EP1454104B1 - Procede et installation de separation d'un melange gazeux contenant du methane par distillation - Google Patents

Procede et installation de separation d'un melange gazeux contenant du methane par distillation Download PDF

Info

Publication number
EP1454104B1
EP1454104B1 EP01270739.4A EP01270739A EP1454104B1 EP 1454104 B1 EP1454104 B1 EP 1454104B1 EP 01270739 A EP01270739 A EP 01270739A EP 1454104 B1 EP1454104 B1 EP 1454104B1
Authority
EP
European Patent Office
Prior art keywords
fraction
distillation column
stage
volatile
relatively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01270739.4A
Other languages
German (de)
English (en)
Other versions
EP1454104A1 (fr
Inventor
Henri Paradowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip Energies France SAS
Original Assignee
Technip France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France SAS filed Critical Technip France SAS
Publication of EP1454104A1 publication Critical patent/EP1454104A1/fr
Application granted granted Critical
Publication of EP1454104B1 publication Critical patent/EP1454104B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Definitions

  • the present invention relates generally and according to a first aspect, a separation process for separating the constituents of natural gas in a first gas fraction, rich in methane and substantially free of hydrocarbons C 2 and higher, and a second gas fraction, rich in C 2 and higher hydrocarbons and substantially free of methane.
  • the invention relates, in its first aspect, to a process for separating a pressure-cooled mixture containing methane and C 2 and higher hydrocarbons into a light final fraction enriched with methane and a final enriched heavy fraction.
  • C 2 and higher hydrocarbons comprising a first step (I) in which (Ia) the pressure-cooled mixture is separated in a first flask into a first relatively more volatile head fraction and a first relatively less volatile, in which (Ib) the first bottom fraction is introduced into a middle part of a distillation column, in which (Ic) is collected, in a lower part of the column, as a second fraction of a foot, the heavy final fraction enriched in C 2 and higher hydrocarbons, in which (Id) is introduced, after having relaxed it in a turbine, the first top fraction in a upper part of the distillation column, in which (Ie) is collected in the upper part of the column, a second methane-enriched top fraction, in which (Ie) the second head fraction is then subject
  • the present invention aims to reduce the energy consumption during the production of enriched fractions methane or hydrocarbons C 2 and higher, while maintaining very high extraction yields compared to the processes of the prior art.
  • the subject of the invention is a method according to claim 1.
  • this known method does not make it possible to obtain a thorough extraction of ethane because the amount of reflux generated by the technique is low and the ethane content of this reflux is relatively high.
  • the present invention overcomes these problems by the use of two means.
  • the invention provides for the derivation of a portion of the methane-rich column head fraction and its reintroduction to the last stage of the column after compression and cooling. This makes it possible to obtain reflux in sufficient quantity and of excellent quality, since the content of C 2 is very low, for example less than 0.1 mol%.
  • the invention provides for the derivation to the column of a part of the first fraction of head from the first separator before the step of expansion in the turbine.
  • This second derivative fraction is cooled and liquefied before introduction into the column. This way of proceeding makes it possible to limit the amount of recycled and liquefied gas mentioned above and to reduce the related compression costs.
  • the method according to the invention may comprise one or more of the features of claims 2 to 9.
  • the invention also relates to an installation according to claim 10.
  • FC flow controller
  • GT gas turbine
  • LC liquid level controller
  • PC pressure controller
  • SC speed controller
  • TC temperature controller
  • the instillation shown is intended to treat a dry natural gas, in particular to isolate a fraction composed mainly of methane substantially free of hydrocarbons C 2 and higher on the one hand, and a fraction composed mainly of C hydrocarbons 2 and higher essentially free of methane, on the other hand.
  • Dry natural gas 14 is first separated into a fraction 15 which is cooled in a heat exchanger E1, and a fraction 16 which is sent into a heat exchanger. conduct.
  • the circulation of the fraction 16 is regulated by a controlled valve 17 whose opening varies as a function of the temperature of a fraction 45.
  • the fraction 15 is mixed with the fraction 16 to give a fraction 18 cooled.
  • Fraction 18 is then introduced into a liquid / gas separator flask B1 in which this fraction 18 is separated into a relatively more volatile first head fraction 3 and a relatively less volatile first fraction of foot 4.
  • the first head fraction 3 is expanded in a turbine T1 to provide a loose fraction 19 which is introduced into the middle portion of a distillation column C1. Then, on the one hand, in a lower part of the distillation column C1, as the second bottom fraction 2, the final heavy fraction 2 enriched in C 2 and higher hydrocarbons. This heavy final fraction 2 is transported in a pipe comprising a controlled opening valve 60 whose opening depends on the liquid level contained at the bottom of the column C1. On the other hand, a second top fraction 5 enriched in methane is collected in an upper part of the distillation column C1.
  • This second head fraction 5 is then reheated in the heat exchanger E1 to provide the heated fraction 20, and then is subjected to a first compression in a first compressor K1 coupled to the turbine T1 to provide a compressed fraction 21.
  • the fraction 21 is then subjected to a second compression in a second compressor K2 fed by a gas turbine whose speed is regulated by a speed controller controlled by a pressure controller connected to the pipe carrying the second head fraction 5, to provide another compressed fraction 22.
  • the latter is then cooled by air in a heat exchanger A1 to provide a compressed and cooled fraction 23.
  • Fraction 23 is then divided into a first withdrawal fraction 6 and a final light fraction 1 enriched in methane.
  • the first sample fraction 6 is then cooled and liquefied in the heat exchanger E1 to give a cooled fraction 24 which is conveyed in a pipe with a flow-controlled opening valve 25 and is introduced into the upper part of the column. C1 distillation.
  • a second withdrawal fraction 9 is taken from the first top fraction 3 and cooled and liquefied in the heat exchanger E1 to provide a cooled fraction 26.
  • the latter is conveyed in a pipe comprising a controlled valve 27 with an opening dependent on the flow, and is introduced into the upper part of the distillation column C1.
  • the first foot fraction 4 is conveyed in a pipe which comprises a controlled valve 28, the opening of which depends on the level of liquid in the bottom of the separating balloon B1.
  • the first bottom fraction 4 is then reheated in exchanger E1 to provide a heated fraction 29.
  • Fraction 29 is then introduced into a liquid / gas separator flask B2 to be separated into a relatively more volatile third head fraction 7, and a relatively less volatile third foot fraction 8.
  • the third foot fraction 8 is conveyed in a pipe which comprises a controlled valve 30 whose opening depends on the level of liquid in the bottom of the separating drum B2.
  • the third bottom fraction 8 is then introduced into the middle part of the distillation column C1.
  • the third top fraction 7 is cooled and liquefied in the exchanger E1 to give a cooled fraction 31.
  • the latter is conveyed in a pipe comprising a controlled valve 32 with a controlled opening as a function of the pressure, and then introduced into the distillation column C1.
  • the distillation column C1 has in its lower part several stages which are connected in pairs by heating circuits 33, 34, 35 which are individually connected to the heat exchanger E1.
  • Each of these reheating circuits constitutes a side reboiler.
  • the regulation of the fluid circulation temperature in each of these circuits 33, 34, 35 is effected by means of controlled opening valves positioned on bypass lines which do not pass through the exchanger E1.
  • the opening of these valves is controlled by temperature controllers connected to the pipes.
  • These controllers, respectively 36, 37, 38, are positioned downstream of the mixing zone of the fractions after their passage through the exchanger E1 and / or the bypass lines.
  • the plant shown is intended to treat a dry natural gas, in particular to isolate a fraction composed mainly of methane essentially free of C 2 and higher hydrocarbons on the one hand, and a fraction composed mainly of C 2 hydrocarbons 2 and higher essentially free of methane, on the other hand.
  • Dry natural gas 14 is first separated into a fraction 15 which is cooled in a heat exchanger E1, and a fraction 16 which is sent into a pipe.
  • the circulation of the fraction 16 is regulated by a controlled valve 17 whose opening varies as a function of the temperature of a fraction 45.
  • fraction 15 is mixed with fraction 16 to give a cooled fraction 18.
  • Fraction 18 is then introduced into a flask. liquid / gas separator B1 in which this fraction 18 is separated into a relatively more volatile first head fraction 3 and a relatively less volatile first foot fraction 4.
  • the first head fraction 3 is expanded in a turbine T1 to provide a loose fraction 19 which is introduced into the middle part of a distillation column C1.
  • the final heavy fraction 2 enriched in C 2 and higher hydrocarbons.
  • This heavy final fraction 2 is transported in a pipe comprising a controlled opening valve 60 whose opening depends on the liquid level contained at the bottom of the column C1.
  • a second top fraction 5 enriched in methane is collected in an upper part of the distillation column C1.
  • This second head fraction 5 is then reheated in the exchanger E1 to provide a heated fraction 20, and then is subjected to a first compression in a first compressor K1 coupled to the turbine T1 to provide a compressed fraction 21.
  • the fraction 21 is then subjected to a second compression in a second compressor K2 fed by a gas turbine whose speed is regulated by a speed controller controlled by a pressure controller connected to the pipe carrying the second head fraction 5, to provide another compressed fraction 22.
