 days after the treatment of the plants with the active compounds.
  • the active compounds according to the invention can be used with particularly good success to combat diseases in wine, fruit and vegetable cultivation, such as, for example, against Botrytis, Venturia and Alternaria species, or rice diseases, such as, for example, against Pyricularia species.
  • the active compounds according to the invention are also suitable for increasing the crop yield. They are also less toxic and have good plant tolerance.
  • the active compounds according to the invention can also be used in certain concentrations and application rates as herbicides, for influencing plant growth, and for controlling animal pests. If appropriate, they can also be used as intermediates and products for the synthesis of further active ingredients.
  • plants and parts of plants can be treated.
  • Plants are understood here to mean all plants and plant populations, such as desired and undesired wild plants or cultivated plants (including naturally occurring cultivated plants).
  • Cultivated plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant cultivars which can or cannot be protected by plant breeders' rights.
  • Plant parts should include all above-ground and underground parts and organs the plants, such as sprout, leaf, flower and root, are understood, examples being leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds as well as roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
  • the treatment of the plants and parts of plants with the active compounds according to the invention is carried out directly or by acting on their surroundings, living space or storage space according to the customary treatment methods, e.g. by dipping, spraying, vaporizing, atomizing, scattering, spreading and, in the case of propagation material, in particular seeds, furthermore by single- or multi-layer coating.
  • the substances according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • technical materials are to be understood as non-living materials that have been prepared for use in technology.
  • technical materials which are to be protected against microbial change or destruction by active substances according to the invention can be used.
  • parts of production plants for example cooling water circuits, may also be mentioned which can be impaired by the multiplication of microorganisms.
  • technical materials are preferably adhesives, glues, papers and cartons, leather, wood, paints, lubricants and heat transfer liquids, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and mucilaginous organisms may be mentioned as microorganisms which can cause degradation or a change in the technical materials.
  • the active compounds according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • microorganisms of the following genera may be mentioned:
  • Aspergillus such as Aspergillus niger
  • Chaetomium like Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma like Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active compounds can be converted into the customary formulations, such as
  • formulations are made in a known manner, e.g. by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents. If water is used as an extender, e.g. organic solvents can also be used as auxiliary solvents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • water e.g. organic solvents can also be used as auxiliary solvents.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, e.g. Petroleum fractions, alcohols, such as butanol or glycol, and their ethers and esters, ketones, such as acetone
  • aliphatic hydrocarbons such as cyclohexane or paraffins
  • Liquefied gaseous extenders or carriers mean liquids which are gaseous at normal temperature and pressure, e.g. Aerosol propellants, such as halogenated hydrocarbons and butane, propane, nitrogen and
  • Possible solid carriers are: e.g. natural rock meals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock meals, such as highly disperse silica, aluminum oxide and silicates.
  • natural rock meals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth
  • synthetic rock meals such as highly disperse silica, aluminum oxide and silicates.
  • the following are suitable as solid carriers for granules: e.g. broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite,
  • emulsifiers and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, acyl sulfates, aryl sulfonates and protein hydrolyzates.
  • nonionic and anionic emulsifiers such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, acyl sulfates, aryl sulfonates and protein hydrolyzates.
  • dispersants come in
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, to broaden the spectrum of activity or to prevent the development of resistance.
  • fungicides bactericides
  • acaricides nematicides or insecticides
  • synergistic effects are obtained, i.e. the effectiveness of the mixture is greater than the effectiveness of the individual components.
  • Calcium polysulfide Ca ⁇ ropamid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Quinomethionate (Quinomethionate), Chlobenthiazon, Chlorfenazol,
  • Chloroneb chloropicrin, chlorothalonil, chlozolinate, clozylacon, cufraneb, cymoxanil, cyproconazole, cyprodinil, cyprofuram,
  • Mancopper Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methturoxam, Metiram, Metomeclam, Metsulfovax,
  • Oxadixyl Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
  • Tebuconazole Tebuconazole, tecloftalam, tecnazene, Tetcyclacis, tetraconazole, thiabendazole, Thicyofen, Thifluzamide, thiophanate-methyl, thiram, Tioxymid, tolclofos-methyl, tolylfluanid, triadimefon, triadimenol, Triazbutil, triazoxide, Trichlamid, tricyclazole, Tridemo ⁇ h, trifloxystrobin, Triftumizol, triforine, triticonazole,
  • Cadusafos Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron,
  • Fenamiphos Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucytoxin,
  • Flumethrin Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb,
  • Halofenozide HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,
  • Methoxyfenozide metolcarb, metoxadiazone, mevinphos, milbemectin, milbemycin, monocrotophos,
  • the compounds of formula (I) according to the invention also have very good antifungal effects. They have a very broad spectrum of antimycotic effects, in particular against dermatophytes and shoot fungi, mold and diphasic fungi (for example against Candida species such as Candida albicans, Candida glabrata) as well as Epidermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillichophystonus fumigatus fumigatus such as Trichophyton mentagrophytes, Microsporon species such as Microsporon canis and audouinii.
  • the list of these fungi does not in any way limit the mycotic spectrum that can be recorded, but is only of an explanatory nature.
  • the active compounds can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the usual way, e.g. by pouring, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients using the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient into the soil itself. It can also do that
  • Seeds of the plants are treated.
  • the application rates can be varied within a relatively wide range, depending on the type of application.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 10 and 1,000 g / ha.
  • the active compound application rates are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 1 and 5,000 g / ha.
  • plants and their parts can be treated according to the invention.
  • plant species and plant cultivars which occur wildly or are obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and parts thereof are treated.
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetic modified organisms) and their parts are treated.
  • Plants "or” parts of plants are particularly preferably treated according to the invention. Plant cultivars are understood to mean plants with new properties (“traits”) which have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be varieties, breeds, bio and genotypes.
  • the treatment according to the invention can also cause superadditive (“synergistic") effects.
  • superadditive for example, reduced application rates and / or widening of the activity spectrum and / or an increase in the action of the substances and agents which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to dryness or to water or soil salt content, increased flowering performance , easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher nutritional value of the harvested products, higher storability and or workability of the harvested products, which go beyond the effects that are actually to be expected.
  • the preferred transgenic (genetically engineered) plants or plant cultivars to be treated according to the invention include all plants which, by virtue of the genetic engineering modification, have received genetic material which gives these plants particularly advantageous properties (“traits”). Examples of such properties are better plant growth, increased
  • transgenic plants are the important cultivated plants, such as cereals (wheat, rice), maize, soybeans, potatoes, cotton, rapeseed and fruit plants (with the fruits apples, pumice, citrus and
  • Grapes mentioned, with corn, soybeans, potatoes, cotton and rapeseed being particularly emphasized.
  • the traits are particularly emphasized as the increased defense of the plants against insects by toxins which arise in the plants, in particular those which are caused by the genetic material from Bacillus thuringiensis (for example by the genes Cry ⁇ A (a), CryIA (b), CryIA (c),
  • Bt plants The properties (“traits”) also particularly emphasize the increased defense of plants against fungi, bacteria and viruses by systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins.
  • SAR systemic acquired resistance
  • the properties (“traits”) which are particularly emphasized are the increased tolerance of the plants to certain herbicidal active compounds, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (for example “PAT” gene).
  • the genes which confer the desired properties (“traits”) can also be found in
  • Bt plants are corn varieties, cotton varieties, soy varieties and potato varieties that are sold under the trade names YIELD GARD® (e.g. corn, cotton, soy), KnockOut® (e.g. corn), StarLink® (e.g. corn), Bollgard® ( Cotton), Nucoton® (cotton) and NewLeaf® (potato).
  • YIELD GARD® e.g. corn, cotton, soy
  • KnockOut® e.g. corn
  • StarLink® e.g. corn
  • Bollgard® Cotton
  • Nucoton® cotton
  • NewLeaf® potato
  • herbicide-tolerant plants are maize varieties, cotton varieties and soy varieties that are sold under the trade names Roundup Ready® (tolerance to glyphosate e.g. corn, cotton, soy), Liberty Link® (tolerance to phosphinotricin, e.g. rapeseed), TI® (tolerance to Imidazolinone) and STS® (tolerance to sulfonylureas such as maize). Plants that are herbicide-resistant (conventionally grown to herbicide tolerance) are also varieties sold under the name Clearfield® (eg maize). Of course, these statements also apply to plant varieties developed in the future or coming onto the market in the future with these or future-developed genetic properties ("traits").
  • the plants listed can be treated particularly advantageously with the compounds of the formula (I) or the active compound mixtures according to the invention.
  • the preferred ranges given above for the active substances or mixtures also apply to the treatment of these plants. Plant treatment with the compounds specifically listed in the present text should be particularly emphasized.
  • dimethylacetamide emulsifier 1.0 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in the greenhouse at approx. 21 ° C. and a relative humidity of approx. 90%.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Botrytis test (bean) / protective
  • dimethylacetamide emulsifier 1.0 part by weight of alkyl aryl polyglycol ether
  • Botrytis test (bean) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

