EP1481742B1 - Control computer and computer-aided determination method for a profile and flatness control for a rolling mill - Google Patents

Control computer and computer-aided determination method for a profile and flatness control for a rolling mill Download PDF

Info

Publication number
EP1481742B1
EP1481742B1 EP04009244A EP04009244A EP1481742B1 EP 1481742 B1 EP1481742 B1 EP 1481742B1 EP 04009244 A EP04009244 A EP 04009244A EP 04009244 A EP04009244 A EP 04009244A EP 1481742 B1 EP1481742 B1 EP 1481742B1
Authority
EP
European Patent Office
Prior art keywords
roll
strip
model
rolling
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04009244A
Other languages
German (de)
French (fr)
Other versions
EP1481742A2 (en
EP1481742A3 (en
Inventor
Johannes Dr. Reinschke
Otto Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003124679 external-priority patent/DE10324679A1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1481742A2 publication Critical patent/EP1481742A2/en
Publication of EP1481742A3 publication Critical patent/EP1481742A3/en
Application granted granted Critical
Publication of EP1481742B1 publication Critical patent/EP1481742B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/02Profile, e.g. of plate, hot strip, sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/04Flatness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/12Roll temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/24Roll wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2269/00Roll bending or shifting
    • B21B2269/02Roll bending; vertical bending of rolls
    • B21B2269/04Work roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product

