EP1494254B1 - Force transmission element, method and apparatus for producing it - Google Patents

Force transmission element, method and apparatus for producing it Download PDF

Info

Publication number
EP1494254B1
EP1494254B1 EP03405489A EP03405489A EP1494254B1 EP 1494254 B1 EP1494254 B1 EP 1494254B1 EP 03405489 A EP03405489 A EP 03405489A EP 03405489 A EP03405489 A EP 03405489A EP 1494254 B1 EP1494254 B1 EP 1494254B1
Authority
EP
European Patent Office
Prior art keywords
insulating tube
connecting pieces
fibre
shaft
fibre body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03405489A
Other languages
German (de)
French (fr)
Other versions
EP1494254A1 (en
Inventor
Guido Meier
Leopold Ritzer
Stéphane Page
Sanel Pidro
Markus Keller
Olaf Hunger
Marc Mollenkopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP03405489A priority Critical patent/EP1494254B1/en
Priority to DE50303036T priority patent/DE50303036D1/en
Priority to AT03405489T priority patent/ATE323943T1/en
Priority to JP2004192652A priority patent/JP4549756B2/en
Priority to RU2004120075/09A priority patent/RU2339112C2/en
Priority to US10/880,448 priority patent/US7514635B2/en
Priority to CNB2004100620890A priority patent/CN100358071C/en
Publication of EP1494254A1 publication Critical patent/EP1494254A1/en
Application granted granted Critical
Publication of EP1494254B1 publication Critical patent/EP1494254B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • H01H2033/426Details concerning the connection of the isolating driving rod to a metallic part

Definitions

  • the starting point is a shaft according to the preamble of claim 1 or 2.
  • This shaft is axially symmetrical and contains two connecting pieces made of electrically conductive material which can be guided to different electrical potentials and a torsion-resistant tube made of an electrically insulating material based on a fiber reinforced polymer.
  • the two fittings are each attached to one end of the insulating tube. From a drive in one of the two connectors introduced force is transmitted through the insulating tube to the second connector and guided from there to an actuator. Because of the arranged between the two connectors insulating tube both connectors can be kept at different electrical potentials, so that such a wave can be used as a rotary shaft, especially in high-voltage electrical apparatus, especially switches.
  • the invention also relates to a method for producing such a shaft and to an apparatus for carrying out the method.
  • the invention nirnmt on a state of the art of waves reference, as described for example in DE 101 18 473 A.
  • the shaft described transmits a rotational movement between two located at different electrical potential machine parts.
  • the shaft carries a trained as insulating widening.
  • a method for producing a fiber-reinforced pressure or tension rod is described.
  • This rod has several layers of plastic fibers, which are fixed in a hardened plastic compound.
  • the fibers are held in a form-fitting manner in an annular manner around the rod axis Recesses, which are formed in conical outer surfaces of two fittings of the rod.
  • a fiber layers overlapping ring is provided. This ring strengthens the positive connection between the fiber layers stored in the recesses and the fittings. It can be transmitted so particularly high pressure or tensile forces.
  • a power transmission element used as a push rod is described in DE 33 22 132 A1.
  • This power transmission element has an electrically insulating, fiber-reinforced plastic rod.
  • Formed in at least one of the two ends of the plastic rod are tapers, into which protrude projections of a sleeve designed as the end portion of a steel connection fitting.
  • the projections are produced after fitting the sleeve on the end of the rod by rolling the sleeve.
  • positive locking between the plastic rod and the connection fitting is achieved in a pushing movement.
  • adhesive which is provided in a gap formed between the sleeve and the rod end, clearance between the rod and fitting is canceled and thus improves the adhesion.
  • a power transmission element in which two metal terminal fittings are spaced apart by an insulating tube based on LCP material is described in EP 899 764 A1. Force fit between the fittings and the insulating tube is achieved by press fit and / or by gluing.
  • the invention solves the problem of creating a wave of the type mentioned, which is characterized by a good transmission behavior, especially when large torques occur, and a method by which such Shaft can be produced in a particularly gentle manner, as well as a device for carrying out the method.
  • a good transmission behavior of the shaft is achieved by an adhesive bond, which is formed by a molded into one end of the insulating cone, which is guided from the lateral surface on the inner surface of the insulating tube and molded from one in one of the two fittings Counter cone and of a cone formed by cone and counter cone and filled with adhesive gap.
  • the cone when the fiber reinforcement of the insulating tube is formed by winding layers of deposited fibers, the cone should cut the layers at an angle of about 10 to 30 degrees with respect to the axis of the insulating tube. It has been shown that then the adhesive layer introduces the force to be transmitted particularly uniformly in virtually all fiber layers, which in particular the transfer of large torques is favored in a particularly effective manner.
  • the fastening means as an adhesive connection, a cavity defined by the inner surface of the insulating tube and the connecting pieces is provided in the shaft, it is advisable to reduce undesired high pressure in the hollow space by means of a pressure compensation channel guided from the outside into the cavity.
  • a good transmission behavior of the shaft is achieved by an embedding, which has as part surbettendes part extending in the direction of the axis of the insulating portion of one of the two fittings and as embedding the end portion of the manufactured in a casting insulating.
  • an embedding By embedding positive engagement and freedom between the embedded connection piece and the insulating tube are achieved and can be so large torques transmitted independently of an adhesive bond. Since this wave is produced by casting, eliminating a machining of the insulating tube and a gluing of the fittings and it can by very Precise control of the casting process a good quality of the insulating tube and thus the shaft, especially in terms of their dielectric and mechanical properties can be achieved.
  • the embedded portion of the connecting piece is designed as a form-locking element. If the positive-locking element has a profile deviating from a circle in the circumferential direction about the axis of the insulating tube, if it is designed in the manner of a polygon, for example, a particularly good transmission behavior is achieved when large torques occur, as for example by a drive shaft for a contact system of a high-current device is required.
  • At least one of the connecting pieces has a guided in the direction of the axis of the insulating longitudinal channel.
  • a used in the manufacture of the insulating tube to support the inner wall elastic molded body can be removed after the manufacturing process through this channel.
  • the fiber reinforcement of the insulating tube is formed by winding layers of deposited fibers, it is advisable to additionally provide radially guided by the fiber layers reinforcing fibers.
  • a proportion of predominantly radially guided Verstärkungsfasem of about 0.5 to 5%, preferably 1 to 3%, the fiber reinforcement so a particularly high torsional strength of the insulating tube and thus the shaft is achieved.
  • This process eliminates a decoupled from the manufacturing process of the shaft production of the insulating tube, a machining of the insulating tube as well as the gluing of the fittings. Since the manufacturing process of the insulating tube is directly part of the manufacturing process of the shaft, the manufacturing parameters can be controlled very precisely, whereby a good quality of the shaft, especially in terms of their dielectric and mechanical properties, is achieved.
  • the inner surface and the lateral surface of the tubular fiber body are supported with elastic, gas and liquid-tight moldings prior to introduction into a mold.
  • the shaping process of the insulating tube can then be influenced in a controlled manner.
  • the shaped bodies can be removed without destruction after elastic deformation.
  • Shape and above all quality of the insulating tube and thus the shaft can be influenced in a particularly favorable manner when the moldings are subjected to pressure during curing.
  • unavoidable gas bubbles in the liquid polymer in the fiber body or to be embedded sections of the connecting pieces are largely suppressed by compression and thus significantly improves the dielectric properties of the shaft.
  • the fiber body should be made by winding a plurality of fiber layers on a winding core and the winding core should be formed by the connecting pieces and the elastic body supporting the inner surface of the fiber body.
  • the molded article may then be elastically deformed after curing of the generally thermoset or thermoplastic polymer and removed outwardly through the cavity without destruction. Penetration of liquid polymer into the cavity when impregnating the fiber body is avoided if the inner body of the fiber body supporting elastic molded body is subjected to the impregnation with pressurized gas.
  • An advantageous device for carrying out the inventive method comprises a mold having at least five openings, of which serve a first and a second of the implementation of the two connectors, a third of the supply of the liquid polymer, a fourth of the venting of the mold and a fifth of the Supply of pressurized gas, which pressure gas acts on the impregnated fiber body during curing of the liquid polymer.
  • the device also includes a winding tool having a winding core, which is formed by the two connecting pieces and an elastic molding arranged between the two connecting pieces and serves to receive the fiber body.
  • the device further advantageously also has a shrink-on tool with a hollow cylindrical vacuum chamber, whose two end faces each contain an opening for carrying the winding core wound with the fiber body and a radially extending and the opening comprehensive sealing surface disposed inside the chamber, on which annular edge of a hollow cylindrical executed elastic molded body is supported vacuum-tight.
  • FIGS. 1 and 2 each contain two connecting pieces 2, 3 made of electrically conductive material, for example aluminum, which can be guided to different electrical potentials, and a tube 4 made of an electrically insulating material which is loadable on torsion Base of a fiber reinforced polymer with good mechanical, thermal and electrical properties.
  • reinforcing fibers are mainly plastic fibers, such as based on aramid or polyester, but also inorganic fibers, such as glass fibers, into consideration.
  • fibers which are arranged in layers in which the fibers at an angle of about 30 ° to 60 °, typically about 45, ° are arranged to the axis of the shaft.
  • fibers or mats may in principle be used as the fiber reinforcement or may be used with the fibers Help a winding process be stored stranded.
  • the polymer are mainly resins based on epoxy or polyester into consideration.
  • Such a shaft 1 can be held for example with the connector 2 at ground potential and performed with the connector 3 to high voltage potential. From an arranged at ground potential, drive not shown then force can be transmitted via the shaft 1 to a driven element, such as a contact arrangement of a high voltage switching device.
  • a driven element such as a contact arrangement of a high voltage switching device.
  • the attachment is achieved by two adhesive bonds 5, which are each formed by a molded into one end of the insulating cone 6, which is guided by the lateral surface 7 on the inner surface 8 of the insulating 4 and of a in the connecting piece 2 or 3 molded counter-cone 9 and a cone formed by 6 and counter cone 9 and filled with adhesive gap 10.
  • the adhesive bonds 5 extend from the inner surface 8 of the insulating tube 4 on the lateral surface 7. This is force from the Adhesive 5 introduced directly into all present in the tube cross-section fibers of the fiber reinforcement. It shearing forces between the individual fibers are minimized, which occur in waves according to the prior art, in which an adhesive bond is only present between the lateral surface 7 and connector 2 and 3 respectively.
  • the shaft can not only record large torques, but also large tensile forces. It is therefore not only suitable as a shaft, but also as a pull rod. When used as a tie rod, however, it is advisable to increase the tensile strength to arrange the fibers mainly in the pulling direction.
  • the fiber reinforcement of the insulating tube 4 is formed by winding layers of deposited fibers 11, the cone 6 should cut the fiber layers 11 at an angle of approximately 10 to 30 ° relative to the axis of the insulating tube. It has been found that when the shaft 1 is loaded with torque, the adhesive bond 5 then the force to be transmitted in virtually all Fiber layers 11 simultaneously and uniformly initiates. This development of the shaft 1 can therefore transmit particularly large torques.
  • the insulating tube 4 can also be manufactured by pultrusion or by any other method which is suitable for the production of fiber-reinforced polymer tubes.
  • a cavity 71 defined by the inner surface 8 of the insulating tube 4 and the connecting pieces 2, 3 is formed. This cavity is practically gas-tight.
  • the cavity 71 opens into an outwardly directed pressure equalization channel 72. This channel connects the cavity 71 with the shaft 1 surrounding outer space and thus reduces a possibly resulting in the cavity pressure.
  • this channel is provided with advantage in dielectrically weakly loaded areas of the shaft and is - as Figure 1 can be seen - advantageously guided radially through the wall of the insulating 4 and in the middle between the two connectors 2, 3 arranged and / or axially guided by one of the connecting pieces 2, 3.
  • the pressure equalization channel is designed as a bore with a diameter of a few mm diameter, for example 2 to 4 mm.
  • the attachment is achieved by two embeds 12, which as physically comparable to the attachment, 3rd
  • the embedding 12 are formed in a casting process, in which a prefabricated, the connecting pieces 2, 3 and a fiber body containing precursor body of the shaft 1 is encapsulated with polymer.
  • the embedded portion 13 of the connecting piece 2 is designed as a form-locking element and in the circumferential direction about the axis of the insulating 4 a deviating from a circle, profile 15, for example in the manner of a polygon having. It is thus achieved positive connection between the insulating tube 4 and the connector 2. Accordingly, positive locking can also be achieved between the insulating tube 4 and the connecting piece 3.
  • the profile may also have ellipse structure or other rotation-dependent structure. It is thus achieved a particularly good transmission behavior when large torques occur, as required for example by a drive shaft for a contact system of a high current device. If appropriate, depressions or widenings which extend in the circumferential direction can also be molded into the profile. As a result, positive engagement is achieved in addition to tensile load.
  • the connecting piece 2 contains a longitudinal channel 16 guided in the direction of the axis of the insulating tube 4.
  • the molded body 22 has a lateral surface adapted to the profile 15 and is advantageously hollow. He can then namely be pressurized from the inside with pressure and expand radially outwards due to its elastic training.
  • the fiber reinforcement of the insulating tube 4 is formed by winding layers of deposited fibers 11. Symbolically indicated in FIG. 2 are also reinforcing fibers 17 guided radially predominantly by the fiber layers 11. With a proportion of approximately 0.5 to 5%, preferably 1 to 3%, these fibers produce a particularly high torsional strength of the insulating tube 4 and thus also the wave 1.
  • the shaft 1 according to Figures 2 and 3 can be manufactured with the device shown in FIG. 4.
  • This device comprises a winding tool 20 with a rotatably mounted winding core 21.
  • the winding core 21 is formed by the two connecting pieces 2, 3 and arranged between the two connecting pieces of elastic molded body 22 and serves to receive a fiber body 23.
  • the fiber body 23 is by winding a biased Kunststoffmaschinegeleges 24, preferably based on aramid having a basis weight of a few hundred grams per m 2 , for example, 300 g / m 2 , emerged.
  • the fiber body 23 therefore has the fiber layers 11 shown in FIG.
  • the fiber body 23 may be reinforced by the radially guided fibers 17 shown in FIG.
  • a shaft 1 to be produced is now formed with respect to its geometrical dimensions largely corresponding precursor body 31.
  • This precursor body comprises the sections 13 of the connecting pieces 2, 3 shown in FIG. 2 and to be embedded in the insulating tube 4.
  • the precursor body 31 is brought into a shrink-on tool 30.
  • the shrink-fit tool has a hollow-cylindrical vacuum chamber 32, whose two end faces each contain an opening 33 or and 34 for introducing the precursor body 31.
  • a fiber body 23 is spaced surrounding, elastic molded body 35 which, like the molded body 22 made of an elastomeric material, preferably silicone.
  • the molded body 35 is formed as a hollow cylinder and, like the molded body 22, has a polygonal profile in the circumferential direction. Its two ends are each formed by acting as a sealing body annular edges 36 and 37. These edges are vacuum-firmly supported on radially extending and the openings 33, 34 comprehensive sealing surfaces 38, 39.
  • the molded body 35 Before introducing the precursor body 31 is placed on the vacuum chamber 32 negative pressure and so the molded body 35 to form bias radially outward (shown in FIG .4). In the enlarged. Diameter of the molded body 35 is now the precursor body when introduced into the Aufschrumpftechnikmaschinemaschine enough space. By filling the vacuum chamber with air, the molded body 35 is displaced inwardly (direction arrows as shown in FIG. 4) and shrunk onto the fiber body 23 of the precursor body 31 with a predetermined bias.
  • the pre-cursor body 31 and its fibrous body 23 supporting elastic moldings 22 and 35 are placed in a two-part vacuum and pressure resistant mold 40 with a lower mold 41 and an upper mold 42.
  • This mold is shown in Figures 5 and 6 in section.
  • the precursor body 31 supported by the moldings 22, 35 and two rings 43, 44 is brought into the lower mold 42.
  • the two rings 43, 44 are made of metal, preferably a resin-resistant steel, and support the two edges 36, 37 of the molded body 35 largely vacuum and liquid-tight.
  • the upper mold 42 is applied and pressed by means of fastening means against the lower mold 41.
  • Sealing rings 45 and 46 then seal the interior of the mold 40 largely vacuum, pressure and liquid-tight to the outside.
  • openings 47 and 48 of the mold 40 the fittings 2, 3 are guided to the outside.
  • a further opening into the interior of the mold represents the longitudinal channel 16, through which an open and connectable to a source of compressed gas end of the balloon-shaped shaped body 22 is guided.
  • opening 49 liquid polymer, such as epoxy resin, are guided into the interior of the mold.
  • Another opening 50 serves for venting the interior of the mold and can be connected to a vacuum system.
  • the interior of the mold is first evacuated via the opening 50 and pressurized gas is introduced into the molding 22 via the longitudinal channel 16. Due to the expanding body 22 in this case, the longitudinal channel 16 is sealed to the outside. As can be seen from FIG. 6, liquid polymer 51 is then supplied via the opening 49. The resin flows through an unnamed, located between the support ring 43 and connector 2 annular gap in the fiber body 23 and impregnates it completely. Due to the pressurized, stretched and the channel 16 sealing moldings 22 is avoided that resin can escape through the longitudinal channel 16. The supply of polymer 51 is stopped as soon as the fiber body 23 is completely saturated. The openings 49 and 50 are closed.
  • the pressurized elastic molded body 22 and the molded body 35 supported by the lower and upper molds 41, 42 now have a shaping effect on the polymer-impregnated fiber body 23 one.
  • Optionally still located in the liquid polymer gas bubbles are also compressed to dielectrically ineffective sizes.
  • the polymer is then cured at elevated temperatures.
  • the molded body 22 can be pressure-relieved and non-destructive due to its elastic deformability through the longitudinal channel 16 from the interior of the mold 40 and the shaft 1 are removed.
  • the shaft 1 can be removed after removing the upper mold 42 of the lower mold 41.