Neue Triazolopyrimidine der Formel (I)in welcherG, R und X die in der Beschreibung angegebenen Bedeutungen haben,ein Verfahren zur Herstellung dieser Stoffe und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

Description

Triazolopyrimidine
Die vorliegende Erfindung betrifft neue Triazolopvrimidine, ein Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.
Es ist bereits bekannt geworden, dass bestimmte Triazolopyrimidine fungizide Eigenschaften besitzen (vgl. EP-A-0 550 113, WO 94/20501, EP-A-0 613 900, US 5 612 345, EP-A-0 834 513, FR-A-2 784 991, WO 98/46607 und WO 98/46608).
Die Wirkung dieser Verbindungen ist jedoch in vielen Fällen unbefriedigend.
Es wurden nun neue Triazolopyrimidine der Formel
in welcher
G für gegebenenfalls substituiertes, mono- oder polycyclisches, gesättigtes, un- gesättigtes oder aromatisches Heterocyclyl steht, das über ein Stickstoffatom gebunden ist, wobei dieses Stickstoffatom im Heterocyclus mit einem weiteren Stickstoff- oder Sauerstoffatom verbunden ist, und wobei der Heterocyclus gegebenenfalls noch ein oder zwei weitere Sauerstoff-, Stickstoff- und/oder Schwefelatome enthält, wobei jedoch keine zwei Sauerstoffatome direkt benachbart stehen können,
R für gegebenenfalls einfach bis fünffach substituiertes Aryl steht und X für Halogen steht,
sowie Säureadditionssalze von denjenigen Verbindungen der Formel (I), in denen
G für gegebenenfalls substituiertes, mono- oder polycyclisches, gesättigtes oder ungesättigtes Heterocyclyl steht, das über ein Stickstoffatom gebunden ist, wobei dieses Stickstoffatom im Heterocyclus mit einem weiteren Stickstoffatom verbunden ist, und wobei der Heterocyclus gegebenenfalls noch ein oder zwei weitere Sauerstoff-, Stickstoff- und/oder Schwefelatome enthält, wobei jedoch keine zwei Sauerstoffatome direkt benachbart stehen können,
gefunden.
Die erfindungsgemäßen Verbindungen können je nach Substitutionsmuster gegebe- nenfalls als Mischungen verschiedener möglicher isomerer Formen, insbesondere von Stereoisomeren, wie z.B. E- und Z-, threo- und erythro-, sowie optischen Isomeren, gegebenenfalls aber auch von Tautomeren vorliegen. Ist R an beiden Atomen, die der Bindungsstelle benachbart sind, ungleich substituiert, können die betreffenden Verbindungen in einer besonderen Form der Stereoisomerie vorliegen, nämlich als Atropisomere.
Weiterhin wurde gefunden, dass man die Triazolopyrimidine der Formel (I) erhält, wenn man -
Dihalogentriazolopyrimidine der Formel
in welcher R und X die oben angegebenen Bedeutungen haben und
Y für Halogen steht,
mit Heterocyclen der Formel
G-H (III) in welcher
G die oben angegebene Bedeutung hat,
oder mit Säureadditionssalzen von Heterocyclen der Formel (III),
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in
Gegenwart eines Säureakzeptors umsetzt.
Schließlich wurde gefunden, dass sich die Triazolopyrimidine der Formel (I) bzw. deren Säureadditions-Salze sehr gut zur Bekämpfung von unerwünschten Mikro- Organismen eignen. Sie zeigen vor allem eine starke fungizide Wirksamkeit und lassen sich sowohl im Pflanzenschutz als auch im Materialschutz verwenden.
Überraschenderweise besitzen die erfindungsgemäßen Triazolopyrimidine der Formel (I) eine wesentlich bessere mikrobizide Wirksamkeit als die konstitutionell ähn- lichsten, vorbekannten Stoffe gleicher Wirkungsrichtung.
Die erfindungsgemäßen Triazolopyrimidine sind durch die Formel (I) allgemein definiert.
G steht bevorzugt für mono- oder bicyclisches, gesättigtes, ungesättigtes oder aromatisches Heterocyclyl mit insgesamt bis zu 12 Gliedern, das über ein Stickstoffatom gebunden ist, wobei dieses Stickstoffatom im Heterocyclus mit einem weiteren Stickstoff- oder Sauerstoffatom verbunden ist, und wobei der Heterocyclus gegebenenfalls noch ein oder zwei weitere Sauerstoff-, Stickstoff- und/oder Schwefelatome enthält, wobei jedoch keine zwei Sauer- stoffatome direkt benachbart stehen können,
wobei die Heterocyclen einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Cyano, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen oder durch Alkoxycarbonyl mit
1 bis 4 Kohlenstoffatomen in der Alkoxygruppe.
steht bevorzugt für Phenyl, welches gegebenenfalls einfach bis vierfach gleich oder verschieden substituiert ist durch:
Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl;
jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkyl- sulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen;
jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils
2 bis- 6 Kohlenstoffatomen;
jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy,
Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen; jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogenalkenyl- oxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 11 gleichen oder verschiedenen Halogenatomen;
jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkyl- carbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Alkylsulfonyloxy, Hydrox- iminoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen;
jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch
Halogen und/oder geradkettiges oder verzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder geradkettiges oder verzweigtes Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen substituiertes, jeweils zweifach verknüpftes Alkylen mit 3 oder 4 Kohlen- stoffatomen oder Dioxyalkylen mit 1 oder 2 Kohlenstoffatomen, oder
Cycloalkyl mit 3 bis 6 Kohlenstoffatomen.
X steht bevorzugt für Fluor, Chlor oder Brom.
Besonders bevorzugt sind diejenigen Verbindungen der Formel (I), in denen
G für einen Heterocyclyl-Rest der Formel
oder steht,
wobei # für die Verknüpfungsstelle steht und wobei jeder der Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Cyano, Fluor, Chlor, Methyl, Ethyl, Methoxycarbonyl und/oder Ethoxycarbonyl,
für Phenyl steht, das einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Brom, Cyano, Nitro, Formyl, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Allyl, Propargyl,
Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propyl- thio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Allyloxy, Propargyloxy, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl, Trifluor- methylsulfonyl, Trichlorethinyloxy, Trifluorethinyloxy, Chlorallyloxy, Iodpropargyloxy, Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methox- iminoethyl, Ethoximinoethyl, Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl,
jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n- oder i-Propyl substituiertes in 2,3-Position oder 3,4-Position verknüpftes Trimethylen (Propan-l,3-diyl), Methylendioxy oder Ethylendioxy, und
X für Brom oder Chlor steht.
Ganz besonders bevorzugt sind diejenigen Verbindungen der Formel (I), in denen
G und X die Bedeutungen haben, die schon als besonders bevorzugt genannt wurden, und
R für Phenyl steht, das einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Trifluormethyl, Trifluormethoxy und/oder Trifluormethylthio, oder
R für den Rest der Formel
steht.
