EP1464831A1 - Verfahren zum Starten einer Brennkraftmaschine - Google Patents

Verfahren zum Starten einer Brennkraftmaschine Download PDF

Info

Publication number
EP1464831A1
EP1464831A1 EP03100842A EP03100842A EP1464831A1 EP 1464831 A1 EP1464831 A1 EP 1464831A1 EP 03100842 A EP03100842 A EP 03100842A EP 03100842 A EP03100842 A EP 03100842A EP 1464831 A1 EP1464831 A1 EP 1464831A1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
oxygen
oxygen donor
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03100842A
Other languages
English (en)
French (fr)
Other versions
EP1464831B1 (de
Inventor
Ulrich Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP03100842A priority Critical patent/EP1464831B1/de
Priority to DE50309408T priority patent/DE50309408D1/de
Publication of EP1464831A1 publication Critical patent/EP1464831A1/de
Application granted granted Critical
Publication of EP1464831B1 publication Critical patent/EP1464831B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/06Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including non-airborne oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • F02B47/10Circulation of exhaust gas in closed or semi-closed circuits, e.g. with simultaneous addition of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/001Arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Definitions

  • the invention relates to a method for starting an internal combustion engine, a For carrying out such a method, the internal combustion engine and a device which can be used in the context of the method.
  • a direct or assisted starting of the engine by an early combustion requires certain constraints to be successful to be able to. For example, it is necessary or advantageous that the Crankshaft at the beginning of cranking in or near a certain position stands. It must also be ensured that sufficient combustion Power for driving the internal combustion engine can be obtained. The latter in turn sets the provision of a sufficient amount of fresh air during the start phase ahead.
  • DE 199 47 784 A1 the Arrangement of an air storage space proposed in which air under a increased pressure is to be stored, so that these at a direct start of the Internal combustion engine can be fed into the cylinder and there for a increased boost pressure ensures.
  • the method according to the invention serves to start an internal combustion engine, already during the starting phase, fuel combustion in at least a combustion chamber of the internal combustion engine takes place.
  • fuel combustion in at least a combustion chamber of the internal combustion engine takes place.
  • the starting can be assisted by means of an auxiliary unit, so that the latter can be designed more easily and therefore cheaper.
  • auxiliary unit Preferably With the combustion even a direct start of the internal combustion engine performed, which gets along completely without additional auxiliary unit.
  • the procedure is characterized in that during the starting phase (respectively) before the beginning a combustion in at least one combustion chamber of the internal combustion engine one compared to the relative oxygen concentration in normal air (about 21 vol .-%) increased relative oxygen concentration prevails (whereby fuel gases and / or residual exhaust gases in the determination of the relative concentration not be taken into account).
  • an oxygen donor in at least one combustion chamber of the internal combustion engine to be available.
  • An oxygen donor is one preferably gaseous or liquid substance, which oxygen chemically bound contains and this under certain conditions, for example Above a temperature threshold, release or to other chemical substances can deliver.
  • the increased oxygen concentration in the combustion chamber can be improved by supplying a gas that has oxygen in a relation to the conditions in normal air contains increased concentration or even consists of pure oxygen (hereinafter Called "oxygen supply gas"), during the running out of the internal combustion engine, during the stoppage of the internal combustion engine and / or during the Start phase of the internal combustion engine are generated.
  • the supply can additionally take place to or instead of the normally sucked fresh air.
  • the oxygen donor may leak during standstill and / or the starting phase of the internal combustion engine are supplied. At all mentioned Supply types ensures that the oxygen or the Oxygen donor is available during the startup phase.
  • the oxygen donor is during the operation of the internal combustion engine on board of the internal combustion engine containing Motor vehicle produced and for starting the internal combustion engine cached.
  • the type of production depends on the oxygen donor used substance.
  • An oxygen donor preferably used in this context is the gas nitrogen monoxide N 2 O ("nitrous oxide").
  • This gas can either be carried in a store or generated aboard a motor vehicle in a suitably equipped reactor from suitable starting substances or, for example, by biotechnological processes.
  • the nitrogen monoxide N 2 O is recovered during operation of the internal combustion engine in a arranged in the exhaust path of the internal combustion engine exhaust gas catalyst.
  • the formation of N 2 O is suppressed by special measures.
  • the invention further relates to an internal combustion engine, preferably an internal combustion engine with direct injection and spark ignition, which characterized is that this means of providing gas with a higher relative oxygen concentration as in air (“oxygen feed gas”) and / or from an oxygen donor in at least one combustion chamber of the internal combustion engine contains.
  • an internal combustion engine preferably an internal combustion engine with direct injection and spark ignition, which characterized is that this means of providing gas with a higher relative oxygen concentration as in air (“oxygen feed gas”) and / or from an oxygen donor in at least one combustion chamber of the internal combustion engine contains.
  • the internal combustion engine is for carrying out a method of the above Kind furnished.
  • the provision of oxygen supply gas and / or a Oxygen donor can thus for the startup phase of the internal combustion engine take place in order to start this way by early fuel burns support or cause a direct start.
