EP1480182B1 - Berührungsloses Achszählsystem für den Strassenverkehr - Google Patents

Berührungsloses Achszählsystem für den Strassenverkehr Download PDF

Info

Publication number
EP1480182B1
EP1480182B1 EP04450111A EP04450111A EP1480182B1 EP 1480182 B1 EP1480182 B1 EP 1480182B1 EP 04450111 A EP04450111 A EP 04450111A EP 04450111 A EP04450111 A EP 04450111A EP 1480182 B1 EP1480182 B1 EP 1480182B1
Authority
EP
European Patent Office
Prior art keywords
axle counter
counter system
unit
measuring
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04450111A
Other languages
English (en)
French (fr)
Other versions
EP1480182A3 (de
EP1480182A2 (de
Inventor
Franz Dipl.-Ing. Graf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joanneum Research Forschungs GmbH
Original Assignee
Joanneum Research Forschungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joanneum Research Forschungs GmbH filed Critical Joanneum Research Forschungs GmbH
Publication of EP1480182A2 publication Critical patent/EP1480182A2/de
Publication of EP1480182A3 publication Critical patent/EP1480182A3/de
Application granted granted Critical
Publication of EP1480182B1 publication Critical patent/EP1480182B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors

Definitions

  • the invention relates to a non-contact axle counting system for road traffic comprising at least one measuring device for detecting the changes in the environmental parameters, such as sound, temperature or vibration, produced by a moving vehicle to a measuring range.
  • Non-contact axle counting systems are known in which induction loops are integrated into the roadway. Such systems have the disadvantage that they must be installed in the roadway. Even in case of maintenance, the road would be dug up, which is not only associated with high costs, but also with long-lasting traffic obstructions.
  • No. 5,821,879 A shows such a non-contact axle counting system for multi-lane lanes.
  • the axle counting system includes an LED array on one lane side and a photodiode array on the opposite lane side so that a plurality of light barriers are formed. The signal interruptions recorded by these light barriers are directed to a signal evaluation system and from this the traffic volume is derived on each lane.
  • the object of the invention is therefore to provide a non-contact axle counting system which avoids the above disadvantages and allows for low installation and maintenance effort a reliable axle counting for multi-lane roads.
  • At least one measuring device for detecting the movement of a moving vehicle in a measuring range such.
  • changes in environmental parameters such as sound, temperature or vibration are provided.
  • measuring devices can conveniently and inexpensively on any existing superstructures of the roadway, such as bridges or signage, mounted and maintained, with an assignment of the measuring devices to lanes can be particularly easily implemented, and such a measuring device is by their Focusing on a suitable measuring range suitable to detect the vehicles without contact also in multi-lane road sections.
  • the at least one of the at least one measuring device is designed as a laser vibrometer.
  • Laservibrometer allow a high-precision non-contact detection of road vibrations, as caused by the weight and / or the self-vibration of moving vehicles on the tires on the road.
  • the at least one of the at least one measuring device is designed as a directional microphone, in particular as a series microphone system.
  • a directional microphone in particular as a series microphone system.
  • an analysis unit is provided for the analysis of measurement signals.
  • the interpretation of the measurement signals can be facilitated and improved.
  • the analysis unit comprises a signal amplification device for amplifying the measurement signals, in particular by a factor of 100 to 10,000. This means that even very weak signals can be made accessible to an evaluation.
  • the analysis unit comprises an A / D converter with a sampling rate of in particular 1 kHz to 50 kHz, or more particularly between 6 kHz and 16 kHz.
  • a sampling rate of in particular 1 kHz to 50 kHz, or more particularly between 6 kHz and 16 kHz.
  • the A / D converter has a resolution of 8 to 24 bits, preferably 12 to 20 bits. Such a resolution is sufficient for subsequent data analyzes and leads at the same time to still easily manageable amounts of data.
  • the analysis unit comprises a computing unit, which is arranged downstream of the A / D converter.
  • the digitized measurement signals can be prepared for a classification of the vehicles to be detected.
  • a memory and / or a user interface is connected to the arithmetic unit.
  • the memory allows the storage of parameters influencing the measurement, while corresponding measurement or environmental parameters can be changed via the user interface.
  • the arithmetic unit comprises a time segmentation device for subdividing discrete time signals into time signal blocks, in particular from a block length of 10 ms to 1500 ms.
  • a temporal segmentation device allows a higher resolution in the analysis of the measurement signals.
  • the arithmetic unit comprises a spectral analyzer for calculating the frequency spectrum of the measurement signals and / or an energy calculation unit for calculating the signal energy, in particular the short-term signal energy. From the data thus calculated, data patterns can be generated which are particularly well suited for a subsequent classification.
  • the arithmetic unit comprises a classifier, which is arranged downstream of the spectral analyzer and / or the energy calculation unit, and which classifies the data pattern resulting from the corresponding calculation results of the spectral analyzer and / or the energy calculation unit.
  • Classified data samples allow a particularly reliable determination of the number of axles of different vehicle types.
  • the classifier can be operated in a learning mode for generating mathematical models for specific vehicle classes.
  • the axle counting system can be calibrated to a large number of vehicle types to be determined, and can also be retrofitted cost-effectively in the event of a change in demand to new vehicle types.
  • the learning mode is operable using learning algorithms.
  • the learning algorithm can be operated using the Hebbian learning method, the backpropagation rule or the forward-backward algorithm.
  • the classifier can be operated in a recognition mode for the assignment of a current measurement signal to a vehicle class.
  • the analysis unit is arranged downstream of a communication unit to which the calculation result of the classifier is transferred.
  • a vehicle 10 is via its tires 12 at contact points 11 in mechanical interaction with the roadway 20. Due to the weight, the proper motion (vibration) and the relative movement of the vehicle 10 to the roadway 20 11 vibrations are now mainly in the region of the contact points excited. These are on the one hand sound vibrations caused mainly by the rolling of the tires 12 on the roadway 20, but also by engine and flow noise, on the other hand vibrations of the surface of the roadway 20 itself, the amplitude may be on the order of up to several millimeters , These physical quantities, which are subject to change if a motor vehicle passes the location of the measurement, can be detected by different measuring principles.
  • the amplitude of the radiated sound waves can be described in different ways - e.g. as the velocity of movement of the air molecules (sound velocity) or as pressure which is generally preferred for describing the amplitude.
  • the sound pressure results from the fluctuation of the air pressure above and below the atmospheric air pressure.
  • Measuring devices 1, which serve to convert the sound pressure into an electrical signal can be any suitable sound sensors, such as e.g. electroacoustic transducers. In this case, the measuring device 1 can also be designed as a directional microphone or as a series microphone system, which contributes to an improved spatial resolution of a measurement signal.