Bevorzugt sind auch Säureadditions-Salze von denjenigen Verbindungen der Formel (I), in denen G für mono- oder bicyclisches, gesättigtes oder ungesättigtes Heterocyclyl mit bis zu 12 Ringgliedern steht, das über ein Stickstoffatom gebunden ist, wobei dieses Stickstoffatom im Heterocyclus mit einem weiteren Stickstoffatom verbunden ist, und wobei der Heterocyclus gegebenenfalls noch ein oder zwei weitere Sauerstoff-, Stickstoff- und oder Schwefelatome enthält, wobei jedoch keine zwei Sauerstoffatome direkt benachbart stehen können, wobei die Heterocyclen einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Cyano, Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen oder durch Alkoxycarbonyl mit 1 bis 4 Kohlenstoffatomen in der Alkoxygruppe, und R und X diejenigen Bedeutungen haben, die für diese Reste als bevorzugt genannt wurden.
Zu den Säuren, die addiert werden können, gehören vorzugsweise Halogenwasserstoffsäuren, wie z.B. die Chlorwasserstoffsäure und die Bromwasserstoffsäure, insbe- sondere die Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, mono- und bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigsäure, Maleinsäure, Bernsteinsäure, Fumarsäure, Weinsäure, Zitronensäure, Salicylsäure, Sorbinsäure und Milchsäure, sowie Sulfonsäuren, wie z.B. p-Toluolsulfonsäure, 1,5- Naphthalindisulfonsäure, Saccharin und Thiosaccharin.
Besonders bevorzugt sind Salze, die durch Addition von Chlorwasserstoffsäure, Phosphorsäure, p-Toluolsulfonsäure, 1,5-Naphthalindisulfonsäure oder Saccharin an Triazolopyrimidine der Formel (I) entstehen, in denen
G für einen Heterocyclyl-Rest der Formel
steht,
wobei jeder dieser Reste einfach bis dreifach, gleichartig oder verschieden substituiert sein kann durch Cyano, Fluor, Chlor, Methyl, Ethyl, Methoxycarbonyl und/oder Ethoxycarbonyl, und
R und X diejenigen Bedeutungen haben, die für diese Reste als besonders bevorzugt genannt wurden.
Die zuvor genannten Reste-Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Bedeutungen entfallen.
Die oben aufgeführten allgemeinen oder in Vorzugsbereichen angegebenen Restedefinitionen gelten sowohl für die Endprodukte der Formel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangsstoffe bzw. Zwischenprodukte.
Verwendet man 5,7-Dichlor-6-(2,4,6-trifluoφhenyl)[l,2,4]triazolo[l,5a]-pyrimidin und 3-Methyl-isoxazolidin-Hydrochlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch das folgende Formelschema veranschaulicht werden.
Die zur Durchführung des erfindungsgemäßen Verfahrens als Ausgangsstoffe benötigten Dihalogentriazolopyrimidine sind durch die Formel (II) allgemein definiert. In dieser Formel (II) haben R und X vorzugsweise, bzw. insbesondere diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für R und X angegeben wurden. Y steht vorzugsweise für Fluor, Chlor oder Brom, insbesondere für Fluor oder Chlor.
Die Dihalogentriazolopyrimidine der Formel (II) sind bekannt oder können nach bekannten Methoden hergestellt werden (vgl. z.B. US 5 612 345).
Die weiterhin zur Durchführung des erfindungsgemäßen Verfahrens als Ausgangsstoffe benötigten Heterocyclen sind durch die Formel (III) allgemein definiert. In dieser Formel (III) hat G vorzugsweise, bzw. insbesondere diejenige Bedeutung, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt bzw. als insbesondere bevorzugt für G angegeben wurde.
Die Heterocyclen der Formel (III) sind bekannt oder können nach bekannten Methoden hergestellt werden (vgl. z. B. J. Chem. Soc. 1942, 432; Can. J. Chem. (1976), 54(6), 867-70; Tetrahedron Lett. (1993), 34(36), 5673-6; Tetrahedron Lett. (1973), 30, 2859-2862).
Die Heterocyclen der Formel (III) können bei der Durchführung des erfindungsge- mäßen Verfahrens auch in Form ihrer Säureadditionssalze eingesetzt werden. Als
Säureadditionssalze kommen dabei vorzugsweise diejenigen Verbindungen in Frage, die durch Addition von denjenigen Säuren, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Säureadditionssalze genannt wurden, an Heterocyclen der Formel (III) entstehen. Bevorzugt sind Hydrochloride und Acetate von Heterocyclen der Formel (III).
Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens kommen alle inerten organischen Lösungsmittel in Betracht. Vorzugsweise verwendbar sind aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispiels- weise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol,
Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1,2-Diethoxy- ethan oder Anisol; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-
Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie Essigsäuremethylester oder Essigsäureethylester; Sulfoxide, wie Dimethyl- sulfoxid; Sulfone, wie Sulfolan.
Als Säureakzeptoren kommen bei der Durchführung des erfindungsgemäßen
Verfahrens alle üblichen Säurebindemittel in Betracht. Vorzugsweise verwendbar sind Ammoniak oder tertiäre Amine, wie Trimethylamin, Triethylamin, Tributyl- amin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmoφholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Di- azabicyclononen (DBN) oder Diazabicycloundecen (DBU). Weiterhin kommen Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate infrage, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natrium- carbonat, Kaliumcarbonat, Kaliumhydrogencarbonat und Natriumhydrogencarbonat.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise zwischen 0°C und 80°C.
Bei der Durchführung des erfindungsgemäßen Verfahrens arbeitet man im
Allgemeinen unter Atmosphärendruck. Es ist jedoch auch möglich, unter erhöhtem Druck bis zu 10 bar oder unter vermindertem Druck bis zu 0,1 bar zu arbeiten.
Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man auf 1 mol an Dihalogentriazolopyrimidin der Formel (II) im Allgemeinen 0,5 bis 10 mol, vorzugsweise 0,8 bis 2 Mol an einer Verbindung der Formel (III) ein. Die Aufarbeitung erfolgt nach üblichen Methoden.
Zur Herstellung von Säureadditions-Salzen von Triazolopyrimidinen der Formel (I) kommen vorzugsweise diejenigen Säuren in Frage, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Säureadditions-Salze als bevorzugte Säuren genannt wurden.
Die Säureadditions-Salze der Verbindungen der Formel (I) können in einfacher Weise nach üblichen Salzbildungsmethoden, z.B. durch Lösen einer Verbindung der
Formel (I) in einem geeigneten inerten Lösungsmittel und Hinzufügen der Säure, z.B. Chlorwasserstoffsäure, erhalten werden und in bekannter Weise, z.B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden. Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes,
Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.
Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae;
Pseudomonas- Arten, wie beispielsweise Pseudomonas syringae pv. lachrymans;
Erwinia- Arten, wie beispielsweise Erwinia amylovora;
Pythium- Arten, wie beispielsweise Pythium ultimum;
Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder
Pseudoperonospora cubensis;
Plasmopara- Arten, wie beispielsweise Plasmopara viticola; Bremia- Arten, wie beispielsweise Bremia lactucae;