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Insulating Bodies (AREA)
  • Connections Arranged To Contact A Plurality Of Conductors (AREA)

Abstract

Element (1) comprises either an adhesive connection (5) or packing material for fixing connecting pieces (2, 3) to an insulating tube (4). The adhesive connection is formed by cone inserted into one end of the insulating tube and guided from a casing surface (7) onto the inner surface (8) of the insulating tube and formed by a counter cone (9) inserted into one of the connecting pieces. A gap is formed by the cone and counter cone and is filled with adhesive. Independent claims are also included for the following: (1) process for the production of the power transfer element; and (2) device for producing the power transfer element.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung wird ausgegangen von einer Welle gemäss dem Oberbegriff von Patentanspruch 1 oder 2. Diese Welle ist axialsymmetrisch ausgebildet und enthält zwei auf unterschiedliche elektrische Potentiale führbare Anschlussstücke aus elektrisch leitendem Material sowie ein auf Torsion belastbares Rohr aus einem elektrisch isolierenden Material auf der Basis eines faserverstärkten Polymers. Die beiden Anschlussstücke sind jeweils an einem beider Enden des Isolierrohrs befestigt. Von einem Antrieb in eines beider Anschlussstücke eingeleitete Kraft wird über das Isolierrohr auf das zweite Anschlussstück übertragen und von dort an eine Betätigungsvorrichtung geführt. Wegen des zwischen den beiden Anschlussstücken angeordneten Isolierrohrs können beide Anschlussstücke auf unterschiedlichen elektrischen Potentialen gehalten werden, so dass eine solche Welle vor allem in hochspannungsführenden elektrischen Apparaten, insbesondere Schaltern, als Drehwelle verwendet werden kann.In the invention, the starting point is a shaft according to the preamble of claim 1 or 2. This shaft is axially symmetrical and contains two connecting pieces made of electrically conductive material which can be guided to different electrical potentials and a torsion-resistant tube made of an electrically insulating material based on a fiber reinforced polymer. The two fittings are each attached to one end of the insulating tube. From a drive in one of the two connectors introduced force is transmitted through the insulating tube to the second connector and guided from there to an actuator. Because of the arranged between the two connectors insulating tube both connectors can be kept at different electrical potentials, so that such a wave can be used as a rotary shaft, especially in high-voltage electrical apparatus, especially switches.

Die Erfindung betrifft auch ein Verfahren zur Herstellung einer solchen Welle sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention also relates to a method for producing such a shaft and to an apparatus for carrying out the method.

STAND DER TECHNIKSTATE OF THE ART

Mit dem Oberbegriff nirnmt die Erfindung auf einen Stand der Technik von Wellen Bezug, wie er etwa in DE 101 18 473 A beschrieben ist. Die beschriebene Welle überträgt eine Drehbewegung zwischen zwei auf unterschiedlich elektrischen Potential befindlichen Maschinenteilen. Um Funkenschlag zu vermeiden, trägt die Welle eine als Isolierscheibe ausgebildete Verbreiterung.With the preamble, the invention nirnmt on a state of the art of waves reference, as described for example in DE 101 18 473 A. The shaft described transmits a rotational movement between two located at different electrical potential machine parts. To avoid sparking, the shaft carries a trained as insulating widening.

In DE 36 41 632 A1 ist ein Verfahren zur Herstellung einer faserverstärkten Druck- oder Zugstange beschrieben. Diese Stange weist mehrere Lagen Kunststofffasern auf, die in einer gehärteten Kunststoffmasse fixiert sind. Die Fasern sind formschlüssig gehalten in ringförmig um die Stangenachse geführten Ausnehmungen, welche in konische Aussenflächen zweier Armaturen der Stange eingeformt sind. Zur Verbesserung des Formschlusses ist ein die Faserlagen überdeckender Ring vorgesehen. Dieser Ring verstärkt den Formschluss zwischen den in den Ausnehmungen gelagerten Faserlagen und den Armaturen. Es können so besonders hohe Druck- oder Zugkräfte übertragen werden.In DE 36 41 632 A1 a method for producing a fiber-reinforced pressure or tension rod is described. This rod has several layers of plastic fibers, which are fixed in a hardened plastic compound. The fibers are held in a form-fitting manner in an annular manner around the rod axis Recesses, which are formed in conical outer surfaces of two fittings of the rod. To improve the positive connection, a fiber layers overlapping ring is provided. This ring strengthens the positive connection between the fiber layers stored in the recesses and the fittings. It can be transmitted so particularly high pressure or tensile forces.

