EP1454051B1 - Thermohydrodynamic power amplifier - Google Patents

Thermohydrodynamic power amplifier Download PDF

Info

Publication number
EP1454051B1
EP1454051B1 EP03752650A EP03752650A EP1454051B1 EP 1454051 B1 EP1454051 B1 EP 1454051B1 EP 03752650 A EP03752650 A EP 03752650A EP 03752650 A EP03752650 A EP 03752650A EP 1454051 B1 EP1454051 B1 EP 1454051B1
Authority
EP
European Patent Office
Prior art keywords
liquid
pressure
fluid
force amplifier
amplifier according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03752650A
Other languages
German (de)
French (fr)
Other versions
EP1454051A1 (en
Inventor
Jürgen KLEINWÄCHTER
Eckhart Weber
Olivier Paccoud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
POWERFLUID GmbH
Original Assignee
Colsman-Freyberger Claus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colsman-Freyberger Claus filed Critical Colsman-Freyberger Claus
Publication of EP1454051A1 publication Critical patent/EP1454051A1/en
Application granted granted Critical
Publication of EP1454051B1 publication Critical patent/EP1454051B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the invention relates to a thermo-hydrodynamic power amplifier.
  • Liquids are practically incompressible compared to gases, have a lower, heat-related volume environment, significantly higher specific heat capacities and offer the possibility of exchanging heat better.
  • the attempt to use liquids in heat engines as an alternative to working gas was undertaken in the mid-1920s by J. F. Malone from News-castle-on-Tyne (England).
  • Fig. 1 the Malone machine is shown schematically. Thereby (1) the working cylinder, (2) the displacement cylinder, (3) the heater which is continuously heated by the external (flame) heat (3a), (4) the cooler, (5) the displacement piston, which is the regenerator ( 2a) 90 ° out of phase with the working piston (6) from hot to cold.
  • the object of the present invention is therefore to utilize the fundamental advantages of liquids as thermodynamic working media, already recognized by Malone, in a technically novel construction in such a way that the negative aspects described no longer occur.
  • US Pat. No. 2,963,853 discloses a thermohydrodynamic power amplifier in which a piston-cylinder arrangement and a solid crankshaft are arranged in one machine.
  • the piston passes through a compression chamber, an expansion chamber and a working chamber in the cylinder.
  • a control connecting rod which is separate from the piston and is attached to the crankshaft together with it, switches valve control via various lines, so that when the piston moves, a fluid passes through lines provided for this purpose and controlled by the valves a heater, a cooler and a regenerator.
  • the invention is based on the particular object of providing a power amplifier with improved efficiency and, at the same time, increased operational reliability.
  • thermo-hydrodynamic booster in which a liquid inside a rigid cylinder is displaced between a hot area and a cold area by means of a driven auxiliary piston through lines of a heater-regenerator-cooler arrangement or a heater-recuperator-cooler arrangement, so that the liquid contracts and expands periodically, giving off an output work that is greater than one drive work on the auxiliary piston per cycle, the booster being characterized in that the liquid in the arrangement is shifted periodically in an alternating flow direction and the output work on a separate one Machine does.
  • thermo-hydrodynamic power booster TTK
  • the THK goes through a fundamentally different cycle than classic heat engines.
  • the liquid is heated isochorically from a to b.
  • the initial pressure P o corresponds to the ambient pressure (or a slightly higher pressure).
  • a shut-off element (17) opens and the liquid expands by working on a downstream system (hydraulic motor, compressor piston, etc.). This relaxation occurs until the initial pressure P o is again reached at a larger volume and a higher temperature than the initial state a at c.
  • classic machines in which the fluid is brought back to the initial state a by mechanical back compression, the contraction of the liquid is brought about by heat extraction in the THK.
  • this has the great advantage that, since all useful energy is extracted from b to c during the expansion phase, no mechanical energy has to be temporarily stored in any way (flywheel, wind boiler bsw).
  • This principle also lies, as explained below will, the possibility according to the invention of a crankshaft mechanism, with which it exerts constraining forces on the fluid, be completely dispensed with.
  • regenerator or recuperator is also included in the heat exchange process during work phases a ⁇ b and c ⁇ a and the expansion of the fluid is performed isothermally, the work process defined by the key points a, b, c is thermodynamic with the exception of irreversible losses in the fluid and heat losses ideal.
  • FIG. 4 shows the basic configuration of a THK in combination with a hydraulic motor.
  • (11) is the displacement piston which is moved up and down by a linear drive (12) inside the pressure cylinder (13). It periodically displaces the working fluid back and forth via a heater (14), regenerator (15) and cooler (16).
  • a hydraulic valve serves as a switchable shut-off element (17). This is closed at the beginning of the cycle (Fig. 3, section a ⁇ b) when the displacer moves down and thus conveys the liquid to the hot side of the system.
  • the valve opens and the liquid expands at high pressure with the work being carried out by the hydraulic motor (18) with a connected flywheel (19). The relaxed fluid then collects in the collecting vessel (20).
  • a circulation line with the check valve (21) ensures constant circulation of the fluid from the collecting vessel through the hydraulic motor as long as it is rotating.
  • the valve (17) is closed, the displacer (11) moves upward and displaces the fluid to the cold side of the system (section c ⁇ a in Fig. 3).
  • the cooling fluid contracts to the starting point a of the cycle (Fig. 3) and sucks in fluid via the line (22) and the check valve (23) from the collecting vessel (20).
  • regenerator (15) Since the regenerator (15) is flowed through in alternating directions by the hot and cold fluid, it temporarily stores heat almost without loss of entropy (because heat and cold are recovered along a linearly increasing temperature profile) and releases it back to the fluid at the right time.
  • thermo-hydrodynamic power amplifier TK
  • represents the fluid flow under pressure, - - - ⁇ pressurized fluid without movement, ⁇ ⁇ fluid movement with low pressure.
  • Fig. 4a the fluid is compressed isochorically.
  • the displacement piston (11) driven by the linear drive (12) is on its way down.
  • the hydraulic valve (17) is closed.
  • the route a ⁇ b is traversed in the PV diagram.
  • the fluid level in the expansion vessel (20) is at its lowest level.
  • Fig. 4a the fluid is compressed isochorically.
  • the displacement piston (11) driven by the linear drive (12) is on its way down.
  • the hydraulic valve (17) is closed.
  • the route a ⁇ b is traversed in the PV diagram.
  • the fluid level in the expansion vessel (20 is at its lowest level.
  • Fig. 4b the displacement piston (11) has reached bottom dead center.
  • the linear drive (12) stands.
  • the hydraulic valve (17) has opened.
  • the route b ⁇ c is traveled in the PV diagram.
  • the hydraulic motor (18) is driven by the relaxing liquid.
  • the fluid level in the expansion tank (20) increases.
  • FIG. 5 shows a PV diagram resulting from such a THK process. The process is started again according to the invention when the fluid is in the pressure state P o .
  • the medium that expands by moving the fluid from cold to hot flows through the hydraulic motor (17) under increasing pressure until at P ' 1 at b the displacement piston (11) has reached its bottom dead center.
  • the fluid then relaxes with the displacer held to point c at P o , and is then contracted by regenerative cooling from c ⁇ a.
  • the hydraulic valve (17) is closed during the cycle part a ⁇ b ⁇ c and opened from c ⁇ b.
  • Such a variant of the THK cycle achieves lower outputs per cycle, but is characterized by a particularly smooth, continuous run and requires less pressure resistance due to the lower maximum pressure.
  • a further advantageous embodiment is the combination of the shut-off properties of the hydraulic valve (17) and the hydraulic motor.
  • 6 shows the indicator diagram of such a THK variant.
  • the fluid is isochorically compressed (valve 17 is closed) to the intermediate pressure P 1 .
  • the fluid relaxes isobarically via the hydraulic motor (18) (valve 18 is open).
  • the fluid relaxes from b 'to c (valve 18 is open).
  • the valve 18 closed the fluid is again contracted from c to the initial state a by reversible heat removal.
  • THK thermoelectric heater