Peronospora- Arten, wie beispielsweise Peronospora pisi oder P. brassicae;
Erysiphe-Arten, wie beispielsweise Erysiphe graminis;
Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;
Podosphaera- Arten, wie beispielsweise Podosphaera leucotricha;
Venturia- Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora- Arten, wie beispielsweise Pyrenophora teres oder P. graminea
(Konidienform: Drechslera, Syn: Helminthosporium);
Cochliobolus- Arten, wie beispielsweise Cochliobolus sativus
(Konidienform: Drechslera, Syn: Helminthosporium);
Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
Puccinia- Arten, wie beispielsweise Puccinia recondita;
Sclerotinia- Arten, wie beispielsweise Sclerotinia sclerotiorum;
Tilletia- Arten, wie beispielsweise Tilletia caries;
Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;
Pellicularia-Arten, wie beispielsweise Pellicularia sasakii; Pyricularia- Arten, wie beispielsweise Pyricularia oryzae;
Fusarium- Arten, wie beispielsweise Fusarium culmorum;
Botrytis- Arten, wie beispielsweise Botrytis cinerea;
Septoria- Arten, wie beispielsweise Septoria nodorum;
Leptosphaeria- Arten, wie beispielsweise Leptosphaeria nodorum;
Cercospora- Arten, wie beispielsweise Cercospora canescens;
Alternaria- Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella- Arten, wie beispielsweise Pseudocercosporella heφotrichoides.
Die erfindungsgemäßen Wirkstoffe weisen auch eine sehr gute stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.
Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass -"die behandelten Pflanzen bei nach- folgender Inokolation mit unerwünschten Mikroorgansimen weitgehende Resistenz gegen diese Mikroorganismen entfalten.
Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.
Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.
Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Krankheiten im Wein-, Obst- und Gemüseanbau, wie beispielsweise gegen Botrytis-, Venturia- und Alternaria-Arten, oder von Reiskrankheiten, wie beispielsweise gegen Pyricularia- Arten, einsetzen.
Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.
Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Voφrodukte für die Synthese weiterer Wirkstoffe einsetzen.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kultuφflanzen (einschließlich natürlich vorkommender Kultuφflanzen). Kultuφflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten.
Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtköφer, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, bei- spielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.
Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikro- Organismen einsetzen.
Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen,
Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen -befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasser- kreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, KüUschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz. Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Altemaria tenuis,
Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum,
Polyporus, wie Polyporus versicolor,
Aureobasidium, wie Aureobasidium pullulans,
Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride,
Escherichia, wie Escherichia coli,
Pseudomonas, wie Pseudomonas aeruginosa, Staphylococcus, wie Staphylococcus aureus.
Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überfuhrt werden, wie
Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streck- mittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton,
Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol- Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und
Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith,
Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstengel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure- ester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, AUcylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in
Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexfδrmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholi- pide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferro- cyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin- farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.
Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage: Fungizide:
Aldimoφh, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin,
Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat,
Calciumpolysulfid, Caφropamid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol,
Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram,
Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomoφh, Diniconazol,
Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemoφh, Dodine, Drazoxolon,
Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol,
Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenhexamid, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimoφh, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, -Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Fluφrimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl- Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol,
Furconazol-cis, Furmecyclox, Fluoxastrobin,
Guazatin,
Hexachlorobenzol, Hexaconazol, Hymexazol, Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Iprovalicarb, Irumamycin, Isoprothiolan, Isovaledione,
Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie: Kupferhydroxid,
Kupfemaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung,
Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methturoxam, Metiram, Metomeclam, Metsulfovax,
Mildiomycin, Myclobutanil, Myclozolin,
Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,
Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Picoxystrobin, Pimaricin, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyraclostrobin, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfur, Prothioconazole,
Quinconazol, Quintozen (PCNB), Quinoxyfen
Schwefel und Schwefel-Zubereitungen, Spiroxamine
Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemoφh, Trifloxystrobin, Triftumizol, Triforin, Triticonazol,
Uniconazol, Validamycin A, Vinclozolin, Viniconazol,
Zarilamid, Zineb, Ziram sowie
Dagger G,
OK-8705, OK-8801, α-( 1 , 1 -Dimethylethyl)-ß-(2-phenoxyethyl)- 1 H- 1 ,2,4-triazol- 1 -ethanol, -(2,4-Dichloφhenyl)-ß-fluor-propyl- 1 H- 1 ,2,4-triazol- 1 -ethanol, α-(2,4-Dichloφhenyl)-ß-methoxy-α-methyl- 1 H- 1 ,2,4-triazol- 1 -ethanol, α-(5-Methyl-l,3-dioxan-5-yl)-ß-[[4-(trifluormethyl)-phenyl]-methylen]-lH-l,2,4- triazol-1 -ethanol,
(5RS,6RS)-6-Hydroxy-2,2,7,7-tetramethyl-5-(lH-l,2,4-triazol-l-yl)-3-octanon,
(E)-α-(Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid,
1 -(2,4-Dichloφhenyl)-2-( 1 H- 1 ,2,4-triazol- 1 -yl)-ethanon-O-(phenylmethyl)-oxim,
1 -(2-Methyl- 1 -naphthalenyl)- 1 H-pyrrol-2,5-dion, 1 -(3,5-Dichloφhenyl)-3-(2-propenyl)-2,5-pyrrolidindion, l-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol, l-[[2-(2,4-Dichlθφhenyl)-l,3-dioxolan-2-yl]-methyl]-lH-imidazol,
