EP1456505A1 - Thermally loaded component - Google Patents

Thermally loaded component

Info

Publication number
EP1456505A1
EP1456505A1 EP02779098A EP02779098A EP1456505A1 EP 1456505 A1 EP1456505 A1 EP 1456505A1 EP 02779098 A EP02779098 A EP 02779098A EP 02779098 A EP02779098 A EP 02779098A EP 1456505 A1 EP1456505 A1 EP 1456505A1
Authority
EP
European Patent Office
Prior art keywords
deflection
thermally loaded
loaded component
cooling
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02779098A
Other languages
German (de)
French (fr)
Inventor
Kenneth Hall
Sacha Parneix
Remigi Tschuor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1456505A1 publication Critical patent/EP1456505A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49989Followed by cutting or removing material

Definitions

  • the invention is based on a thermally loaded component according to the preamble of the first claim.
  • blades are known in which cooling fluid is conducted from the trailing edge region of the blade to the leading edge region via cooling channels formed by partition walls and then blown out via openings in the blade head. In order to cool the trailing edge area of the bucket sufficiently, you blow air out of the rear edge of the blade. Deflection vanes are arranged in order to divert the cooling fluid into the cooling channels.
  • deflection blades are often arranged in the region of the deflection channels.
  • these deflection blades are very fragile and difficult to manufacture using the casting process, even with large components such as for large blades of stationary gas turbines.
  • tensions can form in the cast body because the inner, relatively small-sized parts and the outer parts have different cooling rates. In individual cases, these tensions can lead to cracks in the internal structures, which means that the cast part cannot be used. If the defects are not noticed, the cast part can break during use and e.g. with blades, additional blades and destroy the turbine.
  • the invention is based on the object of avoiding problems with previously known means for deflecting the cooling fluid in a thermally loaded component with at least one cooling channel of the type mentioned at the outset and nevertheless enabling efficient cooling.
  • the deflection device consists of two mutually spaced deflection parts over the height of the cooling channel.
  • the advantages of the invention can be seen, inter alia, in the fact that the function of the deflection device with respect to previously known deflection blades is not impaired by the inventive design of the deflection device.
  • the primary function of the deflection device the prevention of pressure losses and the avoidance of a separation of the cooling fluid flow after the deflection channel is further guaranteed.
  • the deflecting parts according to the invention are arranged in cooling ducts of blades of heat engines.
  • FIG. 1 shows a partial longitudinal section through a blade of a turbine.
  • FIG. 4 shows a cross section through a deflection device according to the invention
  • Fig. 5 shows a cross section through a further inventive
  • FIG. 1 shows a blade 10 of a turbomachine, consisting of a blade 1 and a blade root 11, with which the blade 10 can be mounted on a rotor or stator, not shown.
  • a platform 12 is usually arranged between the airfoil 1 and the airfoil 11 and shields the airfoil and thus the rotor or stator from the fluids flowing around the airfoil.
  • the airfoil 1 has a leading edge region 3, a trailing edge region 4, a suction-side wall 5 and a pressure-side wall 6 (see FIG. 3a), the suction-side and the pressure-side wall being connected to one another in the region of the leading edge 3 and the trailing edge 4, as a result of which a cavity 2 is formed.
  • the front edge region 3 is first acted upon by the fluids flowing around the airfoil 1.
  • the cavity 2 extends essentially in the radial direction through the blade 10 and serves as a cooling fluid passage for a cooling fluid 20.
  • essentially radially extending partition walls 8 are arranged in the cavity 2 in order to generate cooling channels 21.
  • These cooling channels 21 are connected by deflection channels 22, which are designed in such a way that the pressure loss during the deflection is minimal and the heat transfer is as homogeneous as possible in order to avoid local hot zones.
  • additional deflection devices such as deflection blades 9, are arranged in the region of the deflection channels 22.
  • deflecting blades 9 can be designed as desired according to FIGS. 2a, 2b and 2c, e.g. with regard to thickness along the blade, the radius of curvature etc. and must be adapted to the conditions in the deflection channel 22.
  • 3a, 3b and 4 show the deflection vane according to the invention consisting of a first deflection part 9a on the suction side and an opposite second deflection part 9b on the pressure side of the vane.
  • the deflection parts 9a and 9b are at a distance ⁇ from one another, which can be up to 30% of the height 23 of the cooling channel 21 at the location of the deflection parts.
  • the design of the deflecting parts 9a and 9b according to the invention does not impair the function of the deflecting device with respect to previously known deflecting blades.
  • the primary function of the deflection vane is the prevention of pressure losses and the avoidance of a separation of the cooling fluid flow 20 after the deflection channel 22.
  • the deflecting parts can be designed as desired, as shown in FIGS. 2a, 2b and 2c and described above for the deflecting vane.
  • the function of the deflection parts namely the prevention of pressure losses and the avoidance of separation of the cooling fluid flow 20 after the deflection channel 22, is maintained.
  • the distance ⁇ was achieved by arranging a weak point in the deflection vane due to a narrowing or notch 24 in the casting mold.
  • the deflection vane breaks into two parts after the casting process during cooling and the resulting shrinkage, and thus produces the two deflection parts 9a and 9b with the spacing ⁇ .
  • the distance ⁇ and its shape can be set by the design of the notch 24.
  • Such deflection parts can generally be arranged in curvatures of cooling channels of thermally loaded components in order to avoid the problems described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The invention relates to a thermally loaded component (1, 10) through which a cooling channel (21) extends, for the flow of a cooling liquid (20). At least one deviation device (9) is provided in the region of a bend (22) in the cooling channel, for channelling the flow of the cooling liquid (20). The deviation device (9) consists of two interspaced deviating parts (9a, 9b) which are arranged in the height (23) of the cooling channel (21).