Ein als Schubstange verwendetes Kraftübertragungselement ist in DE 33 22 132 A1 beschrieben ist. Dieses Kraftübertragungselement weist eine elektrisch isolierende, faserarmierte Kunststoffstange auf. In mindestens einem beider Enden der Kunststoffstange eingeformt sind Verjüngungen, in welche Vorsprünge eines als Hülse ausgeführten Endabschnitts einer stählernen Anschlussarmatur hineinragen. Die Vorsprünge werden nach dem Aufstecken der Hülse auf das Ende der Stange durch Einrollen der Hülse erzeugt. Hierdurch wird bei einer Schubbewegung Formschluss zwischen der Kunststoffstange und der Anschlussarmatur erreicht. Ferner wird durch Klebstoff, welcher in einem zwischen Hülse und Stangenende gebildeten Spalt vorgesehen ist, Spiel zwischen Stange und Armatur aufgehoben und so der Kraftschluss verbessert.A power transmission element used as a push rod is described in DE 33 22 132 A1. This power transmission element has an electrically insulating, fiber-reinforced plastic rod. Formed in at least one of the two ends of the plastic rod are tapers, into which protrude projections of a sleeve designed as the end portion of a steel connection fitting. The projections are produced after fitting the sleeve on the end of the rod by rolling the sleeve. As a result, positive locking between the plastic rod and the connection fitting is achieved in a pushing movement. Furthermore, by adhesive, which is provided in a gap formed between the sleeve and the rod end, clearance between the rod and fitting is canceled and thus improves the adhesion.

Ein Kraftübertragungselement, bei dem zwei metallene Anschlusssarmaturen durch ein Isolierrohr auf der Basis von LCP-Material voneinander beabstandet sind, ist beschrieben in EP 899 764 A1. Kraftschluss zwischen den Armaturen und dem Isolierrohr wird durch Presssitz und/oder durch Verklebung erreicht.A power transmission element in which two metal terminal fittings are spaced apart by an insulating tube based on LCP material is described in EP 899 764 A1. Force fit between the fittings and the insulating tube is achieved by press fit and / or by gluing.

Ferner ist es aus dem Lehrbuch "Feinmechanische Bauelemente" von S.Hildebrand, VEB Verlag Technik, Berlin, 4. Auflage (1980), insbesondere S.167 ff., bekannt, dass Einbettungen wohldefinierte starre, unlösbare und formschlüssige Verbindungen sind von festen meist metallischen Teilen mit Teilen, die aus plastisch verformbaren (giessbaren, pressbaren) und oft nachträglich aushärtenden Werkstoffen bestehen.Furthermore, it is known from the textbook "Precision Mechanical Components" by S. Hildebrand, VEB Verlag Technik, Berlin, 4th edition (1980), in particular p.167 ff., That embedding well-defined rigid, non-detachable and form-fitting connections are of fixed mostly metallic parts with parts consisting of plastically deformable (castable, pressable) and often post-hardening materials.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Die Erfindung, wie sie in den Patentansprüchen 1 bis 17 definiert ist, löst die Aufgabe, eine Welle der eingangs genannten Art zu schaffen, welche sich durch ein gutes Übertragungsverhalten vor allem auch beim Auftreten grosser Drehmomente auszeichnet, und ein Verfahren, mit dem eine solche Welle in besonders schonender Weise hergestellt werden kann, anzugeben wie auch eine Vorrichtung zur Durchführung des Verfahrens.The invention, as defined in the claims 1 to 17, solves the problem of creating a wave of the type mentioned, which is characterized by a good transmission behavior, especially when large torques occur, and a method by which such Shaft can be produced in a particularly gentle manner, as well as a device for carrying out the method.

Bei einer ersten Ausführungsform der Erfindung wird ein gutes Übertragungsverhalten der Welle durch eine Klebverbindung erreicht, welche gebildet ist von einem in ein Ende des Isolierrohrs eingeformten Konus, der von der Mantelfläche auf die Innenfläche des Isolierrohrs geführt ist sowie von einem in eines der beiden Anschlussstücke eingeformten Gegenkonus und von einem von Konus und Gegenkonus gebildeten und mit Klebstoff gefüllten Spalt. Dadurch, dass der Klebspalt sich von der Innenfläche des Isolierrohrs auf dessen Mantelfläche erstreckt, wird beim Drehen Kraft von der Klebverbindung unmittelbar in alle im Rohrquerschnitt vorhandenen Fasern eingeleitet. Dadurch werden starke Scherkräfte vermieden, welche bei Wellen nach dem Stand der Technik auftreten, bei denen ein Klebspalt lediglich zwischen Armatur und Mantelfläche vorgesehen ist.In a first embodiment of the invention, a good transmission behavior of the shaft is achieved by an adhesive bond, which is formed by a molded into one end of the insulating cone, which is guided from the lateral surface on the inner surface of the insulating tube and molded from one in one of the two fittings Counter cone and of a cone formed by cone and counter cone and filled with adhesive gap. As a result of the fact that the adhesive gap extends from the inner surface of the insulating tube onto its lateral surface, when the force is being applied, the force from the adhesive bond is introduced directly into all the fibers present in the tube cross-section. As a result, strong shear forces are avoided, which occur in waves of the prior art, in which an adhesive gap is provided only between the valve and the lateral surface.

Ist bei der ersten Ausführungsform der Erfindung die Faserverstärkung des Isolierrohrs durch Wickeln lageweise abgelegter Fasern gebildet, so sollte der Konus die Lagen unter einem Winkel von ca. 10 bis 30°, bezogen auf die Achse des Isolierrohrs, schneiden. Es hat sich gezeigt, dass dann die Klebeschicht die zu übertragende Kraft besonders gleichmässig in praktisch alle Faserlagen einleitet, wodurch insbesondere die Übertragung grosser Drehmomente in besonders wirkungsvoller Weise begünstigt wird.In the first embodiment of the invention, when the fiber reinforcement of the insulating tube is formed by winding layers of deposited fibers, the cone should cut the layers at an angle of about 10 to 30 degrees with respect to the axis of the insulating tube. It has been shown that then the adhesive layer introduces the force to be transmitted particularly uniformly in virtually all fiber layers, which in particular the transfer of large torques is favored in a particularly effective manner.

Da bei der Ausführung der Befestigungsmittel als Klebverbindung ein von der Innenfläche des Isolierrohrs und den Anschlussstücken begrenzter Hohlraum in der Welle vorhanden ist, empfiehlt es sich, unerwünscht hohen Druck im Hohlraum durch einen von aussen in den Hohlraum geführten Druckausgleichskanal abzubauen.Since, in the embodiment of the fastening means as an adhesive connection, a cavity defined by the inner surface of the insulating tube and the connecting pieces is provided in the shaft, it is advisable to reduce undesired high pressure in the hollow space by means of a pressure compensation channel guided from the outside into the cavity.

Bei einer zweiten Ausführungsform der Erfindung wird ein gutes Übertragungsverhalten der Welle durch eine Einbettung erreicht, welche als einzubettendes Teil einen in Richtung der Achse des Isolierrohrs erstreckten Abschnitt eines der beiden Anschlussstücke aufweist und als Einbettkörper den Endabschnitt des in einem Giessverfahren gefertigten Isolierrohrs. Durch die Einbettung werden Formschluss und Spielfreiheit zwischen dem eingebetteten Anschlussstück und dem Isolierrohr erzielt und können so grosse Drehmomente unabhängig von einer Klebverbindung übertragen werden. Da diese Welle giesstechnisch hergestellt wird, entfallen ein spanabhebendes Bearbeiten des Isolierrohres sowie ein Einkleben der Anschlussstücke und es kann durch sehr präzise Kontrolle des Giessverfahrens eine gute Qualität des Isolierrohrs und damit auch der Welle, vor allem hinsichtlich ihrer dielektrischen und mechanischen Eigenschaften, erreicht werden.
Um einen zur Lösung einer speziellen Übertragungsaufgabe besonders günstigen Formschluss zu erreichen, wird bei der zweiten Ausführungsform der Erfindung der eingebettete Abschnitt des Anschlussstücks als Formschlussetement ausgeführt. Weist das Formschlusselement in Umfangsrichtung um die Achse des Isolierrohrs ein von einem Kreis abweichendes Profil auf, ist es beispielsweise nach Art eines Polygons ausgebildet, so wird ein besonders gutes Übertragungsverhalten beim Auftreten grosser Drehmomente erreicht, wie dies beispielsweise von einer Antriebswelle für ein Kontaktsystem eines Hochstromgerätes gefordert wird.
In a second embodiment of the invention, a good transmission behavior of the shaft is achieved by an embedding, which has as part einzubettendes part extending in the direction of the axis of the insulating portion of one of the two fittings and as embedding the end portion of the manufactured in a casting insulating. By embedding positive engagement and freedom between the embedded connection piece and the insulating tube are achieved and can be so large torques transmitted independently of an adhesive bond. Since this wave is produced by casting, eliminating a machining of the insulating tube and a gluing of the fittings and it can by very Precise control of the casting process a good quality of the insulating tube and thus the shaft, especially in terms of their dielectric and mechanical properties can be achieved.
In order to achieve a particularly favorable form fit for the solution of a special transfer task, in the second embodiment of the invention, the embedded portion of the connecting piece is designed as a form-locking element. If the positive-locking element has a profile deviating from a circle in the circumferential direction about the axis of the insulating tube, if it is designed in the manner of a polygon, for example, a particularly good transmission behavior is achieved when large torques occur, as for example by a drive shaft for a contact system of a high-current device is required.

Zweckmässigerweise weist bei der zweiten Ausführungsform der Welle nach der Erfindung mindestens eines der Anschlussstücke einen in Richtung der Achse des Isolierrohrs geführten Längskanal auf. Ein bei der Fertigung des Isolierrohrs zur Stützung der Innenwand verwendeter elastischer Formkörper kann nach dem Fertigungsprozess durch diesen Kanal entfernt werden.Conveniently, in the second embodiment of the shaft according to the invention at least one of the connecting pieces has a guided in the direction of the axis of the insulating longitudinal channel. A used in the manufacture of the insulating tube to support the inner wall elastic molded body can be removed after the manufacturing process through this channel.

Ist die Faserverstärkung des Isolierrohrs durch Wickeln lageweise abgelegter Fasern gebildet ist, so empfiehlt es sich, zusätzlich radial durch die Faserlagen geführte Verstärkungsfasern vorzusehen. Mit einem Anteil an vorwiegend radial geführten Verstärkungsfasem von ca. 0,5 bis 5 %, vorzugsweise 1 bis 3 %, der Faserverstärkung wird so eine besonders hohe Torsionsfestigkeit des Isolierrohrs und damit auch der Welle erreicht.If the fiber reinforcement of the insulating tube is formed by winding layers of deposited fibers, it is advisable to additionally provide radially guided by the fiber layers reinforcing fibers. With a proportion of predominantly radially guided Verstärkungsfasem of about 0.5 to 5%, preferably 1 to 3%, the fiber reinforcement so a particularly high torsional strength of the insulating tube and thus the shaft is achieved.

Ein Verfahren, mit dem die zweite Ausführungsform der Erfindung besonders einfach hergestellt werden kann, ist durch folgende Verfahrensschritte gekennzeichnet:

  1. (1) aus den Anschlussstücken und einem rohrförmigen Faserkörper wird ein der zu fertigen Welle hinsichtlich seiner geometrischen Abmessungen weitgehend entsprechender Vorläuferkörper gebildet,
  2. (2) der Faserkörper und ein Abschnitt des Vorläuferkörpers, welcher vom Faserkörper umhüllte Teile der beiden Anschlussstücke umfasst, wird in eine Giessform gebracht,
  3. (3) der Faserkörper wird in der Giessform mit flüssigem Polymer getränkt, und
  4. (4) der polymergetränkte Faserkörper wird unter Bildung des die Anschlussstücke festsetzenden Isolierrohrs gehärtet.
A method with which the second embodiment of the invention can be produced particularly simply is characterized by the following method steps:
  1. (1) from the connecting pieces and a tubular fiber body, a preform body largely corresponding to the finished shaft is formed with respect to its geometric dimensions,
  2. (2) the fibrous body and a portion of the precursor body comprising parts of the two fittings enveloped by the fibrous body are placed in a mold,
  3. (3) the fiber body is soaked in the mold with liquid polymer, and
  4. (4) the polymer-impregnated fiber body is hardened to form the insulating tube fixing the fittings.