1 -[[2-(4-Chloφhenyl)-3-phenyloxiranyl]-methyl]- 1 H- 1 ,2,4-triazol, l-[l-[2-[(2,4-Dichloφhenyl)-methoxy]-phenyl]-ethenyl]-lH-imidazol, 1 -Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol,
2\6'-Dibrom-2-methyl-4'-trifluormethoxy-4-trifluor-memyl-l,3-tHazol-5-carboxanilid,
2,6-Dichlor-5-(methylthio)-4-pyrimidinyl-thiocyanat,
2,6-Dichlor-N-(4-1rifluorme ylbeιιzyl)-benzamid,
2,6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid, 2-(2,3,3-Triiod-2-propenyl)-2H-tetrazol,
2-[(l-Methylethyl)-sulfonyl]-5-(trichlormethyl)-l,3,4-thiadiazol,
2-[[6-Deoxy-4-O-(4-O-methyl-ß-D-glycopyranosyl)-α-D-glucopyranosyl]-amino]-4- methoxy-lH-pyrτolo[2,3-d]pyrimidin-5-carbonitril,
2-Aminobutan, 2-Brom-2-(brommethyl)-pentandinitril,
2-Chlor-N-(2,3-dihydro-l,l,3-trimethyl-lH-mden-4-yl)-3-pyridincarboxamid, 2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamid, 2-Phenylphenol(OPP),
3,4-Dichlor- 1 -[4-(difluormethoxy)-phenyl]- 1 H-pyrrol-2,5-dion, 3,5-Dichlor-N-[cyan[(l-methyl-2-propynyl)-oxy]-methyl]-benzamid, 3-( 1 , 1 -Dimethylpropyl- 1 -oxo- 1 H-inden-2-carbonitril,
3-[2-(4-Chloφhenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin, 4-Chlor-2-cyan-N,N-dimethyl-5-(4-methylphenyl)- 1 H-imidazol- 1 -sulfonamid, 4-Methyl-tetrazolo[l,5-a]quinazolin-5(4H)-on, 8-Hydroxychinolinsulfat, 9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazid, bis-(l-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2,5-thiophendicarboxylat, eis- 1 -(4-Chloφhenyl)-2-( 1 H- 1 ,2,4-triazol- 1 -yl)-cycloheptanol, cis-4-[3-[4-(l,l-Dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl-moφholin- hydrochlorid, Ethyl-[(4-chloφhenyl)-azo]-cyanoacetat,
Kaliumhydrogencarbonat, Methantetrathiol-Natriumsalz,
Methyl- 1 -(2,3-dihydro-2,2-dimethyl- 1 H-inden- 1 -yl)- 1 H-imidazol-5-carboxylat, Methyl-N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninat, Methyl-N-(chloracetyl)-N-(2,6-dimethylphenyl)-DL-alaninat,
N-(2,6-Dimethylphenyl)-2-methoxy-N-(tefrahydro-2-oxo-3-furanyl)-acetanιid, N-(2,6-Dimethylphenyl)-2-memoxy-N-(tefrahyα^o-2-oxo-3-tMenyl)-acetamid, N-(2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid, N-(4-Cyclohexylphenyl)-l,4,5,6-tefrahydro-2-pyrimidmamin, N-(4-Hexylphenyl)-l ,4,5,6-tetrahydro-2-pyrimidinamin,
N-(5-Chlor-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidmyl)-acetamid, N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid, N-[2,2,2-Trichlor- 1 -[(chloracetyl)-amino]-ethyl]-benzamid, N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamid, N-Formyl-N-hydroxy-DL-alanin -Natriumsalz,
O,O-Diethyl-[2-(dipropylarmno)-2-oxoemyl]-emylphosphoramidothioat, O-Methyl-S-phenyl-phenylpropylphosphoramidothioate, S-Methyl- 1 ,2,3-benzothiadiazol-7-carbothioat, spiro[2H]-l-Benzopyran-2, (3Η)-isobenzofuran]-3'-on, 4-[3,4-Dimethoxyphenyl)-3-(4-fluoφhenyl)-acryloyl]-moφholin
Bakterizide:
Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide / Akarizide / Nematizide:
Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin,
Azamethiphos, Azinphos A, Azinphos M, Azocyclotin,
Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb, Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin,
Biopermethrin, Bistrifluron, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butylpyridaben,
Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron,
Chlormephos, Chloφyrifos, Chloφyrifos M, Chlovaporthrin, Chromafenozide, Cis- Resmethrin, Cispermethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidine, Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazine, Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlorvos, Dicofol, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn,
Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopfthora spp.,
Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos,
Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenoxuron,
Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb,
Granuloseviren
Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene,
Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin,
Kempolyederviren
Lambda-cyhalothrin, Lufenuron
Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methoprene, Methomyl,
Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, Monocrotophos,
Naled, Nitenpyram, Nithiazine, Novaluron
Omethoat, Oxamyl, Oxydemethon M Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion,
Pyrimidifen, Pyriproxyfen,
Quinalphos,
Ribavirin
Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Sulfotep, Sulprofos,
Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Tetradifon Theta- cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Triflumuron, Trimethacarb,
Vamidothion, Vaniliprole, Verticillium lecanii
Yl 5302
Zeta-cypermethrin, Zolaprofos
(lR-cis)-[5-(Phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)- furanyliden)-methyl]-2,2-dimethylcyclopropancarboxylat
(3-Phenoxyphenyl)-methyl-2,2,3,3-tetramethylcyclopropanecarboxylat l-[(2-Chlor-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-niπO-l,3,5-triazin-2(lH)- imin
2-(2-Chlor-6-fluoφhenyl)-4-[4-(l,l-dimethylethyl)phenyl]-4,5-dihydro-oxazol 2-(Acetlyoxy)-3-dodecyl- 1 ,4-naphthalindion
2-Chlor-N- [ [ [4-( 1 -phenylethoxy)-phenyl]-amino] -carbony 1] -benzamid
2-Chlor-N-[[[4-(2,2-dichlor- 1 , 1 -difluorethoxy)-phenyl]-amino]-carbonyl]-benzamid
3-Methylphenyl-propylcarbamat
4-[4-(4-Ethoxyphenyl)-4-methylpentyl]- 1 -fluor-2-phenoxy-benzol
4-Chlor-2-(l,l-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]-
3 (2H)-pyridazinon
4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)methoxy]-3(2H)- pyridazinon
4-Chlor-5-[(6-chlor-3-pyridinyl)methoxy]-2-(3,4-dichlθφhenyl)-3(2H)-pyridazinon Bacillus thuringiensis strain EG-2348
B enzoesäure [2-benzoyl- 1 -( 1 , 1 -dimethylethyl)-hydrazid
Butansäure 2,2-dimethyl-3-(2,4-dichloφhenyl)-2-oxo- 1 -oxaspiro[4.5]dec-3-en-4-yl- ester
[3 - [(6-Chlor-3 -pyridinyl)methy 1] -2-thiazolidinyliden]-cyanamid
Dihydro-2-(nitromethylen)-2H- 1 ,3-thiazine-3(4H)-carboxaldehyd Ethyl-[2-[[ 1 ,6-dihydro-6-oxo- 1 -(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamat N-(3,4,4-Trifluor-l-oxo-3-butenyl)-glycin
N-(4-Chlθφhenyl)-3-[4-(difluormethoxy)phenyl]-4,5-dihydro-4-phenyl-lH-pyrazol-
1-carboxamid
N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin
N-Methyl-N'-( 1 -methyl-2-propenyl)- 1 ,2-hydrazindicarbothioamid
N-Methyl-N'-2-propenyl- 1 ,2-hydrazindicarbothioamid
O,O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioat
N-Cyanomethyl-4-trifluormethyl-nicotinamid
3,5-Dichlor-l-(3,3-dichlor-2-propenyloxy)-4-[3-(5-trifluormethylpyridin-2-yloxy)- propoxyj-benzol
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.
Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimyko- tisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophy- ton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren myko- tischen Spektrums dar, sondern hat nur erläuternden Charakter.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus be- reiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist femer möglich, die Wirkstoffe nach dem Ultra-Low- Volume- Verfahren auszubringen oder die Wirkstoff- Zubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das