Description

Thermisch belastetes Bauteil Thermally loaded component
Technisches GebietTechnical field
Die Erfindung geht aus von einem thermisch belasteten Bauteil nach dem Oberbegriff des ersten Anspruches.The invention is based on a thermally loaded component according to the preamble of the first claim.
Stand der TechnikState of the art
Eine Steigerung der Effizienz einer Wärmekraftmaschine, z.B. einer Gasturbine, ist direkt abhängig von einer Steigerung der Arbeitstemperatur der thermisch belasteten Bauteile und somit bei einer Gasturbine abhängig von der Verbrennungsgastemperatur der Brennkammer und der darauffolgenden Turbine. Trotz verbes- serter hochtemperaturbeständiger Werkstoffe muss auch die Kühltechnik verbessert werden, um die Werkstofftemperaturen beim Betrieb solcher thermisch belasteten Bauteile in einem sicheren Bereich zu halten. Dazu werden Kühlkanäle verwendet, welche z.B. aus dem Verdichter mit Kühlfluid gespiesen werden. Dabei wird versucht, einen möglichst grossen Kühleffekt bei möglichst kleinen Verlusten bezüglich der Leistung des Gesamtsystems zu erzielen. Dazu werden spezielle verbesserte Wäremübertragungstechniken wie z.B. Rippen in den Kühlkanälen verwendet.An increase in the efficiency of a heat engine, e.g. a gas turbine is directly dependent on an increase in the working temperature of the thermally loaded components and thus in a gas turbine it is dependent on the combustion gas temperature of the combustion chamber and the subsequent turbine. Despite the improved high-temperature resistant materials, the cooling technology must also be improved in order to keep the material temperatures in a safe area when operating such thermally stressed components. For this, cooling channels are used, which e.g. be fed from the compressor with cooling fluid. An attempt is made to achieve the greatest possible cooling effect with the smallest possible losses in terms of the performance of the overall system. For this purpose, special improved heat transfer technologies such as Ribs used in the cooling channels.
Aus der GB 2 165 315 sind Schaufeln bekannt, bei welchen Kühlfluid über durch Trennwände gebildete Kühlkanäle vom Hinterkantenbereich der Schaufel zum Vorderkantenbereich geleitet und dann über Öffnungen im Schaufelkopf ausgeblasen wird. Um den Hinterkantenbereich der Schaufel ausreichend zu kühlen, bläst man Luft aus der Hinterkante der Schaufel aus. Um das Kühlfluid in die Kühlkanäle umzuleiten sind Umlenkschaufeln angeordnet.From GB 2 165 315, blades are known in which cooling fluid is conducted from the trailing edge region of the blade to the leading edge region via cooling channels formed by partition walls and then blown out via openings in the blade head. In order to cool the trailing edge area of the bucket sufficiently, you blow air out of the rear edge of the blade. Deflection vanes are arranged in order to divert the cooling fluid into the cooling channels.
Allgemein werden in thermisch belasteten Bauteilen, z.B. Schaufeln von Turbinen, vielfach im wesentlichen parallel verlaufende Kühlkanäle verwendet, welche über Umlenkkanäle verbunden werden. Diese Umlenkkanäle sind so ausgestaltet, dass der Druckverlust bei der Umlenkung minimal und der Wärmeübergang möglichst homogen ist, um lokale heisse Zonen zu vermeiden. Um dies zu erreichen, werden vielfach Umlenkschaufeln im Bereich der Umlenkkanäle angeordnet. Diese Umlenkschaufeln sind jedoch sehr fragil und schwer im Gussverfahren herzustellen, selbst bei grossen Bauteilen wie z.B. bei grossen Schaufeln von stationären Gasturbinen. So können sich beispielsweise nach dem Gussvorgang beim Abkühlen des Gusskörpers Spannungen im Gusskörper bilden, weil die inneren, relativ geringe Dimensionen aufweisenden Teile und die äusseren Teile unter- schiedliche Abkühlungsraten aufweisen. Diese Spannungen können im Einzelfall dazu führen, dass es Risse in den inneren Strukturen gibt, wodurch das Gussteil nicht verwendet werden kann. Falls die Fehler nicht bemerkt werden, kann das Gussteil beim Gebrauch brechen und z.B. bei Schaufeln weitere Schaufeln und die Turbine zerstören.Generally, in thermally stressed components, e.g. Turbine blades, often cooling channels running essentially in parallel, which are connected via deflection channels. These deflection channels are designed in such a way that the pressure loss during the deflection is minimal and the heat transfer is as homogeneous as possible in order to avoid local hot zones. In order to achieve this, deflection blades are often arranged in the region of the deflection channels. However, these deflection blades are very fragile and difficult to manufacture using the casting process, even with large components such as for large blades of stationary gas turbines. For example, after the casting process, when the cast body cools, tensions can form in the cast body because the inner, relatively small-sized parts and the outer parts have different cooling rates. In individual cases, these tensions can lead to cracks in the internal structures, which means that the cast part cannot be used. If the defects are not noticed, the cast part can break during use and e.g. with blades, additional blades and destroy the turbine.