  • the latter is then cooled by air in a heat exchanger A1 to provide a compressed and cooled fraction 23.
  • Fraction 23 is then divided into a first withdrawal fraction 6 and a final light fraction 1 enriched in methane.
  • the first sample fraction 6 is then cooled in the exchanger thermal E1 to give a cooled fraction 24 which is conveyed in a pipe with a controlled valve 25 opening flow dependent, and is introduced into the upper part of the distillation column C1.
  • a second sampling fraction 9 is taken from the first top fraction 3 and cooled in the heat exchanger E1 to provide a cooled fraction 26.
  • the latter is conveyed in a pipe which, unlike the figure 1 , comprises a controlled valve 39 with opening dependent on the flow.
  • the cooled fraction 26 is then introduced into a liquid / gas separator flask B3 to be separated into a relatively more volatile fourth head fraction 10 and a relatively less volatile fourth foot fraction 11.
  • the fourth overhead fraction collected is then cooled in exchanger E1 to give a cooled and liquefied fraction 40.
  • the cooled and liquefied fraction 40 is then conveyed in a pipe comprising a controlled valve 27 with a flow-dependent opening and then introduced into the upper part of the distillation column C1.
  • the fourth foot fraction 11 is transported in a pipe which comprises a controlled valve 41 whose opening depends on the level of liquid in the bottom of the separator drum B3.
  • the fourth foot fraction 11 is then reheated in the exchanger E1 to give a heated fraction 42.
  • This heated fraction 42 is separated in a fourth balloon B4 into a relatively more volatile fifth head fraction 12 and a fifth fraction of a relatively smaller foot. volatile 13.
  • the fifth top fraction 12 is cooled and liquefied in the exchanger E1 to produce a cooled and liquefied fraction 43.
  • the latter is then transported in a pipe which comprises a controlled valve 44 whose opening depends on the pressure in the pipe, then is introduced into the upper part of the distillation column C1.
  • the relatively less volatile fifth foot fraction 13 is conveyed in a line comprising an opening valve 62 controlled by a liquid level controller contained in the balloon B4.
  • the first foot fraction 4 is conveyed in a pipe which comprises a controlled valve 28, the opening of which depends on the level of liquid in the bottom of the separating balloon B1.
  • the first bottom fraction 4 and the fifth bottom fraction 13 are then combined to give a mixed fraction 63 which is reheated in exchanger E1 to provide a heated fraction 29.
  • Fraction 29 is then introduced into a liquid / gas separator flask B2 to be separated into a relatively more volatile third head fraction 7, and a relatively less volatile third foot fraction 8.
  • the third foot fraction 8 is conveyed in a pipe which comprises a controlled valve 30 whose opening depends on the level of liquid in the bottom of the separating drum B2.
  • the third bottom fraction 8 is then introduced into the middle part of the distillation column C1.
  • the third top fraction 7 is cooled and liquefied in the exchanger E1 to give a cooled and liquefied fraction 31.
  • the latter is conveyed in a pipe having a controlled opening valve 32 as a function of the pressure, and is then introduced into the column. C1 distillation.
  • the distillation column C1 has in its lower part several trays which are connected in pairs by heating circuits 33, 34, 35 which are individually connected to the heat exchanger E1. Each of these reheating circuits constitutes a side reboiler.
  • the regulation of the temperature of fluid circulation in each of these circuits 33, 34, 35 is effected by means of controlled opening valves positioned on bypass lines which do not pass through the exchanger E1. The opening of these valves is controlled by temperature controllers connected to the pipes.
  • These controllers, respectively 36, 37, 38, are positioned downstream of the mixing zone of the fractions after their passage through the exchanger E1 and / or the bypass lines.
  • the ethane extraction process using an installation according to scheme 1 makes it possible to recover more than 99% of the ethane contained in a natural gas.
  • the first bottom fraction 4 of the flask B1 whose flow rate is 1224 kmol / h and which comprises 54.27 mol% of methane and 13.24 mol% of ethane, is expanded at a pressure of 40.0 bar and is then reheated in the E1 exchanger from -52.98 ° C to -38.00 ° C to obtain the fraction 29.
  • the latter is introduced into the separation tank B2.
  • the top fraction 7 from the flask B2 whose flow rate is 439 kmol / h and the ethane content is 6.21 mol%, is cooled and liquefied from -38.00 ° C. to -101.40 ° C. to obtain the fraction 31.
  • the latter is then expanded to 23.2 bar and -101.47 ° C, and then introduced into the column C1 to a stage 48 which is the sixth floor starting from the highest stage of the column.
  • the bottom fraction or bottom fraction 8 whose flow rate is 784 kmol / h and the ethane content is 17.18 mol%, is expanded to 23.2 bar and -46.46 ° C and then introduced into the C1 column at one floor 49 which is the twelfth floor from the highest floor of the column.
  • the overhead fraction 5 is reheated in exchanger E1 to provide a fraction at a temperature of 17.96 ° C and a pressure of 22.0 bar.
  • This fraction 20 is compressed in the compressor K1 coupled to the turbine T1.
  • the power recovered by the turbine is used to compress the fraction to give the compressed fraction 21 at a temperature of 38.80 ° C and a pressure of 27.67 bar.
  • This latter fraction is then compressed in the main compressor K2 to give fraction 22 at a pressure of 63.76 bar and a temperature of 118.22 ° C.
  • the compressor K2 is driven by the gas turbine GT.
  • Fraction 22 is then cooled in air cooler A1 to provide fraction 23 at a temperature of 40.00 ° C and a pressure of 63.06 bar.
  • Fraction 1 is composed of 99.3849 mol% of methane and 0.0481 mol% of ethane, 0.0000 mol% of propane and higher alkanes, 0.1785 mol% of CO 2 and 0.3885 mol% of N 2 .
  • the bypass fraction 6 is recycled to the heat exchanger E1 to provide fraction 24 cooled to -101.40 ° C at 62.06 bar.
  • Fraction 24 is then expanded to 23.2 bar and -104.18 ° C and thereafter introduced into column C1 at a stage 50 which is the first stage starting from the highest stage of the column.
  • Column C1 produces in bottom the second bottom fraction 2 which contains 99.18% of the ethane contained in the dry natural gas charge 14, and 100% of the other hydrocarbons initially contained in this charge 14.
  • This fraction 2 available at 19.16 ° C and 23.2 bar contains 3.4365 mol% of CO 2 , 0.0000 mol% of N 2 , 0.5246 mol% of methane, 52.4795 mol of ethane, 23.9426 % mol of propane, 5.4324 mol% of isobutane, 6.6395 mol% of n-butane, 2.4144 mol% of isopentane, 1.9114 mol% of n-pentane, 1.9114 mol% of n hexane, 1.0060 mol% n-heptane, 0.3018 mol% n-octane.
  • Column C1 is provided with side reboilers in its lower part, which is located below the stage where the fraction 8 is introduced, and comprises a plurality of stages.
  • the liquid collected on a plate 52 available at a temperature of -52.67 ° C. and a pressure of 23.11 bar, located below a stage 51 which is the thirteenth stage starting from the stage higher of the column, is conducted in the side reboiler 33.
  • This is constituted by an integrated circuit in the exchanger E1 whose flow is 2673 kmol / h.
  • This side reboiler 33 has a thermal power of 3836 kW.
  • the liquid collected on the plate 52 is then warmed to -19.79 ° C. and then returned to the column C1 on a plate 53 which corresponds to the bottom of the fourteenth stage starting from the highest stage of the column.
  • the liquid withdrawn from the plate 52 is composed in particular of 24.42 mol% of methane and 44.53 mol% of ethane.
  • the liquid collected on a plate 55 is conducted in the side reboiler 34.
  • This is constituted by an integrated circuit in the exchanger E1 whose flow is 2049 kmol / h.
  • This lateral reboiler 34 has a thermal power of 1500 kW.
  • the liquid collected on the plate 55 is then heated to 11.01 ° C. and then returned to the column C1 on a plate 56 which corresponds to the bottom of the twentieth stage starting from the highest stage of the column.
  • the liquid withdrawn from the plate 55 is composed in particular of 2.84 mol% of methane and 57.29 mol of ethane.
  • the liquid collected on a plate 58 is conducted in the column bottom reboiler or side reboiler 35.
  • This is constituted by an integrated circuit in the exchanger E1 whose flow is 1794 kmol / h.
  • This side reboiler 35 has a thermal power of 1146 kW.
  • the liquid collected on the plate 58 composed in particular of 0.93 mol% of methane and 55.89 mol% of ethane, is then heated to 19.16 ° C. and then returned to the bottom of the column C1 in a chamber. 59 which corresponds to the bottom of the twenty-third floor starting from the highest floor of the column.
  • the liquid leaving the plate 58 has the same composition as the bottom product of column 59 and the product 2 withdrawn at the bottom of column C1.
  • cryogenic heat exchanger E1 which is preferably composed of a battery of brazed aluminum plate heat exchangers.
  • the ethane extraction process using an installation according to scheme 2 makes it possible to recover more than 99% of the ethane contained in a natural gas.
  • the fourth top fraction 10 whose flow rate is 1738 kmol / h, comprises 96.15 mol% of methane and 2.61 mol% of ethane.
  • the latter is then liquefied and cooled to -101.4 ° C in the exchanger E1 to give the fraction 40.
  • the fraction 40 is then expanded to 23.2 bar at a temperature of -102.99 ° C to be introduced into column C1 at a stage 47 which is the fifth stage starting from the highest stage of the column.
  • the fourth fraction of the foot 11 whose flow rate is 567 kmol / h, comprises 82.11 mol% of methane and 10.48 mol% of ethane.
  • the latter is then heated in the exchanger E1 at a temperature of -55.00 ° C. and a pressure of 44.50 bar to be introduced into the fourth separator flask B4 where the liquid and gaseous phases are separated in the fifth fraction of head 12 and the fifth fraction of foot 13.
  • the fifth top fraction 12, whose flow rate is 420 kmol / h, comprises 91.96 mol% of methane and 6.05 mol% of ethane.
  • the latter is then liquefied and cooled to -101.4 ° C in the exchanger E1 to give the fraction 43.
  • the fraction 43 is then expanded to 23.2 bar at a temperature of -101.57 ° C to be introduced into column C1 at a stage 61 which is the sixth stage starting from the highest stage of the column.