Bei diesem Verfahren entfallen eine vom Fertigungsverfahren der Welle abgekoppelte Herstellung des Isolierrohrs, eine spanabhebendes Bearbeiten des Isolierrohres wie auch das Einkleben der Anschlussstücke. Da der Fertigungsprozess des Isolierstoffrohrs unmittelbar Teil des Fertigungsprozesses der Welle ist, können die Fertigungsparameter sehr präzise kontrolliert werden, wodurch eine gute Qualität der Welle, insbesondere hinsichtlich ihrer dielektrischen und mechanischen Eigenschaften, erreicht wird.This process eliminates a decoupled from the manufacturing process of the shaft production of the insulating tube, a machining of the insulating tube as well as the gluing of the fittings. Since the manufacturing process of the insulating tube is directly part of the manufacturing process of the shaft, the manufacturing parameters can be controlled very precisely, whereby a good quality of the shaft, especially in terms of their dielectric and mechanical properties, is achieved.

In diesem Verfahren, werden vor dem Einbringen in eine Giessform die Innenfläche und die Mantelfläche des rohrförmigen Faserkörpers mit elastischen, gas- und flüssigkeitsdichten Formkörpern abgestützt. Bei der Durchführung des Verfahrens kann dann der Formgebungsprozess des Isolierrohrs kontrolliert beeinflusst werden. Zugleich können nach dem Härten die Formkörper nach elastischer Verformung zerstörungsfrei entfernt werden.In this method, the inner surface and the lateral surface of the tubular fiber body are supported with elastic, gas and liquid-tight moldings prior to introduction into a mold. In carrying out the method, the shaping process of the insulating tube can then be influenced in a controlled manner. At the same time, after hardening, the shaped bodies can be removed without destruction after elastic deformation.

Es ist vorteilhaft, den die Mantelfläche abstützenden elastischen Formkörper vor dem Aufbringen auf den Faserkörper in radialer Richtung zu dehnen. Diese Massnahme erleichtert das Aufbringen des Formkörpers auf den Faserkörper und ermöglicht es sogar, den Faserkörper mit einer die Formgebung des Isolierrohrs und damit auch der Welle günstig beeinflussenden Vorspannung zu beaufschlagen.It is advantageous to stretch the lateral surface of the supporting elastic molded body prior to application to the fiber body in the radial direction. This measure facilitates the application of the shaped body to the fiber body and even makes it possible to apply to the fiber body with a shaping of the insulating tube and thus also the shaft favorably influencing bias.

Formgebung und vor allem Qualität des Isolierrohrs und damit auch der Welle lassen sich in besonders günstiger Weise beeinflussen, wenn die Formkörper beim Aushärten mit Druck beaufschlagt werden. Je nach Höhe des Drucks werden hierbei nicht zu vermeidende Gasbläschen im flüssigen Polymer, im Faserkörper oder an den einzubettenden Abschnitten der Anschlussstücke durch Kompression weitgehend unterdrückt und so die dielektrischen Eigenschaften der Welle ganz wesentlich verbessert.Shape and above all quality of the insulating tube and thus the shaft can be influenced in a particularly favorable manner when the moldings are subjected to pressure during curing. Depending on the level of pressure unavoidable gas bubbles in the liquid polymer, in the fiber body or to be embedded sections of the connecting pieces are largely suppressed by compression and thus significantly improves the dielectric properties of the shaft.

Um mit einfachen Mitteln eine mechanisch besonders stabile Welle zu erreichen, sollte der Faserkörper durch Wickeln mehrerer Faserlagen auf einen Wickelkern gefertigt werden und sollte der Wickelkern von den Anschlussstücken und dem die Innenfläche des Faserkörpers stützenden elastischen Formkörper gebildet sein.In order to achieve a mechanically particularly stable shaft by simple means, the fiber body should be made by winding a plurality of fiber layers on a winding core and the winding core should be formed by the connecting pieces and the elastic body supporting the inner surface of the fiber body.

Werden bei der Fertigung des Faserkörpers durch die Faserlagen zusätzlich vorwiegend radial ausgerichtete Verstärkungsfasern geführt, so wird die Torsionsfestigkeit der Welle mit vergleichsweise einfachen Mitteln erheblich verbessert.If, in addition, predominantly radially oriented reinforcing fibers are guided through the fiber layers in the production of the fiber body, then the Torsional strength of the shaft considerably improved with comparatively simple means.

Um den die Innenfläche des Faserkörpers abstützenden elastischen Formkörper wiederverwenden zu können, empfiehlt es sich, eines der beiden Anschlusstücke hohl auszubilden. Der Formkörper kann dann nach dem Härten des im allgemeinen duromeren oder thermoplastischen Polymers elastisch verformt und durch den Hohlraum zerstörungsfrei nach aussen entfernt werden. Ein Eindringen von flüssigem Polymer in den Hohlraum beim Tränken des Faserkörpers wird vermieden, wenn der die Innenfläche des Faserkörpers abstützende elastische Formkörper vor dem Tränken mit Druckgas beaufschlagt wird.In order to reuse the elastic body supporting the inner surface of the fiber body, it is advisable to form one of the two connecting pieces hollow. The molded article may then be elastically deformed after curing of the generally thermoset or thermoplastic polymer and removed outwardly through the cavity without destruction. Penetration of liquid polymer into the cavity when impregnating the fiber body is avoided if the inner body of the fiber body supporting elastic molded body is subjected to the impregnation with pressurized gas.

Eine vorteilhafte Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens weist eine Giessform mit mindestens fünf Öffnungen auf, von denen eine erste und eine zweite der Durchführung der beiden Anschlussstücke dienen, eine dritte der Zufuhr des flüssigen Polymers dient, eine vierte der Entlüftung der Giessform und eine fünfte der Zufuhr von Druckgas, welches Druckgas beim Härten des flüssigen Polymers formgebend auf den getränkten Faserkörper einwirkt.An advantageous device for carrying out the inventive method comprises a mold having at least five openings, of which serve a first and a second of the implementation of the two connectors, a third of the supply of the liquid polymer, a fourth of the venting of the mold and a fifth of the Supply of pressurized gas, which pressure gas acts on the impregnated fiber body during curing of the liquid polymer.

Vorzugsweise enthält die Vorrichtung auch ein Wickelwerkzeug mit einem Wickelkern, welcher von den beiden Anschlussstücken und einem zwischen den beiden Anschlussstücken angeordneten elastischen Formkörper gebildet ist und der Aufnahme des Faserkörpers dient. Die Vorrichtung weist ferner mit Vorteil auch ein Aufschrumpfwerkzeug auf mit einer hohlzylinderförmig ausgeführten Vakuumkammer, deren zwei Stirnseiten jeweils eine Öffnung zur Durchführung des mit dem Faserkörper bewickelten Wickelkerns enthalten sowie eine im Inneren der Kammer angeordnete, radial verlaufende und die Öffnung umfassende Dichtfläche, auf welcher der ringförmige Rand eines hohlzylinderförmig ausgeführten, elastischen Formkörpers vakuumdicht abgestützt ist.Preferably, the device also includes a winding tool having a winding core, which is formed by the two connecting pieces and an elastic molding arranged between the two connecting pieces and serves to receive the fiber body. The device further advantageously also has a shrink-on tool with a hollow cylindrical vacuum chamber, whose two end faces each contain an opening for carrying the winding core wound with the fiber body and a radially extending and the opening comprehensive sealing surface disposed inside the chamber, on which annular edge of a hollow cylindrical executed elastic molded body is supported vacuum-tight.

BESCHREIBUNG DER ZEICHNUNGENDESCRIPTION OF THE DRAWINGS

Bevorzugte Ausführungsbeispiele der Erfindung und die damit erzielbaren weiteren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert. Hierbei zeigt:

Fig.1
eine Seitenansicht einer ersten Ausführungsform der Welle nach der Erfindung, bei der ein Isolierrohr axial geschnitten dargestellt ist,
Fig.2
eine Seitenansicht einer zweiten Ausführungsform der Welle nach der Erfindung, bei der ein Isolierrohr ebenfalls geschnitten dargestellt ist,
Fig.3
eine Aufsicht in Pfeilrichtung auf einen längs III - III geführten Schnitt durch die (vergrössert dargestellte) Welle nach Fig.2,
Fig.4
eine schematische Darstellung einer Vorrichtung zur Herstellung der Welle nach Fig.2,
Fig.5
eine Aufsicht auf einen axial und parallel zur Zeichnungsebene geführten Schnitt durch eine Giessform der Vorrichtung nach Fig.4, und
Fig.6
eine vergrösserte Darstellung eines Teils der Giessform nach Fig.5.
Preferred embodiments of the invention and the advantages that can be achieved thereby are explained in more detail below with reference to drawings. Hereby shows:
Fig.1
a side view of a first embodiment of the shaft according to the invention, in which an insulating tube is shown axially cut,
Fig.2
a side view of a second embodiment of the shaft according to the invention, in which an insulating tube is also shown cut,
Figure 3
a view in the direction of the arrow on a longitudinal III - III guided section through the (enlarged) wave of Figure 2,
Figure 4
a schematic representation of an apparatus for producing the shaft of Figure 2,
Figure 5
a plan view of a guided axially and parallel to the plane of the drawing section through a mold of the device according to Fig.4, and
Figure 6
an enlarged view of a part of the mold according to Fig.5.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