Darstellung der ErfindungPresentation of the invention
Der Erfindung liegt die Aufgabe zugrunde, bei einem thermisch belasteten Bauteil mit mindestens einem Kühlkanal der eingangs genannten Art Probleme mit bisher bekannten Mitteln zum Umlenken des Kühlfluids zu vermeiden und trotzdem eine effiziente Kühlung zu ermöglichen.The invention is based on the object of avoiding problems with previously known means for deflecting the cooling fluid in a thermally loaded component with at least one cooling channel of the type mentioned at the outset and nevertheless enabling efficient cooling.
Erfindungsgemäss wird dies durch die Merkmale des ersten Anspruches erreicht. Kern der Erfindung ist es also, dass die Umlenkeinrichtung über die Höhe des Kühlkanals aus zwei zueinander beabstandeten Umlenkteilen besteht.According to the invention, this is achieved by the features of the first claim. The essence of the invention is therefore that the deflection device consists of two mutually spaced deflection parts over the height of the cooling channel.
Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass durch die er- findungsgemässe Ausgestaltung der Umlenkeinrichtung die Funktion der Umlenkeinrichtung bezüglich bisher bekannten Umlenkschaufeln nicht beeinträchtigt wird. Die primäre Funktion der Umlenkeinrichtung, die Verhinderung von Druckverlusten und die Vermeidung einer Separation des Kühlfluidstromes nach dem Umlenkkanal ist weiter garantiert. Durch die Aufteilung der Umlenkeinrichtung in zwei zueinander beabstandete Umlenkteile werden Spannungen und Risse, welche bei bisher bekannten Schaufeln festgestellt wurden, vermieden. Weiter wurde die Lebensdauer der Schaufeln bezüglich der thermomechanischen Ermüdung (TM F) verbessert.The advantages of the invention can be seen, inter alia, in the fact that the function of the deflection device with respect to previously known deflection blades is not impaired by the inventive design of the deflection device. The primary function of the deflection device, the prevention of pressure losses and the avoidance of a separation of the cooling fluid flow after the deflection channel is further guaranteed. By dividing the deflecting device into two mutually spaced deflecting parts, stresses and cracks, which were found in previously known blades, are avoided. Furthermore, the service life of the blades with regard to thermomechanical fatigue (TM F) has been improved.
Es ist besonders zweckmässig, wenn die erfindungsgemässen Umlenkteile in Kühlkanälen von Schaufeln von Wärmekraftmaschinen angeordnet werden.It is particularly expedient if the deflecting parts according to the invention are arranged in cooling ducts of blades of heat engines.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Un- teransprüchen.Further advantageous refinements of the invention result from the subclaims.
Kurze Beschreibung der ZeichnungBrief description of the drawing
Im folgenden werden anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen worden. Gleiche Elemente sind in den ver- schiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben. Es zeigen:Exemplary embodiments of the invention are explained in more detail below with reference to the drawings. All features which are not essential for the immediate understanding of the invention have been omitted. Identical elements are provided with the same reference symbols in the various figures. The direction of flow of the media is indicated by arrows. Show it:
Fig. 1 einen Teillängsschnitt durch eine Schaufel einer Turbine;1 shows a partial longitudinal section through a blade of a turbine.
Fig. 2a, 2b und 2c verschiedene Ausgestaltungsformen einer Umlenkeinrichtung;2a, 2b and 2c different embodiments of a deflection device;
Fig. 3a und 3b eine erfindungsgemässe Umlenkeinrichtung;3a and 3b a deflection device according to the invention;
Fig. 4 einen Querschnitt durch eine erfindungsgemässe Umlenkeinrichtung;4 shows a cross section through a deflection device according to the invention;