Definitions

  • the invention relates to a control computer for a rolling mill with at least one rolling stand, which has at least two work rolls for rolling a metal strip and is connected to at least one control computer for determining set values for profile and flatness actuators of the rolling stand and a computer-aided determination of setpoints for profile and Flatness actuators of a rolling stand having at least work rolls for rolling metal strip extending in a strip width direction.
  • the invention starts from a determination procedure for setpoint values for profile and flatness actuators of a roll stand as described in US Pat DE 102 11 623 A1 is described.
  • Input variables are fed to a material flow model describing a metal strip before and after passing through a rolling stand.
  • the material flow model determines online a rolling force curve in the bandwidth direction and feeds it to a roll forming model.
  • the roll deformation model determines therefrom resulting roll deformations and supplies them to a target value determiner, which determines the nominal values for the profile and flatness actuators on the basis of the determined roll deformations and an outlet-side contour progression,
  • the profile value is understood as a scalar measure of the deviation of the strip thickness at the strip edges from the strip thickness in the strip center.
  • the term “contour course” is understood to mean the strip thickness progression minus the strip thickness in the middle of the strip.
  • the term "flatness” initially includes only visible distortions of the metal strip. But the concept of flatness is above that In addition, it is used as a synonym for the internal stresses prevailing in the belt, regardless of whether these internal stresses lead to visible distortions of the metal strip or not.
  • the object of the present invention is to provide a rolling train and a computer-controlled determination method for setpoints for profile and flatness actuators, by means of which predetermined profile values, contour curves and / or flatness curves of the rolled strip can be achieved and maintained better than described in the prior art.
  • the extremely high quality requirements with regard to the accuracy in the compliance of profile, contour and flatness requirements to the rolled strip when leaving the mill should be taken into account.
  • a material flow model input variables are supplied, which describe the metal strip before and after passing through the rolling stand, wherein the material flow model determined online at least one rolling force profile at least in the bandwidth direction and feeds a roll forming model, wherein the Rolling deformation model is fed to a current value of the belt center position, wherein the roll deformation model using the Walzkraftverlaufs resulting roll deformations determined, supplying a setpoint determiner and wherein the setpoint determiner determined on the basis of the determined roll deformations and an outlet side target contour the setpoints for the profile and planarity actuators.
  • a control computer for a rolling train of the type mentioned wherein the rolling mill has at least one measuring device for determining the tape center position of the metal strip, wherein the control computer has a device for determining the desired value and a module for modeling the roll deformation, wherein the module for modeling the roll deformation, at least one module for modeling the roll bending and at least one module for modeling the roll temperature and the roll wear, wherein the module for modeling the roll deformation is coupled to the measuring device and to the device for determining setpoint values.
  • the proposed calculation of nominal values for profile and flatness actuators is also based, in particular, on models which describe the elastic deformation of the work rolls as well as the thermal and wear crowns, because these variables can not be measured at a reasonable cost during the rolling operation.
  • the band runs centrally with respect to the middle of the frame. Rather, it is considered that there is often a so-called swarming, especially when rolling hot-rolled strip, that is to say, within a framework, the strip center position changes to a considerable extent during the course of the strip. Due to the inventive consideration of the tape center position, in particular the wear edges on the work roll surface can be predicted significantly more accurately. It has also been found that by taking into account the band position, the calculated deflection of the set of rollers and the calculated thermal and wear crowns of the work rolls can be determined much more realistically.
  • the model results are still significantly improved if the value of the tape center position is cyclic, preferably e.g. the roller temperature and wear model is supplied. This can e.g. every three seconds.
  • limits for the axial displaceability of the work rolls, in particular CVC rolls, are determined on the basis of the wear contours.
  • a fluctuation range for the strip center position of the strip to be rolled is determined for the roll bending model.
  • the roll bending model is called at least twice for each setpoint determination for at least two different values of the strip center position.
  • the continuous calculation of sensitivities used for profile and flatness control is interpolated between the bend model results during tape running according to the current tape position measured value. In particular, the determined fluctuation range is covered.
  • a rolling train for rolling a metal strip 1 is controlled by a control computer 2.
  • the rolling train shown in Figure 1 has a plurality of rolling stands 3, in particular at least three rolling stands 3, on.
  • In Figure 1 are seven Rolling stands 3 shown.
  • the metal strip 1 is rolled in the rolling line in a rolling direction x and passes through the rolling train at the speed v.
  • the mode of operation of the control computer 2 is preferably determined by a computer program product with which the control computer 2 is programmed.
  • the rolling mill shown in Figure 1 is designed as a finishing train for hot rolling of steel strip or plate.
  • the present invention is not limited to use in a multi-stand finishing line for hot rolling steel strip.
  • the rolling train could also be designed as a cold rolling train (tandem mill) and / or have only one rolling stand (for example a reversing stand) and / or be designed to roll a non-ferrous metal (eg aluminum or copper).
  • the rolling stands 3 have at least work rolls 4 and, as indicated in FIG. 1 for one of the roll stands 3, usually also support rolls 5. You could also have more rollers, such as axially displaceable intermediate rollers. The work rolls can be axially displaceable.
  • scaffold regulators 6 set values for profile and flatness actuators not shown in the drawing are given.
  • the scaffold controllers 6 then regulate the actuators according to the predetermined setpoints.
  • an outflow-side nip course is influenced per rolling stand 3, which adjusts itself between the work rolls 4.
  • the outlet-side roll gap course corresponds to an outlet-side contour profile ⁇ (not shown in the drawing) of the metal strip 1.
  • the setpoint values for the actuators must therefore be determined in such a way that this corresponding roll gap profile results.
  • the control computer 2 is supplied with the input variables ⁇ 0 , S 0 , ⁇ T , S T and other input variables, which are explained in more detail below.
  • the input variables supplied to the control computer 2 include, for example, schedule data such as an input thickness h 0 of the metal strip 1 and, for each rolling stand 3, a total rolling force FW (FIG. 2, hereinafter referred to as rolling force) and a drawdown r. As a rule, they also include a final thickness h n , a desired profile value, a desired final contour profile ⁇ T and a desired flatness profile S T. Most of the rolled metal strip 1 should be as flat as possible.
  • the control computer 2 thus determines the setpoint values from input variables which are supplied to it and which describe the metal strip 1 on the inlet and outlet side.
  • the mid-band position of the metal strip 1 is determined.
  • the measuring device 125 is not shown in FIG.
  • One or more measuring devices for determining the strip center position 125 are preferably arranged between the rolling stands 3. They transmit measured values of the band center position 122 (FIG. 3) or values for deviations of the band center position ⁇ M (FIG. 3) to the control computer 2.
  • the control computer 2 has a module for modeling the work roll flattening 8, a module for modeling the roll bend 9 and a module for modeling the roll temperature and the roll wear 10.
  • the above-mentioned modules 8, 9, 10 together form, optionally with the inclusion of further modules, a module for modeling the roll deformation 7.
  • means for contour determination 12 and a module for modeling the strip deformation 13 are also implemented.
  • the determined desired contour curves ⁇ are fed to a module for modeling the strip deformation 13 in order to determine the associated desired rolling force profiles F R, i in the strip width direction z (compare FIGS. 3 and 4) for the individual rolling stands 3.
  • the belt deformation model 13 is road-related and preferably subdivided into material flow models. The material flow models are used to model online the physical behavior of the metal strip 1 in the nip and are in the DE 102 11 623 A1 described in more detail.
  • the rolling force curve F R (z) is fed to the work roll flattening model 8. Further, in the work roll flattening model 8, parameters such as the tape width, the tape run-in thickness, the stitch loss, the rolling force FW, the work roll radius, and the elastic modulus are supplied to the surface of the work rolls 4.
  • the work roll flattening model 8 detects a flattening characteristic of the work rolls 4 toward the metal strip 1 in the strip width direction z, and gives the flattening history to the target value determiner 11.
  • the rolling force curve F R (z) does not necessarily have to be supplied exclusively to the work roll flattening model 8. It can also be fed to the roll forming model in another way. Thus, the rolling force curve F R (z) can alternatively or additionally be supplied to the roll bending model 9 and / or the roll temperature and wear model 10.
  • Figure 3 shows a longitudinal section through a work roll 4 and a section through the metal strip 1, wherein the plane of the drawing is perpendicular to the rolling direction x.
  • the band thickness direction y and the band width direction z lie parallel to the roll axis 120. Since, in particular during rolling of hot strip by means of a rolling train, so-called swarming of the strip 1 occurs the position of the tape center 122 within the frameworks 3 during the tape running considerably. Only in exceptional cases, therefore, in practice, the roller center 121, which is always perpendicular to the roll axis 120, and the tape center position 120 is not offset from one another.
  • the deviation ⁇ M fluctuates constantly during the rolling operation and can be up to several centimeters. This particularly affects the wear limits of the work rolls 4.
  • the actual wear limits 124 deviate considerably from the wear limits 123 (FIG. 4) that would be expected for a band that always runs in the middle.
  • the exact center strip position 122 which is determined by a measuring device 125, is passed on to the module for modeling the roll deformation 7 (cf. also FIG. 2).
  • a tolerance range for the strip position of the strip to be rolled is determined from the current strip layer measured value 122 and / or from tape layer measured values of the past.
  • the roll bending model 9 is preferably called at least twice for different tape layers.
  • interpolation is performed between the bending model results in accordance with the respective current tape position measured value.
  • the roll temperature and wear model 10 (FIG. 5) is supplied with the current tape position measured value with each model call. This is preferably done cyclically. It is preferably assumed that the deviation of the belt center position ⁇ M changes only relatively slightly between two calls of the roller temperature and wear model 10.
  • a temperature contour and a wear contour for all rolls for the respective roll stand 3 are determined. Since the temperature and the wear of the rollers 4, 5 change over time, the roller temperature and wear model 10 must be called again and again, in particular at regular time intervals. The distance between two calls is typically on the order of one to ten seconds, for example three seconds. In this case, a suitable averaging method for the measured tape center position ⁇ M is used. The temperature and wear contours determined by the roll temperature and wear model 10 are fed to the roll bending model 9 according to FIG.
  • the essential input parameters for the roller temperature and wear model 10 are, as also shown in FIG. 5, belt data, roller data, cooling data, the rolling forces FW and the belt speed v.
  • information about the deviation of the belt center position ⁇ M in the roller temperature and wear model 10 is also included.
  • the roller temperature and wear model 10 in particular the thermal crowning or a temperature contour is determined.
  • the roll bending model 9 is also provided with geometric data of the rolls 4, 5, the rolling force FW, a bending-back force and optionally a roll displacement supplied (see Figure 6).
  • information about the deviation of the strip center position ⁇ M in the roll bending model 9 is also included. With the help of the roll bending model 9, a roll deformation is determined, in particular thus the elastic roll bending contour.
  • the contours determined by the roll bending model 9 and by the roller temperature and wear model 10 are fed to the setpoint determiner 11 according to FIG. Finally, the band thickness curves ⁇ are fed to the setpoint determiner 11.
  • the setpoint determiner 11 can thus determine for each roll stand 3 by difference formation between the outlet-side contour profile ⁇ on the one hand and the determined flattening and deformations of the rolls 4, 5 on the other hand, which residual roll contour must still be realized by the profile and flatness actuators.
  • the outlet-side roll gap contour of the rolling stands 3 can be influenced by various actuators or actuators. Examples include roll deflection, axial roll displacement in CVC rolls, and longitudinal twisting of work rolls 4 ("pair crossing"). Even a locally acting roller heating or cooling is conceivable.
  • the setpoint determiner 11 can determine setpoint values for all these actuators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Numerical Control (AREA)

Abstract

Computer-supported determination process comprises feeding starting parameters describing the metal strip before and after passing through the rolling mill to a material flow model, determining the material flow model in the strip width direction and feeding to a roller deforming model, feeding an actual value of the strip center position to the roller deforming module, determining the roller deforming model using the roller force progression and feeding to a theoretical determining unit, and determining the theoretical values for the profile and planarity adjusting parts. An independent claim is also included for a control computer for determining the theoretical values for the profile and planarity adjusting parts.

Description

Die Erfindung betrifft einen Steuerrechner für eine Walzstraße mit mindestens einem Walzgerüst, das mindestens zwei Arbeitswalzen zum Walzen eines Metallbandes aufweist und mit mindestens einem Steuerrechner zur Ermittlung von Sollwerten für Profil- und Planheitsstellglieder des Walzgerüsts verbunden ist sowie ein rechnergestütztes Ermittlungsverfahren für Sollwerte für Profil- und Planheitsstellglieder eines Walzgerüsts mit zumindest Arbeitswalzen zum Walzen von Metallband, das sich in einer Bandbreitenrichtung erstreckt.The invention relates to a control computer for a rolling mill with at least one rolling stand, which has at least two work rolls for rolling a metal strip and is connected to at least one control computer for determining set values for profile and flatness actuators of the rolling stand and a computer-aided determination of setpoints for profile and Flatness actuators of a rolling stand having at least work rolls for rolling metal strip extending in a strip width direction.