  • Fig. 7 the corresponding, necessary by-pass lines with shut-off valves and their temporal use are shown schematically on the basis of the PV diagram.
  • the reheating by the heater (14) is due to the desired isothermal relaxation of b ⁇ c desired.
  • the fact that the fluid flows from a ⁇ b ⁇ c through the bypass 24c is marked in the PV diagram. If the fluid is subsequently reversibly cooled from c ⁇ a and thereby contracts, only the effect of the cooler (16), but not that of the heater (14), is desired. For this reason, the heater is now shut off via the two valves 25a, 25b and the fluid is directed via the bypass 25c directly through the regenerator (15) and cooler (16) (valves 24a, 24b opened again).
  • the bypass lines 24c and 25c are provided with check valves 24d and 25d so that the fluid flows through (16) and (14) when the shut-off valves 24a, 24b and 25a, 25b are open.
  • a further embodiment of the THK machine according to the invention is to design it as a multi-cylinder machine (number n of cylinders ⁇ 2) and to control the linear drives (12) of the various cylinders in such a way that the resulting cycle overlap leads to a smoothed drive torque. This leads to much smaller flywheels.
  • the purely translatory movement of the expanding and contracting liquid column is also used to drive subsystems such as typically: air compressors, heat pump refrigeration machines, compressors, reverse osmosis systems and the like.
  • FIG. 8 shows such a THK machine according to the invention with linear force decoupling and linear conformer. Since the subsystems in this case make a fixed working piston necessary (instead of the "liquid" working piston described so far), the advantageous embodiment of this variant of the object according to the invention is due to the integration of the working piston (26) in the pressure cylinder (13) and in it - And moving displacer (11) given. The air cushion (27) below the working piston makes the expansion vessel (Fig. 3, 26) unnecessary in this design.
  • the working piston which in this case also periodically moves downward during the expansion phase under the application of force, is held by the switchable shut-off element (29), which in this case is advantageously designed as a shoe brake which engages around the piston rod, until the desired maximum pressure (in the PV Indication diagram point b) is reached.
  • the force is then decoupled via the force conformer (30), which is designed geometrically as a parallelogram.
  • the parallelogram is provided with swivel joints in its four corners, which cause its shape to change constantly due to the imprinted movement (indicated by 30, 31).
  • this type of THK can also be operated with the cycle variants shown in FIGS. 5 and 6 and described in the text, and can be optimized with the "by-pass" arrangements shown in FIG. 7.
  • thermodynamic machine Since the THK represents a reversible thermodynamic machine, there is a particularly advantageous variant according to the invention in its configuration as a refrigerator heat pump.
  • FIGS. 9a, 9b, 9c Such a THK machine is shown in FIGS. 9a, 9b, 9c, each with the corresponding work steps during the three work phases of the driving THK machine and the driven THK refrigeration machine heat pump.
  • the driving THK machine basically has the same configuration as shown in Fig. 8 and described in the previous text.
  • the conformer mechanism (30) pushes the working piston (26a) of the driven refrigeration machine and heat pump into the cylinder (13a) periodically and out of phase with the drive machine due to the pressure-free coupling (33a), which is also described.
  • FIG. 9a the phase-shifted working cycles of the THK working machine (line) and the THK cooling machine (- - - - Line).
  • FIGS. 9a to 9c To the left of FIGS. 9a to 9c, only the corresponding work cycles of the working machine and the refrigeration machine for the three main work cycles are shown.
  • Fig. 9a Working machine The fluid is heated isochorically from a to b.
  • the displacer (11) moves towards the fixed working piston (26).
  • Chiller The fluid is cooled isobarically by moving the displacer from a 'to c'.
  • the working piston (26a) is fixed.
  • the pressure-less coupling (33a) is disengaged.
  • Fig. 9b work machine The fluid expands isothermally from b to c.
  • Working piston (26) and displacement piston (11) move down together.
  • the pressure-less coupling (30) is engaged.
  • the shut-off element (29) is open.
  • Refrigerating machine The working piston (26a) compresses the fluid.
  • the displacement piston is fixed at the outer dead center.
  • the shut-off element (29a) is open.
  • Fig. 9c Working machine
  • the fluid contracts by regenerative cooling from c to a .. Working and displacement pistons (26, 11) move upwards in parallel.
  • the shut-off element (29) is open.
  • the pressure-less coupling (30) is disengaged.
  • Refrigerating machine The working piston (26a) is fixed in the bottom dead center by the shut-off element (29a).
  • the displacement piston pushes the fluid from b 'to a' (isochoric cooling).
  • the chiller heat pump therefore absorbs ambient heat via (16a) (cooler), compresses it isothermally and releases the heat again via (14a, heater).
  • the three-stroke cycle that is traveled through is basically analogous to the cycle of the working machine according to the invention, but is "reversed” and works at a lower temperature level.
  • the pressures must be matched to one another. According to the invention, this can be done either by appropriate volume ratios from the machine cylinder (13) to the refrigerator machine cylinder (13a), or by a corresponding pressure reduction by means of a stepped working piston between the conformer (30) and the refrigerator.
  • THK refrigeration machine heat pump uses the basic principle of the known Vuilleumier refrigeration machine heat pump, which operates according to the Stirling principle, with adaptation to the special cycle of the THK machine. This variant is shown schematically in FIG.
  • both cylinder halves are filled with the same fluid at the same pressure (advantageously: 1 bar).
  • the displacement drives 12a, 12b move the displacement pistons 11a, 11b with a phase shifted by 90 °.
  • the fluid In the hot cylinder 1, the fluid is brought to high pressure by heating by means of 14a. After this pressure has been reached, the valve (35) is opened and the pressure fluid from cylinder I compresses the fluid in cylinder II with the development of heat. After the pressure has been equalized, the displacement piston (11a) moves upwards in the "hot” cylinder, while in the “cold” cylinder the displacement piston moves down.
  • regenerators 15a and 15b are transferred and buffered for the following cycle section.
  • (11a) and (11b) move up synchronously.
  • the valve (35) closes and the cycle begins anew as described.
  • cylinder I acts as a regenerative pressure pulsator
  • cylinder II as a refrigeration machine heat pump runs through the cycle of the THK pulsator passed through to the right in cylinder I to the left.
  • Heat is extracted from a desired room by (14b) at low temperature (refrigeration machine) and released again by (16c) at a medium temperature level (heat pump).
  • (16c) When operating as a heat pump or as a combined unit (simultaneous generation of cold and heat), it makes sense to connect the heat flows in series using (16c) and (16a).
  • the "Vuilleumier THK” chiller heat pump described here can also be operated without the valve (35).
  • the valve (35) is replaced by a permanent, small passage opening in the wall (34).
  • the displacers (11a, 11b) are not moved discontinuously out of phase by 90 °, but continuously out of phase by 90 °.
  • This simplification of the cycle according to the invention has a lower power density because of the smaller usable pressure fluctuation. This can generally be compensated for by an increased working frequency, which, however, is associated with a poorer efficiency because of the disproportionately increasing hydraulic pressure losses.
  • the water used by Malone has many advantages, but also the fundamental disadvantage that, in order to remain fluid over the entire working cycle, it must be subjected to a pre-pressure of> 100 bar. This can basically be achieved with the THK machines described. however, requires expansion tanks and air tanks that are filled with this form.
  • THK machines work well in the medium temperature range from approx. 100 ° C to approx. 400 ° C, and the heat input (and cooling) of the fluid is technically particularly easy to implement, the following energy sources for operating the THK are Of particular interest: solar energy including night operation through thermal storage, all biogenic fuels, waste heat in the temperature range mentioned.
  • THK machines and combined THK refrigeration machine heat pumps are particularly suitable for cogeneration in buildings, for decentralized energy supply with sun and / or biomass and for the re-generation of (industrial) waste heat.