  • the vibrations of the surface of the traffic route can in principle be measured with accelerometers which work according to the piezoelectric effect - but not without contact. By means of optical methods, these vibrations can also be measured without contact.
  • For detecting the vibrations of the surface of the roadway 20 are measuring devices 1 in an embodiment of Laservibrometem especially good.
  • Laser vibrometers work on the principle of Doppler frequency shift. In this case, the laser light scattered back by a vibrating object (for example, the surface of a roadway 20) provides all information for the determination of surface velocity and absolute oscillation amplitudes. In contrast to other optical methods (eg laser scanners), it is not the distance of an existing object that is of interest, but the vibration velocity of its surface. With the help of this high-precision measurement, the least vibration excitations of the surface of the roadway 20 can be detected.
  • the measuring devices 1 for measuring the changes of the environmental influences measure the strength of the sound waves, preferably the sound pressure of the sound waves or the vibrations of the surface of the roadway, when vehicles 10 approach or pass the mounting location of a measuring device 1.
  • the measuring devices 1 are mounted above the roadway 20 on superstructures such as bridges, signaling devices or signage (see Fig. 2), so that the monitoring of several parallel lanes is easily possible.
  • the measuring devices 1 convert the sound or vibration signals into electrical energy.
  • the measuring devices 1 generate analog or digital measuring signals as a function of time.
  • the measurement signals generated by the measuring devices 1 are forwarded to the analysis unit 2 via separate signal lines or after modulation or coding via a common signal line.
  • the measurement signals can also be transmitted to the analysis unit 2 by a wireless connection (eg radio, infrared, etc.) or via local area networks (LAN) or wireless LAN (WLAN).
  • the analysis unit 2 in turn communicates via a communication unit 8, for example with a central unit (not shown) for collecting, evaluating or further processing the results supplied by the analysis unit 2.
  • a communication unit 8 for example with a central unit (not shown) for collecting, evaluating or further processing the results supplied by the analysis unit 2.
  • the connection between the communication unit 8 and the central unit can be wired or wireless.
  • FIG. 3 shows the block diagram of the hardware structure of the analysis unit 2.
  • the measurement signals are forwarded to the signal amplification device 3, which amplifies the measurement signals by a fixed factor, preferably between 100 and 10,000, or with an automatic adjustment.
  • the following analog / digital converter 4 converts the analog signals into discrete values.
  • the sampling rate of the A / D converter 4 may vary from system to system and is generally between 1 kHz and 50 kHz. Particularly suitable are sampling frequencies between 6 kHz and 16 kHz.
  • the resolution of the A / D converter 4 is in the range of 8 to 24 bits, with the range of 12 to 20 bits is preferably used.
  • the system has a computing unit 5, which is connected to the A / D converter 4 and the data memory 6.
  • the arithmetic unit 5 is used to execute the calculation steps that are applied to the digitized measurement signals.
  • the user interface 7 and the memory 6 are connected to the arithmetic unit 5. Through the user interface 7 inputs can be made by a user.
  • the input by the user may be made by any suitable device, such as a keyboard, a mouse, a touch screen, or any combination of these devices.
  • the result of the analysis is transferred via an output to the interface of the communication unit 8 and further processed there.
  • FIG. 4 shows, in the form of a block diagram, the analysis of the measurement signals as they occur in the arithmetic unit 5.
  • the measurement signals are supplied from the A / D converter 4 to a time segmentation 51 in order to subdivide the discrete time signals into time blocks, wherein the block length may be between 10 ms and 1500 ms.
  • the individual blocks are further extracted from the signal with an overlap. This overlap serves to increase the resolution and can take values between 20% and 70%.
  • the data are transferred on the one hand to the energy calculation unit 53 and also to the spectrum analyzer 52.
  • variable t stands for the time
  • T for the length of a signal block
  • i stands for the number of the block within the entire acoustic signal.
  • s i (t) denotes the measurement signal in the time domain of the i- th block
  • S i (w) the frequency spectrum of the i- th block.
  • the variable w corresponds to the instantaneous frequency.
  • the analysis unit 2 consists of a spectrum analyzer 52 and an energy calculation unit 53 for calculating the signal energy.
  • the spectral analyzer 52 transforms the individual signal blocks from the time domain into the frequency domain. By default, these transformations are performed using Fourier transform.
  • the so-called Fast Fourier Transformation (FFT) is particularly well suited for this purpose.
  • the Fast Fourier Transformation corresponds to a digital approximation of the Fourier transformation.
  • the output of the spectrum analyzer 52 corresponds to the power density spectrum of the signal at the input and describes the amount of energy at a particular frequency interpolation point.
  • the number of frequency nodes is dependent on the number of discrete samples taken for the Fourier transform from the temporal signal, and is directly related to the above-mentioned block length T.
  • the Fourier transform for calculating the spectral content a time signal can also other methods, such as Linear Prediction Coding is used, which is known from the literature.
  • Another component of the analysis unit 2 is the energy calculation unit 53.
  • the window length of the resulting waveform of the signal energy can be significantly influenced.
  • the use of large window lengths corresponds to a low-pass filtering with a low cut-off frequency and has the consequence that short-term fluctuations of the signal in the signal energy are not reflected.
  • short window lengths result in a course of the signal energy that largely follows the temporal structure of the acoustic signal.
  • the block lengths T for calculating the energy correspond to the above values and can be between 10 ms and 1,500 ms.
  • the calculation results obtained from the energy calculation and the spectrum analyzer 52 are subsequently processed in the classifier 54.
  • the classifier 54 is capable of determining certain data patterns generated by the Calculation results are formed to classify. That is to say, when vehicles 10 with different numbers of axles pass by, certain data patterns result for the calculated energy as well as for the spectrum, which the classifier 54 can classify by the learning patterns previously presented to it.
  • the classifier 54 can be operated in two modes.
  • the first mode is also called a learning mode.
  • the learning mode serves to generate a mathematical model for each class to be recognized.
  • a learning algorithm is a sequence of mathematical calculation steps to iteratively approximate a mathematical model. Learning algorithms such as the Hebbian learning method, the backpropagation rule and the forward-backward algorithm are known from the literature.
  • the second mode is called the detection mode and represents the mode used in the normal operation of the detection system. During the recognition phase, one of the K signal classes is allocated to a currently present signal, and thus the number of axles of the currently passing vehicle 10 is determined. The result of the classification is passed on to the communication unit 8.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