Die Erfindung geht dabei von einem Ermittlungsverfahren für Sollwerte für Profil- und Planheitsstellglieder eines Walzgerüsts aus wie es in der DE 102 11 623 A1 beschrieben wird. Gemäß der DE 102 11 623 A1 werden einem Materialflussmodell Eingangsgrößen zugeführt, die ein Metallband vor und nach dem Durchlaufen eines Walzgerüstes beschreiben. Das Materialflussmodell ermittelt online einen Walzkraftverlauf in Bandbreitenrichtung und führt ihn einem Walzenverformungsmodell zu. Das Walzenverformungsmodell ermittelt daraus sich ergebende Walzenverformungen und führt sie einem Sollwertermittler zu, der anhand der ermittelten Walzenverformungen und eines auslaufseitigen Konturverlaufs die Sollwerte für die Profil- und Planheitsstellglieder ermittelt,The invention starts from a determination procedure for setpoint values for profile and flatness actuators of a roll stand as described in US Pat DE 102 11 623 A1 is described. According to the DE 102 11 623 A1 Input variables are fed to a material flow model describing a metal strip before and after passing through a rolling stand. The material flow model determines online a rolling force curve in the bandwidth direction and feeds it to a roll forming model. The roll deformation model determines therefrom resulting roll deformations and supplies them to a target value determiner, which determines the nominal values for the profile and flatness actuators on the basis of the determined roll deformations and an outlet-side contour progression,

Im Rahmen der vorliegenden Beschreibung werden folgende Begriffsdefinitionen verwendet: Der "Profilwert" wird als skalares Maß für die Abweichung der Banddicke an den Bandrändern von der Banddicke in der Bandmitte verstanden. Unter "Konturverlauf" wird der Banddickenverlauf abzüglich der Banddicke in der Bandmitte verstanden. Der Begriff "Planheit" umfasst von seinem Wortsinn her zunächst nur sichtbare Verwerfungen des Metallbandes. Der Begriff der Planheit wird aber darüber hinaus als Synonym für die im Band herrschenden inneren Spannungen verwendet, und zwar unabhängig davon, ob diese inneren Spannungen zu sichtbaren Verwerfungen des Metallbandes führen oder nicht.In the context of the present description, the following definitions of terms are used: The "profile value" is understood as a scalar measure of the deviation of the strip thickness at the strip edges from the strip thickness in the strip center. The term "contour course" is understood to mean the strip thickness progression minus the strip thickness in the middle of the strip. The term "flatness" initially includes only visible distortions of the metal strip. But the concept of flatness is above that In addition, it is used as a synonym for the internal stresses prevailing in the belt, regardless of whether these internal stresses lead to visible distortions of the metal strip or not.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine Walzstraße und ein rechnergesteuertes Ermittlungsverfahren für Sollwerte für Profil- und Planheitsstellglieder bereitzustellen, mittels dessen vorgegebene Profilwerte, Konturverläufe und/oder Planheitsverläufe des Walzbandes besser als im Stand der Technik beschrieben erreicht und eingehalten werden können. Insbesondere soll den äußerst hohen Güteanforderungen hinsichtlich der Genauigkeit bei der Einhaltung von Profil-, Kontur- und Planheitsanforderungen an das Walzband beim Auslaufen aus der Walzstraße Rechnung getragen werden.The object of the present invention is to provide a rolling train and a computer-controlled determination method for setpoints for profile and flatness actuators, by means of which predetermined profile values, contour curves and / or flatness curves of the rolled strip can be achieved and maintained better than described in the prior art. In particular, the extremely high quality requirements with regard to the accuracy in the compliance of profile, contour and flatness requirements to the rolled strip when leaving the mill should be taken into account.

Die Aufgabe wird gelöst durch ein Verfahren der eingangs genannten Art, wobei einem Materialflussmodell Eingangsgrößen zugeführt werden, die das Metallband vor und nach dem Durchlaufen des Walzgerüsts beschreiben, wobei das Materialflussmodell online zumindest einen Walzkraftverlauf zumindest in der Bandbreitenrichtung ermittelt und einem Walzenverformungsmodell zuführt, wobei dem Walzenverformungsmodell ein aktueller Wert der Bandmittenlage zugeführt wird, wobei das Walzenverformungsmodell unter Heranziehen des Walzkraftverlaufs sich ergebende Walzenverformungen ermittelt, einem Sollwertermittler zuführt und wobei der Sollwertermittler anhand der ermittelten Walzenverformungen und eines auslaufseitigen Soll-Konturverlaufs die Sollwerte für die Profil- und Planheitsstellglieder ermittelt.The object is achieved by a method of the aforementioned type, wherein a material flow model input variables are supplied, which describe the metal strip before and after passing through the rolling stand, wherein the material flow model determined online at least one rolling force profile at least in the bandwidth direction and feeds a roll forming model, wherein the Rolling deformation model is fed to a current value of the belt center position, wherein the roll deformation model using the Walzkraftverlaufs resulting roll deformations determined, supplying a setpoint determiner and wherein the setpoint determiner determined on the basis of the determined roll deformations and an outlet side target contour the setpoints for the profile and planarity actuators.

Die Aufgabe wird auch gelöst durch einen Steuerrechner für eine Walzstraße der eingangs genannten Art, wobei die Walzstraße mindestens eine Messvorrichtung zur Bestimmung der Bandmittenlage des Metallbandes aufweist, wobei der Steuerrechner eine Vorrichtung zur Sollwertermittlung und ein Modul zur Modellierung der Walzenverformung aufweist, wobei das Modul zur Modellierung der Walzenverformung mindestens ein Modul zur Modellierung der Walzenbiegung und mindestens ein Modul zur Modellierung der Walzentemperatur und des Walzenverschleißes aufweist, wobei das Modul zur Modellierung der Walzenverformung mit der Messvorrichtung und mit der Vorrichtung zur Sollwertermittlung gekoppelt ist.The object is also achieved by a control computer for a rolling train of the type mentioned, wherein the rolling mill has at least one measuring device for determining the tape center position of the metal strip, wherein the control computer has a device for determining the desired value and a module for modeling the roll deformation, wherein the module for modeling the roll deformation, at least one module for modeling the roll bending and at least one module for modeling the roll temperature and the roll wear, wherein the module for modeling the roll deformation is coupled to the measuring device and to the device for determining setpoint values.