In allen Figuren bezeichnen gleiche Bezugszeichen auch gleichwirkende Teile. Die in den Figuren 1 und 2 dargestellten Ausführungsformen einer Welle 1 nach der Erfindung enthalten jeweils zwei auf unterschiedliche elektrische Potentiale führbare Anschlussstücke 2, 3 aus elektrisch leitendem Material, beispielsweise aus Aluminium, sowie ein auf Torsion belastbares Rohr 4 aus einem elektrisch isolierenden Material auf der Basis eines faserverstärkten Polymers mit guten mechanischen, thermischen und elektrischen Eigenschaften. Als Verstärkungsfasem kommen vor allem Kunststofffasern, etwa auf der Basis Aramid oder Polyester, aber auch anorganische Fasern, etwa Glasfasern, in Betracht. Aus fertigungstechnischen Gründen und aus Gründen einer guten mechanischen Festigkeit bei der Übertragung von Drehmomenten ist es günstig, Fasern zu verwenden, die in Gelegen angeordnet sind, in denen die Fasern unter einem Winkel von ca. 30° bis 60°, typischerweise ca. 45,° zur Achse der Welle angeordnet sind. Anstelle von Gelegen können als Faserverstärkung grundsätzlich aber auch Gewebe oder Matten verwendet werden oder können die Fasern mit Hilfe eines Wickelverfahrens strangweise abgelegt sein. Als Polymer kommen vor allem Harze auf der Basis Epoxy oder Polyester in Betracht. Zur Verbesserung der Haftung des polymeren Harzes ist es gegebenenfalls vorteilhaft, die von Fasern umgebenen Abschnitte der Anschlussstücke 2, 3 mit einem Primer zu beschichten. Die beiden Anschlussstücke 2, 3 sind an je einem beider Enden des Isolierrohrs 4 befestigt. Eine solche Welle 1 kann beispielsweise mit dem Anschlussstück 2 auf Erdpotential gehalten und mit dem Anschlussstücke 3 an Hochspannungspotential geführt werden. Von einem auf Erdpotential angeordneten, nicht dargestellten Antrieb kann dann Kraft über die Welle 1 an ein anzutreibendes Element, beispielsweise eine Kontaktanordnung eines Hochspannungsschaltgerätes, übertragen werden. Durch geeignete Befestigung der Anschlussstücke 2, 3 an den Endes des Isolierrohrs 4 kann selbst bei kleinen Abmessungen der Welle 1 ein grosses Drehmoment übertragen und damit eine hohe Beschleunigung des anzutreibenden Elements erreicht werden.In all figures, like reference numerals designate like-acting parts. The embodiments of a shaft 1 according to the invention shown in FIGS. 1 and 2 each contain two connecting pieces 2, 3 made of electrically conductive material, for example aluminum, which can be guided to different electrical potentials, and a tube 4 made of an electrically insulating material which is loadable on torsion Base of a fiber reinforced polymer with good mechanical, thermal and electrical properties. As reinforcing fibers are mainly plastic fibers, such as based on aramid or polyester, but also inorganic fibers, such as glass fibers, into consideration. For manufacturing reasons and for reasons of good mechanical strength in the transmission of torques, it is favorable to use fibers which are arranged in layers in which the fibers at an angle of about 30 ° to 60 °, typically about 45, ° are arranged to the axis of the shaft. In lieu of layers, fibers or mats may in principle be used as the fiber reinforcement or may be used with the fibers Help a winding process be stored stranded. As the polymer are mainly resins based on epoxy or polyester into consideration. To improve the adhesion of the polymeric resin, it may be advantageous to coat the portions of the connecting pieces 2, 3 surrounded by fibers with a primer. The two connecting pieces 2, 3 are attached to one of both ends of the insulating tube 4. Such a shaft 1 can be held for example with the connector 2 at ground potential and performed with the connector 3 to high voltage potential. From an arranged at ground potential, drive not shown then force can be transmitted via the shaft 1 to a driven element, such as a contact arrangement of a high voltage switching device. By suitable attachment of the connecting pieces 2, 3 at the end of the insulating tube 4, even with small dimensions of the shaft 1 can transmit a large torque and thus a high acceleration of the driven element can be achieved.

Bei der Ausführungsform der Welle nach Fig.1 wird die Befestigung erreicht durch zwei Klebverbindungen 5, welche jeweils gebildet sind von einem in ein Ende des Isolierrohrs eingeformten Konus 6, der von der Mantelfläche 7 auf die Innenfläche 8 des Isolierrohrs 4 geführt ist sowie von einem in das Anschlussstück 2 bzw. 3 eingeformten Gegenkonus 9 und von einem von Konus 6 und Gegenkonus 9 gebildeten und mit Klebstoff gefüllten Spalt 10. Die Klebverbindungen 5 erstrecken sich von der der Innenfläche 8 des Isolierrohrs 4 auf dessen Mantelfläche 7. Dadurch wird Kraft von der Klebverbindung 5 unmittelbar in alle im Rohrquerschnitt vorhandenen Fasern der Faserverstärkung eingeleitet. Es werden so Scherkräfte zwischen den einzelnen Fasern minimiert, welche bei Wellen nach dem Stand der Technik auftreten, bei denen eine Klebverbindung lediglich zwischen Mantelfläche 7 und Anschlussstück 2 bzw. 3 vorhanden ist. Da die Kraft über alle Faserlagen des Rohrquerschnitts eingeleitet wird, kann die Welle nicht nur grosse Drehmomente, sondern auch grosse Zugkräfte aufnehmen. Es ist daher nicht nur als Welle, sondern auch als Zugstange geeignet. Bei der Verwendung als Zugstange empfiehlt es sich jedoch, zur Erhöhung der Zugfestigkeit die Fasern vorwiegend in Zugrichtung anzuordnen.In the embodiment of the shaft according to Figure 1, the attachment is achieved by two adhesive bonds 5, which are each formed by a molded into one end of the insulating cone 6, which is guided by the lateral surface 7 on the inner surface 8 of the insulating 4 and of a in the connecting piece 2 or 3 molded counter-cone 9 and a cone formed by 6 and counter cone 9 and filled with adhesive gap 10. The adhesive bonds 5 extend from the inner surface 8 of the insulating tube 4 on the lateral surface 7. This is force from the Adhesive 5 introduced directly into all present in the tube cross-section fibers of the fiber reinforcement. It shearing forces between the individual fibers are minimized, which occur in waves according to the prior art, in which an adhesive bond is only present between the lateral surface 7 and connector 2 and 3 respectively. Since the force is introduced across all fiber layers of the pipe cross-section, the shaft can not only record large torques, but also large tensile forces. It is therefore not only suitable as a shaft, but also as a pull rod. When used as a tie rod, however, it is advisable to increase the tensile strength to arrange the fibers mainly in the pulling direction.

Ist entsprechend der Darstellung in Fig.1 die Faserverstärkung des Isolierrohrs 4 durch Wickeln lageweise abgelegter Fasern 11 gebildet, so sollte der Konus 6 die Faserlagen 11 unter einem Winkel von ca. 10 bis 30°, bezogen auf die Achse des Isolierrohrs, schneiden. Es hat sich gezeigt, dass bei Belastung der Welle 1 mit Drehmoment die Klebverbindung 5 dann die zu übertragende Kraft in praktisch alle Faserlagen 11 gleichzeitig und gleichmässig einleitet. Diese Weiterbildung der Welle 1 kann daher besonders grosse Drehmomente übertragen.If, as shown in FIG. 1, the fiber reinforcement of the insulating tube 4 is formed by winding layers of deposited fibers 11, the cone 6 should cut the fiber layers 11 at an angle of approximately 10 to 30 ° relative to the axis of the insulating tube. It has been found that when the shaft 1 is loaded with torque, the adhesive bond 5 then the force to be transmitted in virtually all Fiber layers 11 simultaneously and uniformly initiates. This development of the shaft 1 can therefore transmit particularly large torques.

Die gemäss Fig.1 ausgeführte Welle 1 kann wie nachfolgend angegeben gefertigt werden:

  • Ablängen eines Vorläuferkörpers des Isolierrohrs 4 aus einem durch Nasswickeln vorgefertigten Isolierrohr grosser Länge,
  • Einformen der Konusse 6 in den Vorläuferkörper durch Drehen und/oder Schleifen,
  • Einformen der Gegenkonusse 9 in die beiden Anschlussstücke 2 und 3,
  • Vorbehandeln der Konusse 6 und der Gegenkonusse 9 mit einem geeigneten Klebstoff, etwa auf der Basis Epoxy,
  • Zusammenfügen von Isolierrohr 4 und Anschlussstücken 2, 3 unter Bildung der schmalen Klebstoffspalte 10, und
  • Aushärten des Klebstoffs unter Bildung der Welle 1.
The shaft 1 designed according to FIG. 1 can be manufactured as indicated below:
  • Cutting a precursor body of the insulating tube 4 from a prefabricated by wet winding insulating large length,
  • Molding the cone 6 into the precursor body by turning and / or grinding,
  • Molding the counter-cones 9 into the two connecting pieces 2 and 3,
  • Pretreating the cones 6 and the counter-cones 9 with a suitable adhesive, for example based on epoxy,
  • Assembling of insulating 4 and fittings 2, 3 to form the narrow adhesive gaps 10, and
  • Curing the adhesive to form the shaft 1.

Alternativ kann das Isolierrohr 4 aber auch durch Pultrusion gefertigt werden oder durch irgendein anderes Verfahren, welches zur Herstellung von faserverstärkten Polymerrohren geeignet ist.Alternatively, however, the insulating tube 4 can also be manufactured by pultrusion or by any other method which is suitable for the production of fiber-reinforced polymer tubes.

Bei der Fertigung der Welle 1 bildet sich ein von der Innenfläche 8 des Isolierrohrs 4 und den Anschlussstücken 2, 3 begrenzter Hohlraum 71. Dieser Hohlraum ist praktisch gasdicht. Um zu verhindern, dass sich beim Verkleben während des Fertigungsvorgangs oder später infolge erhöhter Temperaturen beim Betrieb der Welle 1 unerwünschter Druck im Hohlraum aufbaut, mündet der Hohlraum 71 in einen nach aussen geführten Druckausgleichskanal 72. Dieser Kanal verbindet den Hohlraum 71 mit dem die Welle 1 umgebenden Aussenraum und baut so einen möglicherweise im Hohlraum entstehenden Überdruck ab. Aus Gründen eines günstigen elektrischen Verhaltens der Welle ist dieser Kanal mit Vorteil in dielektrisch schwach belasteten Bereichen der Welle vorgesehen und ist - wie Fig.1 entnommen werden kann - mit Vorteil radial durch die Wand des Isolierrohrs 4 geführt und in der Mitte zwischen den beiden Anschlussstücke 2, 3 angeordnet und/oder axial durch eines der Anschlussstücke 2, 3 geführt. Typischerweise ist der Druckausgleichskanal als Bohrung mit einem Durchmesser von einigen mm Durchmesser, beispielsweise 2 bis 4 mm, ausgeführt.During manufacture of the shaft 1, a cavity 71 defined by the inner surface 8 of the insulating tube 4 and the connecting pieces 2, 3 is formed. This cavity is practically gas-tight. In order to prevent undesired pressure builds up in the cavity during bonding during the manufacturing process or later due to elevated temperatures during operation of the shaft 1, the cavity 71 opens into an outwardly directed pressure equalization channel 72. This channel connects the cavity 71 with the shaft 1 surrounding outer space and thus reduces a possibly resulting in the cavity pressure. For reasons of favorable electrical behavior of the shaft, this channel is provided with advantage in dielectrically weakly loaded areas of the shaft and is - as Figure 1 can be seen - advantageously guided radially through the wall of the insulating 4 and in the middle between the two connectors 2, 3 arranged and / or axially guided by one of the connecting pieces 2, 3. Typically, the pressure equalization channel is designed as a bore with a diameter of a few mm diameter, for example 2 to 4 mm.

Bei der Ausführungsform der Welle nach Fig.2 wird die Befestigung erreicht durch zwei Einbettungen 12, welche als einzubettendes Teil 13 jeweils einen in Richtung der Achse des Isolierrohrs 4 erstreckten Abschnitt des Anschlussstücks 2, 3 aufweisen und als Einbettkörper 14 einen Endabschnitt des Isolierrohrs 4. Die Einbettungen 12 werden in einem Giessverfahren gebildet, in dem ein vorgefertigter, die Anschlussstücke 2, 3 und einen Faserkörper enthaltender Vorläuferkörper der Welle 1 mit Polymer umgossen wird.In the embodiment of the shaft according to Figure 2, the attachment is achieved by two embeds 12, which as einzubettendes part 13 in each case one in the direction of the axis of the insulating 4 extended portion of the connector 2, 3rd The embedding 12 are formed in a casting process, in which a prefabricated, the connecting pieces 2, 3 and a fiber body containing precursor body of the shaft 1 is encapsulated with polymer.