Fig. 5 einen Querschnitt durch eine weitere erfindungsgemässeFig. 5 shows a cross section through a further inventive
Umlenkeinrichtung.Deflection.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt.Only the elements essential for understanding the invention are shown.
Weg zur Ausführung der ErfindungWay of carrying out the invention
In Fig. 1 ist eine Schaufel 10 einer Strömungsmaschine dargestellt, bestehend aus einem Schaufelblatt 1 und einem Schaufelfuss 11 , mit dem die Schaufel 10 auf einem nicht dargestellten Rotor oder Stator montiert werden kann. Zwischen Schaufelblatt 1 und Schaufelfuss 11 ist üblicherweise eine Plattform 12 angeordnet, welche den Schaufelfuss und damit den Rotor oder Stator von den das Schaufelblatt umströmenden Fluiden abschirmt. Das Schaufelblatt 1 weist einen Vorderkantenbereich 3, einen Hinterkantenbereich 4, eine saugseitige Wand 5 und eine druckseitige Wand 6 auf (siehe Fig. 3a), wobei die saugseitige und die druckseitige Wand im Bereich der Vorderkante 3 und der Hinterkante 4 miteinander verbunden sind, wodurch ein Hohlraum 2 gebildet wird. Der Vorderkantenbereich 3 wird jeweils von den das Schaufelblatt 1 umströmenden Fluiden zuerst be- aufschlagt. Der Hohlraum 2 verläuft im wesentlichen in radialer Richtung durch die Schaufel 10 und dient als Kühlfluiddurchlass für ein Kühlfluid 20. Zur besseren Kühlung der Schaufel sind im Hohlraum 2 im wesentlichen radial verlaufende Trennwände 8 angeordnet, um Kühlkanäle 21 zu erzeugen. Diese Kühlkanäle 21 sind durch Umlenkkanäle 22 verbunden, welche so ausgestaltet sind, dass der Druckverlust bei der Umlenkung minimal und der Wärmeübergang möglichst homogen ist, um lokale heisse Zonen zu vermeiden. Um diese integrale Erfassung der Strömung des Kühlfluides zu erreichen, werden zusätzliche Umlenkeinrichtungen wie z.B. Umlenkschaufeln 9 im Bereich der Umlenkkanäle 22 angeordnet.1 shows a blade 10 of a turbomachine, consisting of a blade 1 and a blade root 11, with which the blade 10 can be mounted on a rotor or stator, not shown. A platform 12 is usually arranged between the airfoil 1 and the airfoil 11 and shields the airfoil and thus the rotor or stator from the fluids flowing around the airfoil. The airfoil 1 has a leading edge region 3, a trailing edge region 4, a suction-side wall 5 and a pressure-side wall 6 (see FIG. 3a), the suction-side and the pressure-side wall being connected to one another in the region of the leading edge 3 and the trailing edge 4, as a result of which a cavity 2 is formed. The front edge region 3 is first acted upon by the fluids flowing around the airfoil 1. The cavity 2 extends essentially in the radial direction through the blade 10 and serves as a cooling fluid passage for a cooling fluid 20. For better cooling of the blade, essentially radially extending partition walls 8 are arranged in the cavity 2 in order to generate cooling channels 21. These cooling channels 21 are connected by deflection channels 22, which are designed in such a way that the pressure loss during the deflection is minimal and the heat transfer is as homogeneous as possible in order to avoid local hot zones. In order to achieve this integral detection of the flow of the cooling fluid, additional deflection devices, such as deflection blades 9, are arranged in the region of the deflection channels 22.
Diese Umlenkschaufeln 9 können gemäss Fig. 2a, 2b und 2c beliebig ausgestaltet werden, z.B. bezüglich Dicke entlang der Schaufel, des Krümmungsradius usw. und müssen jeweils den Bedingungen im Umlenkkanal 22 angepasst werden.These deflecting blades 9 can be designed as desired according to FIGS. 2a, 2b and 2c, e.g. with regard to thickness along the blade, the radius of curvature etc. and must be adapted to the conditions in the deflection channel 22.
Fig. 3a, 3b und 4 zeigen die erfindungsgemässe Umlenkschaufel bestehend aus einem ersten Umlenkteil 9a an der Saugseite und einem ihm gegenüberliegenden zweiten Umlenkteil 9b an der Druckseite der Schaufel. Die Umlenkteile 9a und 9b weisen einen Abstand δ voneinander auf, welcher bis zu 30% der Höhe 23 des Kühlkanales 21 an der Stelle der Umlenkteile betragen kann. Durch die erfindungsgemässe Ausgestaltung der Umlenkteile 9a und 9b wird die Funktion der Umlenkeinrichtung bezüglich bisher bekannten Umlenkschaufeln nicht beeinträchtigt. Die primäre Funktion der Umlenkschaufel ist die Verhinderung von Druckverlusten und die Vermeidung einer Separation des Kühlfluidstromes 20 nach dem Umlenkkanal 22.3a, 3b and 4 show the deflection vane according to the invention consisting of a first deflection part 9a on the suction side and an opposite second deflection part 9b on the pressure side of the vane. The deflection parts 9a and 9b are at a distance δ from one another, which can be up to 30% of the height 23 of the cooling channel 21 at the location of the deflection parts. The design of the deflecting parts 9a and 9b according to the invention does not impair the function of the deflecting device with respect to previously known deflecting blades. The primary function of the deflection vane is the prevention of pressure losses and the avoidance of a separation of the cooling fluid flow 20 after the deflection channel 22.