Wie in der DE 102 11 623 A1 beschrieben, fußt die vorgeschlagene Berechnung von Sollwerten für Profil- und Planheitsstellglieder auch insbesondere deshalb auf Modellen, die die elastische Deformation der Arbeitswalzen sowie die thermischen und Verschleißballigkeiten beschreiben, weil diese Größen während des Walzbetriebs nicht unter vertretbarem Aufwand messbar sind. Anders als bei der DE 102 11 623 A1 wird jedoch nicht davon ausgegangen, dass das Band mittig bezogen auf die Gerüstmitte läuft. Es wird vielmehr berücksichtigt, dass es insbesondere beim Walzen von Warmband oft zum so genannten Schwärmen kommt, das heißt innerhalb eines Gerüsts ändert sich die Bandmittenlage während des Bandlaufes in erheblichem Ausmaß. Durch die erfindungsgemäße Berücksichtigung der Bandmittenlage können insbesondere die Verschleißkanten an der Arbeitswalzenoberfläche deutlich genauer vorhergesagt werden. Es hat sich zudem herausgestellt, dass durch die Berücksichtigung der Bandlage die errechnete Durchbiegung des Walzensatzes und die berechneten thermischen und Verschleißballigkeiten der Arbeitswalzen wesentlich realitätsgetreuer bestimmt werden können.Like in the DE 102 11 623 A1 Therefore, the proposed calculation of nominal values for profile and flatness actuators is also based, in particular, on models which describe the elastic deformation of the work rolls as well as the thermal and wear crowns, because these variables can not be measured at a reasonable cost during the rolling operation. Unlike the DE 102 11 623 A1 However, it is not assumed that the band runs centrally with respect to the middle of the frame. Rather, it is considered that there is often a so-called swarming, especially when rolling hot-rolled strip, that is to say, within a framework, the strip center position changes to a considerable extent during the course of the strip. Due to the inventive consideration of the tape center position, in particular the wear edges on the work roll surface can be predicted significantly more accurately. It has also been found that by taking into account the band position, the calculated deflection of the set of rollers and the calculated thermal and wear crowns of the work rolls can be determined much more realistically.

Die Modellergebnisse werden noch deutlich verbessert, wenn der Wert der Bandmittenlage zyklisch, vorzugsweise z.B. dem Walzentemperatur- und -verschleißmodell, zugeführt wird. Dies kann z.B. alle drei Sekunden erfolgen.The model results are still significantly improved if the value of the tape center position is cyclic, preferably e.g. the roller temperature and wear model is supplied. This can e.g. every three seconds.

Mit Vorteil werden anhand der Verschleißkonturen Grenzen für die axiale Verschiebbarkeit der Arbeitswalzen, insbesondere CVC-Walzen, bestimmt.With advantage, limits for the axial displaceability of the work rolls, in particular CVC rolls, are determined on the basis of the wear contours.

Mit Vorteil wird für das Walzenbiegemodell ein Schwankungsbereich für die Bandmittenlage des zu walzenden Bandes ermittelt.Advantageously, a fluctuation range for the strip center position of the strip to be rolled is determined for the roll bending model.

Mit Vorteil wird das Walzenbiegemodell bei jeder Sollwertermittlung mindestens zwei mal für mindestens zwei verschiedene Werte der Bandmittenlage aufgerufen. Dabei wird mit Vorteil die fortlaufende Berechnung von Empfindlichkeiten, die zur Profil- und Planheitsregelung benutzt werden, während des Bandlaufs entsprechend dem jeweils aktuellen Bandlagenmesswert zwischen den Biegemodellergebnissen interpoliert. Dabei wird insbesondere der ermittelte Schwankungsbereich abgedeckt.Advantageously, the roll bending model is called at least twice for each setpoint determination for at least two different values of the strip center position. Advantageously, the continuous calculation of sensitivities used for profile and flatness control is interpolated between the bend model results during tape running according to the current tape position measured value. In particular, the determined fluctuation range is covered.

Weitere Vorteile und Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung von erfindungsgemäßen Ausführungsbeispielen und den zugehörigen Zeichnungen zu entnehmen. Es zeigen:

Figur 1
eine Walzstraße,
Figur 2
ein Blockschaltbild der Steuereinrichtung samt ihrer Module bzw. Modelle,
Figur 3
eine schematische Darstellung der Mittenlage von Walze und Metallband,
Figur 4
die Verschleißgrenzen an der Walze,
Figur 5
ein Walzentemperatur- und -verschleißmodell und
Figur 6
ein Walzenbiegemodell.
Further advantages and embodiments of the invention can be found in the following description of embodiments of the invention and the accompanying drawings. Show it:
FIG. 1
a rolling mill,
FIG. 2
a block diagram of the control device together with its modules or models,
FIG. 3
a schematic representation of the center of roll and metal strip,
FIG. 4
the wear limits on the roller,
FIG. 5
a roller temperature and wear model and
FIG. 6
a roll bending model.

Gemäß Figur 1 wird eine Walzstraße zum Walzen eines Metallbandes 1 von einem Steuerrechner 2 gesteuert. Die in Figur 1 gezeigte Walzstraße weist mehrere Walzgerüste 3, insbesondere mindestens drei Walzgerüste 3, auf. In Figur 1 sind sieben Walzgerüste 3 dargestellt. Das Metallband 1 wird in der Walzstraße in einer Walzrichtung x gewalzt und durchläuft die Walzstraße mit der Geschwindigkeit v. Die Betriebsweise des Steuerrechners 2 wird vorzugsweise von einem Computerprogrammprodukt festgelegt, mit dem der Steuerrechner 2 programmiert ist.According to FIG. 1, a rolling train for rolling a metal strip 1 is controlled by a control computer 2. The rolling train shown in Figure 1 has a plurality of rolling stands 3, in particular at least three rolling stands 3, on. In Figure 1 are seven Rolling stands 3 shown. The metal strip 1 is rolled in the rolling line in a rolling direction x and passes through the rolling train at the speed v. The mode of operation of the control computer 2 is preferably determined by a computer program product with which the control computer 2 is programmed.

Die in Figur 1 gezeigte Walzstraße ist als Fertigstraße zum Warmwalzen von Stahlband oder Grobblech ausgebildet. Die vorliegende Erfindung ist aber nicht auf die Anwendung bei einer mehrgerüstigen Fertigstraße zum Warmwalzen von Stahlband beschränkt. Vielmehr könnte die Walzstraße auch als Kaltwalzstraße (Tandemstraße) ausgebildet sein und/oder nur ein Walzgerüst (z.B. ein Reversiergerüst) aufweisen und/oder zum Walzen eines Nichteisenmetalls (z. B. Aluminium oder Kupfer) ausgebildet sein. Die Walzgerüste 3 weisen zumindest Arbeitswalzen 4 und, wie in Figur 1 für eines der Walzgerüste 3 angedeutet, in der Regel auch Stützwalzen 5 auf. Sie könnten auch noch mehr Walzen aufweisen, beispielsweise axial verschiebbare Zwischenwalzen. Auch die Arbeitswalzen können axial verschiebbar sein.The rolling mill shown in Figure 1 is designed as a finishing train for hot rolling of steel strip or plate. However, the present invention is not limited to use in a multi-stand finishing line for hot rolling steel strip. Rather, the rolling train could also be designed as a cold rolling train (tandem mill) and / or have only one rolling stand (for example a reversing stand) and / or be designed to roll a non-ferrous metal (eg aluminum or copper). The rolling stands 3 have at least work rolls 4 and, as indicated in FIG. 1 for one of the roll stands 3, usually also support rolls 5. You could also have more rollers, such as axially displaceable intermediate rollers. The work rolls can be axially displaceable.