Saatgut der Pflanzen behandelt werden.
Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Auf- wandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.
Wie bereits, oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vor- kommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausfuhrungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von
Pflanzen" oder "Pflanzenteile" wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konven- tionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.
Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch .die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte
Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pfianzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kultuφflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Bimen, Zitrusfrüchten und
Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryΙA(a), CryIA(b), CryΙA(c),
CryllA, CrylllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharn- stoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die ge- wünschten Eigenschaften ("Traits") verleihenden Gene können auch in
Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden.
Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), T I® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft mit den erfindungsgemäßen Verbindungen der Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen.
Die Herstellung und die Verwendung der erfindungsgemäßen Stoffe werden durch die folgenden Beispiele veranschaulicht.
Herstellungsbeispiele
Beispiel 1
180 mg (0,56 mMol) des 5,7-Dichlor-6-(2,4,6-trifluoφhenyl)[l,2,4]triazolo[l,5- ajpyrimidin, 120 mg (0,97 mMol) 3-Methylisoxazolidin Hydrochlorid und 335 mg Kaliumcarbonat werden 18 Stunden unter Argon bei Raumtemperatur in 10 ml Acetonitril gerührt. Die Reaktionsmischung wird mit 10 ml Wasser versetzt, die organische Phase wird abgetrennt, mit 10 ml gesättigter Ammoniumchloridlösung gewaschen, über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Der Rückstand wird mit Petrolether/Essigester (10:1) an Kieselgel chromatografiert. Man erhält 250 mg (49 % der Theorie) an 5-Chlor-6-(2,4,6-trifluoφhenyl)-7-(3- methyl-2-isoxazolidinyl)[ 1 ,2,4]triazolo[ 1 ,5-a]pyrimidin. HPLC: logP = 2,76
Analog Beispiel 1 sowie entsprechend den Angaben in der allgemeinen Verfahrensbeschreibung werden auch die in der nachstehenden Tabelle 1 genannten Verbindungen der Formel
enthalten. Tabelle 1
Tabelle 1 (Fortsetzung)
Tabelle 1 (Fortsetzung)
Tabelle 1 (Fortsetzung)
Tabelle 1 (Fortsetzung)
Tabelle 1 (Fortsetzung)
Tabelle 1 (Fortsetzung)
# steht in der obigen Tabelle für die Verknüpfungsstelle.
*) Die Bestimmung der logP -Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch HPLC (Gradientenmethode, Acetonitril/0,1 % wässrige Phosphorsäure) Herstellung eines Vorproduktes der Formel (II)
Beispiel 72
Zu einer Lösung von 1,6 g Kalium t-Butanolat in 40 ml t-Butanol gibt man 1,83 g (17,4 mMol) Ethylhydroxycarbamat und 1 g (4,6 mMol) 1,3-Dibrombutan und rührt 7 Stunden bei 65°C. Die Reaktionsmischung wird unter vermindertem Dmck einge- engt, der Rückstand wird mit Ether und Wasser versetzt und die organische Phase wird abgetrennt. Die wässrige Phase wird noch zweimal mit Ether extrahiert, die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und unter vermindertem Dmck eingeengt. Man erhält 1 g rohes ca. 80 %iges N-Ethoxy- carbonyl-3-methylisoxazolidin mit einem logP-Wert von 1,22.
950 mg davon werden in 10 ml 16 %iger Salzsäure 3 Stunden unter Rückfluss erhitzt. Das Gemisch wird unter vermindertem Dmck eingeengt, dreimal mit 5 ml Methanol verrührt und jedesmal filtriert. Die vereinigten Filtrate werden unter vermindertem Dmck eingeengt. Man erhält 560 mg 3-Methylisoxazolidin Hydrochlorid mit einem logP-Wert von 1.22
Verwendungsbeispiele
Beispiel A
Venturia - Test (Apfel) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid Emulgator: 1,0 Gewichtsteile Alkyl- Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubations-kabine.
Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor. Tabelle A
Venturia - Test (Apfel) / protektiv
Tabelle A (Fortsetzung) Venturia - Test (Apfel) / protektiv
Tabelle A (Fortsetzung) Venturia - Test (Apfel) / protektiv
Tabelle A (Fortsetzung) Venturia - Test (Apfel) / protektiv
Tabelle A (Fortsetzung) Venturia - Test (Apfel) / protektiv
Tabelle A (Fortsetzung) Venturia - Test (Apfel) / protektiv
Tabelle A (Fortsetzung) Venturia - Test (Apfel) / protektiv
Beispiel B
Botrytis - Test (Bohne) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton
24,5 Gewichtsteile Dimethylacetamid Emulgator: 1 ,0 Gewichtsteile Alkyl- Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und
Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis cinerea bewachsene Agarstückchen aufgelegt. Die inokulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.
2 Tage nach der Inokulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0% ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100% bedeutet, dass kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor. Tabelle B
Botrytis - Test (Bohne) / protektiv
Tabelle B (Fortsetzung) Botrytis - Test (Bohne) / protektiv
Tabelle B (Fortsetzung) Botrytis - Test (Bohne) / protektiv
Tabelle B (Fortsetzung) Botrytis - Test (Bohne) / protektiv
Tabelle B (Fortsetzung) Botrytis - Test (Bohne) / protektiv
Tabelle B (Fortsetzung) Botrytis - Test (Bohne) / protektiv
Tabelle B (Fortsetzung) Botrytis - Test (Bohne) / protektiv
Beispiel C
Altemaria-Test (Tomate) / protektiv
Lösungsmittel: 49 Gewichtsteile N, N - Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Tomatenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer Sporensuspension von Altemaria solani inokuliert und stehen dann 24 h bei 100 % rel. Feuchte und 20°C. Anschließend stehen die Pflanzen bei 96 % rel. Luftfeuchtigkeit und einer Temperatur von 20°C.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Wirkstoffe, Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.
Tabelle C
Altemaria-Test (Tomate) / protektiv
Beispiel D
Pyricularia-Test (Reis) / protektiv
Lösungsmittel: 50 Gew.-Teile N,N-Dimethylformamid
Emulgator: 1 Gew.-Teil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und verdünnt das Konzentrat mit Wasser und der angegebenen Menge Emulgator auf die gewünschte
Konzentration.
Zur Prüfung auf protektive Wirksamkeit bespritzt man junge Reispflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 1 Tag nach der Behandlung werden die Pflanzen mit einer wäßrigen Sporensuspension von Pyricularia oryzae inokuliert. Anschließend werden die Pflanzen in einem Gewächshaus bei 100 % relativer Luftfeuchtigkeit und 25°C aufgestellt.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Wirkstoffe, - Aufwandmengen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor. Tabelle D
Pyricularia-Test (Reis) / protektiv