  • this contains a storage device for oxygen supply gas and / or for an oxygen donor, wherein the Supply storage via supply lines with at least one combustion chamber of Internal combustion engine is connected.
  • a storage memory can with a Refueling be provided so that this periodically, For example, when refueling the vehicle with fuel, refilled can be.
  • the internal combustion engine further preferably includes an exhaust gas aftertreatment device arranged in the exhaust path and configured to generate and / or separate N 2 O from the exhaust gas coming from the internal combustion engine.
  • the internal combustion engine is autonomous, since it generates the oxygen donor itself and in this respect no regular refueling od. Like. Needed.
  • the invention further relates to a device for obtaining an oxygen donor, in particular of nitrogen monoxide N 2 O, which is designed to generate from the exhaust gas of an internal combustion engine, the oxygen donor and / or to separate.
  • the device may in particular be a suitably designed or modified catalytic converter.
  • An internal combustion engine equipped with such a device is able to autonomously generate an oxygen donor, which can be used in particular during the starting phase of the internal combustion engine to provide a sufficiently high amount of oxygen for a powerful combustion and thus a starterless starting of the internal combustion engine.
  • the internal combustion engine 2 shown in the figures is in particular to such with direct injection of fuel into the cylinder and Spark ignition.
  • the internal combustion engine is via an intake manifold or an intake system 1 provided fresh air.
  • the combustion gases are discharged via an exhaust manifold and an exhaust path 4.
  • In the exhaust path 4 is at least one exhaust aftertreatment device 3, z. B. a three-way catalyst.
  • FIG. 1 shows in this regard a first specific embodiment of the invention.
  • they are filled with pure oxygen O 2 instead of fresh air or in addition to the fresh air.
  • an oxygen donor ie, gases or liquids that contain oxygen chemically bound and can release it in the cylinders.
  • the oxygen donor is preferably introduced into the cylinders in addition to the normal fresh air.
  • the pure oxygen O 2 and / or the oxygen donor which may, for example, be nitrogen monoxide N 2 O, is stored in a storage tank 6 on board the motor vehicle and introduced via supply lines 5 as required into the cylinders of the internal combustion engine ,
  • This supply of oxygen or an oxygen donor can during the running of the internal combustion engine (ie in the time from switching off the ignition and / or fuel supply to engine standstill), during engine stall (zero speed) and / or during the starting phase (ie from engine stall until reaching a predetermined minimum speed, for example, the idling speed).
  • the provision of pure oxygen gas O 2 or oxygen released from an oxygen donor in the combustor increases the total available amount of oxygen in the combustor. Therefore, an additional amount of fuel can be provided by the direct injection and completely burned, so that a larger energy is obtained from the combustion process. This ensures that the internal combustion engine 2 can be started directly by the combustion "on its own”.
  • the oxygen gas O 2 and / or the oxygen donor can be replenished in the reservoir 6 by a tank device 7 if required.
  • Figure 2 shows a modification of the system of Figure 1.
  • the memory 6 ' is specifically a N 2 O memory, which is connected on the input side via a line 8 to the exhaust gas catalyst 3.
  • Nitric oxide N 2 O is an oxygen carrier with about 1.5 times the density of air.
  • N 2 O dissociates at temperatures above 300 ° C into oxygen and nitrogen according to the formula 2N 2 O ⁇ 2N 2 + O 2 .
  • N 2 O can be introduced into the cylinders of the internal combustion engine 2 together with fresh air for a direct start. With the fresh air and a fuel injection combustion can be initiated in a cylinder, which is in the correct working position for this purpose. When the temperature rises above 300 ° C due to combustion, oxygen is released from the N 2 O, which then participates in the combustion. Due to the additional amount of oxygen provided by this release, a corresponding additional amount of fuel can be reacted in the combustion chamber. As a result, the available energy for starting the internal combustion engine increases accordingly, so that a direct start is more likely to be successful or more robust under critical boundary conditions.
  • the N 2 O gas can be stored in the motor vehicle in a storage device 6 such as a pressure bottle, which is refilled if necessary.
  • a storage device 6 such as a pressure bottle
  • N 2 O is generated on board the motor vehicle in a suitable reactor for this purpose.
  • N 2 O can be generated under the action of heat from solid ammonium nitrate NH 4 NO 3 .
  • N 2 O can be produced by denitrification in a biotechnological process by specific nitrate bacteria and fungi. The nitrate is from time to time replenished in the reactor.
  • N 2 O generation in the motor vehicle is to be particularly preferred since it manages with the fewest additional devices.
  • the N 2 O is generated in the exhaust catalyst 3 from the exhaust emissions of the internal combustion engine 2 or separated.
  • large amounts of N 2 O are formed in catalysts during reduction processes in an oxygen-rich atmosphere on the platinum metal of the catalyst.
  • additional measures must be taken.
  • the formation process of N 2 O is exploited in order to build up an N 2 O storage medium on board the motor vehicle, which can then be used during a direct start.
  • the advantage of this approach is that no replenishment of special substances (such as N 2 O itself or ammonium nitrate) is required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Bereitstellen einer ausreichenden Sauerstoffmenge für den Direktstart einer Brennkraftmaschine (2) mit Direkteinspritzung und Fremdzündung. Bei dem Verfahren wird während der Startphase der Brennkraftmaschine (2) Sauerstoff und/oder ein Sauerstoffdonator wie zum Beispiel Stickstoffmonoxid N2O in die Brennkammern der Brennkraftmaschine (2) eingeführt, um die Menge an verbrennbarem Kraftstoff und damit die Energieausbeute zu erhöhen. Der Sauerstoffdonator N2O kann speziell im Abgaskatalysator (3) der Brennkraftmaschine (2) erzeugt beziehungsweise aus dem Abgas separiert und in einem Speicher (6') für die Startphase zwischengespeichert werden.

