EP1462514B1 - Water soluble package and liquid contents thereof - Google Patents

Water soluble package and liquid contents thereof Download PDF

Info

Publication number
EP1462514B1
EP1462514B1 EP04075743A EP04075743A EP1462514B1 EP 1462514 B1 EP1462514 B1 EP 1462514B1 EP 04075743 A EP04075743 A EP 04075743A EP 04075743 A EP04075743 A EP 04075743A EP 1462514 B1 EP1462514 B1 EP 1462514B1
Authority
EP
European Patent Office
Prior art keywords
water soluble
package according
soluble package
solvent
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04075743A
Other languages
German (de)
French (fr)
Other versions
EP1462514A1 (en
Inventor
Vidyadhar Sudhir Ranade
Caecilia H.E. De Vries-Van Lingen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP1462514A1 publication Critical patent/EP1462514A1/en
Application granted granted Critical
Publication of EP1462514B1 publication Critical patent/EP1462514B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2041Dihydric alcohols
    • C11D3/2044Dihydric alcohols linear
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions

Definitions

  • the present invention relates to a water soluble package for containing a liquid cleaning composition, especially a laundry treatment agent.
  • the invention relates to a water soluble package formed from a water soluble film containing a substantially non-aqueous liquid composition.
  • Water soluble packages are known in the detergent art and generally comprise either vertical form-fill-seal (VFFS) envelopes or thermoformed envelopes.
  • VFFS vertical form-fill-seal
  • a roll of water soluble film is sealed along its edges to form a tube, which tube is heat sealed intermittently along its length to form individual envelopes which are filled with product and heat sealed.
  • the thermoforming process generally involves moulding a first sheet of water soluble film to form one or more recesses adapted to retain a composition, such as for example a solid detergent composition, placing the composition in the at least one recess, placing a second sheet of water soluble material over the first so as to cover the or each recess, and heat sealing the first and second sheets together at least around the recesses so as to form one or more water soluble packages.
  • Solvent-sealed water soluble packages are also known in the art.
  • Cleaning products are traditionally often liquids, viscous or thin, such as those known for personal cleaning (bath and shower liquids and shampoos) or for domestic cleaning (hand dishwash and other hard surface cleaning, laundry cleaning etc.).
  • Other products are solids, such as powders, granules, small capsules (up to 2mm diameter) or more recently tablets, for laundry and machine dish wash, and soap bars for skin cleaning.
  • unit dose products are experiencing an increasing success with consumers, because they eliminate the need for manipulating, and possibly spilling, liquids or powders and simplify the use of a correct dose of the cleaning product for the required purpose. Examples thereof are the laundry and machine dish wash tablets mentioned above.
  • EP-A-518689 discloses a containerisation system for hazardous materials (for example pesticides) comprising a PVOH film enclosing a composition comprising the hazardous material, water, an electrolyte and optional other materials. The electrolyte is added to reduce the solubility of the film to prevent its dissolution by the packaged composition.
  • hazardous materials for example pesticides
  • EP-A-700989 discloses a unit packaged detergent for dish washing, the package comprising a detergent composition wrapped in PVOH film, wherein the film protects the detergent from dissolution until the main wash cycle of the dish washing machine.
  • EP-A-593952 discloses a water soluble sachet of PVOH with two chambers and a treatment agent for washing inside each chamber.
  • EP-A-941939 relates to a water soluble package, which can be PVOH, containing a composition which, when dissolved, produces a solution of known composition.
  • GB-A-2305931 discloses a dissolvable laundry sachet and BE-9700361 relates to a water soluble unit-dosed cleaning agent, especially for cleaning hands.
  • EP-B-157162 relates to a self-supporting film comprising a PVOH matrix having rubbery microdomains dispersed therein.
  • a package which is formed from a water-soluble film and comprises a substantially non-aqueous liquid composition containing at least two different solvents, being a primary and a secondary solvent, whereby the concentration of the secondary solvent is at least 5% by weight of the primary solvent, and whereby the film contains a plasticizer which is the same chemical compound as the secondary solvent.
  • This secondary solvent is preferably glycerol.
  • an object of the present invention is to find a package formed from a water soluble film and containing a simple substantially non-aqueous liquid composition, wherein said package shows both favourable film characteristics (i.e. flexibility; compression strength) and good solubility of the liquid composition.
  • the encapsulated non-aqueous liquid composition contains a surfactant and a primary solvent, whereby said solvent is a diol having a Hansen hydrogen-bonding solubility parameter of greater than 20, and whereby the hydroxyl groups present in said diol are terminal hydroxyl groups, the distance between these groups being 3 carbon atoms.
  • the basis of the Hansen solubility parameter (HSP) is that the total energy of vaporisation of a liquid consists of several individual parts. Hansen has defined three types of contributions to the energy of vaporisation, namely: dispersive, polar and hydrogen bonding.
  • the hydrogen-bonding Hansen Solubility Parameter is based upon the hydrogen bonding cohesive energy contribution to the energy of vaporisation. It can either be calculated or predicted using the methods disclosed in "Hansen Solubility Parameters: a User's Handbook", by Charles M. Hansen, CRC Press, Boca Raton, 2000.
  • the present invention provides a water soluble package formed from a water soluble film containing a substantially non-aqueous liquid composition comprising a surfactant and a primary solvent, wherein said primary solvent is a diol having a hydrogen-bonding Hansen solubility parameter (as defined herein) of greater than 20, and wherein the hydroxyl groups present in said diol are terminal hydroxyl groups, whereby the distance between these groups is 3 carbon atoms.
  • the non-aqueous liquid is the non-aqueous liquid
  • the substantially non-aqueous liquid composition effectively provides a cleaning function when released into the wash liquor.
  • it is a laundry treatment agent.
  • the amount of this liquid composition in the package i.e. the unit dose volume may for example be from 10 ml to 100 ml, e.g. from 12.5 ml to 75 ml, preferably from 15 ml to 60 ml, more preferably from 20 ml to 55 ml.
  • substantially non-aqueous it is meant that the amount of water in the liquid composition is below the level at which the package would dissolve through contact with its contents.
  • the liquid composition comprises no more than 20%, more preferably no more that 15%, still more preferably no more than 10%, by weight of water.