  • the fifth foot fraction 13, whose flow rate is 146 kmol / h, comprises 53.85 mol% of methane and 23.22 mol% of ethane.
  • the latter is then mixed with the first bottom fraction 4 to give fraction 63.
  • the fraction 63 is then reheated in exchanger E1 from -53.70 ° C. to -38.00 ° C. and at a pressure of 39.degree. 5 bar to give fraction 29.
  • the first foot fraction 4 of the flask B1 whose flow rate is 1224 kmol / h and which comprises 13.24 mol% of ethane, is expanded to a pressure of 40 bar before being mixed with the fraction 13.
  • Fraction 29 is then introduced into separation flask B2.
  • the top fraction 7 from the flask B2, whose flow rate is 494 kmol / h and the ethane content is 6.72 mol%, is cooled and liquefied from -38 ° C. to -101.4 ° C., to obtain fraction 31.
  • the latter is then expanded to 23.2 bar and introduced into column C1 at a stage 48 which is the seventh stage starting from the highest stage of the column.
  • the bottom fraction or bottom fraction 8 whose flow rate is 876 kmol / h and the ethane content is 18.58 mol%, is expanded to 23.2 bar and -46.76 ° C and then introduced into the C1 column at one floor 49 which is the twelfth floor from the highest floor of the column.
  • the overhead fraction 5 is reheated in exchanger E1 to provide fraction 20 at a temperature of 17.48 ° C and a pressure of 22 bar.
  • This fraction 20 is compressed in the compressor K1 coupled to the turbine T1.
  • the power recovered by the turbine is used to compress the fraction to give the compressed fraction 21 at a temperature of 38.61 ° C and a pressure of 27.76 bar.
  • This last fraction is then compressed in the main compressor K2 to give fraction 22 at a pressure of 63.76 bar and a temperature of 117.7 ° C.
  • the compressor K2 is driven. by the gas turbine GT.
  • Fraction 22 is then cooled in air cooler A1 to provide fraction 23 at a temperature of 40.00 ° C and a pressure of 63.06 bar.
  • Fraction 1 is composed of 99.3280 mol% methane and 0.0485 mol% ethane, 0.0000 mol% propane and higher alkanes, 0.2353 mol% CO 2 and 0.3882 mol% N 2 .
  • the bypass fraction 6 is recycled to the heat exchanger E1 to provide fraction 24 cooled to -101.4 ° C under a pressure of 62.06 bar.
  • the fraction 24 is then expanded to 23.2 bar for a temperature of -104.17 ° C. and then introduced into the column C1 at a stage 50 which is the first stage starting from the highest stage of the column. .
  • Column C1 produces in bottom the second bottom fraction 2 which contains 99.18% of the ethane contained in the dry natural gas charge 14, and 100% of the other hydrocarbons initially contained in this charge 14.
  • This fraction 2 available at 19.90 ° C and 23.2 bar contains 2.9129 mol% of CO 2 , 0.0000 mol% of N 2 , 0.5274 mol% of methane, 52.7625 mol% of ethane, 24.0733 % mol of propane, 5.4620 mol% of isobutane, 6.6758 mol% of n- butane, 2.4276 mol% of isopentane, 1.9218 mol% of n-pentane, 1.9218 mol% of n hexane, 1.0115 mol% of n-heptane, 0.3034 mol% of n-octane.
  • the column C1 is provided with side reboilers in its lower part, which is located below the stage where the fraction 8 is introduced, and comprises a plurality of stages.
  • the liquid collected on a plate 52 available at a temperature of -51.37 ° C. and a pressure of 23.11 bar, situated below a stage 51 which is the thirteenth stage starting from the stage the higher of the column, is conducted in the side reboiler 33.
  • This is constituted by an integrated circuit in the exchanger E1 whose flow is 2560 kmol / h.
  • This side reboiler 33 has a thermal power of 3465 kW.
  • the liquid collected on the plate 52 is then warmed to -19.80 ° C. and then returned to the column C1 on a plate 53 which corresponds to the bottom of the fourteenth stage starting from the highest stage of the column.
  • the liquid withdrawn from the plate 52 is composed in particular of 23.86 mol% of methane and 45.10 mol% of ethane.
  • the liquid collected on a plate 55 is conducted in the side reboiler 34.
  • This is constituted by an integrated circuit in the exchanger E1 whose flow is 2044 kmol / h.
  • This lateral reboiler 34 has a thermal power of 1500 kW.
  • the liquid collected on the plate 55 is then warmed to 11.71 ° C. and then returned to the column C1 on a plate 56 which corresponds to the bottom of the twentieth stage starting from the highest stage of the column.
  • the liquid present on the plate 55 is composed in particular of 2.92 mol% of methane and 57.92 mol% of ethane.
  • the liquid collected on a plate 58 is conducted in the column bottom reboiler or side reboiler 35.
  • This is constituted by an integrated circuit in the exchanger E1 whose flow is 1788 kmol / h.
  • This side reboiler 35 has a thermal power of 1147 kW.
  • the liquid collected on the plate 58 is then heated to 19.90 ° C and returned to the bottom 59 of the column C1.
  • the liquid withdrawn from the plate 58 is composed in particular of 0.94 mol% of methane and 56.35 mol% of ethane.
  • This lower rate of CO 2 thus facilitates a subsequent treatment to remove at least partly the carbon dioxide present in the C 2 cut, withdrawn at the bottom of column C1.
  • the invention is therefore of interest for limiting energy expenditure during the production of purified gases. This goal is achieved while allowing a high selectivity of separation of methane and other constituents during the implementation of the process.
  • results obtained by the invention provide significant advantages consisting in a substantial simplification and economy in the production and the technology of the equipment and methods of their implementation as well as in the quality of the products obtained by these methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • La présente invention concerne, de façon générale et selon un premier de ses aspects, un procédé de séparation permettant de séparer les constituants du gaz naturel en une première fraction de gaz, riche en méthane et essentiellement dépourvue d'hydrocarbures en C2 et supérieurs, et une- seconde fraction de gaz, riche en hydrocarbures en C2 et supérieurs et essentiellement dépourvue de méthane.
  • Plus précisément, l'invention concerne, selon son premier aspect, un procédé de séparation d'un mélange refroidi sous pression contenant du méthane et des hydrocarbures en C2 et supérieurs, en une fraction finale légère enrichie en méthane et une fraction finale lourde enrichie en hydrocarbures en C2 et supérieurs, comprenant une première étape (I) dans laquelle (Ia) on sépare le mélange refroidi sous pression, dans un premier ballon, en une première fraction de tête relativement plus volatile, et une première fraction de pied relativement moins volatile, dans laquelle (Ib) on introduit la première fraction de pied dans une partie médiane d'une colonne de distillation, dans laquelle (Ic) on collecte, dans une partie basse de la colonne, en tant que seconde fraction de pied, la fraction finale lourde enrichie en hydrocarbures en C2 et supérieurs, dans laquelle (Id) on introduit, après l'avoir détendue dans une turbine, la première fraction de tête dans une partie haute de la colonne de distillation, dans laquelle (Ie) on collecte, dans la partie haute de la colonne, une seconde fraction de tête enrichie en méthane, dans laquelle (If) on soumet ensuite la seconde fraction de tête, pour l'obtention de la fraction finale légère, à une compression et à un refroidissement, et dans laquelle (Ig) on prélève de la fraction finale légère une première fraction de prélèvement, ce procédé comprenant une seconde étape (II). dans laquelle (IIa) on introduit la première fraction de prélèvement, après refroidissement et liquéfaction, dans la partie haute de la colonne de distillation.
  • Un tel procédé est connu de l'art antérieur. Ainsi, le brevet US-5881569 divulgue un procédé conforme au préambule décrit ci-dessus.
  • L'extraction de l'éthane contenu dans le gaz naturel peut être réalisée à l'aide de procédés connus, comme décrit dans les brevets US-4140504 , US-4157904 , US-4171964 et US-4278547 . Bien que les procédés décrits dans ces brevets aient un intérêt certain, ils ne permettent d'obtenir, au mieux, dans la pratique, qu'un taux de récupération de l'éthane de l'ordre de 85%. Ils mettent en jeu des séparateurs liquide/gaz, des échangeurs thermiques, des détendeurs (habituellement sous la forme de turbines), des compresseurs et des colonnes de distillation.
  • Plus récemment, d'autres procédés ont été rendus publics, notamment par les brevets US-4649063 , US-4854955 , US-5555748 et US-5568737 . Si ces procédés plus récents peuvent permettre d'obtenir des rendements d'extraction assez satisfaisants en éthane et en autres hydrocarbures, ces procédés nécessitent, pour l'obtention de fractions enrichies en méthane ou en hydrocarbures en C2 et supérieurs, des dépenses énergétiques relativement importantes. US 5568737 et US 5566554 décrivent d'autres procédés de séparation.
  • Dans ce contexte, la présente invention vise à réduire la consommation d'énergie lors de la production de fractions enrichies en méthane ou en hydrocarbures en C2 et supérieurs, tout en maintenant des rendements d'extraction très élevés par rapport aux procédés de l'art antérieur.
  • A cet effet, l'invention a pour objet un procédé selon la revendication 1.
  • Un autre procédé, comme décrit dans le brevet US-5566554 , utilise deux séparateurs liquide/gaz dont une fraction liquide recueillie en pied du premier séparateur est chauffée puis introduite dans un second séparateur. Cette technique permet en particulier d'améliorer l'extraction du méthane contenu dans la fraction de pied issue du premier séparateur et surtout d'utiliser la détente de cette fraction de pied pour refroidir dans un échangeur thermique le flux de gaz naturel à traiter qui rentre dans l'installation.
  • En revanche, ce procédé connu ne permet pas d'obtenir une extraction poussée de l'éthane car la quantité de reflux générée par la technique est faible et la teneur en éthane de ce reflux est relativement forte.
  • La présente invention surmonte ces problèmes par la mise en oeuvre de deux moyens.
  • D'une part, l'invention prévoit la dérivation d'une partie de la fraction de tête de colonne riche en méthane et sa réintroduction au dernier étage de la colonne après compression et refroidissement. Cela permet d'obtenir un reflux en quantité suffisante et de qualité excellente, car la teneur en C2 est très basse, par exemple inférieure à 0,1 %mol.
  • D'autre part, l'invention prévoit la dérivation vers la colonne d'une partie de la première fraction de tête issue du premier séparateur avant l'étape de détente dans la turbine. Cette deuxième fraction dérivée est refroidie et liquéfiée avant introduction dans la colonne. Cette façon de procéder permet de limiteur la quantité de gaz recyclé et liquéfié cité ci-dessus et de réduire les frais de compression afférents.