Description

Die Erfindung betrifft ein Verfahren zum Starten einer Brennkraftmaschine, eine zur Durchführung eines derartigen Verfahrens eingerichtete Brennkraftmaschine sowie eine im Rahmen des Verfahrens einsetzbare Vorrichtung.
Zur Verbesserung der Kraftstoffausnutzung in Fahrzeugen mit Verbrennungsmotor erfolgt häufig anstelle eines Leerlaufbetriebes ein vollständiges Abstellen des Motors, wenn keine Antriebsleistung benötigt wird. Der Motor muß dann neu angelassen werden, wenn seine Leistung wieder benötigt wird. Für das Anlassen weisen herkömmliche Brennkraftmaschinen spezielle Hilfsaggregate wie etwa einen Anlassermotor oder einen als Motor einsetzbaren Generator (sogenannter Startergenerator) auf. Hierbei handelt es sich um verhältnismäßig große und kostenaufwändige Einrichtungen, da für das Anlassen des Verbrennungsmotors eine hohe elektrische Leistung erforderlich ist.
Darüber hinaus ist es bekannt, eine Brennkraftmaschine durch Auslösen einer Verbrennung anzulassen. Dies ist insbesondere bei Brennkraftmaschinen mit Funkenzündung und Direkteinspritzung möglich. Der direkt in die Brennkammer eingespritzte Kraftstoff wird dabei durch einen Funken gezündet, und die anschließende Explosion des Luft-Kraftstoff-Gemisches bewegt den Kolben und startet den Motor, ohne daß die Kurbelwelle durch ein zusätzliches Hilfsaggregat bewegt werden müßte.
Bei einer Kombination obiger Methoden erfolgt während des Anlassens einer Brennkraftmaschine durch einen Startermotor bereits früh bzw. von Anfang an eine Einspritzung und Verbrennung in den Zylindern, um hierdurch den Anlasser zu unterstützen.
Ein direktes oder unterstütztes Anlassen des Motors durch eine frühe Verbrennung erfordert bestimmte Randbedingungen, um erfolgreich durchgeführt werden zu können. Zum Beispiel ist es erforderlich beziehungsweise vorteilhaft, daß die Kurbelwelle zu Beginn des Anlassens in oder nahe einer bestimmten Position steht. Ferner muß gewährleistet werden, daß aus der Verbrennung eine ausreichende Kraft zum Antreiben der Brennkraftmaschine gewonnen werden kann. Letzteres setzt wiederum die Bereitstellung einer ausreichenden Frischluftmenge während der Startphase voraus. Diesbezüglich wird in der DE 199 47 784 A1 die Anordnung eines Luftspeicherraums vorgeschlagen, in welchem Luft unter einem erhöhten Druck gespeichert werden soll, damit diese bei einem Direktstart der Brennkraftmaschine in deren Zylinder eingespeist werden kann und dort für einen erhöhten Ladedruck sorgt.
Vor diesem Hintergrund war es Aufgabe der vorliegenden Erfindung, alternative Mittel für eine effiziente Gewährleistung der Voraussetzungen für den Start einer Brennkraftmaschine mit Hilfe von frühen Verbrennungen während der Startphase bereitzustellen.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1, durch eine Brennkraftmaschine mit den Merkmalen des Anspruchs 7 sowie durch eine Vorrichtung mit den Merkmalen des Anspruchs 10 gelöst.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen enthalten.
Das erfindungsgemäße Verfahren dient dem Starten einer Brennkraftmaschine, wobei bereits während der Startphase eine Kraftstoffverbrennung in mindestens einer Brennkammer der Brennkraftmaschine stattfindet. Durch die frühe Kraftstoffverbrennung kann das Anlassen mittels eines Hilfsaggregates unterstützt werden, so daß Letzteres leichter und damit kostengünstiger ausgelegt werden kann. Vorzugsweise wird mit der Verbrennung sogar ein Direktstart der Brennkraftmaschine durchgeführt, welcher völlig ohne zusätzliches Hilfsaggregat auskommt. Das Verfahren ist dadurch gekennzeichnet, daß während der Startphase (jeweils) vor Beginn einer Verbrennung in mindestens einer Brennkammer der Brennkraftmaschine eine im Vergleich zur relativen Sauerstoffkonzentration in normaler Luft (ca. 21 Vol.-%) erhöhte relative Sauerstoffkonzentration herrscht (wobei Kraftstoffgase und/oder Restabgase bei der Ermittlung der relativen Konzentration nicht berücksichtigt werden). Zusätzlich oder alternativ kann während der Startphase auch ein Sauerstoffdonator in mindestens einer Brennkammer der Brennkraftmaschine vorhanden sein. Bei einem Sauerstoffdonator handelt es sich um einen vorzugsweise gasförmigen oder flüssigen Stoff, welcher Sauerstoff chemisch gebunden enthält und diesen unter bestimmten Voraussetzungen, beispielsweise oberhalb einer Temperaturschwelle, freisetzen bzw. an andere chemische Substanzen abgeben kann.
Durch das beschriebene Verfahren kann erreicht werden, daß während der Startphase der Brennkraftmaschine eine größere Menge an Sauerstoff in mindestens einer Brennkammer vorhanden ist, so daß dort auch mehr Kraftstoff verbrannt werden kann als bei einer entsprechenden Füllung der Kammer mit Umgebungsluft unter vergleichbaren Druckbedingungen. Dies gewährleistet, daß von Anfang der Startphase an eine ausreichende Motorleistung für ein unterstütztes Starten beziehungsweise einen Direktstart zur Verfügung steht.
Die erhöhte Sauerstoffkonzentration in der Brennkammer kann durch Zufuhr von einem Gas, das Sauerstoff in einer gegenüber den Verhältnissen in normaler Luft erhöhten Konzentration enthält oder sogar aus reinem Sauerstoff besteht (nachfolgend "Sauerstoff-Zufuhrgas" genannt), während des Auslaufens der Brennkraftmaschine, während des Stillstands der Brennkraftmaschine und/oder während der Startphase der Brennkraftmaschine erzeugt werden. Die Zufuhr kann dabei zusätzlich zu oder anstelle der normal angesaugten Frischluft erfolgen. In ähnlicher Weise kann auch der Sauerstoffdonator während des Auslaufens, des Stillstandes und/oder der Startphase der Brennkraftmaschine zugeführt werden. Bei allen genannten Zufuhrarten ist gewährleistet, daß der Sauerstoff beziehungsweise der Sauerstoffdonator während der Startphase zur Verfügung steht.