Abstract

A thermodynamic force amplifying machine that causes a liquid working medium to perform useful work in a three-stroke working cycle (isochoric heating, isothermal expansion, contraction through regenerative cooling) making use of an external heat source and of an external cold source. The work performed by the auxiliary drive ( 12 ) at the displacer ( 11 ) is thereby much smaller than the one produced in the conversion system ( 18, 19 ) (force amplification). An inversely operating machine driven by an external power source acts as a heat pump/refrigerator.

Description

Die Erfindung betrifft einen thermo-hydrodynamischen Kraftverstärker.The invention relates to a thermo-hydrodynamic power amplifier.

Flüssigkeiten sind im Vergleich zu Gasen praktisch inkompressibel, haben eine geringere, wärmebedingte Volumenzunalune, wesentlich höhere spezifische Wärmekapazitäten und bieten die Möglichkeit, Wärme besser zu tauschen. Der Versuch alternativ zum Arbeitsgas Flüssigkeiten in Wärmekraftmaschinen einzusetzen, wurde Mitte der 20-ziger Jahre des vorigen Jahrhunderts von J. F. Malone aus News-castle-on-Tyne (England) unternommen.Liquids are practically incompressible compared to gases, have a lower, heat-related volume environment, significantly higher specific heat capacities and offer the possibility of exchanging heat better. The attempt to use liquids in heat engines as an alternative to working gas was undertaken in the mid-1920s by J. F. Malone from News-castle-on-Tyne (England).

Er entwickelte eine der Heißgas-Stirling Maschine ähnliche regenerative Maschine, die aber statt mit Luft mit Druckwasser als Arbeitsmedium gefüllt ist, (U.S. Patent 1,487,664 vom 18. März 1924 und U.S. Patent 1,7717,161 vom 11. Juni 1929).He developed a regenerative machine similar to the hot gas Stirling engine, but filled with pressurized water as the working medium instead of air (U.S. Patent 1,487,664 dated March 18, 1924 and U.S. Patent 1,7717,161 dated June 11, 1929).

Er konnte nachweisen, dass er bei einer Temperaturdifferenz von 305K einen Wirkungsgrad von 27% erreichte, was einem beachtlichen Realisierungsgrad von 54% des idealen Carnot Zykluses gleichkommt und im Vergleich zu den damals üblichen Dampfmaschinen etwa doppelt so hoch war.He was able to prove that he achieved an efficiency of 27% at a temperature difference of 305K, which corresponds to a remarkable degree of implementation of 54% of the ideal Carnot cycle and was about twice as high as that of the steam engines common at the time.