Durch Versuche an erfindungsgemässen Schaufeln wurde weiter festgestellt, dass durch die Aufteilung der bisher bekannten Umlenkeinrichtungen in zwei Umlenkteile Spannungen und Risse, welche bei bisher bekannten Schaufeln festgestellt wurden, vermieden werden. Weiter zeigte sich, dass die Lebensdauer der Schaufeln bezüglich der thermomechanischen Ermüdung (TMF) verbessert wur- de.Experiments on blades according to the invention further found that by dividing the previously known deflection devices into two deflection parts, stresses and cracks, which were found in previously known blades, are avoided. It was also shown that the service life of the blades was improved with regard to thermomechanical fatigue (TMF).
Die Umlenkteile können dabei beliebig ausgestaltet werden, wie dies in Fig. 2a, 2b und 2c gezeigt und oben für die Umlenkschaufel beschrieben wurde. Darüber hin- aus ist die Ausgestaltung des Abstand δ der beiden Umlenkteile in Strömungsrichtung des Kühlfluides variabel sowie die Ausgestaltung beliebig, wobei jedoch beachtet werden muss, dass die Funktion der Umlenkteile, nämlich die Verhinderung von Druckverlusten und die Vermeidung einer Separation des Kühlfluidstro- mes 20 nach dem Umlenkkanal 22, beibehalten wird.The deflecting parts can be designed as desired, as shown in FIGS. 2a, 2b and 2c and described above for the deflecting vane. In addition From the configuration of the distance δ between the two deflection parts in the flow direction of the cooling fluid is variable and the configuration is arbitrary, but it must be noted that the function of the deflection parts, namely the prevention of pressure losses and the avoidance of separation of the cooling fluid flow 20 after the deflection channel 22, is maintained.
Fig. 5 zeigt eine weitere erfindungsgemässe Ausgestaltung von zwei Umlenkteilen 9a und 9b. Hier wurde der Abstand δ erzielt, indem durch eine in der Gussform vorhandene Verengung oder Kerbe 24 eine Schwachstelle in der Umlenkschaufel angeordnet wurde. Durch diese Kerbe 24 bricht die Umlenkschaufel nach dem Gussprozess beim Abkühlen und dem dadurch bedingten Schrumpfen in zwei Teile und erzeugt so die beiden Umlenkteile 9a und 9b mit dem Abstand δ. Durch die Ausgestaltung der Kerbe 24 kann der Abstand δ und dessen Form eingestellt werden.5 shows a further embodiment according to the invention of two deflection parts 9a and 9b. Here, the distance δ was achieved by arranging a weak point in the deflection vane due to a narrowing or notch 24 in the casting mold. By means of this notch 24, the deflection vane breaks into two parts after the casting process during cooling and the resulting shrinkage, and thus produces the two deflection parts 9a and 9b with the spacing δ. The distance δ and its shape can be set by the design of the notch 24.
Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt. Solche Umlenkteile können allgemein in Krümmungen von Kühlkanälen von thermisch belasteten Bauteilen angeordnet werden, um die oben beschriebenen Probleme zu vermeiden. Of course, the invention is not limited to the exemplary embodiment shown and described. Such deflection parts can generally be arranged in curvatures of cooling channels of thermally loaded components in order to avoid the problems described above.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Schaufelblatt1 airfoil
2 Hohlraum2 cavity
3 Vorderkantenbereich3 leading edge area
4 Hinterkantenbereich4 trailing edge area
5 saugseitige Wand5 suction-side wall
6 druckseitige Wand6 pressure side wall
8 Trennwand8 partition
9 Umlenkeinrichtung / Umlenkschaufel9 deflection device / deflection vane
9a erstes Umlenkteil Saugseite9a first deflection part suction side
9b zweites Umlenkteil Druckseite9b second deflection part pressure side
10 Schaufel10 shovel
11 Schaufelfuss11 blade root
12 Plattform12 platform
20 Kühlfluid20 cooling fluid
21 Kühlkanal21 cooling channel
22 Umlenkkanal22 deflection channel
23 Höhe Kühlkanal23 Cooling channel height
24 Kerbe δ Abstand 24 notch δ distance