Gemäß einer Weiterbildung des Verfahrens wird der Sauerstoffdonator während des Betriebs der Brennkraftmaschine an Bord des die Brennkraftmaschine enthaltenden Kraftfahrzeuges produziert und für das Starten der Brennkraftmaschine zwischengespeichert. Die Art der Produktion richtet sich nach der als Sauerstoffdonator verwendeten Substanz.
Ein in diesem Zusammenhang bevorzugt verwendeter Sauerstoffdonator ist das Gas Stickstoffmonoxid N2O ("Lachgas"). Dieses Gas kann entweder in einem Speicher mitgeführt oder an Bord eines Kraftfahrzeuges in einem entsprechend eingerichteten Reaktor aus geeigneten Ausgangssubstanzen oder zum Beispiel durch biotechnologische Prozesse erzeugt werden.
Vorzugsweise wird das Stickstoffmonoxid N2O während des Betriebs der Brennkraftmaschine in einem im Abgasweg der Brennkraftmaschine angeordneten Abgaskatalysator gewonnen. In herkömmlichen Abgaskatalysatoren wird die Entstehung von N2O durch spezielle Maßnahmen unterdrückt. Durch eine entsprechende Einstellung der Katalysatoren kann somit in einfacher Weise erreicht werden, daß diese während des Betriebs des Kraftfahrzeuges N2O produzieren, welches dann separiert und zwischengespeichert werden kann.
Die Erfindung betrifft ferner eine Brennkraftmaschine, vorzugsweise eine Brennkraftmaschine mit Direkteinspritzung und Fremdzündung, welche dadurch gekennzeichnet ist, daß diese Mittel zur Bereitstellung von Gas mit einer höheren relativen Sauerstoffkonzentration als in Luft ("Sauerstoff-Zufuhrgas") und/oder von einem Sauerstoffdonator in mindestens eine Brennkammer der Brennkraftmaschine enthält.
Die Brennkraftmaschine ist für die Durchführung eines Verfahrens der oben erläuterten Art eingerichtet. Die Bereitstellung von Sauerstoff-Zufuhrgas und/oder einem Sauerstoffdonator kann somit für die Startphase der Brennkraftmaschine stattfinden, um auf diese Weise den Start durch frühe Kraftstoffverbrennungen zu unterstützen beziehungsweise einen Direktstart zu bewirken.
Gemäß einer Weiterbildung der Brennkraftmaschine enthält diese einen Vorratsspeicher für Sauerstoff-Zufuhrgas und/oder für einen Sauerstoffdonator, wobei der Vorratsspeicher über Zufuhrleitungen mit mindestens einer Brennkammer der Brennkraftmaschine verbunden ist. Ein derartiger Vorratsspeicher kann mit einer Betankungseinrichtung versehen sein, so daß dieser in regelmäßigen Abständen, zum Beispiel beim Auftanken des Kraftfahrzeuges mit Kraftstoff, wiederbefüllt werden kann.
Die Brennkraftmaschine enthält ferner vorzugsweise eine im Abgasweg angeordnete Abgasnachbehandlungseinrichtung, welche dazu eingerichtet ist, N2O aus dem von der Brennkraftmaschine kommenden Abgas zu erzeugen und/oder zu separieren. In diesem Falle ist die Brennkraftmaschine autonom, da sie den Sauerstoffdonator selbst erzeugt und diesbezüglich keine regelmäßige Betankung od. dgl. benötigt.
Die Erfindung betrifft ferner eine Vorrichtung zur Gewinnung eines Sauerstoffdonators, insbesondere von Stickstoffmonoxid N2O, welche dahingehend ausgebildet ist, aus dem Abgas einer Brennkraftmaschine den Sauerstoffdonator zu erzeugen und/oder zu separieren. Bei der Vorrichtung kann es sich insbesondere um einen entsprechend ausgebildeten bzw. abgewandelten Abgaskatalysator handeln. Eine mit einer solchen Vorrichtung ausgestattete Brennkraftmaschine ist in der Lage, autonom einen Sauerstoffdonator zu erzeugen, welcher insbesondere während der Startphase der Brennkraftmaschine verwendet werden kann, um eine ausreichend hohe Sauerstoffmenge für eine leistungsstarke Verbrennung und damit ein starterloses Anlassen der Brennkraftmaschine bereitzustellen.
Im Folgenden wird die Erfindung mit Hilfe der Figuren beispielhaft erläutert. Es zeigen:
Fig. 1
eine erfindungsgemäße Brennkraftmaschine mit einem Sauerstoff- bzw. N2O-Speicher, und
Fig. 2
eine Brennkraftmaschine mit einem N2O-Speicher und einer N2O-Erzeugung durch einen Abgaskatalysator.
Bei der in den Figuren dargestellten Brennkraftmaschine 2 handelt es sich insbesondere um eine solche mit Direkteinspritzung von Kraftstoff in die Zylinder und Fremdzündung. Der Brennkraftmaschine wird über einen Ansaugkrümmer beziehungsweise ein Einlaßsystem 1 Frischluft bereitgestellt. Die Verbrennungsabgase werden über einen Abgaskrümmer und einen Abgasweg 4 abgeführt. Im Abgasweg 4 befindet sich mindestens eine Abgasnachbehandlungseinrichtung 3, z. B. ein Dreiwegekatalysator.
Um die Brennkraftmaschine 2 direkt, d.h. ohne ein zusätzliches Hilfsaggregat wie beispielsweise einen Startermotor anlassen zu können, oder um ein derartiges Hilfsaggregat zu unterstützen und daher leichter auslegen zu können, kann während der Startphase der Brennkraftmaschine 2 bereits von jedem ersten Arbeitstakt eines Zylinders an eine Kraftstoffeinspritzung und -verbrennung erfolgen. Wichtig für den Erfolg eines solchen Vorgehens ist, daß der Verbrennungsvorgang eine ausreichend hohe Kraft für die Ingangsetzung der Brennkraftmaschine 2 bereitstellt. Die maximal erreichbare Kraft wird während der Startphase jedoch durch die verhältnismäßig geringe für eine Verbrennung zur Verfügung stehende Sauerstoffmenge in den Zylindern begrenzt, da das Füllgas der Zylinder unverdichtet nur bei Atmosphärendruck vorliegt.