Der Grund für diesen guten Wirkungsgrad lag in der Tatsache begründet, dass die Maschine wie die Stirlingmaschine einen Wärmeregenerator besaß und zudem die gegenüber Gasen wesentlich besseren Wärmeübertragungseigenschaften der Flüssigkeiten nutzte. In Fig. 1 ist die Malone Maschine schematisch dargestellt. Dabei ist (1) der Arbeitszylinder, (2) der Verdrängerzylinder, (3) der Erhitzer der durch die äußere (Flammen)wärme (3a) ständig erhitzt wird, (4) der Kühler, (5) der Verdrängerkolben, der den Regenerator (2a) um 90° gegenüber dem Arbeitskolben (6) phasenverschoben von heiß nach kalt schiebt. Der mit dem Schwungrad (7) über die Pleuelstange (7a) verbundene Arbeitskolben (6) überträgt über den Hilfspleuel (8a) und den Exzenter (8) die phasenverschobene oszillierende Bewegung auf die Regeneratorstrecke (2a).The reason for this good efficiency was due to the fact that the machine, like the Stirling machine, had a heat generator and also used the heat transfer properties of the liquids, which are significantly better than gases. In Fig. 1 the Malone machine is shown schematically. Thereby (1) the working cylinder, (2) the displacement cylinder, (3) the heater which is continuously heated by the external (flame) heat (3a), (4) the cooler, (5) the displacement piston, which is the regenerator ( 2a) 90 ° out of phase with the working piston (6) from hot to cold. The working piston (6) connected to the flywheel (7) via the connecting rod (7a) transmits the phase-shifted oscillating movement to the regenerator section (2a) via the auxiliary connecting rod (8a) and the eccentric (8).

In Fig. 2 ist im PV-Diagramm sowohl ein idealer Stirling Zyklus (10), als auch der von der Malone Maschine realisierte Zyklus (9) dargestellt.In Fig. 2, both an ideal Stirling cycle (10) and the cycle (9) realized by the Malone machine are shown in the PV diagram.

Da Wasser nur unter sehr hohen Drücken von >100 bar im verlangten Arbeitstemperaturbereich flüssig bleibt, musste Malone sehr druckfeste Zylinder einsetzen. Da er außerdem auf Kurbelwellen und Arbeitskolben zur Umwandlung der thermisch in der Flüssigkeit erzeugten Druckschwankungen in rotierende Wellenenergie zurückgriff, unterwarf er die Flüssigkeit, wie bei klassischen Arbeitsmaschinen üblich, einem Arbeitszyklus, bei dem prinzipiell während der (heißen) Expansionsphase über den Arbeitskolben und das Kurbelwellen-Schwungrad System nützliche Arbeit abgegeben wird, während bei der (kalten) Rückkompressionsphase Arbeit in das System gebracht werden muss, die aus einem Teil der Expansionsarbeit, die im Schwungrad gespeichert wurde, stammt.Since water only remains liquid at very high pressures of> 100 bar in the required working temperature range, Malone had to use very pressure-resistant cylinders. Since he also used crankshafts and working pistons to convert the pressure fluctuations thermally generated in the liquid into rotating shaft energy, he subjected the liquid to a working cycle, as is customary in classic work machines, in which, in principle, during the (hot) expansion phase over the working piston and useful work is given to the crankshaft flywheel system, while during the (cold) recompression phase, work must be put into the system that comes from part of the expansion work stored in the flywheel.

Da Flüssigkeiten im Vergleich zu Gasen oder Flüssig-Dampfgemischen nahezu inkompressibel sind, ist es unvermeidlich, dass durch die starre Zwangskoppelung die Arbeitskolben, Verdränger, Kurbelwelle und Schwungrad dem Fluid aufprägen, insbesondere wahrend der Rückkompressionsphase extrem hohe Drücke erzeugt werden. Dies führt zu sehr hohen Druckwechselbelastungen und erforden sehr schwere Schwungmassen, die ihrerseits starke dynamische Lasten auf die Lager und die Gesamtstruktur übertragen.Since liquids are almost incompressible compared to gases or liquid-vapor mixtures, it is inevitable that the rigid piston, the working piston, displacer, crankshaft and flywheel impress the fluid, especially during the recompression phase, extremely high pressures are generated. This leads to very high pressure fluctuations and requires very heavy flywheels, which in turn transfer strong dynamic loads to the bearings and the overall structure.

Damir wurden die grundsätzlichen Vorteile der Malone Maschine (gegenüber Gasen wesentlich bessere Wärmeübertragungseigenschaften, hohe Wärmekapazität und damit Leistungsdichte) durch die aus dieser Bauweise resultierenden Lebensdauer limitierenden Druckschwankungen konterkariert. Dies ist auch der Grund dafür, warum diese Maschine trotz überlegener Thermodynamik keinen Eingang in den taglichen Gebrauch fand.Damir, the basic advantages of the Malone machine (compared to gases much better heat transfer properties, high heat capacity and thus power density) were counteracted by the pressure fluctuations resulting from this design life-limiting. This is also the reason why, despite superior thermodynamics, this machine was not used in daily use.

Die Aufgabe der vorliegenden Erfindung ist es daher, die bereits von Malone erkannten grundsätzlichen Vorteile von Flüssigkeiten als thermodynamische Arbeitsmedien in einer technisch neuartigen Bauweise so zu nutzen, dass die beschriebenen negativen Aspekte nicht mehr auftauchen.The object of the present invention is therefore to utilize the fundamental advantages of liquids as thermodynamic working media, already recognized by Malone, in a technically novel construction in such a way that the negative aspects described no longer occur.