  • Die Erfindung betrifft ein berührungsloses Achszählsystem für den Straßenverkehr umfassend wenigstens eine Messeinrichtung zur Erfassung der von einem fahrenden Fahrzeug einem Messbereich erzeugten Veränderungen der Umgebungsparameter, wie Schall, Temperatur oder Vibration.
  • Berührungslose Achszählsysteme sind bekannt, bei denen Induktionsschleifen in die Fahrbahn integriert sind. Solche Systeme haben den Nachteil, dass sie in die Fahrbahn eingebaut werden müssen. Auch im Wartungsfall wäre die Fahrbahn aufzugraben, was nicht nur mit hohen Kosten, sondern auch mit lang andauernden Verkehrsbehinderungen verbunden ist.
  • Es sind auch optische berührungslose Achszählsysteme, wie beispielsweise Laserscanner, bekannt, die jedoch nur zur Erfassung von Fahrzeugen auf einspurigen Fahrbahnabschnitten geeignet sind, weil die entsprechenden Messgeräte nur seitlich an den Fahrbahnrändern angebracht werden können.
  • Die US 5 821 879 A zeigt ein derartiges berührungsloses Achszählsystem für mehrspurige Fahrbahnen das Achszählsystem beinhaltet auf der einen Fahrbahnseite ein LED-Array und auf der gegenüberliegenden Fahrbahnseite ein Photodioden-Array, sodass mehrere Lichtschranken gebildet werden. Die von diesen Lichtschranken aufgezeichneten Signalunterbrechungen werden an ein Signalauswertesystem geleitet und daraus wird das Verkehrsaufkommen auf jeder Fahrbahn abgeleitet.
  • Aufgabe der Erfindung ist es daher, ein berührungsloses Achszählsystem anzugeben, das obige Nachteile vermeidet und bei geringem Installations- und Wartungsaufwand eine verlässliche Achszählung auch für mehrspurige Fahrbahnen zulässt.
  • Erfindungsgemäß wird dies dadurch erreicht, dass wenigstens eine Messeinrichtung zur Erfassung der von einem fahrenden Fahrzeug in einem Messbereich, wie z.B. an oder nahe der Kontaktstelle von Reifen zu Fahrbahn, erzeugten Veränderungen der Umgebungsparameter, wie Schall, Temperatur oder Vibration vorgesehen ist. Auf diese Art und Weise können Messeinrichtungen bequem und kostengünstig an eventuell bereits vorhandenen Überbauten der Fahrbahn, wie beispielsweise Brücken oder Beschilderungen, montiert und auch gewartet werden, wobei eine Zuordnung der Messeinrichtungen zu Fahrstreifen besonders einfach realisiert werden kann, und eine solche Messeinrichtung ist durch ihre Fokussierung auf einen geeigneten Messbereich geeignet, berührungslos die Fahrzeuge auch in mehrspurigen Fahrbahnabschnitten zu erfassen.
  • In besonderer Ausgestaltung der Erfindung kann vorgesehen sein, dass die mindestens eine der wenigstens einen Messeinrichtung als Laservibrometer ausgebildet ist. Laservibrometer gestatten eine hochpräzise berührungslose Erfassung von Fahrbahnvibrationen, wie sie durch das Gewicht und/oder die Eigenvibrationen fahrender Fahrzeuge über die Reifen auf der Fahrbahn hervorgerufen werden.
  • In einer anderen Ausgestaltung der Erfindung kann vorgesehen sein, dass die mindestens eine der wenigstens einen Messeinrichtung als Richtmikrofon, insbesondere als Reihenmikrofonsystem, ausgebildet ist. Eine solche Anordnung ist geeignet, Reifenabrollgeräusche besonders gut zu erfassen und zu lokalisieren.
  • In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, dass eine Analyseeinheit zur Analyse von Mess-Signalen vorgesehen ist. So kann die Interpretation der Mess-Signale erleichtert und verbessert werden.
  • Insbesondere kann vorgesehen sein, dass die Analyseeinheit eine Signalverstärkungseinrichtung für eine Verstärkung der Mess-Signale, insbesondere um einen Faktor 100 bis 10.000, umfasst. So können auch sehr schwache Signale einer Auswertung zugänglich gemacht werden.
  • Weiters kann vorgesehen sein, dass die Analyseeinheit einen A/D-Konverter mit einer Abtastrate von insbesondere 1 kHz bis 50 kHz, oder noch spezieller zwischen 6 kHz und 16 kHz, umfasst. Derart digitalisierte Mess-Signale sind für nachfolgende Datenanalysen besonders gut geeignet.
  • Insbesondere kann vorgesehen sein, dass der A/D-Konverter eine Auflösung von 8 bis 24 bit, vorzugsweise von 12 bis 20 bit hat. Eine solche Auflösung ist für nachfolgende Datenanalysen ausreichend und führt gleichzeitig zu noch gut bewältigbaren Datenmengen.
  • In besonderer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Analyseeinheit eine Recheneinheit umfasst, die dem A/D-Konverter nachgeordnet ist. So können die digitalisierten Mess-Signale für eine Klassifizierung der zu erfassenden Fahrzeuge aufbereitet werden.
  • In weiterer Ausgestaltung der Erfindung kann vorgesehen sein, dass an die Recheneinheit ein Speicher und/oder eine Benutzerschnittstelle angeschlossen ist. Der Speicher ermöglicht die Ablage von die Messung beeinflussenden Parametern, während über die Benutzerschnittstelle entsprechende Mess- bzw. Umgebungsparameter veränderbar sind.
  • Insbesondere kann vorgesehen sein, dass die Recheneinheit eine zeitliche Segmentiereinrichtung zur Unterteilung diskreter Zeitsignale in zeitliche Signalblöcke, insbesondere von einer Blocklänge 10 ms bis 1.500ms, umfasst. Eine zeitliche Segmentiereinrichtung ermöglicht eine höhere Auflösung bei der Analyse der Mess-Signale.
  • Gemäß einer weiteren Ausbildung der Erfindung kann vorgesehen sein, dass die Recheneinheit einen Spektralanalysator zur Berechnung des Frequenzspektrums der Mess-Signale und/oder eine Energieberechnungseinheit zur Berechnung der Signalenergie, insbesondere der Kurzzeit-Signalenergie, umfasst. Aus den so errechneten Daten können Datenmuster generiert werden, die für einen nachfolgende Klassifizierung besonders gut geeignet sind.