  • the primary solvent present in the non-aqueous liquid composition of the present invention is a diol having a Hansen hydrogen-bonding solubility parameter greater than 20, wherein the hydroxyl groups present in said diol are terminal groups, and the distance between these groups is 3 carbon atoms.
  • Suitable primary solvents are selected from 1,3-propanediol and 2-methyl-1,3-propanediol.
  • the primary solvent is present in the liquid composition in an amount of at least 10% by weight, more preferably from 15-50% by weight.
  • the liquid composition of the invention may also contain a secondary solvent.
  • Suitable secondary solvents include glycerine, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, propylene glycol, diethylene glycol, 2,3-butanediol, 1,4-butanediol, 1,3-butanediol, and triethanolamine.
  • the secondary solvent may be present in the liquid composition at a concentration of up to 10% by weight.
  • the film effectively comprises a water soluble polymer.
  • water soluble polymer refers to a polymer which dissolves and/or dispenses completely in water within 30 minutes with agitation, e.g. by means of hand, stick or other stirrer or under the action of a mechanical washing machine and at a relevant temperature.
  • a "relevant temperature” is one at which the consumer will need to dissolve or disperse the polymer component at the beginning of, or during a cleaning process.
  • a polymer is to be regarded as dissolving or dispersing at a "relevant temperature” if it does so under the aforementioned conditions at a temperature anywhere in the range of from 20°C to 60°C.
  • Water-soluble, polyvinyl alcohol film-forming resins are most preferred for use in the package of the present invention.
  • Polyvinyl alcohols (PVA) preferred for use herein have an average molecular weight anywhere between 1,000 and 100,000, preferably between 5,000 and 250,000, for example between 15,000 and 150,000.
  • Hydrolysis, or alcoholysis is defined as the percent completion of the reaction where acetate groups on the resin are substituted with hydroxyl, -OH, groups.
  • a hydrolysis range of from 60-99% of polyvinyl alcohol film-forming resin is preferred, while a more preferred range of hydrolysis is from about 70-90% for water-soluble, polyvinyl alcohol film-forming resins. The most preferred range of hydrolysis is 80-89%.
  • polyvinyl alcohol includes polyvinyl acetate compounds with levels of hydroloysis disclosed herein.
  • the water-soluble resin film should be formulated so as to substantially completely dissolve in 50°C. water with agitation within about thirty minutes, preferably within about 15 minutes in 50°C. water with agitation, and most preferably within about 5 minutes in 50°C. water with agitation.
  • Suitable PVA films for use in a package according to the invention are commercially available and described, for example, in EP-B- 291,198.
  • PVA films for use in a package according to the invention can be made from polymers that are obtained by the copolymerisation of vinyl acetate and a carboxylate-containing co-monomer (for example acrylic, maleic or itaconic acid or acid ester), followed by partial (for example up to about 90%) or total hydrolysis with sodium hydroxide.
  • Suitable water soluble films can also be made from blends of two or more polymers/copolymers as mentioned above, and having different compositions or molecular weights.
  • the water soluble film of the invention incorporates a plasticizer system containing one or more plasticizers.
  • Plasticizers suitable for use with PVA-based films have -OH groups in common with the ⁇ CH2-CH(OH)-CH2-CH(OH)-polymer chain of the film polymer. Their mode of functionality is to introduce short chain hydrogen bonding with the chain hydroxyl groups and thus weaken adjacent chain interactions which inhibits swelling of the aggregate polymer mass - the first stage of film dissolution.
  • Water itself is a suitable plasticizer for any of the films recited herein.
  • suitable plasticizers are selected from ) the group consisting of pentane diols, butane diols, propane diols, glycerol, trimethylolpropane, sorbitol, diethylene glycol, triethylene glycol, and dipropylene glycol.
  • the plasticizer system may suitably include a plasticizer material which is the same chemical compound as the primary solvent in the liquid composition. Furthermore, said plasticizer material may be effectively the main plasticizer in the film.
  • the total amount of plasticizer in the film may vary considerably according to the film type and plasticizer type. It could for example be in the range of from 0.1% to 50%, e.g. 10% to 45%, such as 20% to 40% by weight.
  • the plasticizer system is desirably present in a total amount of above 10% by weight.
  • Water soluble films based on PVA can be made according to any of the horizontal form-fill-seal methods described in any of WO-A-00/55044, WO-A-00/55045, WO-A-00/55046, WO-A-00/55068, WO-A-00/55069 and WO-A-00/55415.
  • VFFS vertical form-fill-seal
  • a rotary form-fill-seal technique may be used.
  • forming, filling and sealing of water soluble packages is carried out using a rotary drum that has forming cavities or recesses on its curved surface.
  • solvent sealing instead of heat sealing as described above, solvent sealing, ultrasonic sealing or any other type of sealing known in the art could be applied for producing the package of the present invention.
  • solvent sealing is used and the film contains PVA, an aqueous solution or water are preferably used as a solvent.
  • the surfactant present in the liquid composition may be selected from nonionic, anionic, cationic and ampholytic detergent surfactants. These may be in liquid form or as solid dissolved or dispersed in the substantially non-aqueous liquid composition.
  • Nonionic detergent surfactants are well-known in the art. They normally consist of a water-solubilizing polyalkoxylene or a mono- or dialkanolamide group in chemical combination with an organic hydrophobic group derived, for example, from alkylphenols in which the alkyl group contains from about 6 to about 12 carbon atoms, dialkylphenols in which primary, secondary or tertiary aliphatic alcohols (or alkyl-capped derivatives thereof), preferably having from 8 to 20 carbon atoms, monocarboxylic acids having from 10 to about 24 carbon atoms in the alkyl group and polyoxypropylene.
  • alkylphenols in which the alkyl group contains from about 6 to about 12 carbon atoms
  • dialkylphenols in which primary, secondary or tertiary aliphatic alcohols (or alkyl-capped derivatives thereof), preferably having from 8 to 20 carbon atoms
  • monocarboxylic acids having from 10 to about 24 carbon atoms in the alkyl group
  • fatty acid mono- and dialkanolamides in which the alkyl group of the fatty acid radical contains from 10 to about 20 carbon atoms and the alkyloyl group having from 1 to 3 carbon atoms.
  • the alkyl group of the fatty acid radical contains from 10 to about 20 carbon atoms and the alkyloyl group having from 1 to 3 carbon atoms.
  • the polyalkoxylene moiety preferably consists of from 2 to 20 groups of ethylene oxide or of ethylene oxide and propylene oxide groups.
  • particularly preferred are those described in European specification EP-A-225,654.
  • ethoxylated nonionics which are the condensation products of fatty alcohols with from 9 to 15 carbon atoms condensed with from 3 to 11 moles of ethylene oxide.