Die US 2,963,853 offenbart zur Lösung einer ähnlichen Aufgabenstellung einen Thermohydrodynamischen Kraftverstärker, bei welchem in einer Maschine eine Kolben-Zylinder-Anordnung und eine massive Kurbelwelle angeordnet sind. Der Kolben durchfährt im Zylinder eine Verdichtungskammer, eine Ausdehnungskammer und eine Arbeitskammer. Beim Hin- und Herfahren des Kolbens innerhalb eines Zyklus' schaltet eine vom Kolben separate, gemeinsam mit diesem an der Kurbelwelle befestigte Steuerpleuelstange über diverse Leitungen eine Ventilsteuerung, sodass bei den Verschiebungen des Kolbens ein Fluid durch jeweils hierfür vorgesehene und über die Ventile angesteuerte Leitungen durch einen Erhitzer, einen Kühler und einen Regenerator geführt wird.To solve a similar problem, US Pat. No. 2,963,853 discloses a thermohydrodynamic power amplifier in which a piston-cylinder arrangement and a solid crankshaft are arranged in one machine. The piston passes through a compression chamber, an expansion chamber and a working chamber in the cylinder. When the piston is moved back and forth within a cycle, a control connecting rod, which is separate from the piston and is attached to the crankshaft together with it, switches valve control via various lines, so that when the piston moves, a fluid passes through lines provided for this purpose and controlled by the valves a heater, a cooler and a regenerator.

Gegenüber der US 2,963,853 liegt der Erfindung die besondere Aufgabe zugrunde, einen Kraftverstärker mit verbessertem Wirkungsgrad bei gleichzeitig gesteigerter Betriebssicherheit zur Verfügung zu stellen.Compared to US 2,963,853, the invention is based on the particular object of providing a power amplifier with improved efficiency and, at the same time, increased operational reliability.

Diese Aufgabe löst ein thermo-hydrodynamischer Kraftverstärker, bei welchem eine Flüssigkeit im Inneren eines starren Zylinders mittels eines angetriebenen Hilfskolbens durch Leitungen einer Erhitzer-Regenerator-Kühler-Anordnung oder einer Erhitzer-Rekuperator-Kühler-Anordnung zwischen einem Heißbereich und einem Kaltbereich verschoben wird, sodass sich die Flüssigkeit periodisch zusammenzieht und ausdehnt und dabei eine Abtriebsarbeit abgibt, die pro Zyklus größer als eine Antriebsarbeit am Hilfskolben ist, wobei sich der Kraftverstärker dadurch kennzeichnet, dass die Flüssigkeit in der Anordnung periodisch in abwechselnder Fließrichtung verschoben wird und die Abtriebsarbeit an einer separaten Maschine leistet.This object is achieved by a thermo-hydrodynamic booster in which a liquid inside a rigid cylinder is displaced between a hot area and a cold area by means of a driven auxiliary piston through lines of a heater-regenerator-cooler arrangement or a heater-recuperator-cooler arrangement, so that the liquid contracts and expands periodically, giving off an output work that is greater than one drive work on the auxiliary piston per cycle, the booster being characterized in that the liquid in the arrangement is shifted periodically in an alternating flow direction and the output work on a separate one Machine does.

Die im folgendem beschriebene erfindungsgemäße Maschine wirkt als Thermo-Hydrodynamischer Kraftverstarker (THK).The machine according to the invention described below acts as a thermo-hydrodynamic power booster (THK).

Der THK durchläuft im PV-Diagramm (Fig. 3) einen grundsätzlich anderen Zyklus als klassische Wärmekraftmaschinen. Dabei wird die Flüssigkeit von a nach b isochor erwärmt. Der Anfangsdruck Po entspricht dabei dem Umgebungsdruck (oder einem geringfügig hoheren Druck). Sobald in der Flüssigkeit der gewunschte Druck P1 erreicht ist, öffnet ein Absperrelement (17) und die Flüssigkeit expandiert, in dem sie Arbeit an einem nachgeschalteten System (Hydraulikmotor, Kompressorkolben usw.) leistet. Diese Entspannung geschieht bis bei nun größerem Volumen und höherer Temperatur gegenüber dem Anfangszustand a bei c wiederum der Anfangsdruck Po erreicht wird. Im Gegensatz zu klassischen Maschinen, bei denen das Fluid in den Anfangszustand a durch mechanische Rückkompression zurückgebracht wird, wird beim THK die Kontraktion der Flüssigkeit durch Wärmeentzug herbeigeführt. Dies hat erfindungsgemaß den großen Vorteil, dass, da sämtliche Nutzenergie während der Expansionsphase von b nach c entzogen wird, keine mechanische Energie in irgendeiner Weise (Schwungrad, Windkessel bsw) zwischengespeichert werden muss. Ferner liegt in diesem Prinzip, wie im weiteren ausgeführt wird, die erfindungsgemäße Möglichkeit auf einen Kurbelwellenmechanismus, mit dem von diesem ausgeübten Zwangskräften auf das Fluid, vollständig zu verzichten.In the PV diagram (Fig. 3), the THK goes through a fundamentally different cycle than classic heat engines. The liquid is heated isochorically from a to b. The initial pressure P o corresponds to the ambient pressure (or a slightly higher pressure). As soon as the desired pressure P1 is reached in the liquid, a shut-off element (17) opens and the liquid expands by working on a downstream system (hydraulic motor, compressor piston, etc.). This relaxation occurs until the initial pressure P o is again reached at a larger volume and a higher temperature than the initial state a at c. In contrast to classic machines, in which the fluid is brought back to the initial state a by mechanical back compression, the contraction of the liquid is brought about by heat extraction in the THK. According to the invention, this has the great advantage that, since all useful energy is extracted from b to c during the expansion phase, no mechanical energy has to be temporarily stored in any way (flywheel, wind boiler bsw). This principle also lies, as explained below will, the possibility according to the invention of a crankshaft mechanism, with which it exerts constraining forces on the fluid, be completely dispensed with.

Wird zudem während der Arbeitsphasen a → b und c → a ein Regenerator oder Rekuperator in den Wärmetauschprozeß einbezogen und die Expansion des Fluids isotherm geführt, ist der durch die Eckpunkte a, b, c festgelegte Arbeitsprozeß mit Ausnahme von irreversiblen Verlusten im Fluid und Wärmeverlusten thermodynamisch ideal.If a regenerator or recuperator is also included in the heat exchange process during work phases a → b and c → a and the expansion of the fluid is performed isothermally, the work process defined by the key points a, b, c is thermodynamic with the exception of irreversible losses in the fluid and heat losses ideal.