Um die Verbrennungsleistung der Brennkraftmaschine 2 während der Startphase zu erhöhen, wird erfindungsgemäß vorgeschlagen, für eine erhöhte (relative) Sauerstoffkonzentration während der Startphase zu sorgen. Figur 1 zeigt diesbezüglich eine erste spezielle Ausführungsform der Erfindung. Um den Sauerstoffgehalt in den Zylindern der Brennkraftmaschine 2 zu erhöhen, werden diese mit reinem Sauerstoff O2 anstelle von Frischluft oder zusätzlich zur Frischluft gefüllt. Eine andere Möglichkeit besteht darin, die Zylinder mit einem Sauerstoffdonator zu füllen, d.h. Gasen oder Flüssigkeiten, welche Sauerstoff chemisch gebunden enthalten und diesen in den Zylindern freisetzen können. Der Sauerstoffdonator wird vorzugsweise zusätzlich zur normalen Frischluft in die Zylinder eingebracht.
Gemäß Figur 1 wird der reine Sauerstoff O2 und/oder der Sauerstoffdonator, bei dem es sich zum Beispiel um Stickstoffmonoxid N2O handeln kann, in einem Speichertank 6 an Bord des Kraftfahrzeuges bevorratet und über Zufuhrleitungen 5 nach Bedarf in die Zylinder der Brennkraftmaschine eingebracht. Diese Zufuhr von Sauerstoff oder einem Sauerstoffdonator kann dabei während des Auslaufens der Brennkraftmaschine (d. h. in der Zeit vom Abstellen der Zündung und/oder der Kraftstoffzufuhr bis zum Motorstillstand), während des Motorstillstands (Drehzahl Null) und/oder während der Startphase (d. h. vom Motorstillstand bis zum Erreichen einer vorgegebenen Mindestdrehzahl, zum Beispiel der Leerlaufdrehzahl) erfolgen. Die Bereitstellung von reinem Sauerstoffgas O2 oder von Sauerstoff, der von einem Sauerstoffdonator in der Brennkammer freigesetzt wird, erhöht die verfügbare Gesamtmenge an Sauerstoff in der Brennkammer. Daher kann eine zusätzliche Menge an Kraftstoff durch die Direkteinspritzung bereitgestellt und vollständig verbrannt werden, so daß eine größere Energie aus dem Verbrennungsvorgang gewonnen wird. Dies stellt sicher, daß die Brennkraftmaschine 2 durch die Verbrennung "aus eigener Kraft" direkt angelassen werden kann.
Wie in Figur 1 schematisch angedeutet ist, kann das Sauerstoffgas O2 und/oder der Sauerstoffdonator durch eine Tankeinrichtung 7 bei Bedarf wieder im Speicher 6 nachgefüllt werden.
Figur 2 zeigt eine Abwandlung des Systems von Figur 1. Der Speicher 6' ist dabei speziell ein N2O-Speicher, welcher eingangsseitig über eine Leitung 8 mit dem Abgaskatalysator 3 verbunden ist. Bei Stickstoffmonoxid N2O handelt es sich um einen Sauerstoffträger mit etwa der 1.5-fachen Dichte von Luft. N2O dissoziiert bei Temperaturen oberhalb von 300°C in Sauerstoff und Stickstoff gemäß der Formel 2 N2O → 2 N2 + O2.
N2O kann für einen Direktstart zusammen mit Frischluft in die Zylinder der Brennkraftmaschine 2 eingebracht werden. Mit der Frischluft und einer Kraftstoffinjektion kann eine Verbrennung in einem Zylinder initiiert werden, der sich für diesen Zweck in der richtigen Arbeitsstellung befindet. Wenn aufgrund der Verbrennung die Temperatur über 300°C ansteigt, wird Sauerstoff aus dem N2O freigesetzt, welcher dann an der Verbrennung teilnimmt. Aufgrund der durch diese Freisetzung bereitstehenden zusätzlichen Sauerstoffmenge kann eine entsprechende Zusatzmenge an Kraftstoff in der Brennkammer umgesetzt werden. Hierdurch erhöht sich die verfügbare Energie für das Anlassen der Brennkraftmaschine entsprechend, so daß ein Direktstart mit größerer Wahrscheinlichkeit erfolgreich bzw. unter kritischen Randbedingungen robuster verläuft.
Wie in Figur 1 dargestellt ist, kann das N2O-Gas im Kraftfahrzeug in einer Speichereinrichtung 6 wie beispielsweise einer Druckflasche bevorratet werden, welche bei Bedarf erneut aufgefüllt wird. Eine andere Möglichkeit besteht darin, daß N2O an Bord des Kraftfahrzeuges in einem hierfür geeigneten Reaktor erzeugt wird. Zum Beispiel kann N2O unter Wärmeeinwirkung aus festem Ammoniumnitrat NH4NO3 erzeugt werden. Ferner kann N2O durch Denitrifizierung in einem biotechnologischen Prozeß durch spezielle Bakterien und Pilze aus Nitrat erzeugt werden. Das Nitrat ist dabei von Zeit zu Zeit in dem Reaktor wieder aufzufüllen.
Die in Figur 2 gezeigte weitere Möglichkeit einer N2O-Erzeugung im Kraftfahrzeug ist besonders zu bevorzugen, da sie mit den wenigsten Zusatzeinrichtungen auskommt. Bei dieser Methode wird das N2O im Abgaskatalysator 3 aus den Abgasemissionen der Brennkraftmaschine 2 erzeugt bzw. separiert. Normalerweise werden in Katalysatoren während Reduktionsprozessen in einer sauerstoffreichen Atmosphäre am Platinmetall des Katalysators große Mengen an N2O gebildet. Zur Vermeidung dieser N2O-Bildung im Katalysator müssen üblicherweise geeignete Zusatzmaßnahmen ergriffen werden. Vorliegend wird jedoch der Bildungsprozeß von N2O ausgenutzt, um einen N2O-Speichervorrat an Bord des Kraftfahrzeuges aufzubauen, welcher dann während eines Direktstarts verwendet werden kann. Der Vorteil dieses Vorgehens liegt darin, daß kein Nachfüllen spezieller Substanzen (wie zum Beispiel von N2O selbst oder von Ammoniumnitrat) erforderlich ist.
Weiterhin ist es möglich, an Bord des Kraftfahrzeuges N2O in einer hierfür geeigneten Vorrichtung aus dem natürlichen Stickstoffgehalt in Luft zu erzeugen, was ebenfalls den Vorteil hat, ohne ein Auffüllen spezieller Substanzen auszukommen.