  • condensation products of C 11-13 alcohols with (say) 3 or 7 moles of ethylene oxide may be used as the sole nonionic surfactants or in combination with those of the described in the last-mentioned European specification.
  • These nonionics may also be suitably used as primary solvent material.
  • liquid compositions of the invention may also comprises an anionic surfactant.
  • anionic surfactants are the linear alkyl benzene sulfonate (LAS) materials. Such surfactants and their preparation are described for example in U.S. Patents 2,220,099 and 2,477,383, incorporated herein by reference. Particularly preferred are the sodium, potassium and mono-, di- or tri-ethanolammonium linear straight chain alkylbenzene sulfonates in which the average number of carbon atoms in the alkyl group is from about 11 to 14.
  • Monoethanol ammonium salt of C1 1-C14, e.g., C12, LAS is especially preferred.
  • Preferred anionic surfactants include the alkyl sulfate surfactants hereof being water soluble salts or acids of the formula ROS03M wherein R preferably is a C10-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C18 alkyl component, more preferably a C12-C15 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or substituted ammonium, especially mono-di-, or tri-ethanolammonium.
  • R preferably is a C10-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C18 alkyl component, more preferably a C12-C15 alkyl or hydroxyalkyl
  • Preferred anionic surfactants include alkyl alkoxylated sulfate surfactants hereof being water soluble salts or acids of the formula RO(A)mSO3M wherein R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a C10-C24 alkyl component, preferably a C12-C18 alkyl or hydroxyalkyl, more preferably C12-C15 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably C12-C15 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammoni
  • alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
  • substituted ammonium cations include quaternary ammonium cations such as tetra methyl-ammonium and dimethyl piperdinium cations
  • Exemplary surfactants are C12-C15 alkyl polyethoxylate (1.0) sulfate (C12-C15E(1.0)M), C12-C15 alkyl polyethoxylate (2.25) sulfate (C12-C15E(2.25)M), C12-C15 alkyl polyethoxylate (3.0) sulfate (C12-C15E(3.0)M), and C12-C15 alkyl polyethoxylate (4.0) sulfate (C12-C15E(4.0)M), wherein M is conveniently selected from sodium, potassium and mono- di- or tri-ethanolammonium.
  • alkyl ester sulfonate surfactants including linear esters of C8-C20 carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO3 according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329.
  • Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
  • the preferred alkyl ester sulfonate surfactant comprise alkyl ester sulfonate surfactants of the structural formula: wherein R3 is a C8-C20 hydrocarbyl, preferably an alkyl, or combination thereof, R4 is a C1-C6 hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate.
  • Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations such as mono-, di-, or tri-ethanolammonium.
  • R3 is C10-C16 alkyl
  • R4 is methyl, ethyl or isopropyl.
  • methyl ester sulfonates wherein R3 is C10- C16 alkyl.
  • anionic surfactants useful for detersive purposes may also be included in the laundry detergent compositions of the present invention.
  • salts for example, sodium, potassium, ammonium, and substituted ammonium salts (such as mono-, di- and triethanolamine salts) of soap, C9-C20 linear alkylbenzenesulfonates, C8- C22 primary of secondary alkanesulfonates, C8-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
  • substituted ammonium salts such as mono-, di- and triethanolamine salts
  • alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C12-C18 monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated C6-CI2 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the non-chain of alkylpolyglu
  • liquid compositions of the present invention typically comprise from about 1% to about 40%, preferably from about 10% to about 25% by weight of such anionic surfactants.
  • anionic surfactants may be incorporated in free acid and/or neutralised form.
  • the liquid composition of the invention may also comprise fatty acids as anionic surfactant component.
  • fatty acids as anionic surfactant component.
  • fatty adds suitable for use in the present invention include pure or hardened fatty acids derived from palmitoleic, safflower, sunflower, soybean, oleic, linoleic, linolenic, ricinoleic, rapeseed oil or mixtures thereof. Mixtures of saturated and unsaturated fatty acids can also be used herein.
  • fatty acid will be present in the liquid detergent composition primarily in the form of a soap.
  • Suitable cations include, sodium, potassium, ammonium, monoethanol ammonium, diethanol ammonium, triethanol ammonium, tetraalkyl ammonium, e.g., tetra methyl ammonium up to tetradecyl ammonium etc. cations.
  • the amount of fatty acid will vary depending on the particular characteristics desired in the final liquid composition of the invention.
  • the level of the fatty acid miuxture is suitably from 0.1% to 30%, preferably from 0.5 to 25%, more preferably from 10 to 20% by weight of the detergent composition.
  • the substantially non-aqueous liquid cleaning composition may further comprise one or more ingredients selected from builders, polymers, fluorescers, enzymes, silicone foam control agents, perfumes, dyes, bleaches and preservatives. Some of these materials will be solids which are insoluble in the substantially non-aqueous liquid medium. In that case, they will be dispersed in the substantially non-aqueous liquid medium and may be deflocculated by means of one or more acidic components such as selected from inorganic acids, anionic surfactant acid precursors and Lewis acids, as disclosed in EP-A-266,199.
  • the water soluble film of the invention may further comprise the following minor ingredients: anti-blocking agents, such as silica, fillers (e.g. starch and talc), colourants, release agents and surfactants.
  • anti-blocking agents such as silica
  • fillers e.g. starch and talc
  • colourants e.g. starch and talc
  • release agents e.g. surfactants
  • composition no A B 1 Ingredient: nonionic surfactant 20% 20% 20% anionic surfactant 37% 37% 37% ethanolamine 10% 10% 10% monopropylene glycol (MPG) 23% - - 1,4-butanediol (1,4-BDO) - 23% - 2-methyl-1,3-propanediol (MPDiol) - - 23% polymers 1% 1% 1% phosphonate 1% 1% 1% enzymes 1% 1% 1% 1% 1% colourants, brighteners, perfume 1% 1% 1% 1% water balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance to 100% balance
  • Non-aqueous liquid compositions were encapsulated in a PVA-based water soluble film containing 15% weight of glycerol, as a plasticizer . It follows that the thus-obtained capsule containing composition 1 is according to the present invention whereas the other capsules containing compositions A and B are not. These capsules were stored at 20°C and 65% relative humidity for 60 days. The maximum compression strength of the capsules was measured several times during this storage period, using an Instron® Universal Electrochemical Tester. The results are shown in Figure 1 wherein the change in maximum compression strength as a function of storage period is depicted for all above-identified capsules.