  • Le procédé selon l'invention peut comprendre l'une ou plusieurs des caractéristiques des revendications 2 à 9.
  • L'invention a également pour objet une installation selon la revendication 10.
  • L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description qui va suivre en se référant aux dessins schématiques annexés, donnés uniquement à titre d'exemple non limitatif et dans lesquels :
    • La figure 1 représente un schéma synoptique fonctionnel d'une installation conforme à un mode de réalisation possible de l'invention ; et
    • La figure 2 représente un schéma synoptique fonctionnel d'une installation conforme à un autre mode de réalisation préféré de l'invention.
  • Sur ces deux figures, on peut notamment lire les symboles « FC » qui signifie « contrôleur de débit », « GT » qui signifie « turbine à gaz », « LC » qui signifie « contrôleur de niveau de liquide », « PC » qui signifie « contrôleur de pression », « SC » qui signifie « contrôleur de vitesse » et « TC » qui signifie « contrôleur de température ».
  • Par souci de clarté et de concision, les conduites utilisées dans les installations des figures 1 et 2 seront reprises par les mêmes signes de préférence que les fractions gazeuses qui y circulent.
  • En se rapportant à la figure 1, l'instillation représentée est destinée à traiter un gaz naturel sec, en particulier pour en isoler une fraction composée principalement de méthane essentiellement exempte d'hydrocarbures en C2 et supérieurs d'une part, et une fraction composés principalement d'hydrocarbures en C2 et supérieurs essentiellement exempte de méthane, d'autre part.
  • Du gaz naturel sec 14 est d'abord séparé en une fraction 15 qui est refroidie dans un échangeur thermique E1, et en une fraction 16 qui est envoyée dans une. conduite. La circulation de la fraction 16 est régulée par une vanne commandée 17 dont l'ouverture varie en fonction de la température d'une fraction 45. A la sortie de l'échangeur E1, la fraction 15 est mélangée à la fraction 16 pour donner une fraction 18 refroidie. La fraction 18 est alors introduite dans un ballon séparateur liquide/gaz B1 dans lequel cette fraction 18 est séparée en une première fraction de tête 3 relativement plus volatile, et une première fraction de pied 4 relativement moins volatile.
  • La première fraction de tête 3 est détendue dans une une turbine T1 pour fournir une fraction détendue 19 qui est introduite dans la partie médiane d'une colonne de distillation C1. On collecte ensuite d'une part, dans une partie basse de la colonne de distillation C1, en tant que seconde fraction de pied 2, la fraction finale lourde 2 enrichie en hydrocarbures en C2 et supérieurs. Cette fraction finale lourde 2 est transportée dans une conduite comportant une vanne à ouverture commandée 60 dont l'ouverture dépend du niveau de liquide contenu en pied de la colonne C1. D'autre part, on collecte dans une partie haute de la colonne de distillation C1, une seconde fraction de tête 5 enrichie en méthane. Cette seconde fraction de tête 5 est ensuite réchauffée dans l'échangeur E1 pour fournir la fraction réchauffée 20, puis est soumise à une première compression dans un premier compresseur K1 couplé à la turbine T1 pour fournir une fraction comprimée 21. La fraction 21 est alors soumise à une seconde compression dans un second compresseur K2 alimenté par une turbine à gaz dont la vitesse est régulée par un contrôleur de vitesse asservi à un contrôleur de pression connecté à la conduite véhiculant la deuxième fraction de tête 5, pour fournir une autre fraction comprimée 22. Cette dernière est ensuite refroidie par de l'air dans un échangeur thermique A1 pour fournir une fraction comprimée et refroidie 23.
  • La fraction 23 est alors divisée en une première fraction de prélèvement 6 et en une fraction finale légère 1 enrichie en méthane. La première fraction de prélèvement 6 est ensuite refroidie et liquéfiée dans l'échangeur thermique E1 pour donner une fraction refroidie 24 qui est véhiculée dans une conduite comportant une vanne commandée 25 à ouverture dépendant du débit, puis est introduite dans la partie haute de la colonne de distillation C1.
  • On prélève de la première fraction de tête 3 une deuxième fraction de prélèvement 9 qu'on refroidit et liquéfie dans l'échangeur thermique E1 pour fournir une fraction refroidie 26. Cette dernière est véhiculée dans une conduite comportant une vanne commandée 27 à ouverture dépendant du débit, puis est introduite dans la partie haute de la colonne de distillation C1.
  • La première fraction de pied 4 est transportée dans une conduite qui comporte une vanne commandée 28 dont l'ouverture dépend du niveau de liquide dans le fond du ballon séparateur B1. La première fraction de pied 4 est alors réchauffée dans l'échangeur E1 pour fournir une fraction 29 réchauffée. La fraction 29 est alors introduite dans un ballon séparateur liquide/gaz B2 pour être séparée en une troisième fraction de tête 7 relativement plus volatile, et une troisième fraction de pied 8 relativement moins volatile.
  • La troisième fraction de pied 8 est transportée dans une conduite qui comporte une vanne commandée 30 dont l'ouverture dépend du niveau de liquide dans le fond du ballon séparateur B2. La troisième fraction de pied 8 est alors introduite dans la partie médiane de la colonne de distillation C1. La troisième fraction de tête 7 est refroidie et liquéfiée dans l'échangeur E1 pour donner une faction refroidie 31. Cette dernière est véhiculée dans une conduite comportant une vanne commandée 32 à ouverture contrôlée en fonction de la pression, puis est introduite dans la colonne de distillation C1.
  • La colonne de distillation C1 comporte dans sa partie basse plusieurs étages qui sont reliés deux à deux par des circuits de réchauffage 33, 34, 35 qui sont connectés individuellement à l'échangeur thermique E1. Chacun de ces circuits de réchauffage constitue un rebouilleur latéral. La régulation de la température de circulation de fluide dans chacun de ces circuits 33, 34, 35 est effectuée à l'aide de vannes à ouverture commandée positionnées sur des canalisations de dérivation qui ne passent pas dans l'échangeur E1. L'ouverture de ces vannes est commandée par des contrôleurs de température connectés sur les conduites. Ces contrôleurs, respectivement 36, 37, 38, sont positionnés en aval de la zone de mélangeage des fractions après leur passage dans l'échangeur E1 et/ou les conduites de dérivation.
  • En se rapportant maintenant à la figure 2, on observe que la plupart des éléments contenus dans la figure 1 se retrouvent dans la figure 2, à l'exception notamment de l'ajout d'un circuit comportant deux ballons de séparation.
  • Ainsi, de la même façon que pour la figure 1, l'installation représentée est destinée à traiter un gaz naturel sec, en particulier pour en isoler une fraction composée principalement de méthane essentiellement exempte d'hydrocarbures en C2 et supérieurs d'une part, et une fraction composée principalement d'hydrocarbures en C2 et supérieurs essentiellement exempte de méthane, d'autre part.
  • Du gaz naturel sec 14 est d'abord séparé en une fraction 15 qui est refroidie dans un échangeur thermique E1, et en une fraction 16 qui est envoyée dans une conduite. La circulation de la fraction 16 est régulée par une vanne commandée 17 dont l'ouverture varie en fonction de la température d'une fraction 45. A la sortie de l'échangeur E1, la fraction 15 est mélangée à la fraction 16 pour donner une fraction 18 refroidie. La fraction 18 est alors introduite dans un ballon. séparateur liquide/gaz B1 dans lequel cette fraction 18 est séparée en une première fraction de tête 3 relativement plus volatile, et une première fraction de pied 4 relativement moins volatile. La première fraction de tête 3 est détendue dans une turbine T1 pour fournir une fraction détendue 19 qui est introduite dans la partie médiane d'une colonne de distillation C1. On collecte ensuite d'une part, dans une partie basse de la colonne de distillation C1, en tant que seconde fraction de pied 2, la fraction finale lourde 2 enrichie en hydrocarbures en C2 et supérieurs. Cette fraction finale lourde 2 est transportée dans une conduite comportant une vanne à ouverture commandée 60 dont l'ouverture dépend du niveau de liquide contenu en pied de la colonne C1. D'autre part, on collecte dans une partie haute de la colonne de distillation C1, une seconde fraction de tête 5 enrichie en méthane. Cette seconde fraction de tête 5 est ensuite réchauffée dans l'échangeur E1 pour fournir une fraction réchauffée 20, puis est soumise à une première compression dans un premier compresseur K1 couplé à la turbine T1 pour fournir une fraction comprimée 21. La fraction 21 est alors soumise à une seconde compression dans un second compresseur K2 alimenté par une turbine à gaz dont la vitesse est régulée par un contrôleur de vitesse asservi à un contrôleur de pression connecté à la conduite véhiculant la deuxième fraction de tête 5, pour fournir une autre fraction comprimée 22. Cette dernière est ensuite refroidie par de l'air dans un échangeur thermique A1 pour fournir une fraction comprimée et refroidie 23.
  • La fraction 23 est alors divisée en une première fraction de prélèvement 6 et en une fraction finale légère 1 enrichie en méthane. La première fraction de prélèvement 6 est ensuite refroidie dans l'échangeur thermique E1 pour donner une fraction refroidie 24 qui est véhiculée dans une conduite comportant une vanne commandée 25 à ouverture dépendant du débit, puis est introduite dans la partie haute de la colonne de distillation C1.
  • On prélève de la première fraction de tête 3 une deuxième fraction de prélèvement 9 qu'on refroidit dans l'échangeur thermique E1 pour fournir une fraction refroidie 26. Cette dernière est véhiculée dans une conduite qui, à la différence de la figure 1, comporte une vanne commandée 39 à ouverture dépendant du débit. La fraction refroidie 26 est alors introduite dans un ballon séparateur liquide/gaz B3 pour être séparée en une quatrième fraction de tête 10 relativement plus volatile, et une quatrième fraction de pied 11 relativement moins volatile.
  • La quatrième fraction de tête recueillie est ensuite refroidie dans l'échangeur E1 pour donner une fraction refroidie et liquéfiée 40.
  • La fraction refroidie et liquéfiée 40 est ensuite véhiculée dans une conduite comportant une vanne commandée 27 à ouverture dépendant du débit, puis est introduite dans la partie haute de la colonne de distillation C1.