Durch die Einbettung werden Formschluss und Spielfreiheit zwischen dem eingebetteten Anschlussstück 2 bzw. 3 und dem Isolierrohr 4 erzielt und können so grosse Zugkräfte und Drehmomente unabhängig von einer Klebverbindung übertragen werden. Da diese Welle giesstechnisch hergestellt wird, entfallen Nachbearbeiten des Isolierrohres und Einkleben der Anschlussstücke. Durch präzise Kontrolle des Giessverfahrens lassen sich zudem eine gute Qualität des Isolierrohrs 4 und damit auch der Welle 1 erreichen, insbesondere in Hinblick auf ein vorteilhaftes dielektrisches Verhalten und gute mechanische Eigenschaften.By embedding positive engagement and freedom from play between the embedded connector 2 and 3 and the insulating 4 are achieved and can be so large tensile forces and torques transmitted independently of an adhesive bond. Since this wave is produced by casting, no further processing of the insulating tube and gluing the fittings. By precise control of the casting process, it is also possible to achieve a good quality of the insulating tube 4 and thus also of the shaft 1, in particular with regard to advantageous dielectric behavior and good mechanical properties.

Fig.3 zeigt, dass der eingebettete Abschnitt 13 des Anschlussstücks 2 als Formschlusselement ausgeführt ist und in Umfangsrichtung um die Achse des Isolierrohrs 4 ein von einem Kreis abweichendes, Profil 15, beispielsweise nach Art eines Polygons, aufweist. Es wird so Formschluss zwischen dem Isolierrohr 4 und dem Anschlussstück 2 erreicht. Entsprechend kann Formschluss auch zwischen dem Isolierrohr 4 und dem Anschlussstück 3 erreicht werden. Anstelle eines Polygons kann das Profil auch Ellipsenstruktur oder andere rotationsabhängige Struktur aufweisen. Es wird so ein besonders gutes Übertragungsverhalten beim Auftreten grosser Drehmomente erreicht, wie dies beispielsweise von einer Antriebswelle für ein Kontaktsystem eines Hochstromgeräts gefordert wird. In das Profil können gegebenenfalls auch in Umfangsrichtung erstreckte Vertiefungen oder Aufweitungen eingeformt sein. Hierdurch wird zusätzlich Formschluss bei Zugbelastung erreicht.3 shows that the embedded portion 13 of the connecting piece 2 is designed as a form-locking element and in the circumferential direction about the axis of the insulating 4 a deviating from a circle, profile 15, for example in the manner of a polygon having. It is thus achieved positive connection between the insulating tube 4 and the connector 2. Accordingly, positive locking can also be achieved between the insulating tube 4 and the connecting piece 3. Instead of a polygon, the profile may also have ellipse structure or other rotation-dependent structure. It is thus achieved a particularly good transmission behavior when large torques occur, as required for example by a drive shaft for a contact system of a high current device. If appropriate, depressions or widenings which extend in the circumferential direction can also be molded into the profile. As a result, positive engagement is achieved in addition to tensile load.

Aus den Figuren 2 und 3 kann entnommen werden, dass das Anschlussstück 2 einen in Richtung der Achse des Isolierrohrs 4 geführten Längskanal 16 enthält. Ein bei der Fertigung des Isolierrohrs 4 im Giessprozess zur Stützung der Innenwand des Faserkörpers verwendeter, in den Figuren 5 und 6 dargestellter elastischer Formkörper 22 aus einem elastomeren Material, wie Silikon, kann nach der Fertigung der Welle 1 durch diesen Kanal entfernt werden. Der Formkörper 22 weist eine an das Profil 15 angepasste Mantelfläche auf und ist mit Vorteil hohl ausgebildet. Er kann dann nämlich von innen mit Druck beaufschlagt werden und sich infolge seiner elastischen Ausbildung radial nach aussen erweitern.It can be seen from FIGS. 2 and 3 that the connecting piece 2 contains a longitudinal channel 16 guided in the direction of the axis of the insulating tube 4. A used during the production of the insulating 4 in the casting process to support the inner wall of the fiber body, shown in Figures 5 and 6 elastic shaped body 22 made of an elastomeric material, such as silicone, can be removed after manufacture of the shaft 1 through this channel. The molded body 22 has a lateral surface adapted to the profile 15 and is advantageously hollow. He can then namely be pressurized from the inside with pressure and expand radially outwards due to its elastic training.

Aus Fig.2 ist ersichtlich, dass die Faserverstärkung des Isolierrohrs 4 durch Wickeln lageweise abgelegter Fasern 11 gebildet ist. In Fig.2 symbolisch angedeutet sind auch vorwiegend radial durch die Faserlagen 11 geführte Verstärkungsfasem 17. Mit einem Anteil von ca. 0,5 bis 5 %, vorzugsweise 1 bis 3 %, bewirken diese Fasern eine besonders hohe Torsionsfestigkeit des Isolierrohrs 4 und damit auch der Welle 1.From Fig.2 it can be seen that the fiber reinforcement of the insulating tube 4 is formed by winding layers of deposited fibers 11. Symbolically indicated in FIG. 2 are also reinforcing fibers 17 guided radially predominantly by the fiber layers 11. With a proportion of approximately 0.5 to 5%, preferably 1 to 3%, these fibers produce a particularly high torsional strength of the insulating tube 4 and thus also the wave 1.

Die Welle 1 gemäss den Figuren 2 und 3 kann mit der aus Fig. 4 ersichtlichen Vorrichtung gefertigt werden. Diese Vorrichtung enthält ein Wickelwerkzeug 20 mit einem drehbar gelagerten Wickelkern 21. Der Wickelkern 21 ist von den beiden Anschlussstücken 2, 3 und dem zwischen den beiden Anschlussstücken angeordneten elastischen Formkörper 22 gebildet und dient der Aufnahme eines Faserkörpers 23. Der Faserkörper 23 ist durch Wickeln eines vorgespannten Kunstfasergeleges 24, vorzugsweise auf der Basis Aramid mit einem Flächengewicht von einigen Hundert Gramm pro m2, beispielsweise 300 g/m2, entstanden. Der Faserkörper 23 weist daher die in Fig.2 dargestellten Faserlagen 11 auf. Zusätzlich kann der Faserkörper 23 durch die in Fig.2 dargestellten, radial geführten Fasern 17 verstärkt sein. Im Wickelwerkzeug 20 wird nun ein der zu fertigenden Welle 1 hinsichtlich ihrer geometrischen Abmessungen weitgehend entsprechender Vorläuferkörper 31 gebildet. Dieser Vorläuferkörper umfasst die in Fg.2 dargestellten und in das Isolierrohr 4 einzubettenden Abschnitte 13 der Anschlussstücke 2, 3.The shaft 1 according to Figures 2 and 3 can be manufactured with the device shown in FIG. 4. This device comprises a winding tool 20 with a rotatably mounted winding core 21. The winding core 21 is formed by the two connecting pieces 2, 3 and arranged between the two connecting pieces of elastic molded body 22 and serves to receive a fiber body 23. The fiber body 23 is by winding a biased Kunstfasergeleges 24, preferably based on aramid having a basis weight of a few hundred grams per m 2 , for example, 300 g / m 2 , emerged. The fiber body 23 therefore has the fiber layers 11 shown in FIG. In addition, the fiber body 23 may be reinforced by the radially guided fibers 17 shown in FIG. In the winding tool 20, a shaft 1 to be produced is now formed with respect to its geometrical dimensions largely corresponding precursor body 31. This precursor body comprises the sections 13 of the connecting pieces 2, 3 shown in FIG. 2 and to be embedded in the insulating tube 4.

Der Vorläuferkörper 31 wird in ein Aufschrumpfwerkzeug 30 gebracht. Das Aufschrumpfwerkzeug weist eine hohlzylinderförmig ausgeführte Vakuumkammer 32 auf, deren zwei Stirnseiten jeweils eine Öffnung 33 bzw. und 34 zum Einbringen des Vorläuferkörpers 31 enthalten. Im Inneren der Kammer 32 ist ein den Faserkörper 23 mit Abstand umgebender, elastischer Formkörper 35 vorgesehen, der wie der Formkörper 22 aus einem elastomeren Material, vorzugsweise Silikon, besteht. Der Formkörper 35 ist hohlzylindrisch ausgebildet und weist wie der Formkörper 22 in Umfangsrichtung polygonales Profil auf. Seine beiden Enden werden jeweils von als Dichtungskörper wirkenden ringförmigen Rändern 36 und 37 gebildet. Diese Ränder sind vakuumfest abgestützt auf radial verlaufenden und die Öffnungen 33, 34 umfassenden Dichtungsflächen 38, 39. Vor dem Einbringen des Vorläuferkörpers 31 wird an die Vakuumkammer 32 Unterdruck gelegt und so der Formkörper 35 unter Bildung von Vorspannung radial nach aussen geführt (Darstellung gemäss Fig.4). Im vergrösserten. Durchmesser des Formkörpers 35 findet nun der Vorläuferkörper beim Einbringen in das Aufschrumpfwerkzeug ausreichend Platz. Durch Füllen der Vakuumkammer mit Luft wird der Formkörper 35 nach innen verschoben (Richtungspfeile gemäss Fig. 4) und mit einer vorbestimmten Vorspannung auf den Faserkörper 23 des Vorläuferkörpers 31 aufgeschrumpft.The precursor body 31 is brought into a shrink-on tool 30. The shrink-fit tool has a hollow-cylindrical vacuum chamber 32, whose two end faces each contain an opening 33 or and 34 for introducing the precursor body 31. In the interior of the chamber 32, a fiber body 23 is spaced surrounding, elastic molded body 35 which, like the molded body 22 made of an elastomeric material, preferably silicone. The molded body 35 is formed as a hollow cylinder and, like the molded body 22, has a polygonal profile in the circumferential direction. Its two ends are each formed by acting as a sealing body annular edges 36 and 37. These edges are vacuum-firmly supported on radially extending and the openings 33, 34 comprehensive sealing surfaces 38, 39. Before introducing the precursor body 31 is placed on the vacuum chamber 32 negative pressure and so the molded body 35 to form bias radially outward (shown in FIG .4). In the enlarged. Diameter of the molded body 35 is now the precursor body when introduced into the Aufschrumpfwerkzeug enough space. By filling the vacuum chamber with air, the molded body 35 is displaced inwardly (direction arrows as shown in FIG. 4) and shrunk onto the fiber body 23 of the precursor body 31 with a predetermined bias.

Der Vortäuferkörper 31 und die seinen Faserkörper 23 stützenden elastischen Formkörper 22 und 35 werden in eine zweiteilige vakuum- und druckfeste Giessform 40 mit einer Unterform 41 und einer Oberform 42 gebracht. Diese Giessform ist in den Figuren 5 und 6 in Schnitt dargestellt. Nach dem Entfernen der Oberform 42 wird der von den Formkörpern 22, 35 und zwei Ringen 43, 44 gestützte Vorläuferkörper 31 in die Unterform 42 gebracht. Die beiden Ringe 43, 44 sind aus Metall, vorzugsweise einem harzresistenten Stahl, und stützen die beiden Ränder 36, 37 des Formkörpers 35 weitgehend vakuum- und flüssigkeitsdicht ab. Nach dem Einbringen des Vorläuferkörpers 31 in die Unterform 41 wird die Oberform 42 aufgebracht und mit Hilfe von Befestigungsmitteln gegen die Unterform 41 gepresst. Dichtungsringe 45 und 46 dichten dann das Innere der Giessform 40 weitgehend vakuum-, druck- und flüssigkeitsdicht nach aussen ab. Durch Öffnungen 47 und 48 der Giessform 40 sind die Anschlussstücke 2, 3 nach aussen geführt. Eine weitere Öffnung ins Forminnere stellt der Längskanal 16 dar, durch den ein offenes und mit einer Druckgasquelle verbindbares Ende des ballonartig ausgeführten Formkörpers 22 geführt ist. Durch eine Öffnung 49 kann flüssiges Polymer, beispielsweise Epoxidharz, ins Forminnere geführt werden. Eine weitere Öffnung 50 dient dem Entlüften des Forminneren und ist mit einer Vakuumanlage verbindbar.The pre-cursor body 31 and its fibrous body 23 supporting elastic moldings 22 and 35 are placed in a two-part vacuum and pressure resistant mold 40 with a lower mold 41 and an upper mold 42. This mold is shown in Figures 5 and 6 in section. After removing the upper mold 42, the precursor body 31 supported by the moldings 22, 35 and two rings 43, 44 is brought into the lower mold 42. The two rings 43, 44 are made of metal, preferably a resin-resistant steel, and support the two edges 36, 37 of the molded body 35 largely vacuum and liquid-tight. After introducing the precursor body 31 in the lower mold 41, the upper mold 42 is applied and pressed by means of fastening means against the lower mold 41. Sealing rings 45 and 46 then seal the interior of the mold 40 largely vacuum, pressure and liquid-tight to the outside. Through openings 47 and 48 of the mold 40, the fittings 2, 3 are guided to the outside. A further opening into the interior of the mold represents the longitudinal channel 16, through which an open and connectable to a source of compressed gas end of the balloon-shaped shaped body 22 is guided. Through an opening 49, liquid polymer, such as epoxy resin, are guided into the interior of the mold. Another opening 50 serves for venting the interior of the mold and can be connected to a vacuum system.