Vom Steuerrechner 2 werden Gerüstreglern 6 Sollwerte für in der Zeichnung nicht dargestellte Profil- und Planheitsstellglieder vorgegeben. Die Gerüstregler 6 regeln die Stellglieder dann entsprechend den vorgegebenen Sollwerten.From the control computer 2 scaffold regulators 6 set values for profile and flatness actuators not shown in the drawing are given. The scaffold controllers 6 then regulate the actuators according to the predetermined setpoints.

Durch die Sollwerte wird pro Walzgerüst 3 ein auslaufseitiger Walzspaltverlauf beeinflusst, der sich zwischen den Arbeitswalzen 4 einstellt. Der auslaufseitige Walzspaltverlauf korrespondiert mit einem auslaufseitigen Konturverlauf ϑ (in der Zeichnung nicht dargestellt) des Metallbandes 1. Die Sollwerte für die Stellglieder müssen daher derart ermittelt werden, dass sich dieser korrespondierende Walzspaltverlauf ergibt.As a result of the desired values, an outflow-side nip course is influenced per rolling stand 3, which adjusts itself between the work rolls 4. The outlet-side roll gap course corresponds to an outlet-side contour profile θ (not shown in the drawing) of the metal strip 1. The setpoint values for the actuators must therefore be determined in such a way that this corresponding roll gap profile results.

Der Steuerrechner 2 wird mit den Eingangsgrößen ϑ0, S0, ϑT, ST und weiteren Eingangsgrößen beaufschlagt, die im folgenden näher erläutert werden.The control computer 2 is supplied with the input variables θ 0 , S 0 , θ T , S T and other input variables, which are explained in more detail below.

Die dem Steuerrechner 2 zugeführten Eingangsgrößen umfassen beispielsweise Stichplandaten wie eine Eingangsdicke h0 des Metallbandes 1 sowie für jedes Walzgerüst 3 eine Gesamtwalzkraft FW (Figur 2, nachfolgend kurz Walzkraft genannt) und eine Stichabnahme r. Sie umfassen in der Regel ferner eine Enddicke hn, einen Sollprofilwert, einen Sollendkonturverlauf ϑ T und einen gewünschten Planheitsverlauf ST. Meist soll das gewalzte Metallband 1 so plan wie möglich sein. Der Steuerrechner 2 ermittelt die Sollwerte also aus Eingangsgrößen, die ihm zugeführt werden und die das Metallband 1 ein- und auslaufseitig beschreiben.The input variables supplied to the control computer 2 include, for example, schedule data such as an input thickness h 0 of the metal strip 1 and, for each rolling stand 3, a total rolling force FW (FIG. 2, hereinafter referred to as rolling force) and a drawdown r. As a rule, they also include a final thickness h n , a desired profile value, a desired final contour profile θ T and a desired flatness profile S T. Most of the rolled metal strip 1 should be as flat as possible. The control computer 2 thus determines the setpoint values from input variables which are supplied to it and which describe the metal strip 1 on the inlet and outlet side.

Mit Hilfe mindestens einer Messvorrichtung zur Bestimmung der Bandmittenlage 125 (Figur 2) wird die Bandmittenlage des Metallbandes 1 ermittelt. Die Messvorrichtung 125 ist in Figur 1 nicht dargestellt. Eine oder mehrere Messvorrichtungen zur Bestimmung der Bandmittenlage 125 werden vorzugsweise zwischen den Walzgerüsten 3 angeordnet. Sie übermitteln Messwerte der Bandmittenlage 122 (Figur 3) bzw. Werte für Abweichungen der Bandmittenlage ΔM(Figur 3) an den Steuerrechner 2.With the aid of at least one measuring device for determining the mid-band position 125 (FIG. 2), the mid-band position of the metal strip 1 is determined. The measuring device 125 is not shown in FIG. One or more measuring devices for determining the strip center position 125 are preferably arranged between the rolling stands 3. They transmit measured values of the band center position 122 (FIG. 3) or values for deviations of the band center position ΔM (FIG. 3) to the control computer 2.

Gemäß Figur 2 sind im Steuerrechner 2 unter anderem mehrere Module zur Modellierung der Walzstraße vorgesehen. So weist der Steuerrechner 2 ein Modul zur Modellierung der Arbeitswalzenabplattung 8, ein Modul zur Modellierung der Walzenbiegung 9 und ein Modul zur Modellierung der Walzentemperatur und des Walzenverschleißes 10 auf. Die vorgenannten Module 8, 9, 10 bilden gemeinsam, gegebenenfalls unter Einbeziehung weiterer Module, ein Modul zur Modellierung der Walzenverformung 7. Im Steuerrechner 2 sind ferner Mittel zur Konturermittlung 12 und ein Modul zur Modellierung der Bandverformung 13 implementiert.According to FIG. 2, several modules for modeling the rolling train are provided in the control computer 2, inter alia. Thus, the control computer 2 has a module for modeling the work roll flattening 8, a module for modeling the roll bend 9 and a module for modeling the roll temperature and the roll wear 10. The above-mentioned modules 8, 9, 10 together form, optionally with the inclusion of further modules, a module for modeling the roll deformation 7. In the control computer 2, means for contour determination 12 and a module for modeling the strip deformation 13 are also implemented.

Die ermittelten Soll-Konturverläufe ϑ werden einem Modul zur Modellierung der Bandverformung 13 zugeführt, um die zugehörigen Soll-Walzkraftverläufe FR,i in der Bandbreitenrichtung z (vergleiche Figuren 3 und 4) für die einzelnen Walzgerüste 3 zu ermitteln. Das Bandverformungsmodell 13 ist straßenbezogen und vorzugsweise in Materialflussmodelle unterteilt. Die Materialflussmodelle dienen dazu, online das physikalische Verhalten des Metallbandes 1 im Walzspalt zu modellieren und werden in der DE 102 11 623 A1 näher beschrieben.The determined desired contour curves θ are fed to a module for modeling the strip deformation 13 in order to determine the associated desired rolling force profiles F R, i in the strip width direction z (compare FIGS. 3 and 4) for the individual rolling stands 3. The belt deformation model 13 is road-related and preferably subdivided into material flow models. The material flow models are used to model online the physical behavior of the metal strip 1 in the nip and are in the DE 102 11 623 A1 described in more detail.