Claims

Patentansprüche claims
1. Thermisch belastetes Bauteil (1 , 10), das mit mindestens einem Kühlkanal (21) für die Strömung eines Kühlfluids (20) durchzogen ist, wobei im Bereich einer Krümmung (22) innerhalb des Kühlkanals (21) mindestens eine Umlenkeinrichtung (9) für die integrale Erfassung der Strömung des Kühl- fluids (20) vorgesehen ist, dadurch gekennzeichnet, dass die Umlenkeinrichtung (9) über die Höhe (23) des Kühlkanals (21) aus zwei zueinander beabstandeten Umlenkteilen (9a, 9b) besteht.1. A thermally stressed component (1, 10) which has at least one cooling channel (21) for the flow of a cooling fluid (20), with at least one deflection device (9) in the area of a bend (22) within the cooling channel (21) is provided for the integral detection of the flow of the cooling fluid (20), characterized in that the deflection device (9) consists of two mutually spaced deflection parts (9a, 9b) over the height (23) of the cooling channel (21).
2. Thermisch belastetes Bauteil (1 , 10) nach Anspruch 1 , dadurch gekennzeichnet, dass die zwei zueinander beabstandeten Umlenkteile (9a, 9b) fluchtend angeordnet sind.2. Thermally loaded component (1, 10) according to claim 1, characterized in that the two mutually spaced deflecting parts (9a, 9b) are arranged in alignment.
3. Thermisch belastetes Bauteil (1 , 10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Abstand (δ) der zwei zueinander beabstandeten Umlenkteile (9a, 9b) bis zu 30% der Höhe des Kühlkanales (23) im Bereich der Umlenkteile beträgt.3. Thermally loaded component (1, 10) according to claim 1 or 2, characterized in that a distance (δ) of the two mutually spaced deflecting parts (9a, 9b) up to 30% of the height of the cooling channel (23) in the region of the deflecting parts is.
4. Thermisch belastetes Bauteil (1 , 10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zwei zueinander beabstandeten Umlenkteile (9a, 9b) und der Abstand (δ) zwischen den Umlenkteilen eine beliebige Form aufweisen können. 4. Thermally loaded component (1, 10) according to one of the preceding claims, characterized in that the two mutually spaced deflecting parts (9a, 9b) and the distance (δ) between the deflecting parts can have any shape.
5. Thermisch belastetes Bauteil (1 , 10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umlenkteile (9a, 9b) und der Abstand (δ) zwischen den Umlenkteilen durch in der Gussform vorgesehene Mittel (24) im Gussprozess herstellbar sind.5. Thermally loaded component (1, 10) according to one of the preceding claims, characterized in that the deflecting parts (9a, 9b) and the distance (δ) between the deflecting parts can be produced in the casting process by means (24) provided in the casting mold.
6. Thermisch belastetes Bauteil (1 , 10) nach Anspruch 5, dadurch gekennzeichnet, dass das in der Gussform vorgesehene Mittel (24) eine Verengung im Querschnitt der Umlenkeinrichtung (9) ist.6. Thermally loaded component (1, 10) according to claim 5, characterized in that the means (24) provided in the casting mold is a constriction in the cross section of the deflection device (9).
7. Thermisch belastetes Bauteil (1 , 10) nach einem der vorhergehenden An- sprüche, dadurch gekennzeichnet, dass das thermisch belastete Bauteil in einer Wärmekraftmaschine angeordnet ist.7. Thermally loaded component (1, 10) according to one of the preceding claims, characterized in that the thermally loaded component is arranged in a heat engine.
8. Thermisch belastetes Bauteil (1 , 10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das thermisch belastete Bauteil die Schaufel (10) einer Wärmekraftmaschine ist.8. thermally loaded component (1, 10) according to one of the preceding claims, characterized in that the thermally loaded component is the blade (10) of a heat engine.
Thermisch belastetes Bauteil (1 , 10) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Wärmekraftmaschine eine Gasturbine ist. Thermally loaded component (1, 10) according to claim 7 or 8, characterized in that the heat engine is a gas turbine.
EP02779098A 2001-12-10 2002-12-04 Thermally loaded component Withdrawn EP1456505A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH22512001 2001-12-10
CH225101 2001-12-10
PCT/CH2002/000661 WO2003054356A1 (en) 2001-12-10 2002-12-04 Thermally loaded component