  • In Weiterführung der Erfindung kann vorgesehen sein, dass die Recheneinheit einen Klassifikator umfasst, der dem Spektralanalysator und/oder der Energieberechnungseinheit nachgeordnet ist, und der die aus den entsprechenden Berechnungsergebnissen des Spektralanalysators und/oder der Energieberechnungseinheit hervorgehenden Datenmuster klassizifiert. Derart klassifizierte Datenmuster ermöglichen eine besonders zuverlässige Bestimmung der Achszahl verschiedener Fahrzeugtypen.
  • Insbesondere kann vorgesehen sein, dass der Klassifikator in einem Lernmodus zur Erzeugung mathematischer Modelle für bestimmte Fahrzeugklassen betreibbar ist. Auf diese Art und Weise lässt sich das Achszählsystem auf eine Vielzahl zu bestimmender Fahrzeugtypen kalibrieren und lässt sich auch im Falle einer Bedarfsveränderung auf neue Fahrzeugtypen kostengünstig nachrüsten.
  • Dabei kann vorgesehen sein, dass der Lernmodus unter der Anwendung von Lernalgorithmen betreibbar ist.
  • Weiters kann vorgesehen sein, dass der Lernalgorithmus unter der Anwendung des Hebbschen Lernverfahrens, der Backpropagation-Regel oder dem Forward-Backward-Algorithmus betreibbar ist.
  • In weiterer Folge kann vorgesehen sein, dass der Klassifikator in einem Erkennungsmodus zur Zuordnung eines aktuellen Mess-Signals zu einer Fahrzeugklasse betreibbar ist. So kann ein sicherer, zuverlässiger und maßgeschneiderter Betrieb des berührungslosen Achszählsystems erzielt werden.
  • Schließlich kann in Weiterbildung der Erfindung vorgesehen sein, dass der Analyseeinheit eine Kommunikationseinheit nachgeordnet ist, der das Berechnungsergebnis des Klassifikators übergeben wird. So kann auch in weiterer Entfernung, beispielsweise in einer Zentrale, die Achszahl von Fahrzeugen, die eine Mess-Stelle passieren, erfasst und überwacht werden.
  • Die Erfindung wird unter Bezugnahme auf die beigeschlossenen Zeichnungen, in welchen Ausführungsformen dargestellt sind, näher beschrieben. Dabei zeigt:
    • Fig. 1 ein Fahrzeug auf einer Fahrbahn in Seitenansicht,
    • Fig. 2 eine mehrspurige Fahrbahn mit Messeinrichtungen, einer Analyse- und einer Kommunikationseinheit, im Grundriss,
    • Fig. 3 ein Blockdiagramm einer Analyseeinheit zwischen Messeinrichtungen und
    • Kommunikationseinheit und
    • Fig. 4 ein Blockdiagramm einer Rechnereinheit zwischen A/D-Konverter und Kommunikationseinheit.
  • Ein Fahrzeug 10 ist über seine Reifen 12 an Kontaktstellen 11 in mechanischer Wechselwirkung mit der Fahrbahn 20. Durch das Gewicht, die Eigenbewegung (Vibration) und die Relativbewegung des Fahrzeugs 10 zur Fahrbahn 20 werden nun vor allem im Bereich der Kontaktstellen 11 Schwingungen angeregt. Diese sind einerseits Schallschwingungen, die vorwiegend durch das Abrollen der Reifen 12 auf der Fahrbahn 20, aber auch durch Motor- und Strömungsgeräusche, hervorgerufen werden, andererseits Schwingungen der Oberfläche der Fahrbahn 20 selbst, deren Amplitude in der Größenordnung von bis zu einigen Millimetern betragen kann. Diese physikalischen Größen, die einer Veränderung unterliegen, sofern ein Kraftfahrzeug den Ort der Messung passiert, können durch verschiedene Messprinzipien erfasst werden.
  • Die Amplitude der abgestrahlten Schallwellen kann auf unterschiedliche Weise beschrieben werden - z.B. als die Geschwindigkeit der Bewegung der Luftmoleküle (Schallschnelle) oder als Druck, der im Allgemeinen zur Beschreibung der Amplitude bevorzugt verwendet wird. Der Schalldruck ergibt sich durch die Fluktuation des Luftdruckes über und unter dem atmosphärischen Luftdruck. Messeinrichtungen 1, die zur Umwandlung des Schalldruckes in ein elektrisches Signal dienen, können alle geeigneten Schall-Sensoren, wie z.B. elektroakustische Wandler, sein. Dabei kann die Messeinrichtung 1 auch als Richtmikrofon oder als Reihenmikrofonsystem ausgebildet sein, was zu einer verbesserten Ortsauflösung eines Mess-Signals beiträgt.
  • Die Schwingungen der Oberfläche des Verkehrsweges können grundsätzlich mit Beschleunigungsaufnehmern gemessen werden, die nach dem piezoelektrischen Effekt arbeiten - jedoch nicht berührungslos. Mittels optischer Methoden können diese Schwingungen auch berührungslos gemessen werden. Zur Erfassung der Schwingungen der Oberfläche der Fahrbahn 20 eignen sich Messeinrichtungen 1 in Ausgestaltung von Laservibrometem besonders gut. Laservibrometer arbeiten nach dem Prinzip der Dopplerfrequenzverschiebung. Dabei liefert das von einem schwingenden Objekt (z.B. Oberfläche einer Fahrbahn 20) zurück gestreute Laserlicht alle Informationen für die Bestimmung von Oberflächengeschwindigkeit und absoluten Schwingamplituden. Im Gegensatz zu anderen optischen Methoden (z.B. Laserscanner) ist hier nicht der Abstand eines vorhandenen Objekts von Interesse, sondern die Schwinggeschwindigkeit von dessen Oberfläche. Mit Hilfe dieser hochpräzisen Messung können geringste Schwingungsanregungen der Oberfläche der Fahrbahn 20 detektiert werden.
  • Die Messeinrichtungen 1 zur Messung der Veränderungen der Umgebungseinflüsse messen die Stärke der Schallwellen, bevorzugt den Schalldruck der Schallwellen oder die Schwingungen der Oberfläche der Fahrbahn, wenn sich Fahrzeuge 10 nähern bzw. den Anbringungsort einer Messeinrichtung 1 passieren. Vorzugsweise sind die Messeinrichtungen 1 oberhalb der Fahrbahn 20 an Überbauten wie Brücken, Signaleinrichtungen oder Beschilderungen angebracht (vgl. Fig. 2), sodass die Überwachung mehrerer paralleler Fahrstreifen leicht möglich ist.