Claims (10)

  1. Verfahren zum Starten einer Brennkraftmaschine (2), wobei bereits während der Startphase mindestens eine Kraftstoffverbrennung in mindestens einer Brennkammer der Brennkraftmaschine stattfindet,
    dadurch gekennzeichnet, daß
       während der Startphase in der genannten Brennkammer eine im Vergleich zu Luft erhöhte relative Sauerstoffkonzentration herrscht und/oder ein Sauerstoffdonator vorhanden ist.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß
       die erhöhte relative Sauerstoffkonzentration durch Zufuhr von Sauerstoffhaltigem Gas während des Auslaufens, des Stillstands und/oder der Startphase der Brennkraftmaschine (2) erzeugt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß
       der Sauerstoffdonator während des Auslaufens, des Stillstands und/oder der Startphase der Brennkraftmaschine (2) zugeführt wird.
  4. Verfahren nach mindestens einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß
       der Sauerstoffdonator während des Betriebs der Brennkraftmaschine (2) produziert und zwischengespeichert wird.
  5. Verfahren nach mindestens einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß
       der Sauerstoffdonator Stickstoffmonoxid (N2O) enthält.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, daß
       das Stickstoffmonoxid (N2O) während des Betriebs der Brennkraftmaschine (2) in einem Abgaskatalysator (3) gewonnen wird.
  7. Brennkraftmaschine (2), vorzugsweise mit Direkteinspritzung und Fremdzündung,
    gekennzeichnet durch
       Mittel (5, 6, 6') zur Bereitstellung von Gas mit einer höheren relativen Sauerstoffkonzentration als in Luft und/oder von einem Sauerstoffdonator in mindestens eine Brennkammer der Brennkraftmaschine (2).
  8. Brennkraftmaschine nach Anspruch 7,
    dadurch gekennzeichnet, daß
       diese einen Vorratsspeicher (6, 6') für das genannte Gas und/oder den genannten Sauerstoffdonator enthält, wobei der Vorratsspeicher über Zufuhrleitungen (5) mit mindestens einer Brennkammer verbunden ist.
  9. Brennkraftmaschine nach Anspruch 7 oder 8,
    dadurch gekennzeichnet, daß
       diese eine im Abgasweg (4) angeordnete Abgasnachbehandlungseinrichtung (3) aufweist, welche dahingehend ausgebildet ist, Stickstoffmonoxid (N2O) aus dem Abgas der Brennkraftmaschine (2) zu erzeugen und/oder zu separieren.
  10. Vorrichtung zur Gewinnung eines Sauerstoffdonators, insbesondere von Stickstoffmonoxid (N2O),
    dadurch gekennzeichnet, daß
       diese dahingehend ausgebildet ist, aus dem Abgas einer Brennkraftmaschine den Sauerstoffdonator zu erzeugen und/oder zu separieren.
EP03100842A 2003-03-31 2003-03-31 Verfahren zum Starten einer Brennkraftmaschine Expired - Fee Related EP1464831B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03100842A EP1464831B1 (de) 2003-03-31 2003-03-31 Verfahren zum Starten einer Brennkraftmaschine
DE50309408T DE50309408D1 (de) 2003-03-31 2003-03-31 Verfahren zum Starten einer Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03100842A EP1464831B1 (de) 2003-03-31 2003-03-31 Verfahren zum Starten einer Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1464831A1 true EP1464831A1 (de) 2004-10-06
EP1464831B1 EP1464831B1 (de) 2008-03-19