Zur Fertigung der Welle wird zunächst das Forminnere über die Öffnung 50 evakuiert und wird Druckgas über den Längskanal 16 in den Formkörper 22 eingelassen. Durch den sich hierbei dehnenden Formkörper 22 wird der Längskanal 16 nach aussen abgedichtet. Wie aus Fig.6 ersichtlich ist, wird sodann flüssiges Polymer 51 über die Öffnung 49 zugeführt. Das Harz strömt durch einen nicht bezeichneten, zwischen Stützring 43 und Anschlussstück 2 befindlichen Ringspalt in den Faserkörper 23 und tränkt diesen vollständig. Durch den unter Druck stehenden, gedehnten und den Kanal 16 abdichtenden Formkörper 22 wird vermieden, dass Harz durch den Längskanal 16 austreten kann. Die Zufuhr von Polymer 51 wird beendet, sobald der Faserkörper 23 vollständig getränkt ist. Die Öffnungen 49 und 50 werden verschlossen. Der unter Druck stehende elastische Formkörper 22 und der durch die Unter- und Oberform 41, 42 gestützte Formkörper 35 wirken nun formgebend auf den polymergetränkten Faserkörper 23 ein. Gegebenenfalls noch im flüssigen Polymer befindliche Gasbläschen werden zugleich auf dielektrisch unwirksame Grössen komprimiert. Unter Druck stehend wird sodann das Polymer bei erhöhten Temperaturen gehärtet. Hierbei bilden sich das aus Fig. 2 ersichtliche Isolierrohr 4 mit den beiden Einbettungen 12 bzw. die Welle 1. Nach dem Härten des Polymers kann der Formkörper 22 druckentlastet und infolge seiner elastischen Verformbarkeit zerstörungsfrei durch den Längskanal 16 aus dem Inneren der Giessform 40 bzw. der Welle 1 entfernt werden. Die Welle 1 kann nach dem Entfernen der Oberform 42 der Unterform 41 entnommen werden.To produce the shaft, the interior of the mold is first evacuated via the opening 50 and pressurized gas is introduced into the molding 22 via the longitudinal channel 16. Due to the expanding body 22 in this case, the longitudinal channel 16 is sealed to the outside. As can be seen from FIG. 6, liquid polymer 51 is then supplied via the opening 49. The resin flows through an unnamed, located between the support ring 43 and connector 2 annular gap in the fiber body 23 and impregnates it completely. Due to the pressurized, stretched and the channel 16 sealing moldings 22 is avoided that resin can escape through the longitudinal channel 16. The supply of polymer 51 is stopped as soon as the fiber body 23 is completely saturated. The openings 49 and 50 are closed. The pressurized elastic molded body 22 and the molded body 35 supported by the lower and upper molds 41, 42 now have a shaping effect on the polymer-impregnated fiber body 23 one. Optionally still located in the liquid polymer gas bubbles are also compressed to dielectrically ineffective sizes. Under pressure, the polymer is then cured at elevated temperatures. After curing of the polymer, the molded body 22 can be pressure-relieved and non-destructive due to its elastic deformability through the longitudinal channel 16 from the interior of the mold 40 and the shaft 1 are removed. The shaft 1 can be removed after removing the upper mold 42 of the lower mold 41.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Wellewave
2, 32, 3
Anschlussstückefittings
44
Isolierrohrinsulating
55
Klebverbindungadhesive bond
66
Konuscone
77
Mantelflächelateral surface
88th
Innenflächepalm
99
Gegenkonuscounter-cone
1010
Klebspaltbonding gap
1111
Faserlagenfiber layers
1212
Einbettungembedding
1313
einzubettendes Teilpart to be embedded
1414
Endabschnittend
1515
Profilprofile
1616
Längskanallongitudinal channel
1717
Verstärkungsfasemreinforcing fibers
2020
Wickelwerkzeugwinding tool
2121
Wickelkernwinding core
2222
Formkörpermoldings
2323
Faserkörperfiber body
2424
KunstfasergelegeSynthetic fiber scrims
3030
Aufschrumpfwerkzeugshrink-fitting
3131
Vorläuferkörperprecursor body
3232
Vakuumkammervacuum chamber
33, 3433, 34
Öffnungenopenings
35,35,
Formkörpermoldings
36, 3736, 37
Rändermargins
38,3938.39
Dichtflächensealing surfaces
4040
Giessformmold
4141
Unterformunder the form
4242
Oberformupper mold
43, 4443, 44
Stützringesupporting rings
45, 4645, 46
Dichtungsringeseals
47, 48, 49, 5047, 48, 49, 50
Öffnungenopenings
7171
Hohlraumcavity
7272
DruckausgleichskanalPressure compensation channel

Claims (17)

  1. Shaft (1) with two connecting pieces (2, 3), which can be connected to different electric potentials, made of electrically conductive material and also an insulating tube (4) made of electrically insulating material based on a fibre-reinforced polymer, which can be subjected to torsional loading, in which the two connecting pieces (2, 3) are respectively fastened to one of the two ends of the insulating tube (4), characterized in that the following means are provided for fastening at least one of the two connecting pieces (2, 3) to the insulating tube (4) :
    an adhesive joint (5), which is formed by a cone (6) formed into one end of the insulating tube (4) and made to run from the circumferential surface (7) to the inner surface (8) of the insulating tube (4) and also by a mating cone (9) formed into the at least one connecting piece (2, 3), and by a gap (10) formed by the cone (6) and mating cone (9) and filled with adhesive.
  2. Shaft (1) with two connecting pieces (2, 3), which can be connected to different electric potentials, made of electrically conductive material and also an insulating tube (4) made of electrically insulating material based on a fibre-reinforced polymer, which can be subjected to torsional loading, in which the two connecting pieces (2, 3) are respectively fastened to one of the two ends of the insulating tube (4), characterized in that the following means are provided for fastening at least one of the two connecting pieces (2, 3) to the insulating tube (4):
    an embedding (12), which has, as the part (13) to be embedded, a portion of the at least one connecting piece (2, 3) that is made to extend in the direction of the axis of the insulating tube (4) and, as the embedding body (14), the end portion of the insulating tube (4) produced by a casting process, and the embedded part (13) of the at least one connecting piece (2, 3) being configured as a positive-engaging element and the positive-engaging element having a profile (15) other than that of a circle.
  3. Shaft according to Claim 1, characterized in that the fibre reinforcement of the insulating tube (4) is formed by winding fibres (11) laid layer by layer, and in that the cone (6) intersects the layers (11) at an angle of about 10 to 30°, in relation to the axis of the insulating tube (4).
  4. Shaft according to either of Claims 1 and 3, characterized in that the cavity (71) bounded by the inner surface (8) of the insulating tube (4) and the connecting pieces (2, 3) is connected to a pressure-equalizing channel (72) made to run out of the shaft (1).
  5. Shaft according to Claim 2, characterized in that one of the connecting pieces (2, 3) has a longitudinal channel (16) made to run in the direction of the axis of the insulating tube (4).
  6. Shaft according to one of Claims 1 to 5, characterized in that the fibre reinforcement of insulating tube (4) is formed by winding fibres (11) laid layer by layer and by reinforcing fibres (17) predominantly made to run radially through the layers of fibre (11).
  7. Shaft according to Claim 6, characterized in that the proportion of predominantly radially running reinforcing fibres (17) makes up about 0.5 to 5%, preferably 1 to 3%, of the fibre reinforcement.
  8. Method for producing a shaft according to Claim 1 or 2, characterized by the following method steps:
    a preform (31) corresponding largely to the finished shaft (1) with regard to its geometrical dimensions is formed from the connecting pieces (2, 3) and a tubular fibre body (23),
    the inner surface and the circumferential surface of the tubular fibre body (23) are supported by flexible, gas- and liquid-impermeable mouldings (22, 35) before they are introduced into the casting mould (40),
    the fibre body (23) and a portion of the preform (31) which comprises parts of the two connecting pieces (2, 3) enclosed by the fibre body (23) is placed into a casting mould (40),
    the fibre body is impregnated with liquid polymer (51) in the casting mould (40), and
    the polymer-impregnated fibre body (23) is cured, thereby forming the insulating tube (4) fixing the connecting pieces (2, 3).
  9. Method according to Claim 8, characterized in that the flexible moulding (35) supporting the outer circumferential surface is made to expand in the radial direction before it is applied to the fibre body (23).
  10. Method according to either of Claims 8 and 9, characterized in that, during curing, the mouldings (22, 35) are subjected to a pressure determining the form of the insulating tube (4).
  11. Method according to either of Claims 9 and 10, characterized in that the fibre body (23) is formed by winding a number of layers of fibre (11), which layers of fibre (11) are laid onto a winding core (21), which is formed by the connecting pieces (2, 3) and the flexible moulding (22) supporting the inner surface of the fibre body (23).
  12. Method according to Claim 11, characterized in that, during the production of the fibre body (23), predominantly radially aligned reinforcing fibres (17) are additionally made to run through the layers of fibre (11).
  13. Method according to one of Claims 8 to 12, characterized in that the flexible moulding (22) supporting the inner surface of the fibre body (23) is removed after curing through one of the two connecting pieces (2) that is of a hollow form.
  14. Method according to Claim 13, characterized in that the flexible moulding (22) supporting the inner surface of the fibre body (23) is subjected to pressurized gas before the impregnation of the fibre body (23).
  15. Device for carrying out a method according to one of Claims 8 to 14, characterized in that the casting mould (40) has at least five openings (16, 47, 48, 49, 50), of which a first and a second (47, 48) serve for leading through the two connecting pieces (2, 3), a third (49) serves for supplying the liquid polymer (51), a fourth (50) serves for venting the casting mould (40) and a fifth (16) serves for supplying pressurized gas, which pressurized gas acts on the impregnated fibre body (23) in a shaping manner during the curing of the liquid polymer (51).
  16. Device according to Claim 15, characterized in that the device has a winding tool (20) with a winding core (21), which is formed by the two connecting pieces (2, 3) and a flexible moulding (22) arranged between the two connecting pieces (2, 3) and serves for receiving the fibre body (23).
  17. Device according to Claim 16, characterized in that the device has a shrink-fitting tool (30), with a hollow-cylindrically formed vacuum chamber (32), the two end faces of which respectively contain an opening (33, 34) for leading through the winding core (21) wound with the fibre body (23), and also a sealing face (38, 39) arranged in the interior of the chamber (32), made to run radially and enclosing the opening (33, 34), on which sealing face an annular edge (36, 37) of a hollow-cylindrically formed flexible moulding (35) is supported in a vacuum-tight manner
EP03405489A 2003-07-02 2003-07-02 Force transmission element, method and apparatus for producing it Expired - Lifetime EP1494254B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP03405489A EP1494254B1 (en) 2003-07-02 2003-07-02 Force transmission element, method and apparatus for producing it
DE50303036T DE50303036D1 (en) 2003-07-02 2003-07-02 Power transmission element, method for its production and apparatus for carrying out the method
AT03405489T ATE323943T1 (en) 2003-07-02 2003-07-02 POWER TRANSMISSION ELEMENT, METHOD FOR PRODUCING IT AND DEVICE FOR IMPLEMENTING THE METHOD
JP2004192652A JP4549756B2 (en) 2003-07-02 2004-06-30 Shaft, method of manufacturing the shaft, and apparatus for performing the method
RU2004120075/09A RU2339112C2 (en) 2003-07-02 2004-07-01 Shaft, method for its manufacturing, device for method realisation
US10/880,448 US7514635B2 (en) 2003-07-02 2004-07-01 Shaft, method for producing it and device for carrying out the method
CNB2004100620890A CN100358071C (en) 2003-07-02 2004-07-02 Shaft, method for producing it and device for carrying out the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03405489A EP1494254B1 (en) 2003-07-02 2003-07-02 Force transmission element, method and apparatus for producing it