Abstract

The present invention provides a water soluble package formed from a water soluble film containing a substantially nonaqueous liquid composition comprising a surfactant and a primary solvent, wherein said primary solvent is a diol having a hydrogen-bonding Hansen solubility parameter (as defined herein) of greater than 20, and wherein the hydroxyl groups present in said diol are terminal hydroxyl groups, whereby the distance between these groups is 3 carbon atoms. Said package was found to show both favourable film strength and flexibility and good solubility of the liquid contained therein.

Description

    Field of the invention
  • The present invention relates to a water soluble package for containing a liquid cleaning composition, especially a laundry treatment agent. In particular, the invention relates to a water soluble package formed from a water soluble film containing a substantially non-aqueous liquid composition.
  • Background of the invention
  • Water soluble packages are known in the detergent art and generally comprise either vertical form-fill-seal (VFFS) envelopes or thermoformed envelopes. In one of the VFFS processes, a roll of water soluble film is sealed along its edges to form a tube, which tube is heat sealed intermittently along its length to form individual envelopes which are filled with product and heat sealed.
  • The thermoforming process generally involves moulding a first sheet of water soluble film to form one or more recesses adapted to retain a composition, such as for example a solid detergent composition, placing the composition in the at least one recess, placing a second sheet of water soluble material over the first so as to cover the or each recess, and heat sealing the first and second sheets together at least around the recesses so as to form one or more water soluble packages. Solvent-sealed water soluble packages are also known in the art.
  • Cleaning products are traditionally often liquids, viscous or thin, such as those known for personal cleaning (bath and shower liquids and shampoos) or for domestic cleaning (hand dishwash and other hard surface cleaning, laundry cleaning etc.).
    Other products are solids, such as powders, granules, small capsules (up to 2mm diameter) or more recently tablets, for laundry and machine dish wash, and soap bars for skin cleaning. Recently, so called unit dose products are experiencing an increasing success with consumers, because they eliminate the need for manipulating, and possibly spilling, liquids or powders and simplify the use of a correct dose of the cleaning product for the required purpose. Examples thereof are the laundry and machine dish wash tablets mentioned above.
  • Prior art
  • Many types of water soluble packages are known, including packages made from polyvinyl alcohol (PVOH) film. A wide variety of different materials can be packaged in such films, including liquid materials. EP-A-518689 discloses a containerisation system for hazardous materials (for example pesticides) comprising a PVOH film enclosing a composition comprising the hazardous material, water, an electrolyte and optional other materials. The electrolyte is added to reduce the solubility of the film to prevent its dissolution by the packaged composition.
  • EP-A-700989 discloses a unit packaged detergent for dish washing, the package comprising a detergent composition wrapped in PVOH film, wherein the film protects the detergent from dissolution until the main wash cycle of the dish washing machine.
  • EP-A-593952 discloses a water soluble sachet of PVOH with two chambers and a treatment agent for washing inside each chamber.
  • EP-A-941939 relates to a water soluble package, which can be PVOH, containing a composition which, when dissolved, produces a solution of known composition.
  • GB-A-2305931 discloses a dissolvable laundry sachet and BE-9700361 relates to a water soluble unit-dosed cleaning agent, especially for cleaning hands.
  • A variety of water soluble PVOH films are also known. For example, EP-B-157162 relates to a self-supporting film comprising a PVOH matrix having rubbery microdomains dispersed therein.
  • The specifications of International Patent Applications WO-A-00/55044, WO-A-00/55045, WO-A-00/55046, WO-A-00/55068, WO-A-00/55069 and WO-A-00/55415 disclose water soluble packages containing a fluid substance (defined as a liquid, gel or paste) which is a horizontal form-fill-seal (HFFS) envelope. These packages comprise a body wall portion having internal volume and which is preferably dome-shaped, formed from a first sheet, and a superposed base wall portion, formed from a second sheet, sealed to the body wall portion.
  • When formulating a liquid unit dose product of the kind wherein a substantially non-aqueous formulation is encapsulated in a water soluble film, probably the most difficult challenge is to preserve the physical integrity and stability of the film and the full capsule.
  • One approach to address this problem is disclosed in US-A-4,743,394 and US-A-5,362,413. In these documents, detergent compositions packaged in water soluble films are described. It is further mentioned that plasticizers such as trimethylolpropane, glycerol, polyethylene glycol and others known to those skilled in the art can be included in the film so as to provide the film strength and flexibility required for producing, filling, shipping and storing the pouches prepared from these films. It is also disclosed in these documents that when pouches produced from these plasticizer-containing films are stored in contact with a detergent composition, significant loss of impact strength can occur, and that such loss of strength can be minimized by incorporation of known plasticizers into the detergent composition itself.
  • Another approach is disclosed in WO-02/060980 referring to rapidly dissolvable polymer films and articles made therefrom, and generally describing that the solvent system used in the film forming composition will preferably have at least one common solvent material as the solvent system used in the encapsulated composition, so as to prevent problems with solvent migration.
  • In co-pending European patent application 02078888.1 , a package is described which is formed from a water-soluble film and comprises a substantially non-aqueous liquid composition containing at least two different solvents, being a primary and a secondary solvent, whereby the concentration of the secondary solvent is at least 5% by weight of the primary solvent, and whereby the film contains a plasticizer which is the same chemical compound as the secondary solvent. This secondary solvent is preferably glycerol. This type of film was found to retain good film flexibility and favourable compression strength.
  • However, for economical reasons there still remains a need for providing a package formed from a water soluble film and comprising a simple non-aqueous liquid detergent formulation that need not contain any solvent in common with a plasticizer in the film.