Da die Abplattung der Arbeitswalzen 4 zum Metallband 1 entscheidend vom Walzkraftverlauf FR(z) in Bandbreitenrichtung z abhängt, wird der Walzkraftverlauf FR(z) gemäß Figur 2 dem Arbeitswalzenabplattungsmodell 8 zugeführt. Im Arbeitswalzenabplattungsmodell 8 werden ferner Parameter, wie die Bandbreite, die Bandeinlaufdicke, die Stichabnahme, die Walzkraft FW, der Arbeitswalzenradius und der Elastizitätsmodul der Oberfläche der Arbeitswalzen 4 zugeführt. Das Arbeitswalzenabplattungsmodell 8 ermittelt einen Abplattungsverlauf der Arbeitswalzen 4 zum Metallband 1 hin in der Bandbreitenrichtung z und gibt den Abplattungsverlauf an den Sollwertermittler 11 weiter. Der Walzkraftverlauf FR(z) muß nicht zwangsweise ausschließlich dem Arbeitswalzenabplattungsmodell 8 zugeführt werden. Er kann dem Walzenverformungsmodell auch in anderer Weise zugeführt werden. So kann der Walzkraftverlauf FR(z) alternativ oder zusätzlich dem Walzenbiegemodell 9 und/oder dem Walzentemperatur- und -verschleißmodell 10 zugeführt werden.Since the flattening of the work rolls 4 to the metal strip 1 depends crucially on the rolling force curve F R (z) in the strip width direction z, the rolling force curve F R (z) according to FIG. 2 is fed to the work roll flattening model 8. Further, in the work roll flattening model 8, parameters such as the tape width, the tape run-in thickness, the stitch loss, the rolling force FW, the work roll radius, and the elastic modulus are supplied to the surface of the work rolls 4. The work roll flattening model 8 detects a flattening characteristic of the work rolls 4 toward the metal strip 1 in the strip width direction z, and gives the flattening history to the target value determiner 11. The rolling force curve F R (z) does not necessarily have to be supplied exclusively to the work roll flattening model 8. It can also be fed to the roll forming model in another way. Thus, the rolling force curve F R (z) can alternatively or additionally be supplied to the roll bending model 9 and / or the roll temperature and wear model 10.

Figur 3 zeigt einen Längsschnitt durch eine Arbeitswalze 4 sowie einen Schnitt durch das Metallband 1, wobei die Zeichenebene senkrecht zur Walzrichtung x liegt. In der Zeichenebene liegen die Banddickenrichtung y und die Bandbreitenrichtung z, die parallel zur Walzenachse 120 liegt. Da es insbesondere beim Walzen von Warmband mittels einer Walzstraße zum so genannten Schwärmen des Bandes 1 kommt, ändert sich die Lage der Bandmitte 122 innerhalb der Gerüste 3 während des Bandlaufes erheblich. Nur im Ausnahmefall sind also in der Praxis die Walzenmitte 121, die stets senkrecht zur Walzenachse 120 liegt, und die Bandmittenlage 120 nicht zueinander versetzt. Man kann mit Hilfe von Gebern eine Abweichung ΔM der Bandmittenlage 122 von der Walzenmitte 121 ermitteln. Die Abweichung ΔM schwankt während des Walzbetriebs ständig und kann bis zu mehreren Zentimetern betragen. Dies wirkt sich insbesondere auf die Verschleißgrenzen der Arbeitswalzen 4 aus. So weichen die tatsächlichen Verschleißgrenzen 124 (Figur 4) aufgrund des Schwärmens des Bandes erheblich von den Verschleißgrenzen 123 (Figur 4) ab, die man bei einem stets mittig laufenden Band erwarten würde.Figure 3 shows a longitudinal section through a work roll 4 and a section through the metal strip 1, wherein the plane of the drawing is perpendicular to the rolling direction x. In the plane of the drawing, the band thickness direction y and the band width direction z lie parallel to the roll axis 120. Since, in particular during rolling of hot strip by means of a rolling train, so-called swarming of the strip 1 occurs the position of the tape center 122 within the frameworks 3 during the tape running considerably. Only in exceptional cases, therefore, in practice, the roller center 121, which is always perpendicular to the roll axis 120, and the tape center position 120 is not offset from one another. With the aid of encoders, it is possible to determine a deviation ΔM of the strip center position 122 from the roll center 121. The deviation ΔM fluctuates constantly during the rolling operation and can be up to several centimeters. This particularly affects the wear limits of the work rolls 4. Thus, due to the swarming of the band, the actual wear limits 124 (FIG. 4) deviate considerably from the wear limits 123 (FIG. 4) that would be expected for a band that always runs in the middle.

Statt nun davon auszugehen, dass das Band stets mittig bezogen auf die Walzenmitte 121 bzw. die Gerüstmitte verläuft, wird die genaue Bandmittenlage 122, die von einer Messvorrichtung 125 ermittelt wird, an das Modul zur Modellierung der Walzenverformung 7 weitergegeben (vergleiche auch Figur 2). So wird für das Walzenbiegemodell 9 zunächst aus dem aktuellen Bandlagenmesswert 122 und/oder aus Bandlagenmesswerten der Vergangenheit ein Toleranzbereich für die Bandlage des zu walzenden Bandes bestimmt. Das Walzenbiegemodell 9 wird vorzugsweise mindestens zwei mal für verschiedene Bandlagen aufgerufen. Vorzugsweise wird für die Berechnung der Profil- und Planheitssollwerte, wie auch beispielsweise für die fortlaufende Berechnung von Empfindlichkeiten während des Bandlaufs, entsprechend dem jeweils aktuellen Bandlagenmesswert zwischen den Biegemodellergebnissen interpoliert.Instead of assuming that the strip always runs centrally with respect to the roll center 121 or the center of the frame, the exact center strip position 122, which is determined by a measuring device 125, is passed on to the module for modeling the roll deformation 7 (cf. also FIG. 2). , Thus, for the roll bending model 9, initially a tolerance range for the strip position of the strip to be rolled is determined from the current strip layer measured value 122 and / or from tape layer measured values of the past. The roll bending model 9 is preferably called at least twice for different tape layers. Preferably, for the calculation of the profile and flatness target values, as well as, for example, for the continuous calculation of sensitivities during the tape run, interpolation is performed between the bending model results in accordance with the respective current tape position measured value.

Dem Walzentemperatur- und -verschleißmodell 10 (Figur 5) wird bei jedem Modellaufruf der aktuelle Bandlagenmesswert zugeführt. Dies erfolgt vorzugsweise zyklisch. Dabei wird vorzugsweise davon ausgegangen, dass die Abweichung der Bandmittenlage ΔM sich zwischen zwei Aufrufen des Walzentemperaturund -verschleißmodells 10 nur relativ geringfügig ändert.The roll temperature and wear model 10 (FIG. 5) is supplied with the current tape position measured value with each model call. This is preferably done cyclically. It is preferably assumed that the deviation of the belt center position ΔM changes only relatively slightly between two calls of the roller temperature and wear model 10.

Bei der zyklischen Berechnung von Empfindlichkeiten während des Bandlaufs ist zu beachten, dass nicht nur Ergebnisse des Walzentemperatur- und -verschleißmodells 10 sich zeitlich ändern, sondern auch die des Biegemodells 9, wenn sich die Bandmittenlage 122 zeitlich ändert. Ein zyklisches Aufrufen des Biegemodells muss deshalb jedoch nicht zwangsläufig erfolgen.In the cyclic calculation of sensitivities during tape running, it should be noted that not only results of the roller temperature and wear model 10 change with time but also those of the bend model 9 as the tape center position 122 changes with time. However, cyclic calling of the bending model does not necessarily have to be done.