In Fig. 4 ist die Grundfiguration eines THK in Kombination mit einem Hydraulikmotors schematisch dargestellt.4 shows the basic configuration of a THK in combination with a hydraulic motor.

Dabei ist (11) der Verdrängerkolben der von einem Linearantrieb (12) im Inneren der Druckzylinders (13) auf und ab bewegt wird. Er verdrängt das Arbeitsfluid periodisch über eine Erhitzer (14), Regenerator (15) und Kühler (16) - Strecke - hin und zurück. Als schaltbares Absperrelement (17) dient ein hydraulisches Ventil. Dieses ist zu Beginn des Zykluses (Fig. 3, Strecke a → b) geschlossen, wenn sich der Verdrängerkolben nach unten bewegt und somit die Flüssigkeit auf die heiße Seite des Systems befördert. Bein Erreichen des gewünschten Druckes P1 im Punkte b des PV-Diagrammes öffnet das Ventil und die Flüssigkeit expandiert bei hohem Druck unter Arbeitsabgabe durch den Hydraulikmotor (18) mit angekoppeltem Schwungrad (19). Das entspannte Fluid sammelt sich anschließend in dem Sammelgefäß (20). Eine Zirkulationsleitung mit dem Rückschlagventil (21) sorgt für einen ständigen Umlauf des Fluids vom Sammelgefäß durch den Hydraulikmotor, solange sich dieser dreht. Wenn die arbeitsliefernde Entspannung des Fluids (Punkt c im PV-Diagramm, Fig. 3) beendet ist, wird das Ventil (17) geschlossen, der Verdränger (11) bewegt sich nach oben und verdrängt das Fluid auf die kalte Seite des Systems (Strecke c → a in Fig. 3). Das sich abkühlende Fluid kontrahiert zum Anfangspunkt a des Zyklusses (Fig. 3) und saugt dabei über die Leitung (22) und das Rückschlagsventil (23) Fluid aus dem Sammelgefäß (20) nach.(11) is the displacement piston which is moved up and down by a linear drive (12) inside the pressure cylinder (13). It periodically displaces the working fluid back and forth via a heater (14), regenerator (15) and cooler (16). A hydraulic valve serves as a switchable shut-off element (17). This is closed at the beginning of the cycle (Fig. 3, section a → b) when the displacer moves down and thus conveys the liquid to the hot side of the system. When the desired pressure P 1 in point b of the PV diagram is reached, the valve opens and the liquid expands at high pressure with the work being carried out by the hydraulic motor (18) with a connected flywheel (19). The relaxed fluid then collects in the collecting vessel (20). A circulation line with the check valve (21) ensures constant circulation of the fluid from the collecting vessel through the hydraulic motor as long as it is rotating. When the work-relieving expansion of the fluid (point c in the PV diagram, FIG. 3) has ended, the valve (17) is closed, the displacer (11) moves upward and displaces the fluid to the cold side of the system (section c → a in Fig. 3). The cooling fluid contracts to the starting point a of the cycle (Fig. 3) and sucks in fluid via the line (22) and the check valve (23) from the collecting vessel (20).

Da der Regenerator (15) in abwechselnder Richtung vom heißen und kaltem Fluid durchströmt wird, speichert er temporär fast ohne Entropieverlust (weil Wärme und Kälte längs eines linear ansteigenden Temperaturprofiles rückgewonnen werden) Wärme und gibt diese zum richtigen Zeitpunkt wieder an das Fluid ab.Since the regenerator (15) is flowed through in alternating directions by the hot and cold fluid, it temporarily stores heat almost without loss of entropy (because heat and cold are recovered along a linearly increasing temperature profile) and releases it back to the fluid at the right time.

Bei geeigneter Wahl der Oszillationsfrequenz des Verdrängers (11) und der richtigen Dimensionierung der Strömungsquerschnitte durch die Erhitzer, Regenerator, Kühlerstrecke wird erreicht, dass der Betrag der von der expandierenden Flüssigkeit abgegebenen Arbeit um ein vielfaches höher ist, als die von Verdrängerkolben geleistete Arbeit. Aus diesem Grunde und wegen ihrer Wirkungsweise nennen wir die erfindungsgemäße Maschine Thermo-Hydrodynamischer Kraftverstärker (THK).With a suitable choice of the oscillation frequency of the displacer (11) and the correct dimensioning of the flow cross-sections through the heaters, regenerators, and cooling sections, it is achieved that the amount of work given off by the expanding liquid is many times higher than the work done by displacer pistons. For this reason and because of their mode of action we call them Machine according to the invention thermo-hydrodynamic power amplifier (THK).

Zum besseren Verständnis in den Figuren 4a, 4b, 4c nochmals die drei Arbeitstakte schematisch dargestellt und dem jeweiligen Abschnitt im PV-Diagramm zugerechnet. Dabei stellt → den Fluidfluß unter Druck dar, - - - → Druckfluid ohne Bewegung, ····· → Fluidbewegung mit geringem Druck dar.For better understanding in FIGS. 4a, 4b, 4c, the three work cycles are shown again schematically and assigned to the respective section in the PV diagram. Here → represents the fluid flow under pressure, - - - → pressurized fluid without movement, ····· → fluid movement with low pressure.

In Fig. 4a wird das Fluid isochor komprimiert. Der Verdrängerkolben (11) angetrieben vom Linearantrieb (12) befindet sich auf seinem Weg nach unten. Das Hydraulikventil (17) ist geschlossen. Im PV-Diagramm wird die Strecke a → b durchfahren. Das Fluidniveau im Ausdehnungsgefäß (20) befindet sich auf seinem niedrigsten Stand.In Fig. 4a the fluid is compressed isochorically. The displacement piston (11) driven by the linear drive (12) is on its way down. The hydraulic valve (17) is closed. The route a → b is traversed in the PV diagram. The fluid level in the expansion vessel (20) is at its lowest level.