  • La quatrième fraction de pied 11, est transportée dans une conduite qui comporte une vanne commandée 41 dont l'ouverture dépend du niveau de liquide dans le fond du ballon séparateur B3. La quatrième fraction de pied 11 est ensuite réchauffée dans l'échangeur E1 pour donner une fraction réchauffée 42. Cette fraction réchauffée 42 est séparée dans un quatrième ballon B4 en une cinquième fraction de tête relativement plus volatile 12 et une cinquième fraction de pied relativement moins volatile 13.
  • La cinquième fraction de tête 12 est refroidie et liquéfiée dans l'échangeur E1 pour produire une fraction refroidie et liquéfiée 43. Cette dernière est alors transportée dans une conduite qui comporte une vanne commandée 44 dont l'ouverture dépend de la pression dans la conduite, puis est introduite dans la partie haute de la colonne de distillation C1.
  • La cinquième fraction de pied relativement moins volatile 13 est transportée dans une conduite comportant une vanne 62 à ouverture commandée par un contrôleur de niveau de liquide contenu dans le ballon B4.
  • La première fraction de pied 4 est transportée dans une conduite qui comporte une vanne commandée 28 dont l'ouverture dépend du niveau de liquide dans le fond du ballon séparateur B1. La première fraction de pied 4 et la cinquième fraction de pied 13 sont alors réunies pour donner une fraction mélangée 63 qui est réchauffée dans l'échangeur E1 pour fournir une fraction 29 réchauffée. La fraction 29 est alors introduite dans un ballon séparateur liquide/gaz B2 pour être séparée en une troisième fraction de tête 7 relativement plus volatile, et une troisième fraction de pied 8 relativement moins volatile.
  • La troisième fraction de pied 8 est transportée dans une conduite qui comporte une vanne commandée 30 dont l'ouverture dépend du niveau de liquide dans le fond du ballon séparateur B2. La troisième fraction de pied 8 est alors introduite dans la partie médiane de la colonne de distillation C1. La troisième fraction de tête 7 est refroidie et liquéfiée dans l'échangeur E1 pour donner une fraction refroidie et liquéfiée 31. Cette dernière est véhiculée dans une conduite comportant une vanne à ouverture contrôlée 32 en fonction de la pression, puis est introduite dans la colonne de distillation C1.
  • La colonne de distillation C1 comporte dans sa partie basse plusieurs plateaux qui sont reliés deux à deux par des circuits de réchauffage 33, 34, 35 qui sont connectés individuellement à l'échangeur thermique E1. Chacun de ces circuits de réchauffage constitue un rebouilleur latéral. La régulation de la température de circulation de fluide dans chacun de ces circuits 33, 34, 35 est effectuée à l'aide de vannes à ouverture commandée positionnées sur des canalisations de dérivation qui ne passent pas dans l'échangeur E1. L'ouverture de ces vannes est commandée par des contrôleurs de température connectés sur les conduites. Ces contrôleurs, respectivement 36, 37, 38, sont positionnés en aval de la zone de mélangeage des fractions après leur passage dans l'échangeur E1 et/ou les conduites de dérivation.
  • Le procédé d'extraction d'éthane utilisant une installation selon le schéma 1 permet de récupérer plus de 99 % de l'éthane contenu dans un gaz naturel.
  • Selon une modélisation de l'installation en fonctionnement du schéma 1, la charge de gaz naturel sec (14) à 24°C et 62 bar dont le débit est de 15000 kmol/h, et composée de 0,4998 %mol de CO2, 0,3499 %mol de N2, 89,5642 %mol de méthane, 5,2579 %mol d'éthane, 2,3790 %mol de propane, 0,5398 %mol d'isobutane, 0,6597 %mol de n-butane, 0,2399 %mol d'isopentane, 0,1899 %mol de n-pentane, 0,1899 %mol de n-hexane, 0,1000 %mol de n-heptane, 0,0300 %mol de n-octane est refroidie et partiellement condensée dans l'échangeur de chaleur E1 jusqu'à -42°C et 61 bar pour former la fraction 18. Les phases liquide et gazeuse sont séparées dans le ballon B1. La première fraction de tête 3 qui est un courant de 13776 kmol/h, est divisée en deux courants :
    1. (a) le courant principal 45, qui a un débit de 11471 kmol/h, est détendu dans la turbine T1 jusqu'à une pression de 23,20 bar. La détente dynamique permet de récupérer 3087 kW d'énergie et permet de refroidir ce courant jusqu'à une température de -83,41°C. Ce courant 19, qui est partiellement condensé, est envoyé vers la colonne C1. Le courant 19 entre dans cette colonne sur un étage 46 qui est le dixième étage en partant de l'étage le plus élevé de la colonne C1. Sa pression d'entrée est de 23,05 bar et sa température est de -83,57°C.
    2. (b) le courant secondaire 9 de 2305 kmol/h, qui est liquéfié et refroidi jusqu'à -101,40°C dans l'échangeur E1 pour former la fraction 26. Cette fraction 26 qui comprend 4,55 %mol d'éthane est détendue à 23,20 bar à une température de -101,68°C puis est introduite dans un étage 47 de la colonne C1 qui est le cinquième étage en partant de l'étage le plus élevé de la colonne.
  • La première fraction de pied 4 du ballon B1 dont le débit est de 1224 kmol/h et qui comprend 54,27 %mol de méthane et 13,24 %mol d'éthane, est détendue à une pression de 40,0 bar puis est réchauffée dans l'échangeur E1 de -52,98°C à -38,00°C pour obtenir la fraction 29. Cette dernière est introduite dans le ballon de séparation B2.
  • La fraction de tête 7 issue du ballon B2 dont le débit est de 439 kmol/h et la teneur en éthane est de 6,21 %mol, est refroidie et liquéfiée de -38,00°C à - 101,40°C, pour obtenir la fraction 31. Cette dernière est ensuite détendue à 23,2 bar et -101,47°C, puis introduite dans la colonne C1 à un étage 48 qui est le sixième étage en partant de l'étage le plus élevé de la colonne.
  • La fraction de pied ou fraction de fond 8, dont le débit est de 784 kmol/h et la teneur en éthane est de 17,18 %mol, est détendue à 23,2 bar et -46,46°C puis introduite dans la colonne C1 à un étage 49 qui est le douzième étage en partant de l'étage le plus élevé de la colonne.
  • La colonne C1 produit la fraction de tête 5 à une pression de 23 bar et une température de -103,71°C avec un débit de 15510 kmol/h. Cette fraction de tête 5 ne contient plus que 0,05 %mol d'éthane.
  • La fraction de tête 5 est réchauffée dans l'échangeur E1 pour fournir une fraction 20 à une température de 17,96°C et une pression de 22,0 bar. Cette fraction 20 est comprimée dans le compresseur K1 couplé à la turbine T1. La puissance récupérée par la turbine est utilisée pour comprimer la fraction 20 pour donner la fraction comprimée 21 à une température de 38,80°C et une pression de 27,67 bar. Cette dernière fraction est alors comprimée dans le compresseur principal K2 pour donner la fraction 22 à une pression de 63, 76 bar et une température de 118,22°C. Le compresseur K2 est entraîné par la turbine à gaz GT. La fraction 22 est alors refroidie dans le refroidisseur à air A1 pour fournir la fraction 23 à une température de 40,00°C et une pression de 63,06 bar.
  • La fraction 23 est alors séparée d'une part en la fraction principale 1 à raison de 13510 kmol/h qui est envoyée ensuite dans un gazoduc pour être ensuite livré aux clients industriels, et d'autre part en la fraction de dérivation 6 à raison de 2000 kmol/h. La fraction 1 est composée de 99,3849 %mol de méthane et de 0,0481 %mol d'éthane, 0,0000 %mol de propane et alcanes supérieurs, 0,1785 %mol de CO2 et 0,3885 %mol de N2.
  • La fraction de dérivation 6 est recyclée vers l'échangeur thermique E1 pour fournir la fraction 24 refroidie à -101,40°C sous 62,06 bar. La fraction 24 est alors détendue à 23,2 bar et -104, 18°C pour être ensuite introduite dans la colonne C1 à un étage 50 qui est le premier étage en partant de l'étage le plus élevé de la colonne.
  • La colonne C1 produit en fond la seconde fraction de pied 2 qui contient 99,18 % de l'éthane contenu dans la charge de gaz naturel sec 14, et 100 % des autres hydrocarbures contenus initialement dans cette charge 14. Cette fraction 2, disponible à 19,16°C et 23,2 bar contient 3,4365 %mol de CO2, 0,0000 %mol de N2, 0,5246 %mol de méthane, 52,4795 %mol d'éthane, 23,9426 %mol de propane, 5,4324 %mol d'isobutane, 6,6395 %mol de n-butane, 2,4144 %mol d'isopentane, 1,9114 %mol de n-pentane, 1,9114 %mol de n-hexane, 1,0060 %mol de n-heptane, 0,3018 %mol de n-octane.
  • La colonne C1 est pourvue de rebouilleurs latéraux dans sa partie basse, qui est située en dessous de l'étage où la fraction 8 est introduite, et comporte une pluralité d'étages.
  • Ainsi, le liquide collecté sur un plateau 52, disponible à une température de -52,67°C et une pression de 23,11 bar, situé en dessous d'un étage 51 qui est le treizième étage en partant de l'étage le plus élevé de la colonne, est conduit dans le rebouilleur latéral 33. Celui-ci est constitué par un circuit intégré dans l'échangeur E1 dont le débit est de 2673 kmol/h. Ce rebouilleur latéral 33 a une puissance thermique de 3836 kW. Le liquide collecté sur le plateau 52 est alors réchauffé à -19,79°C puis renvoyé dans la colonne C1 sur un plateau 53 qui correspond au fond du quatorzième étage en partant de l'étage le plus élevé de la colonne. Le liquide soutiré du plateau 52 est composé notamment de 24,42 %mol de méthane et de 44,53 %mol d'éthane.
  • De même, le liquide collecté sur un plateau 55, disponible à une température de 2,84°C et une pression de 23,17 bar, situé en dessous d'un étage 54 qui est le dix-neuvième étage en partant de l'étage le plus élevé de la colonne, est conduit dans le rebouilleur latéral 34. Celui-ci est constitué par un circuit intégré dans l'échangeur E1 dont le débit est de 2049 kmol/h. Ce rebouilleur latéral 34 a une puissance thermique de 1500 kW. Le liquide collecté sur le plateau 55 est alors réchauffé à 11,01°C puis renvoyé dans la colonne C1 sur un plateau 56 qui correspond au fond du vingtième étage en partant de l'étage le plus élevé de la colonne. Le liquide soutiré du plateau 55 est composé notamment de 2,84 %mol de méthane et de 57,29 %mol d'éthane.
  • Enfin, le liquide collecté sur un plateau 58, disponible à une température de 13,32°C et une pression de 23,20 bar, situé en dessous d'un étage 57 qui est le vingt-deuxième étage en partant de l'étage le plus élevé de la colonne, est conduit dans le rebouilleur de fond de colonne ou rebouilleur latéral 35. Celui-ci est constitué par un circuit intégré dans l'échangeur E1 dont le débit est de 1794 kmol/h. Ce rebouilleur latéral 35 a une puissance thermique de 1146 kW. Le liquide collecté sur le plateau 58, composé notamment de 0,93 %mol de méthane et de 55,89 %mol d'éthane, est alors réchauffé à 19,16°C puis renvoyé dans le fond de la colonne C1 dans une enceinte 59 qui correspond au fond du vingt-troisième étage en partant de l'étage le plus élevé de la colonne. Le liquide quittant le plateau 58 a la même composition que le produit de fond de colonne 59 et que le produit 2 soutiré en pied de colonne C1.