Mit Hilfe des Walzentemperatur- und -verschleißmodells 10 werden eine Temperaturkontur und eine Verschleißkontur für alle Walzen für das jeweilige Walzgerüst 3 ermittelt. Da sich die Temperatur und der Verschleiß der Walzen 4, 5 im Laufe der Zeit ändern, muss das Walzentemperatur- und -verschleißmodell 10 immer wieder, insbesondere in regelmäßigen zeitlichen Abständen aufgerufen werden. Der Abstand zwischen zwei Aufrufen liegt üblicherweise in der Größenordnung zwischen einer und zehn Sekunden, zum Beispiel bei drei Sekunden. Dabei wird ein geeignetes Mittelungsverfahren für die gemessene Bandmittenlage ΔM verwendet. Die vom Walzentemperatur- und - verschleißmodell 10 ermittelten Temperatur- und Verschleißkonturen werden gemäß Figur 2 dem Walzenbiegemodell 9 zugeführt.With the help of the roll temperature and wear model 10, a temperature contour and a wear contour for all rolls for the respective roll stand 3 are determined. Since the temperature and the wear of the rollers 4, 5 change over time, the roller temperature and wear model 10 must be called again and again, in particular at regular time intervals. The distance between two calls is typically on the order of one to ten seconds, for example three seconds. In this case, a suitable averaging method for the measured tape center position ΔM is used. The temperature and wear contours determined by the roll temperature and wear model 10 are fed to the roll bending model 9 according to FIG.

Die wesentlichen Eingangsparameter für das Walzentemperaturund -verschleißmodell 10 sind wie auch in Figur 5 dargestellt, Banddaten, Walzendaten, Kühlungsdaten, die Walzkräfte FW sowie die Bandgeschwindigkeit v. Zudem geht auch Information über die Abweichung der Bandmittenlage ΔM in das Walzentemperatur- und -verschleißmodell 10 ein. Mit Hilfe des Walzentemperatur- und -verschleißmodells 10 wird insbesondere die thermische Balligkeit bzw. eine Temperaturkontur ermittelt.The essential input parameters for the roller temperature and wear model 10 are, as also shown in FIG. 5, belt data, roller data, cooling data, the rolling forces FW and the belt speed v. In addition, information about the deviation of the belt center position ΔM in the roller temperature and wear model 10 is also included. With the help of the roller temperature and wear model 10, in particular the thermal crowning or a temperature contour is determined.

Dem Walzenbiegemodell 9 werden neben den vom Walzentemperatur- und -verschleißmodell ermittelten Temperatur- und Verschleißkorrekturen auch geometrische Daten der Walzen 4, 5, die Walzkraft FW, eine Rückbiegekraft sowie gegebenenfalls eine Walzenverschiebung zugeführt (vergleiche Figur 6). Außerdem gehen erfindungsgemäß auch Informationen über die Abweichung der Bandmittenlage ΔM in das Walzenbiegemodell 9 ein. Mit Hilfe des Walzenbiegemodells 9 wird eine Walzenverformung ermittelt, insbesondere also die elastische Walzenbiegekontur.In addition to the temperature and wear corrections determined by the roll temperature and wear model, the roll bending model 9 is also provided with geometric data of the rolls 4, 5, the rolling force FW, a bending-back force and optionally a roll displacement supplied (see Figure 6). In addition, according to the invention, information about the deviation of the strip center position ΔM in the roll bending model 9 is also included. With the help of the roll bending model 9, a roll deformation is determined, in particular thus the elastic roll bending contour.

Die vom Walzenbiegemodell 9 und die vom Walzentemperatur- und - verschleißmodell 10 ermittelten Konturen werden gemäß Figur 2 dem Sollwertermittler 11 zugeführt. Dem Sollwertermittler 11 werden schließlich noch die Banddickenverläufe ϑ zugeführt. Der Sollwertermittler 11 kann somit für jedes Walzgerüst 3 durch Differenzbildung zwischen dem auslaufseitigen Konturverlauf ϑ einerseits und dem ermittelten Abplattungen und Verformungen der Walzen 4, 5 andererseits ermitteln, welche Restwalzenkontur durch die Profil- und Planheitsstellglieder noch realisiert werden muss.The contours determined by the roll bending model 9 and by the roller temperature and wear model 10 are fed to the setpoint determiner 11 according to FIG. Finally, the band thickness curves θ are fed to the setpoint determiner 11. The setpoint determiner 11 can thus determine for each roll stand 3 by difference formation between the outlet-side contour profile θ on the one hand and the determined flattening and deformations of the rolls 4, 5 on the other hand, which residual roll contour must still be realized by the profile and flatness actuators.

Die auslaufseitige Walzspaltkontur der Walzgerüste 3 kann von verschiedenen Aktuatoren bzw. Stellgliedern beeinflusst werden. Beispielhaft seien die Walzenrückbiegung, eine axiale Walzenverschiebung bei CVC-Walzen und eine Längsverdrehung der Arbeitswalzen 4 genannt ("pair crossing"). Auch eine nur lokal wirkende Walzenbeheizung oder -kühlung ist denkbar. Der Sollwertermittler 11 kann Sollwerte für alle diese Stellglieder ermitteln.The outlet-side roll gap contour of the rolling stands 3 can be influenced by various actuators or actuators. Examples include roll deflection, axial roll displacement in CVC rolls, and longitudinal twisting of work rolls 4 ("pair crossing"). Even a locally acting roller heating or cooling is conceivable. The setpoint determiner 11 can determine setpoint values for all these actuators.

Claims (8)