In Fig. 4a wird das Fluid isochor komprimiert. Der Verdrängerkolben (11) angetrieben vom Linearantrieb (12) befindet sich auf seinem Weg nach unten. Das Hydraulikventil (17) ist geschlossen. Im PV-Diagramm wird die Strecke a → b durchfahren. Das Fluidniveau im Ausdehnungsgefäß (20 befindet sich auf seinem niedrigsten Stand.In Fig. 4a the fluid is compressed isochorically. The displacement piston (11) driven by the linear drive (12) is on its way down. The hydraulic valve (17) is closed. The route a → b is traversed in the PV diagram. The fluid level in the expansion vessel (20 is at its lowest level.

In Fig. 4b hat der Verdrängerkolben (11) den unteren Totpunkt erreicht. Der Linearantrieb (12) steht. Das Hydraulikventil (17) hat geöffnet. Im PV-Diagramm wird die Strecke b → c durchfahren. Der Hydraulikmotor (18) wird von der sich entspannenden Flüssigkeit angetrieben. Das Fluidniveau im Ausdehnungsgefäß (20) steigt.In Fig. 4b, the displacement piston (11) has reached bottom dead center. The linear drive (12) stands. The hydraulic valve (17) has opened. The route b → c is traveled in the PV diagram. The hydraulic motor (18) is driven by the relaxing liquid. The fluid level in the expansion tank (20) increases.

In Fig. 4c bewegt sich der Verdrängerkolben (11) durch den Linearantrieb (12) nach oben. Das Hydraulikventil (17) ist geschlossen. Das drucklose heiße Fluid wird über den Regenerator (15) und Kühler (16) auf die Anfangstemperatur rückgekühlt und erfährt dadurch eine Kontraktion. Der dadurch entstehende Unterdruck saugt Fluid über die Leitung (22) aus dem Ausdehnungsgefäß (20). Dessen Niveau sinkt bis zum tiefsten Wert. Im PV-Diagranun wird die Strecke c → a durchfahren. Damit ist wieder der Anfangszustand a des Zykluses erreicht.4c, the displacement piston (11) moves upwards through the linear drive (12). The hydraulic valve (17) is closed. The unpressurized hot fluid is cooled back to the initial temperature via the regenerator (15) and cooler (16) and thus experiences a contraction. The resulting vacuum draws fluid out of the expansion vessel (20) via the line (22). Its level drops to its lowest value. The route c → a is traveled through in the PV diagonal. This means that the initial state a of the cycle is reached again.

Das bisher geschilderte Grundfunktionsprinzip einer Dreitakt-THK Maschine kann auf verschiedene Weise variiert werden. Eine erfindungsgemäße Möglichkeit besteht darin, statt des Hydraulikventils (17) den Druckaufbau durch den Hydraulikmotor (18) selbst zu nutzen. Dieser Kommt dadurch zustande, dass das Schluckvolumen des Hydraulikmotors (18) so gewählt wird, dass es deutlich kleiner ist als der Volumenstrom des Fluids der durch die Erwärmung des Fluids auf der Strecke a → b im PV-Diagramm entsteht. In Fig. 5 ist ein aus einem solchen THK-Prozess resultierendes PV-Diagramm dargestellt. Dabei wird erfindungsgemäß der Prozeß wiederum begonnen, wenn sich das Fluid im Druckzustand Po befindet. Das durch Verschieben des Fluids von kalt nach heiß sich ausdehnende Medium durchströmt den Hydraulikmotor (17) unter ansteigendem Druck bis bei P'1 bei b der Verdrängerkolben (11) seinen unteren Totpunkt erreicht hat. Anschließend entspannt sich das Fluid bei festgehaltenem Verdrängerkolben zum Punkt c bei Po, und wird dann anschließend durch regenerative Kühlung von c → a kontrahiert. Das Hydraulikventil (17) ist während des Zyklusteils a → b → c geschlossen und von c → b geöffnet.The basic operating principle of a three-stroke THK machine described so far can be varied in different ways. One possibility according to the invention is to use the pressure build-up by the hydraulic motor (18) itself instead of the hydraulic valve (17). This is due to the fact that the absorption volume of the hydraulic motor (18) is selected so that it is significantly smaller than the volume flow of the fluid that results from the heating of the fluid on the section a → b in the PV diagram. FIG. 5 shows a PV diagram resulting from such a THK process. The process is started again according to the invention when the fluid is in the pressure state P o . The medium that expands by moving the fluid from cold to hot flows through the hydraulic motor (17) under increasing pressure until at P ' 1 at b the displacement piston (11) has reached its bottom dead center. The fluid then relaxes with the displacer held to point c at P o , and is then contracted by regenerative cooling from c → a. The hydraulic valve (17) is closed during the cycle part a → b → c and opened from c → b.

Eine solche Variante des THK-Zyklusses erreicht zwar pro Zyklus kleinere Leistungen ist aber durch einen besonders geschmeidigen, kontinuierlichen Lauf gekennzeichnet, und benötigt wegen des geringeren Maximaldruckes eine geringere Druckfestigkeit.Such a variant of the THK cycle achieves lower outputs per cycle, but is characterized by a particularly smooth, continuous run and requires less pressure resistance due to the lower maximum pressure.

Eine weitere vorteilhafte Ausgestaltungsmöglichkeit besteht in der Kombination der Absperreigenschaften des Hydraulikventils (17) und des Hydraulikmotors. In Fig. 6 ist das Indikatordiagramm einer solchen THK Variante dargestellt. Ausgehend vom Anfangsdruck Po wird das Fluid isochor (Ventil 17 ist geschlossen) auf den Zwischendruck P1 komprimiert. Von b nach b' entspannt das Fluid über den Hydraulikmotor (18) isobar (Ventil 18 ist geöffnet). Nachdem der Verdrängerkolben (11) seinen unteren Totpunkt erreicht hat, entspannt das Fluid von b' nach c (Ventil 18 ist geöffnet). Dann wird das Fluid bei geschlossenem Ventil 18 wiederum durch reversiblen Wärmeentzug von c auf den Anfangszustand a kontrahiert. Eine solche Variante des THK erreicht gute Zyklenleistungen und schont die Druckzylinder wegen des - im Verhältnis zur Grundvariante - geringeren Maximaldruckes.A further advantageous embodiment is the combination of the shut-off properties of the hydraulic valve (17) and the hydraulic motor. 6 shows the indicator diagram of such a THK variant. Starting from the initial pressure P o , the fluid is isochorically compressed (valve 17 is closed) to the intermediate pressure P 1 . From b to b 'the fluid relaxes isobarically via the hydraulic motor (18) (valve 18 is open). After the displacement piston (11) has reached its bottom dead center, the fluid relaxes from b 'to c (valve 18 is open). Then, with the valve 18 closed, the fluid is again contracted from c to the initial state a by reversible heat removal. Such a variant of the THK achieves good cycle performance and is gentle on the pressure cylinders because of the lower maximum pressure compared to the basic variant.