  • L'ensemble des échanges de chaleur se fait dans l'échangeur cryogénique E1 qui est composé de préférence d'une batterie d'échangeurs à plaques en aluminium brasé.
  • Le procédé d'extraction d'éthane utilisant une installation selon le schéma 2 permet de récupérer plus de 99 % de l'éthane contenu dans un gaz naturel.
  • Selon une modélisation de l'installation en fonctionnement du schéma 2, la charge de gaz naturel sec 14, à une température de 24°C et une pression de 62 bar dont le débit est de 15000 kmol/h, et composée de 0,4998 %mol de CO2, 0,3499 %mol de N2, 89,5642 %mol de méthane, 5,2579 %mol d'éthane, 2,3790 %mol de propane, 0,5398 %mol d'isobutane, 0,6597 %mol de n-butane, 0,2399 %mol d'isopentane, 0,1899 %mol de n-pentane, 0,1899 %mol de n-hexane, 0,1000 %mol de n-heptane, 0,0300 %mol de n-octane est refroidie et partiellement condensée dans l'échangeur de chaleur E1 jusqu'à -42°C et 61 bar pour former la fraction 18. Les phases liquide et gazeuse sont séparées dans le ballon B1. La première fraction de tête 3 qui est un courant de 13776 kmol/h, est divisée en deux courants :
    1. (a) le courant principal 45 d'un débit de 11471 kmol/h, qui est détendu dans la turbine T1 jusqu'à une pression de 23,20 bar. La détente dynamique permet de récupérer 3087 kW d'énergie et permet de refroidir ce courant jusqu'à une température de -83,41°C. Ce courant 19, qui est partiellement condensé, est envoyé vers la colonne C1. Il entre dans cette colonne sur un étage 46 qui est le dixième étage en partant de l'étage le plus élevé de la colonne C1. Sa pression d'entrée est de 23,05. bar et sa température est de -83,57°C.
    2. (b) le courant secondaire 9, d'un débit de 2305 kmol/h, qui est liquéfié et refroidi jusqu'à -62,03°C dans l'échangeur E1 pour former la fraction 26. Cette fraction 26 qui comprend 4,5 %mol d'éthane est détendue à 46 bar à une température de -72,68°C puis est introduite dans le troisième ballon séparateur B3 où les phases vapeur et liquide sont séparées en lae quatrième fraction de tête 10 et la quatrième fraction de pied 11.
  • La quatrième fraction de tête 10, dont le débit est de 1738 kmol/h, comprend 96,15 %mol de méthane et 2,61 %mol d'éthane. Cette dernière est alors liquéfiée et refroidie à -101,4°C dans l'échangeur E1 pour donner la fraction 40. La fraction 40 est ensuite détendue à 23,2 bar à une température de -102,99°C pour être introduite dans la colonne C1 à un étage 47 qui est le cinquième étage en partant de l'étage le plus élevé de la colonne.
  • La quatrième fraction de pied 11, dont le débit est de 567 kmol/h, comprend 82,11 %mol de méthane et 10,48 %mol d'éthane. Cette dernière est alors réchauffée dans l'échangeur E1 à une température de -55,00°C et une pression de 44,50 bar pour être introduite dans le quatrième ballon séparateur B4 où les phases liquide et gazeuse sont séparées en la cinquième fraction de tête 12 et la cinquième fraction de pied 13.
  • La cinquième fraction de tête 12, dont le débit est de 420 kmol/h, comprend 91,96 %mol de méthane et 6,05 %mol d'éthane. Cette dernière est alors liquéfiée et refroidie à -101,4°C dans l'échangeur E1 pour donner la fraction 43. La fraction 43 est ensuite détendue à 23,2 bar à une température de -101,57°C pour être introduite dans la colonne C1 à un étage 61 qui est le sixième étage en partant de l'étage le plus élevé de la colonne.
  • La cinquième fraction de pied 13, dont le débit est de 146 kmol/h, comprend 53,85 %mol de méthane et 23,22 %mol d'éthane. Cette dernière est alors mélangée à la première fraction de pied 4 pour donner la fraction 63. La fraction 63 est alors réchauffée dans l'échangeur E1 de -53,70°C à -38,00°C et à une pression de 39,5 bar pour donner la fraction 29.
  • La première fraction de pied 4 du ballon B1 dont le débit est de 1224 kmol/h et qui comprend 13,24 %mol d'éthane, est détendue à une pression de 40 bar avant d'être mélangée à la fraction 13.
  • La fraction 29 est ensuite introduite dans le ballon de séparation B2. La fraction de tête 7 issue du ballon B2 dont le débit est de 494 kmol/h et la teneur en éthane est de 6,72 %mol, est refroidie et liquéfiée de - 38°C à -101,4°C, pour obtenir la fraction 31. Cette dernière est ensuite détendue à 23,2 bar puis introduite dans la colonne C1 à un étage 48 qui est le septième étage en partant de l'étage le plus élevé de la colonne.
  • La fraction de pied ou fraction de fond 8, dont le débit est de 876 kmol/h et la teneur en éthane est de 18,58 %mol, est détendue à 23,2 bar et -46,76°C puis introduite dans la colonne C1 à un étage 49 qui est le douzième étage en partant de l'étage le plus élevé de la colonne.
  • La colonne C1 produit la fraction de tête 5 à une pression de 23 bar et une température de -103,61°C, avec un débit de 15308 kmol/h. Cette fraction de tête 5 ne contient plus que 0,05 %mol d'éthane.
  • La fraction de tête 5 est réchauffée dans l'échangeur E1 pour fournir la fraction 20 à une température de 17,48°C et une pression de 22 bar. Cette fraction 20 est comprimée dans le compresseur K1 couplé à la turbine T1. La puissance récupérée par la turbine est utilisée pour comprimer la fraction 20 pour donner la fraction comprimée 21 à une température de 38,61°C et une pression de 27,76 bar. Cette dernière fraction est alors comprimée dans le compresseur principal K2 pour donner la fraction 22 à une pression de 63,76 bar et une température de 117,7°C. Le compresseur K2 est entraîné. par la turbine à gaz GT. La fraction 22 est alors refroidie dans le refroidisseur à air A1 pour fournir la fraction 23 à une température de 40,00°C et une pression de 63,06 bar.
  • La fraction 23 est alors séparée d'une part en la fraction principale 1 à raison de 13517 kmol/h qui est envoyée ensuite dans un gazoduc pour être ensuite livré aux clients industriels, et d'autre part en la fraction de dérivation 6 à raison de 1790 kmol/h. La fraction 1 est composée de 99,3280 %mol de méthane et de 0,0485 %mol d'éthane, 0,0000 %mol de propane et alcanes supérieurs, 0,2353 %mol de CO2 et 0,3882 %mol de N2.
  • La fraction de dérivation 6 est recyclée vers l'échangeur thermique E1 pour fournir la fraction 24 refroidie à -101,4°C sous une pression de 62,06 bar. La fraction 24 est alors détendue à 23,2 bar pour une température de -104,17°C pour être ensuite introduite dans la colonne C1 à un étage 50 qui est le premier étage en partant de l'étage le plus élevé de la colonne.
  • La colonne C1 produit en fond la seconde fraction de pied 2 qui contient 99,18 % de l'éthane contenu dans la charge de gaz naturel sec 14, et 100 % des autres hydrocarbures contenus initialement dans cette charge 14. Cette fraction 2, disponible à 19,90°C et 23,2 bar contient 2,9129 %mol de CO2, 0,0000 %mol de N2, 0,5274 %mol de méthane, 52,7625 %mol d'éthane, 24,0733 %mol de propane, 5,4620 %mol d'isobutane, 6,6758 %mol de n-butane, 2,4276 %mol d'isopentane, 1,9218 %mol de n-pentane, 1,9218 %mol de n-hexane, 1,0115 %mol de n-heptane, 0,3034 %mol de n-octane.
  • La colonne C1 est pourvue de rebouilleurs latéraux dans sa partie basse, qui est située en dessous de l'étage où la fraction 8 est introduite, et comporte une pluralité d'étages.
  • Ainsi, le liquide collecté sur un plateau 52, disponible à une température de -51,37°C et une pression de 23,11 bar, situé en dessous d'un étage 51 qui est le treizième étage en partant de l'étage le plus élevé de.la colonne, est conduit dans le rebouilleur latéral 33. Celui-ci est constitué par un circuit intégré dans l'échangeur E1 dont le débit est de 2560 kmol/h. Ce rebouilleur latéral 33 a une puissance thermique de 3465 kW. Le liquide collecté sur le plateau 52 est alors réchauffé à -19,80°C puis renvoyé dans la colonne C1 sur un plateau 53 qui correspond au fond du quatorzième étage en partant de l'étage le plus élevé de la colonne. Le liquide soutiré du plateau 52 est composé notamment de 23,86 %mol de méthane et de 45,10 %mol d'éthane.
  • De même, le liquide collecté sur un plateau 55, disponible à une température de 3,48°C et une pression de 23,17 bar, situé en dessous d'un étage 54 qui est le dix-neuvième étage en partant de l'étage le plus élevé de la colonne, est conduit dans le rebouilleur latéral 34. Celui-ci est constitué par un circuit intégré dans l'échangeur E1 dont le débit est de 2044 kmol/h. Ce rebouilleur latéral 34 a une puissance thermique de 1500 kW. Le liquide collecté sur le plateau 55 est alors réchauffé à 11,71°C puis renvoyé dans la colonne C1 sur un plateau 56 qui correspond au fond du vingtième étage en partant de l'étage le plus élevé de la colonne. Le liquide présent sur le plateau 55 est composé notamment de 2,92 %mol de méthane et de 57,92 %mol d'éthane.
  • Enfin, le liquide collecté sur un plateau 58, disponible à une température de 14,09°C et une pression de 23,20 bar, situé en dessous d'un étage 57 qui est le vingt-deuxième étage en partant de l'étage le plus élevé de la colonne, est conduit dans le rebouilleur de fond de colonne ou rebouilleur latéral 35. Celui-ci est constitué par un circuit intégré dans l'échangeur E1 dont le débit est de 1788 kmol/h. Ce rebouilleur latéral 35 a une puissance thermique de 1147 kW. Le liquide collecté sur le plateau 58 est alors réchauffé à 19,90°C puis renvoyé dans le fond 59 de la colonne C1. Le liquide soutiré du plateau 58 est composé notamment de 0,94 %mol de méthane, et de 56,35 %mol d'éthane.
  • Dans le cas de l'utilisation d'une installation selon le procédé décrit au schéma 2, pour une récupération de l'éthane identique à celle obtenue lors de l'utilisation d'une installation selon le schéma 1, une diminution de la puissance du compresseur K2 de 12355 kW à 12130 kW est obtenue. De même, une diminution du débit de gaz recyclé dans le circuit comprenant la fraction 6 de 2000 kmol/h à 1790 kmol/h permet de diminuer les échanges de chaleur lors du refroidissement de la fraction 6 pour l'obtention de la fraction 24.
  • On note également une réduction de la teneur en dioxyde de carbone de la coupe C2+ :
    • Selon le schéma 1 : 3;4365 %mol
    • Selon le schéma 2 : 2,9129 %mol
  • Ce taux plus faible de CO2 permet ainsi de faciliter un traitement ultérieur visant à éliminer au moins en partie le dioxyde de carbone présent dans la coupe en C2, soutirée en pied de colonne C1.
  • L'invention présente donc un intérêt pour la limitation des dépenses énergétiques lors de la production de gaz purifiés. Ce but est atteint tout en permettant une grande sélectivité de séparation du méthane et des autres constituants lors de la mise en oeuvre du procédé.
  • Ainsi, les résultats obtenus par l'invention procurent des avantages importants constitués par une simplification et une économie substantielles dans la réalisation et la technologie des équipements et des méthodes de leur mise en oeuvre ainsi que dans la qualité des produits obtenus par ces méthodes.