  • Die Messeinrichtungen 1 wandeln die Schall- bzw. Schwingungssignale in elektrische Energie um. Die Messeinrichtungen 1 erzeugen analoge oder digitale Mess-Signale als Funktion der Zeit. Die von den Messeinrichtungen 1 erzeugten Mess-Signale werden über getrennte Signalleitungen oder nach Modulation bzw. Codierung über eine gemeinsame Signalleitung zur Analyseeinheit 2 weitergeleitet. Die Mess-Signale können jedoch auch durch eine drahtlose Verbindung (z. B. Funk, Infrarot, ...) oder via Local Area Networks (LAN) bzw. Wireless LAN (WLAN) an die Analyseeinheit 2 übertragen werden.
  • Die Analyseeinheit 2 kommuniziert ihrerseits wiederum über eine Kommunikationseinheit 8 beispielsweise mit einer zentralen Einheit (nicht abgebildet) zur Sammlung, Auswertung oder Weiterverarbeitung der von der Analyseeinheit 2 gelieferten Ergebnisse. Die Verbindung zwischen der Kommunikationseinheit 8 und der zentralen Einheit kann drahtgebunden oder drahtlos erfolgen.
  • In Figur 3 ist das Blockschaltbild des Hardware-Aufbaus der Analyseeinheit 2 dargestellt. Die Mess-Signale werden an die Signalverstärkungseinrichtung 3 weitergeleitet, welche die Mess-Signale um einen fest eingestellten Faktor, bevorzugt zwischen 100 und 10.000, oder mit einer automatischen Einstellung verstärkt.
  • Der nachfolgende Analog/Digital-Konverter 4 setzt die analogen Signale in diskrete Werte um. Die Abtastrate des A/D-Konverters 4 kann von System zu System unterschiedlich sein und liegt im Allgemeinen zwischen 1 kHz und 50 kHz. Besonders gut eignen sich Abtastfrequenzen zwischen 6 kHz und 16 kHz. Die Auflösung des A/D-Konverters 4 liegt im Bereich von 8 bis 24 bit, wobei der Bereich von 12 bis 20 bit bevorzugt verwendet wird. Das System verfügt über eine Recheneinheit 5, die mit dem A/D-Konverter 4 und dem Datenspeicher 6 verbunden ist. Die Recheneinheit 5 dient zur Ausführung der Berechnungsschritte, die auf die digitalisierten Mess-Signale angewendet werden. Die Benutzerschnittstelle 7 und der Speicher 6 sind an die Recheneinheit 5 angeschlossen. Durch die Benutzerschnittstelle 7 können Eingaben von einem Anwender durchgeführt werden. Die Eingabe durch den Anwender kann durch jedes geeignete Gerät, wie z.B. einer Tastatur, einer Maus, einem Bildschirm mit Berührungseingabe oder einer beliebigen Kombination dieser Geräte erfolgen.
  • Das Ergebnis der Analyse wird über einen Ausgang an die Schnittstelle der Kommunikationseinheit 8 übergeben und dort weiterverarbeitet.
  • In Figur 4 ist in Form eines Blockdiagramms die Analyse der Mess-Signale dargestellt, wie sie in der Recheneinheit 5 von statten gehen. Die Mess-Signale werden vom A/D-Konverter 4 einer zeitlichen Segmentierung 51 zugeführt, um die diskreten Zeitsignale in zeitliche Blöcke zu unterteilen, wobei die Blocklänge zwischen 10 ms und 1.500 ms liegen kann. Die einzelnen Blöcke werden weiters mit einer Überlappung aus dem Signal extrahiert. Diese Überlappung dient dazu, die Auflösung zu erhöhen und kann Werte zwischen 20 % und 70 % annehmen. Nach der zeitlichen Segmentierung 51 werden die Daten einerseits der Energieberechnungseinheit 53 als auch dem Spektralanalysator 52 übergeben.
  • Im Anschluss wird die Funktionalität der Analyseeinheit 2 beschrieben. Dabei steht die Varibale t für die Zeit, T für die Länge eines Signalblockes und i steht für die Nummer des Blockes innerhalb des gesamten akustischen Signales. si(t) bezeichnet das Mess-Signal im Zeitbereich des i-ten Blockes, Si(w) das Frequenzspektrum des i-ten Blockes. Die Variable w entspricht der Momentanfrequenz.
  • Die Analyseeinheit 2 besteht aus einem Spektralanalysator 52 und einer Energieberechnungseinheit 53 zur Berechnung der Signalenergie. Der Spektralanalysator 52 transformiert die einzelnen Signalblöcke vom Zeitbereich in den Frequenzbereich. Standardmäßig werden diese Transformationen mittels Fourier Transformation durchgeführt. Besonders gut eignet sich dazu die sogenannte Fast Fourier Transformation (FFT). Die Fast Fourier Transformation entspricht einer digitalen Approximation der Fourier Transformation. Die Fourier Transformation einer Funktion s(t) ist wie folgt definiert: S w = s t e 2 πift t
    Figure imgb0001
  • Der Ausgang des Spektralanalysators 52 entspricht dem Leistungsdichtespektrum des Signals am Eingang und beschreibt die Höhe der Energie an einem bestimmten Frequenz-Stützstelle. Die Anzahl der Frequenz-Stützstellen ist abhängig von der Anzahl der diskreten Abtastwerte, die für die Fourier-Transformation aus dem zeitlichen Signal entnommen werden, und steht in direktem Zusammenhang mit der oben erwähnten Blocklänge T. Neben der Fourier-Transformation zur Berechnung des spektralen Inhalts eines Zeitsignales können auch andere Methoden, wie z.B. das Linear Prediction Coding eingesetzt werden, das aus der Literatur bekannt ist.
  • Ein weiterer Bestandteil der Analyseeinheit 2 ist die Energieberechnungseinheit 53. Im Allgemeinen wird die Beziehung zur Ermittlung der Signalenergie durch folgende Gleichung beschrieben: E n = - + s 2 t
    Figure imgb0002
  • Da zur Beschreibung von akustischen Signalen der Verlauf der Energie in Abhängigkeit von der Zeit interessiert, eignet sich besonders der Einsatz der Kurzzeit-Signalenergie. Sie ist definiert als: E n = k = - [ s k w t - k ] 2
    Figure imgb0003