  1. Computer-aided method for determining desired values for profile and flatness control elements of a roll stand (3), having at least work rolls (4) for rolling metal strip (1), which extends in the direction of the strip width (z),
    - wherein a material flow model (18) is fed input variables (θ, s) which describe the metal strip (1) before and after passage through the roll stand (3),
    - wherein the material flow model (18) determines online at least one rolling force distribution, at least in the direction of the strip width (z), and feeds it to a roll deformation model (7),
    - wherein the roll deformation model (7) is fed a current value of the strip centre position (122),
    - wherein the roll deformation model (7), using the rolling force distribution, determines resulting roll deformations and feeds them to a desired value calculator (11), and
    - wherein the desired value calculator (11), on the basis of the determined roll deformations and of a desired contour characteristic on the delivery side (θ), determines the desired values for the profile and flatness control elements.
  2. Determination method according to Patent Claim 1, characterized in that the value of the strip centre position (22) is supplied cyclically.
  3. Determination method according to one of the preceding patent claims, characterized in that, on the basis of wear contours, limits for the axial displaceability of the work rolls are determined.
  4. Determination method according to one of the preceding patent claims, characterized in that, for the roll bending model (9), a range of variation for the strip centre position (122) of the strip to be rolled (1) is determined.
  5. Determination method according to Patent Claim 4, characterized in that, in each desired value determination, the roll bending model (9) is called up at least twice for at least two different values of the strip centre position (22).
  6. Determination method according to Patent Claim 5, characterized in that, between the at least two values of the strip centre position (122), an interpolation process is carried out.
  7. Control computer (2) for determining desired values for profile and flatness control elements of a roll stand (3) of a roll train, in particular according to a method according to one of the preceding patent claims,
    - wherein the roll stand has at least two work rolls (4) for rolling a metal strip (1),
    - wherein the roll train has at least one measuring apparatus (125) for determining the strip centre position (122) of the metal strip (1),
    - wherein the control computer (2) has a desired value determination apparatus (11) and a module for modelling the roll deformation (7),
    - wherein the module for modelling the roll deformation (7) has at least one module for modelling the roll bending (9) and at least one module for modelling the roll temperature and the roll wear (10),
    - wherein the module for modelling the roll deformation (7) is coupled to the measuring apparatus (125), and
    - wherein the module for modelling the roll deformation (7) is coupled to the desired value determination apparatus (11).
  8. Roll train having a control computer (2) according to Patent Claim 7.
EP04009244A 2003-05-30 2004-04-19 Control computer and computer-aided determination method for a profile and flatness control for a rolling mill Expired - Fee Related EP1481742B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10324679 2003-05-30
DE2003124679 DE10324679A1 (en) 2002-03-15 2003-05-30 Control computer and computer-aided determination procedure for a profile and flatness control for a rolling mill

Publications (3)

Publication Number Publication Date
EP1481742A2 EP1481742A2 (en) 2004-12-01
EP1481742A3 EP1481742A3 (en) 2006-04-12
EP1481742B1 true EP1481742B1 (en) 2007-07-18

Family

ID=33103664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04009244A Expired - Fee Related EP1481742B1 (en) 2003-05-30 2004-04-19 Control computer and computer-aided determination method for a profile and flatness control for a rolling mill

Country Status (3)

Country Link
EP (1) EP1481742B1 (en)
AT (1) ATE367217T1 (en)
DE (1) DE502004004331D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107530748A (en) * 2015-03-16 2018-01-02 西马克集团有限公司 Method for manufacturing sheet metal strip
US11938528B2 (en) 2018-07-19 2024-03-26 Sms Group Gmbh Method for ascertaining control variables for active profile and flatness control elements for a rolling stand and profile and average flatness values for hot-rolled metal strip

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7849722B2 (en) 2006-03-08 2010-12-14 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
US8205474B2 (en) * 2006-03-08 2012-06-26 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
EP3479916A1 (en) * 2017-11-06 2019-05-08 Primetals Technologies Germany GmbH Selected adjustment of contour by setting specifications
EP4353375A1 (en) * 2022-10-11 2024-04-17 Primetals Technologies Germany GmbH Method for determining actuated variables of a roll stand, corresponding control program, control device with such control program, and rolling stand with such control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618712B4 (en) * 1996-05-09 2005-07-07 Siemens Ag Control method for a roll stand for rolling a strip
JP3309819B2 (en) * 1998-12-01 2002-07-29 住友金属工業株式会社 Cluster rolling mill and plate shape control method using the same
US7031797B2 (en) * 2002-03-15 2006-04-18 Siemens Aktiengesellschaft Computer-aided method for determining desired values for controlling elements of profile and surface evenness
DE10211623A1 (en) * 2002-03-15 2003-10-16 Siemens Ag Computer-aided determination process comprises feeding input variables to a material flow model which describes a metal strip before and after the passing through a roll stand

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107530748A (en) * 2015-03-16 2018-01-02 西马克集团有限公司 Method for manufacturing sheet metal strip
RU2690580C2 (en) * 2015-03-16 2019-06-04 Смс Груп Гмбх Method of making metal strips
CN107530748B (en) * 2015-03-16 2019-11-05 西马克集团有限公司 Method for manufacturing sheet metal strip
US11938528B2 (en) 2018-07-19 2024-03-26 Sms Group Gmbh Method for ascertaining control variables for active profile and flatness control elements for a rolling stand and profile and average flatness values for hot-rolled metal strip

Also Published As

Publication number Publication date
DE502004004331D1 (en) 2007-08-30
EP1481742A2 (en) 2004-12-01
ATE367217T1 (en) 2007-08-15
EP1481742A3 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
EP1485216B1 (en) Computer-aided method for determining desired values for controlling elements of profile and surface evenness
EP1799368B1 (en) Method and device for continuously producing a thin metal strip
EP2170535B1 (en) Method for adjusting a state of a rolling stock, particularly a near-net strip
EP2477764B1 (en) Method and device for continuously stretch-bend-leveling metal strips
EP2691188B1 (en) Operating method for a rolling train
DE112004002903B4 (en) Roll wedge setting / control method for rolling plate-shaped material
EP2428288B1 (en) Method for producing steel bands using continuous casting or semi-continuous casting
EP1675694B1 (en) Method and control device for operating a mill train for metal strip
EP2527053A1 (en) Operating method for a mill train
EP0591291A1 (en) Regulation system in the manufacture of hot rolled strips by means of a multi-stand hot rolling mill.
EP2603337A1 (en) Method for producing rolling stock by means of a combined continuous casting and rolling system, control device for a combined continuous casting and rolling system, and combined continuous casting and rolling system
DE10324679A1 (en) Control computer and computer-aided determination procedure for a profile and flatness control for a rolling mill
EP3107666A1 (en) Simple pre-control of a wedge-type roll-gap adjustment of a roughing stand
EP3097218B1 (en) Method and system for hot-dip coating hot-rolled steel strips
EP1481742B1 (en) Control computer and computer-aided determination method for a profile and flatness control for a rolling mill
DE19618995C2 (en) Method and device for influencing relevant quality parameters, in particular the profile or the flatness of a rolled strip
DE102009043400A1 (en) Method for the model-based determination of actuator setpoints for the asymmetric actuators of the rolling mills of a hot strip mill
DE3026229C2 (en)
DE3401894A1 (en) Method for the production of rolled strip with high strip shape accuracy and flatness
DE1527610A1 (en) Rolling process and device for carrying out the same
EP2483004A1 (en) Method for the model-based determination of actuator nominal values for the symmetric and asymmetric actuators of the roll stands of a hot wide strip mill
DE10159608C5 (en) Rolling process and rolling train for a band with a weld
WO2010112196A1 (en) Roller unit for the continuous rolling of band-shaped rolling stock
DE102005060046B4 (en) Walzstrasse with at least two band influencing devices and method for operating such a rolling train
WO2023088703A1 (en) Device and method for producing a rolled metal strip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060410

AKX Designation fees paid

Designated state(s): AT DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR IT

REF Corresponds to:

Ref document number: 502004004331

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140314

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150619

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004004331

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150428

Year of fee payment: 12

Ref country code: FR

Payment date: 20150415

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20151105

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 367217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004331

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160419