    In view of this, an object of the present invention is to find a package formed from a water soluble film and containing a simple substantially non-aqueous liquid composition, wherein said package shows both favourable film characteristics (i.e. flexibility; compression strength) and good solubility of the liquid composition.
    We have now surprisingly found that this and other objects can be achieved by the water soluble package of the present invention. In particular, it has unexpectedly been found that favourable film characteristrics and good solubility of the liquid detergent can be obtained when the encapsulated non-aqueous liquid composition contains a surfactant and a primary solvent, whereby said solvent is a diol having a Hansen hydrogen-bonding solubility parameter of greater than 20, and whereby the hydroxyl groups present in said diol are terminal hydroxyl groups, the distance between these groups being 3 carbon atoms.
  • In the context of the present invention, the Hansen solubility parameter is defined as the square root of the cohesive energy density delta = (E/V)1/2 wherein V is the molar volume and E is the energy of vaporisation. The basis of the Hansen solubility parameter (HSP) is that the total energy of vaporisation of a liquid consists of several individual parts. Hansen has defined three types of contributions to the energy of vaporisation, namely: dispersive, polar and hydrogen bonding.
    The hydrogen-bonding Hansen Solubility Parameter is based upon the hydrogen bonding cohesive energy contribution to the energy of vaporisation. It can either be calculated or predicted using the methods disclosed in "Hansen Solubility Parameters: a User's Handbook", by Charles M. Hansen, CRC Press, Boca Raton, 2000.
  • Definition of the invention
  • Accordingly, the present invention provides a water soluble package formed from a water soluble film containing a substantially non-aqueous liquid composition comprising a surfactant and a primary solvent, wherein said primary solvent is a diol having a hydrogen-bonding Hansen solubility parameter (as defined herein) of greater than 20, and wherein the hydroxyl groups present in said diol are terminal hydroxyl groups, whereby the distance between these groups is 3 carbon atoms.
  • Detailed description of the invention The non-aqueous liquid
  • The substantially non-aqueous liquid composition effectively provides a cleaning function when released into the wash liquor. Preferably, it is a laundry treatment agent. The amount of this liquid composition in the package, i.e. the unit dose volume may for example be from 10 ml to 100 ml, e.g. from 12.5 ml to 75 ml, preferably from 15 ml to 60 ml, more preferably from 20 ml to 55 ml.
    By "substantially non-aqueous" it is meant that the amount of water in the liquid composition is below the level at which the package would dissolve through contact with its contents. Preferably, the liquid composition comprises no more than 20%, more preferably no more that 15%, still more preferably no more than 10%, by weight of water.
  • The primary solvent
  • The primary solvent present in the non-aqueous liquid composition of the present invention is a diol having a Hansen hydrogen-bonding solubility parameter greater than 20, wherein the hydroxyl groups present in said diol are terminal groups, and the distance between these groups is 3 carbon atoms. Suitable primary solvents are selected from 1,3-propanediol and 2-methyl-1,3-propanediol.
    Preferably, the primary solvent is present in the liquid composition in an amount of at least 10% by weight, more preferably from 15-50% by weight.
  • The secondary solvent
  • The liquid composition of the invention may also contain a secondary solvent.
    Suitable secondary solvents include glycerine, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, propylene glycol, diethylene glycol, 2,3-butanediol, 1,4-butanediol, 1,3-butanediol, and triethanolamine.
    The secondary solvent may be present in the liquid composition at a concentration of up to 10% by weight.
  • The water soluble film
  • The film effectively comprises a water soluble polymer. As used herein, the term "water soluble polymer" refers to a polymer which dissolves and/or dispenses completely in water within 30 minutes with agitation, e.g. by means of hand, stick or other stirrer or under the action of a mechanical washing machine and at a relevant temperature. A "relevant temperature" is one at which the consumer will need to dissolve or disperse the polymer component at the beginning of, or during a cleaning process. A polymer is to be regarded as dissolving or dispersing at a "relevant temperature" if it does so under the aforementioned conditions at a temperature anywhere in the range of from 20°C to 60°C.
  • Water-soluble, polyvinyl alcohol film-forming resins are most preferred for use in the package of the present invention.
  • Polyvinyl alcohols (PVA) preferred for use herein have an average molecular weight anywhere between 1,000 and 100,000, preferably between 5,000 and 250,000, for example between 15,000 and 150,000. Hydrolysis, or alcoholysis, is defined as the percent completion of the reaction where acetate groups on the resin are substituted with hydroxyl, -OH, groups. A hydrolysis range of from 60-99% of polyvinyl alcohol film-forming resin is preferred, while a more preferred range of hydrolysis is from about 70-90% for water-soluble, polyvinyl alcohol film-forming resins. The most preferred range of hydrolysis is 80-89%. As used in this application, the term "polyvinyl alcohol" includes polyvinyl acetate compounds with levels of hydroloysis disclosed herein. The water-soluble resin film should be formulated so as to substantially completely dissolve in 50°C. water with agitation within about thirty minutes, preferably within about 15 minutes in 50°C. water with agitation, and most preferably within about 5 minutes in 50°C. water with agitation.
  • Suitable PVA films for use in a package according to the invention are commercially available and described, for example, in EP-B- 291,198. PVA films for use in a package according to the invention can be made from polymers that are obtained by the copolymerisation of vinyl acetate and a carboxylate-containing co-monomer (for example acrylic, maleic or itaconic acid or acid ester), followed by partial (for example up to about 90%) or total hydrolysis with sodium hydroxide.
    Suitable water soluble films can also be made from blends of two or more polymers/copolymers as mentioned above, and having different compositions or molecular weights.
  • Generally speaking, the water soluble film of the invention incorporates a plasticizer system containing one or more plasticizers. Plasticizers suitable for use with PVA-based films have -OH groups in common with the ~CH2-CH(OH)-CH2-CH(OH)-polymer chain of the film polymer. Their mode of functionality is to introduce short chain hydrogen bonding with the chain hydroxyl groups and thus weaken adjacent chain interactions which inhibits swelling of the aggregate polymer mass - the first stage of film dissolution.