Family

ID=32842829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03100842A Expired - Fee Related EP1464831B1 (de) 2003-03-31 2003-03-31 Verfahren zum Starten einer Brennkraftmaschine

Country Status (2)

Country Link
EP (1) EP1464831B1 (de)
DE (1) DE50309408D1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210472B2 (en) * 2005-05-10 2007-05-01 Barry Lyn Holtzman Nitrous oxide vapor delivery system for engine power enhancement
JP2015158182A (ja) * 2014-02-25 2015-09-03 株式会社デンソー 排ガス処理装置
JP2017512279A (ja) * 2014-02-27 2017-05-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 排気ガス再循環回路にn2o触媒を有する排気システム
RU2737575C1 (ru) * 2019-08-06 2020-12-01 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Способ работы двигателя внутреннего сгорания, двигатель внутреннего сгорания
US10947896B1 (en) * 2020-05-29 2021-03-16 Philip Owen Jung Internal cleaning of an internal combustion engine after-treatment system
CN114000941A (zh) * 2021-09-23 2022-02-01 重庆鼎工机电有限公司 一种柴油发电机组使用于高原起动工作方法
CN115247589A (zh) * 2021-04-27 2022-10-28 大众汽车股份公司 具有带有氧存储器的废气催化器的内燃机的废气后处理

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1496951A (en) * 1922-04-05 1924-06-10 Edward M Shinkle Method of and apparatus for burning gaseous oxygen in internalcombustion engines
DE2350922A1 (de) * 1973-10-10 1975-04-24 Schreiber Paul Dr Zur energienutzung in rotationskraft entwickelnden verbrennungsmotoren
US4240381A (en) * 1979-05-08 1980-12-23 Purification Sciences Inc. Internal combustion engine system
US4681071A (en) * 1985-12-05 1987-07-21 Smith Robert J Method and apparatus for starting a diesel engine at a subfreezing temperature
JPH0686914A (ja) * 1992-09-08 1994-03-29 Osaka Gas Co Ltd 窒素酸化物の処理方法及び処理装置
DE19710839A1 (de) * 1997-03-15 1998-09-17 Bosch Gmbh Robert Verfahren zur Reduzierung von Schadstoffen in Verbrennungsabgasen von Verbrennungsmotoren
GB2345866A (en) * 1998-12-03 2000-07-26 Rover Group Separating oxygen from exhaust stream
DE19912137A1 (de) * 1999-03-18 2000-10-12 Daimler Chrysler Ag Brennkraftmaschinenanlage mit Sauerstoffanreicherung und Betriebsverfahren hierfür
DE19947784A1 (de) 1999-10-05 2001-04-12 Bosch Gmbh Robert Verfahren zum Starten einer Brennkraftmaschine
US20020029769A1 (en) * 2000-05-23 2002-03-14 Evert Joseph G. Valve apparatus and method for injecting nitrous oxide into a combustion engine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1496951A (en) * 1922-04-05 1924-06-10 Edward M Shinkle Method of and apparatus for burning gaseous oxygen in internalcombustion engines
DE2350922A1 (de) * 1973-10-10 1975-04-24 Schreiber Paul Dr Zur energienutzung in rotationskraft entwickelnden verbrennungsmotoren
US4240381A (en) * 1979-05-08 1980-12-23 Purification Sciences Inc. Internal combustion engine system
US4681071A (en) * 1985-12-05 1987-07-21 Smith Robert J Method and apparatus for starting a diesel engine at a subfreezing temperature
JPH0686914A (ja) * 1992-09-08 1994-03-29 Osaka Gas Co Ltd 窒素酸化物の処理方法及び処理装置
DE19710839A1 (de) * 1997-03-15 1998-09-17 Bosch Gmbh Robert Verfahren zur Reduzierung von Schadstoffen in Verbrennungsabgasen von Verbrennungsmotoren
GB2345866A (en) * 1998-12-03 2000-07-26 Rover Group Separating oxygen from exhaust stream
DE19912137A1 (de) * 1999-03-18 2000-10-12 Daimler Chrysler Ag Brennkraftmaschinenanlage mit Sauerstoffanreicherung und Betriebsverfahren hierfür
DE19947784A1 (de) 1999-10-05 2001-04-12 Bosch Gmbh Robert Verfahren zum Starten einer Brennkraftmaschine
US20020029769A1 (en) * 2000-05-23 2002-03-14 Evert Joseph G. Valve apparatus and method for injecting nitrous oxide into a combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 347 (C - 1219) 30 June 1994 (1994-06-30) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210472B2 (en) * 2005-05-10 2007-05-01 Barry Lyn Holtzman Nitrous oxide vapor delivery system for engine power enhancement
JP2015158182A (ja) * 2014-02-25 2015-09-03 株式会社デンソー 排ガス処理装置
JP2017512279A (ja) * 2014-02-27 2017-05-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 排気ガス再循環回路にn2o触媒を有する排気システム
RU2737575C1 (ru) * 2019-08-06 2020-12-01 Федеральное государственное казенное военное образовательное учреждение высшего образования "ВОЕННАЯ АКАДЕМИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ имени генерала армии А.В. Хрулева" Способ работы двигателя внутреннего сгорания, двигатель внутреннего сгорания
US10947896B1 (en) * 2020-05-29 2021-03-16 Philip Owen Jung Internal cleaning of an internal combustion engine after-treatment system
CN115247589A (zh) * 2021-04-27 2022-10-28 大众汽车股份公司 具有带有氧存储器的废气催化器的内燃机的废气后处理
CN114000941A (zh) * 2021-09-23 2022-02-01 重庆鼎工机电有限公司 一种柴油发电机组使用于高原起动工作方法