Claims (10)

  1. Procédé de séparation d'un mélange refroidi sous pression contenant du méthane et des hydrocarbures en C2 et supérieurs, en une fraction finale légère (1) enrichie en méthane et une fraction finale lourde (2) enrichie en hydrocarbures en C2 et supérieurs, comprenant une première étape (I) dans laquelle (Ia) on sépare ledit mélange refroidi sous pression, dans un premier ballon (B1), en une première fraction de tête (3) relativement plus volatile, et une première fraction de pied (4) relativement moins volatile, dans laquelle (Ib) on introduit la première fraction de pied (4) dans une partie médiane d'une colonne de distillation (C1), dans laquelle (Ic) on collecte, dans une partie basse de la colonne, en tant que seconde fraction de pied (2), la fraction finale lourde (2) enrichie en hydrocarbures en C2 et supérieurs, dans laquelle (Id) on introduit, après l'avoir détendue dans une turbine (T1), la première fraction de tête (3) dans une partie haute de la colonne de distillation, dans laquelle (Ie) on collecte, dans à partie haute de la colonne, une seconde fraction de tête (5) enrichie en méthane, dans laquelle (If) on soumet ensuite la seconde fraction de tête (5), pour l'obtention de la fraction finale légère (1), à une compression et à un refroidissement, et dans laquelle (Ig) on prélève de la fraction finale légère (1) une première fraction de prélèvement (6), ce procédé comprenant une seconde étape (II) dans laquelle (IIa) on introduit la première fraction de prélèvement (6), après refroidissement et liquéfaction, dans la partie haute de la colonne de distillation, le procédé comprenant une troisième étape (III) dans laquelle (IIIa) on soumet la première fraction de pied (4) à une pluralité de sous-étapes comprenant un réchauffage, un passage dans un second ballon (B2), et une séparation en une troisième fraction de tête (7) relativement plus volatile, et une troisième fraction de pied (8) relativement moins volatile, dans laquelle (IIIb) on introduit la troisième fraction de pied (8) dans la partie médiane de la colonne de distillation, et dans laquelle (IIIc) on introduit la troisième fraction de tête (7), après refroidissement et liquéfaction, dans la partie haute de la colonne de distillation, le procédé comprenant une étape dans laquelle on prélève de la première fraction de tête (3) une deuxième fraction de prélèvement (9), et on introduit cette deuxième fraction' de prélèvement (9), après refroidissement, et liquéfaction, dans la partie haute de la colonne de distillation, et une étape dans laquelle ladite deuxième fraction de prélèvement (9) est refroidie et partiellement condensée puis séparée dans un troisième ballon (B3) en une quatrième fraction de tête relativement plus volatile (10), qui est refroidie et liquéfiée puis introduite dans la partie haute de la colonne de distillation, et une quatrième fraction de pied relativement moins volatile (11), qui est réchauffée puis séparée dans un quatrième ballon (B4) en une cinquième fraction de tête relativement plus volatile (12) qui est refroidie puis introduite dans la partie haute de la colonne de distillation, et une cinquième fraction de pied relativement moins volatile (13) qui est réchauffée puis est envoyée dans ledit deuxième ballon.
  2. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la partie inférieure de la colonne de distillation comporte une pluralité d'étages reliés par paires à un ou une pluralité de rebouilleurs latéraux.
  3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la deuxième fraction de tête (5), pour l'obtention de la fraction finale légère (1), est, après sortie de la colonne de distillation, successivement soumise à un réchauffage, à une première compression dans un premier compresseur (K1) couplé à la turbine de détente (T1), à une seconde compression dans un second compresseur (K2), et à un refroidissement.
  4. Procédé selon la revendication 1, caractérisé en ce que la partie haute de la colonne de distillation comprend au moins deux étages successifs dont le premier est le plus bas et la cinquième fraction de tête (12), est introduite au dessus du premier étage.
  5. Procédé selon la revendication 1, caractérisé en ce que la partie haute de la colonne de distillation comprend au moins trois étages successifs dont le premier est le plus bas et la cinquième fraction de tête (10), est introduite au dessus du deuxième étage.
  6. Procédé selon la revendication 1, caractérisé en ce que la partie haute de la colonne de distillation comprend au moins deux étages successifs dont le premier est le plus bas et la deuxième fraction de prélèvement (9), est introduite au dessus du premier étage.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la partie haute de la colonne de distillation comprend au moins trois étages dont le premier est le plus bas, dans laquelle on introduit la première fraction de prélèvement (6) dans une partie basse du dernier étage, et en ce que la troisième fraction de tête (7), est introduite en dessous du dernier étage.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la troisième fraction de tête (7) est introduite au premier étage de la partie haute de la colonne de distillation.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la partie médiane de la colonne de distillation comprend au moins deux étages successifs dont le premier est le plus bas et dans laquelle la troisième fraction de pied (8) est introduite au moins au premier étage, et en ce que la première fraction de tête (3) est introduite au dessus du premier étage.
  10. Installation de séparation d'un mélange refroidi sous pression contenant du méthane et des hydrocarbures en C2 et supérieurs, en une fraction finale légère (1) enrichie en méthane et une fraction finale lourde (2) enrichie en hydrocarbures en C2 et supérieurs, comprenant des moyens pour effectuer une première étape (I) dans laquelle (Ia) on sépare ledit mélange refroidi sous pression, dans un premier ballon (B1), en une première fraction de tête (3) relativement plus volatile, et une première fraction de pied (4) relativement moins volatile, dans laquelle (Ib) on introduit la première fraction de pied (4) dans une partie médiane d'une colonne de distillation (Cl), dans laquelle (Ic) on collecte, dans une partie basse de la colonne, en tant que seconde fraction de pied (2), la fraction finale lourde (2) enrichie en hydrocarbures en C2 et supérieurs, dans laquelle (Id) on introduit, après l'avoir détendue dans une turbine (Tl), la première fraction de tête (3) dans une partie haute de la colonne de distillation, dans laquelle (Ie) on collecte, dans la partie haute de la colonne, une seconde fraction de tête (5) enrichie en méthane, dans laquelle (If) on soumet ensuite la seconde fraction de tête (5), pour l'obtention de la fraction finale légère (1), à une compression et à un refroidissement, et dans laquelle (Ig) on prélève de la fraction finale légère (1) une première fraction de prélèvement (6), cette installation comprenant des moyens pour effectuer une seconde étape (II) dans laquelle (IIa) on introduit la première fraction de prélèvement (6), après refroidissement et liquéfaction, dans la partie haute de la colonne de distillation, l'installation comprenant des moyens pour effectuer une troisième étape (III) dans laquelle (IIIa) on soumet la première fraction de pied (4) à une pluralité de sous-étapes comprenant un réchauffage, un passage dans un second ballon (B2), et une séparation en une troisième fraction de tête (7) relativement plus volatile, et une troisième fraction de pied (8) relativement moins volatile, dans laquelle (IIIb) on introduit la troisième fraction de pied (8) dans la partie médiane de la colonne de distillation, et dans laquelle (IIIc) on introduit la troisième fraction de tête (7), après refroidissement et liquéfaction, dans la partie haute de la colonne de distillation,
    l'installation comprenant des moyens de prélèvement d'une deuxième fraction de prélèvement (9), à partir de la première fraction de tête (3) et des moyens d'introduction de cette deuxième fraction de prélèvement (9), après refroidissement et liquéfaction, dans une partie haute de la colonne de distillation,
    l'installation comprenant des moyens de refroidissement et de condensation partielle de la deuxième fraction de prélèvement et un troisième ballon de séparation de la deuxième fraction de prélèvement refroidie et partiellement condensée en une quatrième fraction de tête relativement plus volatile et en une quatrième fraction de pied relativement moins volatile, l'installation comprenant des moyens de refroidissement, de liquéfaction et d'introduction dans la partie haute de la colonne de distillation de la quatrième fraction de tête relativement plus volatile, l'installation comprenant des moyens de réchauffage de la quatrième fraction de pied relativement moins volatile et un quatrième ballon de séparation de la quatrième fraction de pied relativement moins volatile réchauffée pour obtenir une cinquième fraction de tête relativement plus volatile et une cinquième fraction de pied relativement moins volatile, l'installation comprenant des moyens de refroidissement et d'introduction de la cinquième fraction de tête relativement plus volatile dans la partie haute de la colonne de distillation et des moyens de réchauffage et d'envoi de la cinquième fraction de pied relativement moins volatile dans le deuxième ballon.
EP01270739.4A 2000-12-13 2001-12-13 Procede et installation de separation d'un melange gazeux contenant du methane par distillation Expired - Lifetime EP1454104B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0016238 2000-12-13
FR0016238A FR2817766B1 (fr) 2000-12-13 2000-12-13 Procede et installation de separation d'un melange gazeux contenant du methane par distillation,et gaz obtenus par cette separation
PCT/FR2001/003982 WO2002048627A1 (fr) 2000-12-13 2001-12-13 Procede et installation de separation d'un melange gazeux contenant du methane par distillation