  • Water itself is a suitable plasticizer for any of the films recited herein. Other suitable plasticizers are selected from ) the group consisting of pentane diols, butane diols, propane diols, glycerol, trimethylolpropane, sorbitol, diethylene glycol, triethylene glycol, and dipropylene glycol.
    The plasticizer system may suitably include a plasticizer material which is the same chemical compound as the primary solvent in the liquid composition. Furthermore, said plasticizer material may be effectively the main plasticizer in the film.
  • The total amount of plasticizer in the film (i.e. per unit weight of film) may vary considerably according to the film type and plasticizer type. It could for example be in the range of from 0.1% to 50%, e.g. 10% to 45%, such as 20% to 40% by weight. In PVA-based films which are preferably used in the present invention, the plasticizer system is desirably present in a total amount of above 10% by weight.
  • Encapsulation methods (a) Horizontal form-fill-seal
  • Water soluble films based on PVA can be made according to any of the horizontal form-fill-seal methods described in any of WO-A-00/55044, WO-A-00/55045, WO-A-00/55046, WO-A-00/55068, WO-A-00/55069 and WO-A-00/55415.
  • During the forming, filling and sealing steps of this process, it may be desirable to maintain the relative humidity at a reasonable level. This is done to maintain the heat sealing characteristics of the film. When handling thinner films, it may be necessary to reduce the relative humidity to ensure that the films have a relatively low degree of plasticisation and are therefore stiffer and easier to handle.
  • (b) Vertical Form-Fill-Seal
  • In the vertical form-fill-seal (VFFS) technique, a continuous tube of flexible plastics film is extruded. It is sealed, preferably by heat or ultrasonic sealing, at the bottom, filled with the liquid composition, sealed again above the liquid film and then removed from the continuous tube, e.g. by cutting.
  • (c) Rotary Form-Fill-Seal
  • Alternatively, a rotary form-fill-seal technique may be used. In this technique, forming, filling and sealing of water soluble packages is carried out using a rotary drum that has forming cavities or recesses on its curved surface.
  • Instead of heat sealing as described above, solvent sealing, ultrasonic sealing or any other type of sealing known in the art could be applied for producing the package of the present invention. When solvent sealing is used and the film contains PVA, an aqueous solution or water are preferably used as a solvent.
  • Surfactant material
  • The surfactant present in the liquid composition may be selected from nonionic, anionic, cationic and ampholytic detergent surfactants. These may be in liquid form or as solid dissolved or dispersed in the substantially non-aqueous liquid composition.
  • Nonionic detergent surfactants are well-known in the art. They normally consist of a water-solubilizing polyalkoxylene or a mono- or dialkanolamide group in chemical combination with an organic hydrophobic group derived, for example, from alkylphenols in which the alkyl group contains from about 6 to about 12 carbon atoms, dialkylphenols in which primary, secondary or tertiary aliphatic alcohols (or alkyl-capped derivatives thereof), preferably having from 8 to 20 carbon atoms, monocarboxylic acids having from 10 to about 24 carbon atoms in the alkyl group and polyoxypropylene. Also common are fatty acid mono- and dialkanolamides in which the alkyl group of the fatty acid radical contains from 10 to about 20 carbon atoms and the alkyloyl group having from 1 to 3 carbon atoms. In any of the mono- and di-alkanolamide derivatives, optionally, there may be a polyoxyalkylene moiety joining the latter groups and the hydrophobic part of the molecule. In all polyalkoxylene containing surfactants, the polyalkoxylene moiety preferably consists of from 2 to 20 groups of ethylene oxide or of ethylene oxide and propylene oxide groups. Amongst the latter class, particularly preferred are those described in European specification EP-A-225,654. Also preferred are those ethoxylated nonionics which are the condensation products of fatty alcohols with from 9 to 15 carbon atoms condensed with from 3 to 11 moles of ethylene oxide. Examples of these are the condensation products of C11-13 alcohols with (say) 3 or 7 moles of ethylene oxide. These may be used as the sole nonionic surfactants or in combination with those of the described in the last-mentioned European specification. These nonionics may also be suitably used as primary solvent material.
  • Anionic surfactants
  • In addition, the liquid compositions of the invention may also comprises an anionic surfactant. Preferred anionic surfactants are the linear alkyl benzene sulfonate (LAS) materials. Such surfactants and their preparation are described for example in U.S. Patents 2,220,099 and 2,477,383, incorporated herein by reference. Particularly preferred are the sodium, potassium and mono-, di- or tri-ethanolammonium linear straight chain alkylbenzene sulfonates in which the average number of carbon atoms in the alkyl group is from about 11 to 14.
  • Monoethanol ammonium salt of C1 1-C14, e.g., C12, LAS is especially preferred. Preferred anionic surfactants include the alkyl sulfate surfactants hereof being water soluble salts or acids of the formula ROS03M wherein R preferably is a C10-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C10-C18 alkyl component, more preferably a C12-C15 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or substituted ammonium, especially mono-di-, or tri-ethanolammonium.
  • Preferred anionic surfactants include alkyl alkoxylated sulfate surfactants hereof being water soluble salts or acids of the formula RO(A)mSO3M wherein R is an unsubstituted C10-C24 alkyl or hydroxyalkyl group having a C10-C24 alkyl component, preferably a C12-C18 alkyl or hydroxyalkyl, more preferably C12-C15 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably C12-C15 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation such as mono-, di- or tri-ethanolammonium.
    Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium cations include quaternary ammonium cations such as tetra methyl-ammonium and dimethyl piperdinium cations Exemplary surfactants are C12-C15 alkyl polyethoxylate (1.0) sulfate (C12-C15E(1.0)M), C12-C15 alkyl polyethoxylate (2.25) sulfate (C12-C15E(2.25)M), C12-C15 alkyl polyethoxylate (3.0) sulfate (C12-C15E(3.0)M), and C12-C15 alkyl polyethoxylate (4.0) sulfate (C12-C15E(4.0)M), wherein M is conveniently selected from sodium, potassium and mono- di- or tri-ethanolammonium.
    One preferred class of anionic surfactants comprises alkylbenzenes sulfonic acids or the alkali salts thereof whereby the alkylbenzenes are alkylated using HF as alkylation catalyst.
  • Other suitable anionic surfactants to be used are alkyl ester sulfonate surfactants including linear esters of C8-C20 carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO3 according to "The Journal of the American Oil Chemists Society", 52 (1975), pp. 323-329. Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
  • The preferred alkyl ester sulfonate surfactant, comprise alkyl ester sulfonate surfactants of the structural formula:
    Figure imgb0001