    wobei w t = 1 für 0 t T 0 für sonst
    Figure imgb0004
  • Durch die Wahl der Fensterlänge kann der erhaltene Verlauf der Signalenergie wesentlich beeinflusst werden. Die Verwendung großer Fensterlängen entspricht einer Tiefpassfilterung mit einer niedrigen Grenzfrequenz und hat zur Folge, dass kurzzeitige Schwankungen des Signals in der Signalenergie nicht widergespiegelt werden. Kurze Fensterlängen ergeben hingegen einen Verlauf der Signalenergie, der sich weitgehend an die zeitliche Struktur des akustischen Signals anlehnt. Die Blocklängen T zur Berechnung der Energie entsprechen den oben angeführten Werten und können zwischen 10 ms und 1.500 ms liegen.
  • Die aus der Energieberechnung und dem Spektralanalysator 52 erhaltenen Berechnungsergebnisse werden im Anschluss im Klassifikator 54 weiterverarbeitet. Der Klassifikator 54 ist in der Lage, bestimmte Datenmuster, die durch die Berechnungsergebnisse gebildet werden, zu klassifizieren. D.h. bei der Vorbeifahrt von Fahrzeugen 10 mit unterschiedlicher Achszahl ergeben sich sowohl für die berechnete Energie als auch für das Spektrum bestimmte Datenmuster, die der Klassifikator 54 durch die ihm zuvor präsentierten Lernmuster klassifizieren kann. Der Klassifikator 54 kann in zwei Moden betrieben werden.
  • Der erste Modus wird auch als Lernmodus bezeichnet. Der Lernmodus dient dazu, um für jede zu erkennende Klasse ein mathematisches Modell zu erzeugen. Als Lernalgorithmus bezeichnet man eine Abfolge von mathematischen Berechnungsschritten, um in iterativer Form ein mathematisches Modell zu approximieren. Lernalgorithmen wie z.B. das Hebbsche Lernverfahren, die Backpropagation-Regel und der Forward-Backward-Algorithmus, sind aus der Literatur bekannt. Der zweite Modus wird als Erkennungsmodus bezeichnet und stellt jenen Modus dar, der im Normalbetrieb des Erkennungssystems verwendet wird. Während der Erkennungsphase wird einem aktuell vorliegenden Signal eine der K Signalklassen zugeordnet und damit die Anzahl der Achsen des momentan vorbeifahrenden Fahrzeuges 10 bestimmt. Das Ergebnis der Klassifikation wird im Anschluss an die Kommuniktaionseinheit 8 übergeben.