Publications (1)

Publication Number Publication Date
EP1456505A1 true EP1456505A1 (en) 2004-09-15

Family

ID=4568221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02779098A Withdrawn EP1456505A1 (en) 2001-12-10 2002-12-04 Thermally loaded component

Country Status (4)

Country Link
US (1) US7137784B2 (en)
EP (1) EP1456505A1 (en)
AU (1) AU2002342500A1 (en)
WO (1) WO2003054356A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005012803A1 (en) * 2005-03-19 2006-09-21 Alstom Technology Ltd. Rotor blade for gas turbine stage, has whirling effect producing structures, which are formed as elevated sections on inner wall surfaces of coolant duct and enclose narrow gap, where duct is defined by side walls of blade sheet
US7303376B2 (en) * 2005-12-02 2007-12-04 Siemens Power Generation, Inc. Turbine airfoil with outer wall cooling system and inner mid-chord hot gas receiving cavity
US7955053B1 (en) 2007-09-21 2011-06-07 Florida Turbine Technologies, Inc. Turbine blade with serpentine cooling circuit
EP2143883A1 (en) * 2008-07-10 2010-01-13 Siemens Aktiengesellschaft Turbine blade and corresponding casting core
US8985940B2 (en) * 2012-03-30 2015-03-24 Solar Turbines Incorporated Turbine cooling apparatus
US20140093388A1 (en) * 2012-09-28 2014-04-03 Solar Turbines Incorporated Cooled turbine blade with leading edge flow deflection and division
US9228439B2 (en) * 2012-09-28 2016-01-05 Solar Turbines Incorporated Cooled turbine blade with leading edge flow redirection and diffusion
JP2018512535A (en) * 2015-03-17 2018-05-17 シーメンス エナジー インコーポレイテッド Turbine blade with unconstrained flow diverting guide structure
KR101691095B1 (en) * 2015-04-20 2016-12-29 연세대학교 산학협력단 Structure of discrete guide vane in the internal cooling channel to control local cooling performance on internal surface
DE102015112643A1 (en) * 2015-07-31 2017-02-02 Wobben Properties Gmbh Wind turbine rotor blade
US10184341B2 (en) 2015-08-12 2019-01-22 United Technologies Corporation Airfoil baffle with wedge region
US10012092B2 (en) 2015-08-12 2018-07-03 United Technologies Corporation Low turn loss baffle flow diverter
US10450874B2 (en) * 2016-02-13 2019-10-22 General Electric Company Airfoil for a gas turbine engine
US11002138B2 (en) * 2017-12-13 2021-05-11 Solar Turbines Incorporated Turbine blade cooling system with lower turning vane bank
US10774657B2 (en) 2018-11-23 2020-09-15 Raytheon Technologies Corporation Baffle assembly for gas turbine engine components
EP3862537A1 (en) * 2020-02-10 2021-08-11 General Electric Company Polska sp. z o.o. Cooled turbine nozzle and nozzle segment
CN111852574A (en) * 2020-07-27 2020-10-30 北京全四维动力科技有限公司 Turbine blade and gas turbine comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223308A2 (en) * 2000-12-16 2002-07-17 ALSTOM (Switzerland) Ltd Cooling of a turbo machine component