    wherein R3 is a C8-C20 hydrocarbyl, preferably an alkyl, or combination thereof, R4 is a C1-C6 hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate. Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations such as mono-, di-, or tri-ethanolammonium.
    Preferably, R3 is C10-C16 alkyl, and R4 is methyl, ethyl or isopropyl.
    Especially preferred are the methyl ester sulfonates wherein R3 is C10- C16 alkyl.
  • Other anionic surfactants useful for detersive purposes may also be included in the laundry detergent compositions of the present invention.
  • These may include salts, for example, sodium, potassium, ammonium, and substituted ammonium salts (such as mono-, di- and triethanolamine salts) of soap, C9-C20 linear alkylbenzenesulfonates, C8- C22 primary of secondary alkanesulfonates, C8-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1,082,179, C8-C24 alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C12-C18 monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated C6-CI2 diesters), sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), and alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH20)k-CH2COO-M+ wherein R is a C8-C22 alkyl, k is an integer from 1 to 10, and M is a soluble salt-forming cation. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin adds and hydrogenated resin acids present in or derived from tall oil.
  • Further examples are described in "Surface Active Agents and Detergents" (Vol. I and 11 by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughn, et al. at Column 23, line 58 through Column 29, line 23.
  • When included therein, the liquid compositions of the present invention typically comprise from about 1% to about 40%, preferably from about 10% to about 25% by weight of such anionic surfactants.
    When present, the anionic surfactants may be incorporated in free acid and/or neutralised form.
  • Fatty acids
  • The liquid composition of the invention may also comprise fatty acids as anionic surfactant component. Examples of fatty adds suitable for use in the present invention include pure or hardened fatty acids derived from palmitoleic, safflower, sunflower, soybean, oleic, linoleic, linolenic, ricinoleic, rapeseed oil or mixtures thereof. Mixtures of saturated and unsaturated fatty acids can also be used herein.
  • It will be recognised that the fatty acid will be present in the liquid detergent composition primarily in the form of a soap. Suitable cations include, sodium, potassium, ammonium, monoethanol ammonium, diethanol ammonium, triethanol ammonium, tetraalkyl ammonium, e.g., tetra methyl ammonium up to tetradecyl ammonium etc. cations.
  • The amount of fatty acid will vary depending on the particular characteristics desired in the final liquid composition of the invention.
    When present, the level of the fatty acid miuxture is suitably from 0.1% to 30%, preferably from 0.5 to 25%, more preferably from 10 to 20% by weight of the detergent composition.
  • Other components
  • The substantially non-aqueous liquid cleaning composition may further comprise one or more ingredients selected from builders, polymers, fluorescers, enzymes, silicone foam control agents, perfumes, dyes, bleaches and preservatives.
    Some of these materials will be solids which are insoluble in the substantially non-aqueous liquid medium. In that case, they will be dispersed in the substantially non-aqueous liquid medium and may be deflocculated by means of one or more acidic components such as selected from inorganic acids, anionic surfactant acid precursors and Lewis acids, as disclosed in EP-A-266,199.
  • The water soluble film of the invention may further comprise the following minor ingredients: anti-blocking agents, such as silica, fillers (e.g. starch and talc), colourants, release agents and surfactants.
  • The invention will be further illustrated with reference to the following non-limiting examples, in which parts and percentages are by weight.
  • EXAMPLES A, B and 1
  • The following non-aqueous liquid detergent compositions were prepared:
    composition no. A B 1
    Ingredient:
    nonionic surfactant 20% 20% 20%
    anionic surfactant 37% 37% 37%
    ethanolamine
    10% 10% 10%
    monopropylene glycol (MPG) 23% - -
    1,4-butanediol (1,4-BDO) - 23% -
    2-methyl-1,3-propanediol (MPDiol) - - 23%
    polymers 1% 1% 1%
    phosphonate 1% 1% 1%
    enzymes 1% 1% 1%
    colourants, brighteners, perfume 1% 1% 1%
    water balance to 100% balance to 100% balance to 100%
  • All three non-aqueous liquid compositions were encapsulated in a PVA-based water soluble film containing 15% weight of glycerol, as a plasticizer . It follows that the thus-obtained capsule containing composition 1 is according to the present invention whereas the other capsules containing compositions A and B are not.
    These capsules were stored at 20°C and 65% relative humidity for 60 days.
    The maximum compression strength of the capsules was measured several times during this storage period, using an Instron® Universal Electrochemical Tester.
    The results are shown in Figure 1 wherein the change in maximum compression strength as a function of storage period is depicted for all above-identified capsules.
    In this Figure, the curve indicated as "MPdiol" was obtained for the above capsule according to the present invention whereas the curves indicated as "MPG" and "1,4-BDO" are for the above capsules according to the prior art.
    It can be clearly noticed in this figure that the strength of the MP-diol containing capsules of the invention is consistently higher except during the first 2 days of storage.