Claims (17)

  1. Berührungsloses Achszählsystem für den Straßenverkehr, umfassend wenigstens eine Messeinrichtung (1) zur Erfassung der von einem fahrenden Fahrzeug (10) in einem Messbereich erzeugten Veränderungen der Umgebungsparameter, wie Schall, Temperatur oder Vibration, dadurch gekennzeichnet, dass die wenigstens eine Messeinrichtung (1) oberhalb der Fahrbahn (20) und oberhalb der Höhe des Fahrzeugs (10) fixiert ist.
  2. Achszählsystem nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine der wenigstens einen Messeinrichtung (1) als Laservibrometer (1') ausgebildet ist.
  3. Achszählsystem nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine der wenigstens einen Messeinrichtung (1) als Richtmikrofon (1"), insbesondere als Reihenmikrofonsystem, ausgebildet ist.
  4. Achszählsystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Analyseeinheit (2) zur Analyse von Mess-Signalen vorgesehen ist.
  5. Achszählsystem nach Anspruch 4, dadurch gekennzeichnet, dass die Analyseeinheit (2) eine Signalverstärkungseinrichtung (3) für eine Verstärkung der Mess-Signale, insbesondere um einen Faktor 100 bis 10.000, umfasst.
  6. Achszählsystem nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass die Analyseeinheit (2) einen A/D-Konverter (4) mit einer Abtastrate von insbesondere 1 kHz bis 50 kHz, oder noch spezieller zwischen 6 kHz und 16 kHz, umfasst.
  7. Achszählsystem nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der A/D-Konverter (4) eine Auflösung von 8 bis 24 bit, vorzugsweise von 12 bis 20 bit hat.
  8. Achszählsystem nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass die Analyseeinheit (2) eine Recheneinheit (5) umfasst, die dem A/D-Konverter (4) nachgeordnet ist.
  9. Achszählsystem nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass an die Recheneinheit (5) ein Speicher (6) und/oder eine Benutzerschnittstelle (7) angeschlossen ist.
  10. Achszählsystem nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Recheneinheit (5) eine zeitliche Segmentiereinrichtung (51) zur Unterteilung diskreter Zeitsignale in zeitliche Signalblöcke, insbesondere von einer Blocklänge 10ms bis 1.500ms, umfasst.
  11. Achszählsystem nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Recheneinheit (5) einen Spektralanalysator (52) zur Berechnung des Frequenzspektrums der Mess-Signale und/oder eine Energieberechnungseinheit (53) zur Berechnung der Signalenergie, insbesondere der Kurzzeit-Signalenergie, umfasst.
  12. Achszählsystem nach Anspruch 11, dadurch gekennzeichnet, dass die Recheneinheit (5) einen Klassifikator (54) umfasst, der dem Spektralanalysator (52) und/oder der Energieberechnungseinheit (53) nachgeordnet ist, und der die aus den entsprechenden Berechnungsergebnissen des Spektralanalysators (52) und/oder der Energieberechnungseinheit (53) hervorgehenden Datenmuster klassizifiert.
  13. Achszählsystem nach Anspruch 12, dadurch gekennzeichnet, dass der Klassifikator (54) in einem Lernmodus zur Erzeugung mathematischer Modelle für bestimmte Fahrzeugklassen betreibbar ist.
  14. Achszählsystem nach Anspruch 13, dadurch gekennzeichnet, dass der Lernmodus unter der Anwendung von Lernalgorithmen betreibbar ist.
  15. Achszählsystem nach Anspruch 14, dadurch gekennzeichnet, dass der Lernalgorithmus unter der Anwendung des Hebbschen Lernverfahrens, der Backpropagation-Regel oder dem Forward-Backward-Algorithmus betreibbar ist.
  16. Achszählsystem nach Anspruch 12 bis 15, dadurch gekennzeichnet, dass der Klassifikator (54) in einem Erkennungsmodus zur Zuordnung eines aktuellen Mess-Signals zu einer Fahrzeugklasse betreibbar ist.
  17. Achszählsystem nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass der Analyseeinheit (2) eine Kommunikationseinheit (8) nachgeordnet ist, der das Berechnungsergebnis des Klassifikators (54) übergeben wird.
EP04450111A 2003-05-20 2004-05-19 Berührungsloses Achszählsystem für den Strassenverkehr Expired - Lifetime EP1480182B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0077703A AT412595B (de) 2003-05-20 2003-05-20 Berührungsloses achszählsystem für den strassenverkehr
AT7772003 2003-05-20