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US612250A (en) * 1898-10-11 Heinrich von der linde
US3171631A (en) * 1962-12-05 1965-03-02 Gen Motors Corp Turbine blade
GB1188401A (en) 1966-02-26 1970-04-15 Gen Electric Cooled Vane Structure for High Temperature Turbines
US3628885A (en) 1969-10-01 1971-12-21 Gen Electric Fluid-cooled airfoil
US3804551A (en) 1972-09-01 1974-04-16 Gen Electric System for the introduction of coolant into open-circuit cooled turbine buckets
GB1551678A (en) 1978-03-20 1979-08-30 Rolls Royce Cooled rotor blade for a gas turbine engine
US4278400A (en) * 1978-09-05 1981-07-14 United Technologies Corporation Coolable rotor blade
US4775296A (en) * 1981-12-28 1988-10-04 United Technologies Corporation Coolable airfoil for a rotary machine
US4474532A (en) * 1981-12-28 1984-10-02 United Technologies Corporation Coolable airfoil for a rotary machine
US5232343A (en) * 1984-05-24 1993-08-03 General Electric Company Turbine blade
GB2165315B (en) * 1984-10-04 1987-12-31 Rolls Royce Improvements in or relating to hollow fluid cooled turbine blades
JPS62228603A (en) 1986-03-31 1987-10-07 Toshiba Corp Gas turbine blade
GB9014762D0 (en) 1990-07-03 1990-10-17 Rolls Royce Plc Cooled aerofoil vane
EP0475658A1 (en) 1990-09-06 1992-03-18 General Electric Company Turbine blade airfoil with serial impingement cooling through internal cavity-forming ribs
US5695321A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
EP0670955B1 (en) 1992-11-24 2000-04-19 United Technologies Corporation Coolable airfoil structure
US5403159A (en) 1992-11-30 1995-04-04 United Technoligies Corporation Coolable airfoil structure
GB9402442D0 (en) 1994-02-09 1994-04-20 Rolls Royce Plc Cooling air cooled gas turbine aerofoil
JP3137527B2 (en) 1994-04-21 2001-02-26 三菱重工業株式会社 Gas turbine blade tip cooling system
US5498126A (en) 1994-04-28 1996-03-12 United Technologies Corporation Airfoil with dual source cooling
US5599166A (en) 1994-11-01 1997-02-04 United Technologies Corporation Core for fabrication of gas turbine engine airfoils
US5842829A (en) * 1996-09-26 1998-12-01 General Electric Co. Cooling circuits for trailing edge cavities in airfoils
US5931638A (en) 1997-08-07 1999-08-03 United Technologies Corporation Turbomachinery airfoil with optimized heat transfer
US5902093A (en) 1997-08-22 1999-05-11 General Electric Company Crack arresting rotor blade
US6220817B1 (en) 1997-11-17 2001-04-24 General Electric Company AFT flowing multi-tier airfoil cooling circuit
DE19860788A1 (en) 1998-12-30 2000-07-06 Abb Alstom Power Ch Ag Coolable blade for a gas turbine
DE19921644B4 (en) 1999-05-10 2012-01-05 Alstom Coolable blade for a gas turbine
US6257831B1 (en) * 1999-10-22 2001-07-10 Pratt & Whitney Canada Corp. Cast airfoil structure with openings which do not require plugging
US6254347B1 (en) * 1999-11-03 2001-07-03 General Electric Company Striated cooling hole

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223308A2 (en) * 2000-12-16 2002-07-17 ALSTOM (Switzerland) Ltd Cooling of a turbo machine component

Also Published As

Publication number Publication date
AU2002342500A1 (en) 2003-07-09
WO2003054356A1 (en) 2003-07-03
US7137784B2 (en) 2006-11-21
US20050042096A1 (en) 2005-02-24

Similar Documents

Publication Publication Date Title
DE60018817T2 (en) Chilled gas turbine blade
EP0902164B1 (en) Cooling of the shroud in a gas turbine
DE60112030T2 (en) Cooling structure for a gas turbine
EP1456505A1 (en) Thermally loaded component
DE1476796C3 (en) A component of a gas turbine system made integrally from a high-strength material
DE102004054294B4 (en) Cooling system for platform edges of stator segments
DE60017396T2 (en) DEVICE FOR REDUCING COOLING FOR A TURBINE ENTRY CHANNEL
DE1946535C3 (en) Component for a gas turbine engine
EP0528138B1 (en) Blade shroud for axial turbine
EP2226509B1 (en) Turbo compressor or pump with fluid injection to influence the boundary layer
DE102006004437A1 (en) Blade of a gas turbine blade, method of making a blade, gasket plate and gas turbine
CH695788A5 (en) Airfoil for a gas turbine having a cooling structure for its airfoil trailing edge.
EP2320030B1 (en) Rotor and rotor blade for an axial turbomachine
DE60113796T2 (en) Stator vane structure of a gas turbine
DE102008017844A1 (en) Turbomachine with fluid injector assembly
DE10355240A1 (en) Fluid flow machine with fluid removal
WO2005068783A1 (en) Cooled blade for a gas turbine
EP2257399A1 (en) Blade for a gas turbine
CH668454A5 (en) STAGE OF AN AXIAL STEAM TURBINE.
WO2008052846A1 (en) Turbine blade
DE19839592A1 (en) Fluid machine with cooled rotor shaft
DE102005045255A1 (en) Improved compressor in axial design
EP2725203B1 (en) Cool air guide in a housing structure of a fluid flow engine
DE112016001691B4 (en) Turbine blade and gas turbine
EP3819470A1 (en) Device for cooling a component of a gas turbine / flow engine with impingement cooling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PARNEIX, SACHA

Inventor name: TSCHUOR, REMIGI

Inventor name: HALL, KENNETH

17Q First examination report despatched

Effective date: 20070625

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA IP UK LIMITED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180703

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/18 20060101AFI20030710BHEP