Claims

Patentansprüche
1. Triazolopyrimidine der Formel
in welcher
G für gegebenenfalls substituiertes, mono- oder polycyclisches, gesättigtes, ungesättigtes oder aromatisches Heterocyclyl steht, das über ein Stickstoffatom gebunden ist, wobei dieses Stickstoffatom im Heterocyclus mit einem weiteren Stickstoff- oder Sauerstoffatom verbunden ist, und wobei der Heterocyclus gegebenenfalls noch ein oder zwei weitere Sauerstoff-, Stickstoff und/oder Schwefelatome enthält, wobei jedoch keine zwei Sauerstoffatome direkt benachbart stehen können,
R für gegebenenfalls einfach bis fünffach substituiertes Aryl steht, und
X für Halogen steht,
sowie Säureadditionssalze von denjenigen Verbindungen der Formel (I), in denen
G für gegebenenfalls substituiertes, mono- oder polycyclisches, gesättigtes oder ungesättigtes Heterocyclyl steht, das über ein Stickstoffatom gebunden ist, wobei dieses Stickstoffatom im Heterocyclus mit einem weiteren Stickstoffatom verbunden ist, und wobei der Heterocyclus gegbenenfalls noch ein oder zwei weitere Sauerstoff-, Stickstoff- und/oder Schwefelatome enthält, wobei jedoch keine zwei Sauerstoffatome direkt benachbart stehen können.
Verfahren zur Herstellung von Triazolopyrimidinen der Formel (I) gemäß
Anspruch 1, dadurch gekennzeichnet, dass man
Dihalogentriazolopyrimidine der Formel
in welcher
R und X die oben angegebenen Bedeutungen haben und
Y für Halogen steht,
mit Heterocyclen der Formel
G-H (III)
in welcher
G die oben angegebene Bedeutung hat,
oder mit Säureadditionssalzen von Heterocyclen der Formel (III) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.
3. Mikrobizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem Triazolopyrimidin der Formel (I) gemäß Anspmch 1 bzw. an einem
Säureadditions-Salz davon neben Streckmitteln und/oder oberflächenaktiven Stoffen.
4. Verwendung von Triazolopyrimidinen der Formel (I) gemäß Anspmch 1 bzw. von deren Säureadditions-Salzen zur Bekämpfung von unerwünschten Mikroorganismen.
5. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Triazolopyrimidine der Formel (I) gemäß An- spmch 1 bzw. deren Säureadditions-Salze auf die unerwünschten Mikroorganismen und/oder deren Lebensraum ausbringt.
6. Verfahren zur Herstellung von mikrobiziden Mitteln, dadurch gekennzeichnet, dass man Triazolopyrimidine der Formel (I) gemäß Anspmch 1 bzw. deren Säureadditions-Salze mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
EP03722463A 2002-04-26 2003-04-14 Triazolopyrimidine Withdrawn EP1501832A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10218592 2002-04-26
DE10218592A DE10218592A1 (de) 2002-04-26 2002-04-26 Triazolopyrimidine
PCT/EP2003/003833 WO2003091254A1 (de) 2002-04-26 2003-04-14 Triazolopyrimidine

Publications (1)