Also Published As

Publication number Publication date
EP1464831B1 (de) 2008-03-19
DE50309408D1 (de) 2008-04-30

Similar Documents

Publication Publication Date Title
DE3048540C2 (de) Verfahren und Vorrichtung zur Verringerung der Emission schädlicher Bestandteile im Abgas eines Verbrennungsmotors
DE102010053697B4 (de) Verfahren zum Steuern einer Maschine sowie Maschinensteuersystem mit Luft-unterstützter Start/Stopp-Funktion
DE10349126A1 (de) Abgasnachbehandlungssysteme
DE10221031A1 (de) Motorabschaltung für ein Hybrid-Elektrofahrzeug
EP2118460B1 (de) Verfahren und vorrichtung zur erzeugung von ammoniak für die abgasbehandlung bei brennkraftmaschinen in einem kraftfahrzeug
DE102018203086B4 (de) Verfahren und Anordnung zum Regenerieren eines LNT-Katalysators, Steuereinheit und Kraftfahrzeug
EP1464831B1 (de) Verfahren zum Starten einer Brennkraftmaschine
EP0813648B1 (de) Vorrichtung und verfahren zum aufheizen eines abgaskatalysators für eine brennkraftmaschine
DE102005003880B4 (de) Verfahren zur Steuerung einer Kraftstoffdirekteinspritzung und Kraftfahrzeug
EP1410935A1 (de) Verfahren zur Reduzierung der Abgasemissionen eines Motorsystems
DE3614251C1 (de) Verfahren zur Abgasentgiftung einer Verbrennungskraftmaschine unter Verwendung eines katalytischen Systems und Vorrichtung zur Durchfuehrung des Verfahrens
EP0721795A1 (de) Verfahren und Vorrichtung zur katalytischen Stickoxid-Reduzierung von Kfz-Abgasen
EP1106798A1 (de) Vorrichtung und Verfahren zur NOx- und/oder SOx-Regeneration eines NOx-Speicherkatalysators
DE102017200089B3 (de) Kraftfahrzeug mit Abgasturbolader und SCR-Abgasnachbehandlung sowie Verfahren zu dessen Betrieb
DE2004579A1 (de) Verbrennungsmotor
EP1464799A1 (de) Verfahren zum Starten einer Brennkraftmaschine
EP0961871A1 (de) Verfahren und einrichtung zur steuerung einer verbrennungsanlage und zur katalytischen abgasreinigung sowie verbrennungsanlage
DE102017210561B3 (de) Verfahren, Steuereinrichtung und System zum Start eines Verbrennungsmotors
DE69604758T2 (de) Methode zur Abgasentgiftung in einer Zweitaktbrennkraftmaschine und deren Anwendungen
DE102017223819A1 (de) Regenerationssystem, Fahrzeug umfassend dasselbe und Regenerationsverfahren
DE102016015082A1 (de) Verfahren zum Betreiben einer Abgasanlage eines Kraftwagens und Abgasanlage
DE102019210415B4 (de) Abgasnachbehandlung
WO1991014089A1 (de) Verfahren zum betrieb einer brennkraftmaschine mit brennstoffen unterschiedlicher zusammensetzung
DE69220969T2 (de) VORRICHTUNG ZUR NOx-REDUKTION VON BRENNKRAFTMASCHINEN
DE102021128148A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine in einem Fahrzeug, Fahrzeug, Computerprogrammprodukt und Speichermittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050406

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50309408

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190215

Year of fee payment: 17

Ref country code: GB

Payment date: 20190227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190220

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309408

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331