Publications (2)

Publication Number Publication Date
EP1494254A1 EP1494254A1 (en) 2005-01-05
EP1494254B1 true EP1494254B1 (en) 2006-04-19

Family

ID=33427283

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03405489A Expired - Lifetime EP1494254B1 (en) 2003-07-02 2003-07-02 Force transmission element, method and apparatus for producing it

Country Status (7)

Country Link
US (1) US7514635B2 (en)
EP (1) EP1494254B1 (en)
JP (1) JP4549756B2 (en)
CN (1) CN100358071C (en)
AT (1) ATE323943T1 (en)
DE (1) DE50303036D1 (en)
RU (1) RU2339112C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056017A1 (en) * 2008-11-05 2010-05-06 Rolls-Royce Deutschland Ltd & Co Kg Method for producing an engine shaft

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2570055C (en) * 2004-06-25 2010-06-01 Prysmian Cavi E Sistemi Energia S.R.L. Method for covering an elongate object and device for covering said elongate object
DE102006042301B4 (en) * 2006-09-08 2018-02-22 Ellergon Antriebstechnik Gmbh Diaphragm compensation clutch and hole reveal connection
CN102187537B (en) * 2008-11-26 2013-11-27 株式会社日立制作所 Gas-insulated switching device
KR101513206B1 (en) * 2013-10-29 2015-04-17 엘에스산전 주식회사 Production method for circuit braker's switching mechanism and press for the same
EP2871653B1 (en) 2013-10-17 2017-04-26 LSIS Co., Ltd. Circuit breaker
WO2016177394A1 (en) * 2015-05-04 2016-11-10 Volvo Truck Corporation Shaft coupling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118473A1 (en) * 2001-04-12 2002-11-21 Basf Coatings Ag Electrically insulating shaft of nonconductive material serving for transmission of rotation between two machine units at different electrical potentials is provided with a disk-like, radially thickened section

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB816926A (en) * 1956-05-07 1959-07-22 British Insulated Callenders Method of attaching fittings to rods or tubes of resin-bonded fibre and fittings attached to such rods or tubes
FR1378902A (en) * 1963-08-20 1964-11-20 Comp Generale Electricite A method of manufacturing an anchoring bar with high mechanical and electrical resistance and the bar thus obtained
US3378282A (en) * 1965-12-30 1968-04-16 Amp Inc Tube coupling
US3717717A (en) * 1970-04-20 1973-02-20 Joslyn Mfg & Supply Co Shrinkable cable joint sleeve, cable joint employing the same, and method of forming a cable joint
JPS51723B1 (en) * 1970-09-11 1976-01-10
DD118197A1 (en) * 1975-03-07 1976-02-12
JPS5399261A (en) * 1977-02-10 1978-08-30 Fukai Kougiyou Kk Joint production
DE2855570C2 (en) * 1978-12-22 1985-06-20 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Rod-shaped component
GB2053766B (en) * 1979-07-24 1983-01-06 Fulmer Res Inst Ltd Mounting connectors on elongate members
DE3218521C2 (en) * 1982-05-17 1985-03-21 Goetze Ag, 5093 Burscheid Torsionally elastic rotational body and method of manufacture
JPS58211011A (en) * 1982-06-01 1983-12-08 Mitsubishi Rayon Co Ltd Transmission axle made of fiber reinforced composite material
CH659155A5 (en) * 1983-03-28 1986-12-31 Sprecher & Schuh Ag MECHANICALLY STRESSIBLE, ELECTRICALLY INSULATING, FIBER ARMED PLASTIC ROD WITH END ARMATURE AND METHOD FOR THEIR PRODUCTION.
GB8526377D0 (en) * 1985-10-25 1985-11-27 Raychem Gmbh Cable connection
US4688969A (en) * 1986-04-02 1987-08-25 Puget Sound Power And Light Company Electrical ground rod installation device
DK156351C (en) * 1986-05-07 1990-01-02 Nordiske Kabel Traad PROCEDURE FOR RESTORING SEMI-CONDUCTIVE LAYERS ABOUT A CABLE SPLIT AND CABLE FOR USE IN EXERCISING THE PROCEDURE
JPH058335Y2 (en) * 1986-05-21 1993-03-02
DE3761847D1 (en) * 1986-12-04 1990-04-12 Siemens Ag FIBER REINFORCED PUSH OR TOW BAR.
DE3641632A1 (en) * 1986-12-04 1988-06-16 Siemens Ag Process for producing a fibre-reinforced compression or tensile rod
JPS6448411U (en) * 1987-09-18 1989-03-24
JPH01126412A (en) * 1987-11-10 1989-05-18 Sumitomo Chem Co Ltd Manufacture of fiber reinforced resin made transmission pipe
US4883925A (en) * 1988-05-02 1989-11-28 Graf Albert C Sealed solder connector assembly and method of use
JPH04124196U (en) * 1991-04-26 1992-11-11 リヨービ株式会社 Laminated tube for rotating force transmission
JPH0666310A (en) * 1992-08-19 1994-03-08 Sumitomo Metal Ind Ltd Drive shaft made of fiber-reinforced plastic
JP2992184B2 (en) * 1993-03-08 1999-12-20 三菱電機株式会社 Insulated operating rod
DE19737995A1 (en) * 1997-08-30 1999-03-04 Micafil Isoliertechnik Ag Component
DE60025473T2 (en) * 1999-04-09 2008-03-06 Central Japan Railway Co., Nagoya STRAIGHT CONNECTION FOR CABLES
JP4050023B2 (en) * 2001-09-17 2008-02-20 三菱電機株式会社 Insulated operation rod

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118473A1 (en) * 2001-04-12 2002-11-21 Basf Coatings Ag Electrically insulating shaft of nonconductive material serving for transmission of rotation between two machine units at different electrical potentials is provided with a disk-like, radially thickened section

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056017A1 (en) * 2008-11-05 2010-05-06 Rolls-Royce Deutschland Ltd & Co Kg Method for producing an engine shaft

Also Published As

Publication number Publication date
JP4549756B2 (en) 2010-09-22
RU2004120075A (en) 2006-01-10
CN100358071C (en) 2007-12-26
US7514635B2 (en) 2009-04-07
DE50303036D1 (en) 2006-05-24
EP1494254A1 (en) 2005-01-05
JP2005024095A (en) 2005-01-27
US20050000722A1 (en) 2005-01-06
RU2339112C2 (en) 2008-11-20
ATE323943T1 (en) 2006-05-15
CN1577681A (en) 2005-02-09

Similar Documents

Publication Publication Date Title
DE3331021A1 (en) ROD-SHAPED HOLLOW BODY FOR TRANSMITTING PRESSURE, TENSION, BENDING AND TWISTING FORCES, METHOD FOR THE PRODUCTION THEREOF AND DEVICE FOR IMPLEMENTING THE DESCRIBED METHOD
DE3025407C2 (en)
DE102006047412B4 (en) Bar-shaped fiber composite structure with load introduction elements and method for the production
EP1494254B1 (en) Force transmission element, method and apparatus for producing it
EP2602496A1 (en) Connection between two components and method for connecting two components
WO2009112017A2 (en) Method for producing a rotor blade for a wind power plant and a rotor blade produced according to said method
DE102012202653A1 (en) Method for producing fiber-reinforced plastic component, involves forming cavity between primary molding tool portion and secondary molding tool portion, injecting resin into cavity and removing plastic component
DE112020006763T5 (en) METHOD OF MANUFACTURE OF FIBER REINFORCED RESIN PIPE BODY
EP1584452B1 (en) Process for forming a formstable hollowlike element having a bottom and use of such an element.
DE102010054094B3 (en) Force application element for fixing in or on fiber-plastic composite component, has plastic structure having double-cone-shape in which base surface and contact surfaces are made of bulk molding compound
DE102011009506A1 (en) Device for manufacturing hollow mold part from fiber-reinforced composite in e.g. automotive engineering, has inner molding tool whose upper surface includes flow channel opened towards cavity and applied with reactive polymer matrix
EP3142843B1 (en) Method for producing a damper tube from a composite fiber material for a vibration damper
DE102016002856A1 (en) Process for producing a resin molded article and resin molded article
DE102020111542A1 (en) Process for potting an FSM rotor by injection molding and an FSM rotor with injection-molded rotor potting
DE2509607A1 (en) STABISOLATOR AND METHOD OF MANUFACTURING THE SAME
DE1440200B2 (en) CONNECTING ELEMENT FOR HANGING INSULATORS OF THE CAP AND LOCKING TYPE IN AN ISOLATOR CHAIN AND A PROCESS FOR MANUFACTURING SUCH CONNECTING ELEMENTS
DE10054714A1 (en) Sealing cable into/onto cable leadthrough channel involves spraying an especially elastomeric sealing element, applying mold, injecting hollow volume with harder plastic material
DE102004009744B4 (en) Process for producing a mold core
DE102014201380B4 (en) Process for producing a fiber-reinforced hollow profile component
WO2016030134A2 (en) Method for producing a joint on a component consisting of a fibre-composite material
WO2018082808A1 (en) Method for producing a pressure accumulator
EP0311837A1 (en) Hollow profile, especially a pipe made of long-fibre-reinforced plastic, and method of manufacturing such a profile
DE4004812C2 (en)
DE102008045380A1 (en) Method for manufacturing plastic sheathed support that is utilized as cam roller in e.g. patient bed, in medicine technology, involves hardening synthetic resin and producing outer contour of support by post-processing of plastic sheath
EP3441156B1 (en) Methods for producing a matrix for pressure forming of workpieces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050623

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB RESEARCH LTD.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50303036

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060919

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060702

BERE Be: lapsed

Owner name: ABB RESEARCH LTD.

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060702

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090720

Year of fee payment: 7

Ref country code: SE

Payment date: 20090715

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090728

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100703

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180719

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303036

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303036

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303036

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303036

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303036

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303036

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50303036

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303036

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50303036

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220720

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50303036

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527