Publication Number Publication Date
EP1501832A1 true EP1501832A1 (de) 2005-02-02

Family

ID=28798803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03722463A Withdrawn EP1501832A1 (de) 2002-04-26 2003-04-14 Triazolopyrimidine

Country Status (8)

Country Link
US (1) US20050234076A1 (de)
EP (1) EP1501832A1 (de)
JP (1) JP2005536460A (de)
AU (1) AU2003229657A1 (de)
BR (1) BR0309568A (de)
DE (1) DE10218592A1 (de)
PL (1) PL372989A1 (de)
WO (1) WO2003091254A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA80304C2 (en) * 2002-11-07 2007-09-10 Basf Ag Substituted 6-(2-halogenphenyl)triazolopyrimidines
BRPI0416849A (pt) * 2003-11-25 2007-02-27 Basf Ag composto, processo para preparar o mesmo, agente, semente, e, processo para combater fungos nocivos fitopatogênicos
US20070149400A1 (en) * 2003-12-17 2007-06-28 Tormo I Blasco Jordi 6-(2-Chloro-4-alkoxyphenyl)triazolopyrimidines, their preparation and their use for controlling harmful fungi, and compositions comprising these compounds
AU2004299258A1 (en) * 2003-12-18 2005-06-30 Basf Aktiengesellschaft 6-(2-halophenyl)-triazolopyrimidines, method for their production and their use for combating pathogenic fungi, in addition to agents containing said substances
WO2005120233A1 (de) * 2004-06-09 2005-12-22 Basf Aktiengesellschaft Triazolopyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
WO2006100038A1 (en) * 2005-03-23 2006-09-28 Syngenta Participations Ag Triazolopyrimidine derivatives useful as fungicides
GT200600122A (es) * 2005-03-23 2006-11-09 Novedosos derivados de triazolopirimidina
DE102005026577A1 (de) * 2005-06-08 2006-12-14 Bayer Cropscience Ag Verwendung von Triazolopyrimidinen zur Kontrolle von Pflanzenkrankheiten an Hülsenfrüchten
WO2007147829A1 (de) * 2006-06-20 2007-12-27 Basf Se Azolopyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
EP2131658A2 (de) * 2007-01-30 2009-12-16 Basf Se Verfahren für verbessertes pflanzenwachstum
EP1952691A3 (de) * 2007-01-31 2008-09-17 Basf Se Verfahren zur Verbesserung der Gesundheit von Pflanzen unter Verwendung eines Triazolopyrimidin-Derivats
EP2669283A1 (de) * 2007-10-02 2013-12-04 Shionogi&Co., Ltd. Oxazolidinonderivat mit 7-gliedrigem Heteroring
EP3298017B1 (de) * 2015-05-20 2019-08-14 H. Hoffnabb-La Roche Ag Verbindungen zur behandlung von spinaler muskelatrophie

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593996A (en) * 1991-12-30 1997-01-14 American Cyanamid Company Triazolopyrimidine derivatives
US5811547A (en) * 1992-10-14 1998-09-22 Nippon Shinyaju Co., Ltd. Method for inducing crystalline state transition in medicinal substance
IL108747A (en) * 1993-03-04 1999-03-12 Shell Int Research Mushroom-killing preparations containing a history of 6 metamorphoses of 5 - 7 Dihalo - 1, 2 - 4 Triazlo [A-1,5] Pyrimidine Certain such new compounds and their preparation
IL108731A (en) * 1993-03-04 1997-03-18 Shell Int Research 6, N-DISUBSTITUTED-£1, 2, 4| TRIAZOLO-£1, 5-a| PYRIMIDINE- 7-AMINE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS FUNGICIDES
US5817663A (en) * 1996-10-07 1998-10-06 American Cyanamid Company Pentafluorophenylazolopyrimidines
US6284762B1 (en) * 1998-03-23 2001-09-04 American Cyanamid Company Fungicidal 6-(2-halo-4-alkoxyphenyl)-triazolopyrimidines
AU2001223629A1 (en) * 2000-12-06 2002-06-18 Basf Aktiengesellschaft Fungicidal 6-(trifluoromethyl-phenyl)-triazolopyrimidines
DE10121102A1 (de) * 2001-04-27 2002-11-07 Bayer Ag Triazolopyrimidine
EP1412356A1 (de) * 2001-07-18 2004-04-28 Basf Aktiengesellschaft Substituierte 6-(2-methoxyphenyl)triazolopyrimidine als fungizide
CN1313467C (zh) * 2001-07-18 2007-05-02 巴斯福股份公司 作为杀真菌剂的6-(2,6-二氟苯基)***并嘧啶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03091254A1 *

Also Published As

Publication number Publication date
JP2005536460A (ja) 2005-12-02
DE10218592A1 (de) 2003-11-06
AU2003229657A1 (en) 2003-11-10
US20050234076A1 (en) 2005-10-20
BR0309568A (pt) 2005-02-15
PL372989A1 (en) 2005-08-08
WO2003091254A1 (de) 2003-11-06

Similar Documents

Publication Publication Date Title
WO2003066609A1 (de) Disubstituierte thiazolylcarboxanilide und ihre verwendung als mikrobizide
EP1474407A1 (de) Difluormethyl thiazolyl carboxanilide
WO2000076979A1 (de) Pyridincarboxamide und ihre verwendung als pflanzenschutzmittel
EP1392695A2 (de) Triazolopyrimidine
EP1513824B1 (de) Furancarboxamide
EP1501832A1 (de) Triazolopyrimidine
WO2002088126A1 (de) Triazolopyrimidine
EP1509513B1 (de) Mikrobizide oxathiincarboxamide
EP1397362A2 (de) Triazolopyrimidine mit fungizider wirkung
DE10219035A1 (de) Biphenylcarboxamide
WO2004024692A1 (de) Heterocyclylcarbonyl-aminocyclopropancarbonsäure-derivate
DE10218231A1 (de) Methylthiophencarboxanilide
EP1490370A2 (de) Triazolopyrimidine
EP1273573A1 (de) Pyrazolylbenzylthioether zur Bekämpfung von pflanzenschädigenden Organismen
EP1430035A1 (de) Phthalazinone und deren verwendung zur bekämpfung von unerwünschten mikroorganismen
EP1345923A1 (de) Azinylsulfonylimidazole als mikrobizide mittel
WO2002050037A1 (de) Dichlorpyridylmethylcyanamidine
WO2002050069A2 (de) Sulfonylpyrrole zur bekämpfung von mikroorganismen
WO2002050038A1 (de) Dichlorpyridylmethylimine zur verwendung als pflanzenschutzmittel
WO2000032563A1 (de) Substituierte oxime

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091103