Claims (11)

  1. A water soluble package formed from a water soluble film containing a substantially non-aqueous liquid composition comprising a surfactant and a primary solvent, wherein said primary solvent is a diol having a hydrogen-bonding Hansen solubility parameter (as defined herein) of greater than 20, and wherein the hydroxyl groups present in said diol are terminal hydroxyl groups, whereby the distance between these groups is 3 carbon atoms.
  2. A water soluble package according to claim 1, wherein the primary solvent is selected from the group consisting of 1,3-propanediol and 2-methyl-1,3-propanediol.
  3. A water soluble package according to claim 1 or claim 2, wherein the primary solvent is present in the liquid composition at a concentration of at least 10% by weight, preferably from 15 to 50% by weight.
  4. A water soluble package according to any one of claims 1-3, wherein the liquid composition contains a secondary solvent.
  5. A water soluble package according to claim 4, wherein the secondary solvent is selected from the group consisting of glycerine, ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, propylene glycol, diethylene glycol, 2,3-butanediol, 1,4-butanediol, 1,3-butanediol, and triethanolamine.
  6. A water soluble package according to claim 1, wherein the film comprises plasticizer system including a plasticizer material which is the same chemical as the primary solvent in the liquid composition.
  7. A water soluble package according to claim 2, wherein said plasticizer material is the main plasticizer present in the film.
  8. A water soluble package according to claim 6 or 7, wherein the secondary solvent is present in the liquid composition at a concentration of up to 10% by weight.
  9. A water soluble package according to any one of claims 1-8, wherein the water soluble film comprises film forming polyvinyl alcohol resins.
  10. A water soluble package according to any one of claims 1-9, wherein the package is made by a thermoforming process using heat sealing.
  11. A water soluble package according to any one of claims 1-9, wherein the package is made by a thermoforming process using solvent sealing.
EP04075743A 2003-03-25 2004-03-08 Water soluble package and liquid contents thereof Expired - Lifetime EP1462514B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03075880 2003-03-25
EP03075880 2003-03-25

Publications (2)

Publication Number Publication Date
EP1462514A1 EP1462514A1 (en) 2004-09-29
EP1462514B1 true EP1462514B1 (en) 2006-01-11

Family

ID=35810307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04075743A Expired - Lifetime EP1462514B1 (en) 2003-03-25 2004-03-08 Water soluble package and liquid contents thereof

Country Status (4)

Country Link
EP (1) EP1462514B1 (en)
AT (1) ATE315632T1 (en)
DE (1) DE602004000316T2 (en)
ES (1) ES2256818T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9896648B2 (en) 2016-03-02 2018-02-20 The Procter & Gamble Company Ethoxylated diols and compositions containing ethoxylated diols

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236747B2 (en) * 2008-02-08 2012-08-07 Method Products, Inc. Consumer product packets with enhanced performance
DE102012202178A1 (en) * 2012-02-14 2013-08-14 Henkel Ag & Co. Kgaa Enzyme-containing detergent with polyhydric alcohols
ES2539732B1 (en) 2013-06-28 2016-02-05 Kao Corporation, S.A. Liquid detergent composition
US9856440B2 (en) * 2016-03-02 2018-01-02 The Procter & Gamble Company Compositions containing anionic surfactant and a solvent comprising butanediol
US9840684B2 (en) * 2016-03-02 2017-12-12 The Procter & Gamble Company Compositions containing alkyl sulfates and/or alkoxylated alkyl sulfates and a solvent comprising a diol
US9790454B2 (en) * 2016-03-02 2017-10-17 The Procter & Gamble Company Compositions containing alkyl sulfates and/or alkoxylated alkyl sulfates and a solvent comprising a diol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2358191B (en) * 2000-01-13 2002-06-26 Mcbride Robert Ltd Detergent Package
GB2355269A (en) * 2000-08-08 2001-04-18 Procter & Gamble Liquid cleaning composition
DE60143752D1 (en) * 2000-08-25 2011-02-10 Reckitt Benckiser Uk Ltd WATER-RELATED HOT-MOLDED CONTAINERS CONTAINING AQUEOUS COMPOSITIONS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9896648B2 (en) 2016-03-02 2018-02-20 The Procter & Gamble Company Ethoxylated diols and compositions containing ethoxylated diols

Also Published As

Publication number Publication date
DE602004000316D1 (en) 2006-04-06
ATE315632T1 (en) 2006-02-15
ES2256818T3 (en) 2006-07-16
EP1462514A1 (en) 2004-09-29
DE602004000316T2 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
EP1996690B1 (en) Fabric treatment composition and process for preparation thereof
CA2420372C (en) Water-soluble thermoformed containers comprising aqueous compositions
US6451750B2 (en) Water soluble package and liquid contents thereof
EP1352048B1 (en) Improvements in or relating to liquid detergent compositions
US6303553B1 (en) Powdered automatic dishwashing cleaning system
EP2352810B1 (en) Concentrated hard surface treatment compositions
CA2420121C (en) Water-soluble thermoformed containers comprising aqueous compositions
AU2001282322A1 (en) Water-soluble thermoformed containers comprising aqueous compositions
EP1400460B1 (en) Water soluble package and liquid contents thereof
AU2001284175A1 (en) Water-soluble thermoformed containers comprising aqueous compositions
CA2496494C (en) Water soluble sachet containing hard surface cleaner
EP1462514B1 (en) Water soluble package and liquid contents thereof
EP1352044B1 (en) Improvements in or relating to liquid detergent compositions
EP1406758B1 (en) Process for heat sealing a water soluble film in the presence of water
US20050113271A1 (en) Automatic dishwashing detergent with improved glass anti-corrosion properties II
EP1306425A2 (en) Water soluble package and liquid contents thereof
US20040209793A1 (en) Encapsulated liquid detergent composition
GB2367828A (en) Water-soluble containers containing aqueous compositions
EP1298196A1 (en) Water soluble package and liquid contents thereof
AU2002225167A1 (en) Improvements in or relating to liquid detergent composititons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20040908

17Q First examination report despatched

Effective date: 20050209

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

REF Corresponds to:

Ref document number: 602004000316

Country of ref document: DE

Date of ref document: 20060406

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2256818

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080326

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080430

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070331

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090309

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220203 AND 20220209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230321

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240307