Publications (2)

Publication Number Publication Date
EP1454104A1 EP1454104A1 (fr) 2004-09-08
EP1454104B1 true EP1454104B1 (fr) 2014-03-26

Family

ID=8857600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01270739.4A Expired - Lifetime EP1454104B1 (fr) 2000-12-13 2001-12-13 Procede et installation de separation d'un melange gazeux contenant du methane par distillation

Country Status (14)

Country Link
US (1) US6578379B2 (fr)
EP (1) EP1454104B1 (fr)
CN (1) CN100389295C (fr)
AR (1) AR043699A1 (fr)
AU (2) AU2002219300B2 (fr)
BR (1) BR0116093B1 (fr)
CA (1) CA2429319C (fr)
DZ (1) DZ3452A1 (fr)
EA (1) EA004469B1 (fr)
EG (1) EG23055A (fr)
FR (1) FR2817766B1 (fr)
MY (1) MY134842A (fr)
NO (1) NO335827B1 (fr)
WO (1) WO2002048627A1 (fr)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7484385B2 (en) * 2003-01-16 2009-02-03 Lummus Technology Inc. Multiple reflux stream hydrocarbon recovery process
FR2855526B1 (fr) * 2003-06-02 2007-01-26 Technip France Procede et installation de production simultanee d'un gaz naturel apte a etre liquefie et d'une coupe de liquides du gaz naturel
RU2272973C1 (ru) * 2004-09-24 2006-03-27 Салават Зайнетдинович Имаев Способ низкотемпературной сепарации газа (варианты)
US7219513B1 (en) * 2004-11-01 2007-05-22 Hussein Mohamed Ismail Mostafa Ethane plus and HHH process for NGL recovery
US20100011810A1 (en) * 2005-07-07 2010-01-21 Fluor Technologies Corporation NGL Recovery Methods and Configurations
MX2008000718A (es) * 2005-07-25 2008-03-19 Fluor Tech Corp Procedimientos y configuraciones para la recuperacion de ngl.
CN101405553A (zh) * 2006-03-24 2009-04-08 国际壳牌研究有限公司 用于使烃物流液化的方法和设备
AU2007265476B2 (en) * 2006-06-27 2010-07-15 Fluor Technologies Corporation Ethane recovery methods and configurations
US20080078205A1 (en) * 2006-09-28 2008-04-03 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US8590340B2 (en) * 2007-02-09 2013-11-26 Ortoff Engineers, Ltd. Hydrocarbon gas processing
US8919148B2 (en) * 2007-10-18 2014-12-30 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9243842B2 (en) 2008-02-15 2016-01-26 Black & Veatch Corporation Combined synthesis gas separation and LNG production method and system
US20090282865A1 (en) 2008-05-16 2009-11-19 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US8584488B2 (en) * 2008-08-06 2013-11-19 Ortloff Engineers, Ltd. Liquefied natural gas production
CN101476813B (zh) * 2009-01-21 2011-06-15 成都蜀远煤基能源科技有限公司 一种煤气化装置来原料气的分离方法和装置
US9074814B2 (en) * 2010-03-31 2015-07-07 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9052137B2 (en) 2009-02-17 2015-06-09 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9052136B2 (en) * 2010-03-31 2015-06-09 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9939195B2 (en) * 2009-02-17 2018-04-10 Ortloff Engineers, Ltd. Hydrocarbon gas processing including a single equipment item processing assembly
US8881549B2 (en) * 2009-02-17 2014-11-11 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9080811B2 (en) * 2009-02-17 2015-07-14 Ortloff Engineers, Ltd Hydrocarbon gas processing
EA022672B1 (ru) * 2009-02-17 2016-02-29 Ортлофф Инджинирс, Лтд. Обработка углеводородного газа
US9933207B2 (en) * 2009-02-17 2018-04-03 Ortloff Engineers, Ltd. Hydrocarbon gas processing
FR2944523B1 (fr) 2009-04-21 2011-08-26 Technip France Procede de production d'un courant riche en methane et d'une coupe riche en hydrocarbures en c2+ a partir d'un courant de gaz naturel de charge, et installation associee
US20100287982A1 (en) * 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US8434325B2 (en) 2009-05-15 2013-05-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
AU2010259046A1 (en) * 2009-06-11 2012-02-23 Ortloff Engineers, Ltd. Hydrocarbon gas processing
FR2947897B1 (fr) 2009-07-09 2014-05-09 Technip France Procede de production d'un courant riche en methane et d'un courant riche en hydrocarbures en c2+, et installation associee.
US9476639B2 (en) * 2009-09-21 2016-10-25 Ortloff Engineers, Ltd. Hydrocarbon gas processing featuring a compressed reflux stream formed by combining a portion of column residue gas with a distillation vapor stream withdrawn from the side of the column
US9021832B2 (en) 2010-01-14 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9057558B2 (en) * 2010-03-31 2015-06-16 Ortloff Engineers, Ltd. Hydrocarbon gas processing including a single equipment item processing assembly
US9068774B2 (en) * 2010-03-31 2015-06-30 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US8524046B2 (en) * 2010-03-30 2013-09-03 Uop Llc Distillation column pressure control
US10113127B2 (en) 2010-04-16 2018-10-30 Black & Veatch Holding Company Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas
JP5909227B2 (ja) 2010-06-03 2016-04-26 オートロフ・エンジニアーズ・リミテッド 炭化水素ガスの処理
FR2966578B1 (fr) * 2010-10-20 2014-11-28 Technip France Procede simplifie de production d'un courant riche en methane et d'une coupe riche en hydrocarbures en c2+ a partir d'un courant de gaz naturel de charge, et installation associee.
CA2819128C (fr) 2010-12-01 2018-11-13 Black & Veatch Corporation Recuperation de ngl a partir de gaz naturel a l'aide d'un melange de refrigerants
FR2969745B1 (fr) * 2010-12-27 2013-01-25 Technip France Procede de production d'un courant riche en methane et d'un courant riche en hydrocarbures en c2+ et installation associee.
RU2514859C2 (ru) * 2012-02-10 2014-05-10 Общество С Ограниченной Ответственностью "Аэрогаз" Способ разделения смеси газов
US10139157B2 (en) 2012-02-22 2018-11-27 Black & Veatch Holding Company NGL recovery from natural gas using a mixed refrigerant
US10766836B2 (en) * 2013-03-14 2020-09-08 Kellogg Brown & Root Llc Methods and systems for separating olefins
US9581385B2 (en) 2013-05-15 2017-02-28 Linde Engineering North America Inc. Methods for separating hydrocarbon gases
CA2923267C (fr) 2013-09-11 2020-09-15 Ortloff Engineers, Ltd. Traitement d'hydrocarbure gazeux
EP3044528A1 (fr) 2013-09-11 2016-07-20 Ortloff Engineers, Ltd Traitement d'hydrocarbures gazeux
WO2015038288A1 (fr) 2013-09-11 2015-03-19 Ortloff Engineers, Ltd. Traitement d'hydrocarbures
US10563913B2 (en) 2013-11-15 2020-02-18 Black & Veatch Holding Company Systems and methods for hydrocarbon refrigeration with a mixed refrigerant cycle
US10436505B2 (en) * 2014-02-17 2019-10-08 Black & Veatch Holding Company LNG recovery from syngas using a mixed refrigerant
US9574822B2 (en) 2014-03-17 2017-02-21 Black & Veatch Corporation Liquefied natural gas facility employing an optimized mixed refrigerant system
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
CN106403500B (zh) * 2016-11-08 2019-03-05 苏州金宏气体股份有限公司 基于膨胀制冷提纯一氧化碳的方法及用于该方法的装置
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
US11268755B2 (en) 2017-12-15 2022-03-08 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
MX2021010986A (es) 2019-03-11 2021-10-13 Uop Llc Procesamiento de gases de hidrocarburos.
US11686528B2 (en) 2019-04-23 2023-06-27 Chart Energy & Chemicals, Inc. Single column nitrogen rejection unit with side draw heat pump reflux system and method
US11643604B2 (en) 2019-10-18 2023-05-09 Uop Llc Hydrocarbon gas processing
AR121085A1 (es) * 2020-01-24 2022-04-13 Lummus Technology Inc Proceso de recuperación de hidrocarburos a partir de corrientes de reflujo múltiples
FR3116109B1 (fr) 2020-11-10 2022-11-18 Technip France Procédé d’extraction d’éthane dans un courant de gaz naturel de départ et installation correspondante

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278457A (en) * 1977-07-14 1981-07-14 Ortloff Corporation Hydrocarbon gas processing
US4155729A (en) * 1977-10-20 1979-05-22 Phillips Petroleum Company Liquid flash between expanders in gas separation
US4356014A (en) * 1979-04-04 1982-10-26 Petrochem Consultants, Inc. Cryogenic recovery of liquids from refinery off-gases
US4456461A (en) * 1982-09-09 1984-06-26 Phillips Petroleum Company Separation of low boiling constituents from a mixed gas
GB2132328B (en) * 1982-12-23 1986-03-26 Air Prod & Chem A process for removing methane and argon from crude ammonia synthesis gas]
FR2557586B1 (fr) * 1983-12-30 1986-05-02 Air Liquide Procede et installation de recuperation des hydrocarbures les plus lourds d'un melange gazeux
US4702819A (en) * 1986-12-22 1987-10-27 The M. W. Kellogg Company Process for separation of hydrocarbon mixtures
DE4235006A1 (de) * 1992-10-16 1994-04-21 Linde Ag Verfahren zum Auftrennen eines im wesentlichen aus Wasserstoff, Methan und C¶3¶/C¶4¶-Kohlenwasserstoffen bestehenden Einsatzstromes
US5568737A (en) * 1994-11-10 1996-10-29 Elcor Corporation Hydrocarbon gas processing
US5566554A (en) * 1995-06-07 1996-10-22 Kti Fish, Inc. Hydrocarbon gas separation process
GB0000327D0 (en) * 2000-01-07 2000-03-01 Costain Oil Gas & Process Limi Hydrocarbon separation process and apparatus

Also Published As

Publication number Publication date
NO20032460D0 (no) 2003-05-30
EG23055A (en) 2004-02-29
BR0116093B1 (pt) 2010-03-09
CA2429319C (fr) 2010-05-25
DZ3452A1 (fr) 2002-06-20
AU2002219300B2 (en) 2006-08-31
WO2002048627A1 (fr) 2002-06-20
EA200300676A1 (ru) 2003-10-30
CA2429319A1 (fr) 2002-06-20
BR0116093A (pt) 2004-02-03
EA004469B1 (ru) 2004-04-29
CN1479851A (zh) 2004-03-03
AU1930002A (en) 2002-06-24
EP1454104A1 (fr) 2004-09-08
FR2817766B1 (fr) 2003-08-15
AR043699A1 (es) 2005-08-10
FR2817766A1 (fr) 2002-06-14
NO335827B1 (no) 2015-02-23
MY134842A (en) 2007-12-31
NO20032460L (no) 2003-06-27
CN100389295C (zh) 2008-05-21
US6578379B2 (en) 2003-06-17
US20020095062A1 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
EP1454104B1 (fr) Procede et installation de separation d'un melange gazeux contenant du methane par distillation
CA2255167C (fr) Procede de liquefaction d'un gaz, notamment un gaz naturel ou air, comportant une purge a moyenne pression et son application
JP5620927B2 (ja) 炭化水素ガスの処理
EP0768502B1 (fr) Procédé et dispositif de liquéfaction et de traitement d'un gaz naturel
EP1828697B1 (fr) Procede et installation de production de gaz naturel traite , d ' une coupe riche en hydrocarbures en c3 + et courant riche en ethane
EP2205920B1 (fr) Procede de liquefaction d'un gaz naturel avec fractionnement a haute pression
FR3066491B1 (fr) Procede de recuperation d'un courant d'hydrocarbures en c2+ dans un gaz residuel de raffinerie et installation associee
EA011523B1 (ru) Способ извлечения газоконденсатных жидкостей и устройство для его реализации
FR2571129A1 (fr) Procede et installation de fractionnement cryogenique de charges gazeuses
FR2855526A1 (fr) Procede et installation de production simultanee d'un gaz naturel apte a etre liquefie et d'une coupe de liquides du gaz naturel
JP2007524578A (ja) 炭化水素ガス処理
WO2008087318A2 (fr) Procédé de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et éventuellement d'azote par distillation cryogénique
EP2659211B1 (fr) Procédé de production d'un courant riche en méthane et d'un courant riche en hydrocarbures en c2+ et installation associée
FR2936864A1 (fr) Procede de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en helium et d'un courant d'hydrocarbures deazote et installation associee.
CA2756632C (fr) Procede de traitement d'un gaz naturel de charge pour obtenir un gaz naturel traite et une coupe d'hydrocarbures en c5+, et installation associee
EP2494295B1 (fr) Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée
EP3013924B1 (fr) Procédé de récupération d'un courant d'éthylène à partir d'un courant de charge riche en monoxyde de carbone
EP2661479A1 (fr) Procede de production d'une coupe riche en hydrocarbures en c3+ et d'un courant riche en methane et ethane a partir d'un courant d'alimentation riche en hydrocarbures et installation associee.
EA025641B1 (ru) Способ переработки газа
KR101687851B1 (ko) 탄화수소 가스 처리 방법
KR101676069B1 (ko) 탄화수소 가스 처리 방법
AU2009277374B2 (en) Method and apparatus for treating a hydrocarbon stream and method of cooling a hydrocarbon stream
EP3060629B1 (fr) Procédé de fractionnement d'un courant de gaz craqué, mettant en oeuvre un courant de recycle intermédiaire, et installation associée
WO2022101211A1 (fr) Procédé d'extraction d'éthane dans un courant de gaz naturel de départ et installation correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030522

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20090605

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131016

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60148672

Country of ref document: DE

Effective date: 20140430

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60148672

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60148672

Country of ref document: DE

Effective date: 20150106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201116

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201218

Year of fee payment: 20

Ref country code: GB

Payment date: 20201217

Year of fee payment: 20

Ref country code: IT

Payment date: 20201211

Year of fee payment: 20

Ref country code: DE

Payment date: 20201209

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60148672

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20211212

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20211212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211212