Publications (3)

Publication Number Publication Date
EP1480182A2 EP1480182A2 (de) 2004-11-24
EP1480182A3 EP1480182A3 (de) 2006-01-18
EP1480182B1 true EP1480182B1 (de) 2007-06-06

Family

ID=32932025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04450111A Expired - Lifetime EP1480182B1 (de) 2003-05-20 2004-05-19 Berührungsloses Achszählsystem für den Strassenverkehr

Country Status (3)

Country Link
EP (1) EP1480182B1 (de)
AT (2) AT412595B (de)
DE (1) DE502004004010D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014012285A1 (de) 2014-08-22 2016-02-25 Jenoptik Robot Gmbh Verfahren und Achsenzähl-Vorrichtung zur berührungslosen Achsenzählung eines Fahrzeugs sowie Achsenzählsystem für den Straßenverkehr

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006054981B3 (de) * 2006-11-22 2008-06-19 Rtb Gmbh & Co. Kg Klassifikationseinrichtung für Fahrzeuge
DE102020124526A1 (de) * 2020-09-21 2022-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Verkehrsüberwachung mittels Fahrbahnschwingungen und Laservibrometrie
DE102022102006B4 (de) 2022-01-28 2023-11-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Erfassen von Verkehrsaktivitäten mit Schwingungssensoren von einem Fahrzeug aus
CN114575206A (zh) * 2022-03-03 2022-06-03 中国测绘科学研究院 一种铁路轨道姿态测量方法、装置及作业***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789941A (en) * 1986-07-18 1988-12-06 Bennett Nunberg Computerized vehicle classification system
DE69406568T2 (de) * 1993-02-19 1998-05-20 Mitsubishi Heavy Ind Ltd Fahrzeugdetektionsanlage
US5528234A (en) * 1994-02-01 1996-06-18 Mani; Siva A. Traffic monitoring system for determining vehicle dimensions, speed, and class
US5821879A (en) * 1996-08-05 1998-10-13 Pacific Sierra Research Corp. Vehicle axle detector for roadways
KR100459475B1 (ko) * 2002-04-04 2004-12-03 엘지산전 주식회사 차종 판단 시스템 및 그 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014012285A1 (de) 2014-08-22 2016-02-25 Jenoptik Robot Gmbh Verfahren und Achsenzähl-Vorrichtung zur berührungslosen Achsenzählung eines Fahrzeugs sowie Achsenzählsystem für den Straßenverkehr

Also Published As

Publication number Publication date
DE502004004010D1 (de) 2007-07-19
EP1480182A3 (de) 2006-01-18
ATE364213T1 (de) 2007-06-15
ATA7772003A (de) 2004-09-15
EP1480182A2 (de) 2004-11-24
AT412595B (de) 2005-04-25

Similar Documents

Publication Publication Date Title
CN107591002B (zh) 一种基于分布式光纤的高速公路交通参数实时估计方法
US11468667B2 (en) Distributed intelligent traffic informatics using fiber sensing
DE3204874C2 (de) Passives Verfahren zum Gewinnen von Zieldaten von einer Schallquelle
EP1344198B1 (de) Verfahren und anordnung zur verarbeitung von geräuschsignalen einer geräuschquelle
US20040056778A1 (en) Vehicle speed estimation using inductive vehicle detection systems
DE10064754A1 (de) Verfahren und Anordnung zur Bestimmung eines Geräuschsignals einer Geräuschquelle
US6876949B2 (en) Normalization of inductive vehicle detector outputs
DE112021004482T5 (de) Erkennung und lokalisierung akustischer impulse im stadtmassstab
EP2288932B1 (de) Verfahren und Vorrichtung zur wahrscheinlichsten Distanzabschätzung zwischen Gegenständen
DE102008003039A1 (de) Verfahren zur Verkehrszustandsbestimmung in einem Fahrzeug
CN109711276A (zh) 一种套牌检测方法及装置
JENG et al. Vehicle reidentification with the inductive loop signature technology
EP1480182B1 (de) Berührungsloses Achszählsystem für den Strassenverkehr
Guadamuz et al. Green time usage metrics on signalized intersections and arterials using high-resolution traffic data
DE102015120533B4 (de) Einrichtung und Verfahren zur akustischen Verkehrsdatenerfassung
CN105404708A (zh) 基于实测加速度的大跨度桥梁结构外界时段激励评价方法
CN114139583A (zh) 高速公路异常事件检测方法及***
US11674826B2 (en) Monitoring unit for monitoring a linear asset and method for monitoring a linear asset
CN105702028A (zh) 一种基于机动车音频信号的交通状态判别***
Ko et al. Measuring control delay using second–by–second GPS speed data
EP2274639B1 (de) Identitätsverfolgungsverfahren und -system
DE102005060856A1 (de) Verfahren zur Erkennung eines Stauereignisses
EP2047448B1 (de) Verfahren und vorrichtung zur generierung von frühwarnungen vor verkehrszusammenbrüchen an engstellen
KR100274581B1 (ko) 차종 인식장치 및 방법
JP7327688B2 (ja) イベント検出装置、方法及びプログラム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060718

17Q First examination report despatched

Effective date: 20060822

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004004010

Country of ref document: DE

Date of ref document: 20070719

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070606

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070906

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070907

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

26N No opposition filed

Effective date: 20080307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080201

BERE Be: lapsed

Owner name: JOANNEUM RESEARCH FORSCHUNGSGESELLSCHAFT MBH

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071207

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120601

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130621

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004010

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 364213

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004010

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202