Eine weitere, erfindungsgemäß vorteilhafte Ausgestaltung des THK besteht in der Möglichkeit, den Erhitzer (14) und den Kühler (16) immer nur während der Arbeitszyklusabschnitte in den Fluidkreislauf einzubinden, während dem ihre jeweilige Funktion benötigt wird. Dies minimiert einerseits die negativen Auswirkungen von Fluid-Totvolumen und ermöglicht anderseits, die Druckströmungsquerschnitte durch den Erhitzer und den Kühler ohne negative Auswirkungen auf den Zyklus im Hinblick auf einen geringen dynamischen Durchströmungswiderstand und optimale Wärmeübertragungseigenschaften zu gestalten. In Fig. 7 sind die entsprechenden, notwendigen By-passleitungen mit Absperrventilen und deren zeitlicher Einsatz an Hand des PV-Diagrammes schematisch dargestellt.Another advantageous embodiment of the THK according to the invention consists in the possibility of integrating the heater (14) and the cooler (16) into the fluid circuit only during the work cycle sections during which their respective function is required. On the one hand, this minimizes the negative effects of fluid dead volumes and, on the other hand, enables the pressure flow cross-sections through the heater and the cooler to be designed without negative effects on the cycle with regard to a low dynamic flow resistance and optimal heat transfer properties. In Fig. 7 the corresponding, necessary by-pass lines with shut-off valves and their temporal use are shown schematically on the basis of the PV diagram.

Während das Fluid von a → b durch den Verdrängerkolben verschoben wird, das Fluid also erwärmt wird, ist es unerwünscht, über den Kühler (16) Wärme zu entziehen. Durch Schließen der Ventile 24a, 24b wird das Fluid in einem By-pass (24c) um den Kühler herumgelenkt und durchströmt anschließend den Regenerator (15) und Erhitzer (14). Bei der anschließenden Entspannung des Fluids von b → c ist wiederum die Kühlung unerwünscht (24a, 24b weiterhin geschlossen, Fluid strömt durch 24c).While the fluid is displaced from a → b through the displacement piston, that is to say the fluid is heated, it is undesirable to remove heat via the cooler (16). By closing the valves 24a, 24b, the fluid is directed around the cooler in a by-pass (24c) and then flows through the regenerator (15) and heater (14). In the subsequent expansion of the fluid from b → c, cooling is again undesirable (24a, 24b still closed, fluid flows through 24c).

Die Nachheizung durch den Erhitzer (14) ist wegen der angestrebten isothermen Entspannung von b → c erwünscht. Die Tatsache, dass von a → b → c das Fluid durch den By-pass 24c fließt, ist im PV-Diagramm gekennzeichnet. Wenn das Fluid anschließend von c → a reversibel abgekühlt wird und dadurch kontrahiert, ist nur die Wirkung des Kühlers (16), nicht jedoch die des Erhitzers (14) erwünscht. Deswegen wird nun der Erhitzer über die zwei Ventile 25a, 25b abgesperrt und das Fluid über den By-pass 25c direkt durch den Regenerator (15) und Kühler (16) geleitet (Ventile 24a, 24b wieder geöffnet). Damit das Fluid bei geöffneten Absperrventilen 24a, 24b bzw. 25a, 25b jeweils durch (16) und (14) strömt, sind die By-passleitungen 24c und 25c mit den Rückschlagventilen 24d und 25d versehen.The reheating by the heater (14) is due to the desired isothermal relaxation of b → c desired. The fact that the fluid flows from a → b → c through the bypass 24c is marked in the PV diagram. If the fluid is subsequently reversibly cooled from c → a and thereby contracts, only the effect of the cooler (16), but not that of the heater (14), is desired. For this reason, the heater is now shut off via the two valves 25a, 25b and the fluid is directed via the bypass 25c directly through the regenerator (15) and cooler (16) (valves 24a, 24b opened again). The bypass lines 24c and 25c are provided with check valves 24d and 25d so that the fluid flows through (16) and (14) when the shut-off valves 24a, 24b and 25a, 25b are open.

Bisher wurden THK Maschinen mit Rotationsauskoppelung durch den Hydraulikmotor geschildert. Da die Zyklusenergie im Verlaufe der Entspannung des Arbeitsfluids stetig abnimmt, ist es nötig, dieses unstete Leistungsangebot zu "konformieren". Bei rotierenden Maschinen geschieht dies am besten durch ein entsprechendes Schwungrad (19).So far, THK machines with rotation decoupling by the hydraulic motor have been described. Since the cycle energy steadily decreases in the course of the expansion of the working fluid, it is necessary to "conform" to this unstable range of services. In the case of rotating machines, this is best done using an appropriate flywheel (19).

Die Tatsache, dass einerseits Energie nach Außen nur während der Expansionsphase abgegeben wird und anderseits aus Wirkungsgradgründen die Arbeitsfrequenz der THK-Maschine möglichst niedrig sein sollte, führt dazu, dass das Schwungrad neben der beschriebenen Konformierung des unsteten Energieangebotes während der Expansion auch noch relativ lange Zeiträume, während der die Maschine keine Energie abgibt, überbrücken muss. Dies führt naturgemäß zu großen Schwungrädern.The fact that on the one hand energy is only released to the outside during the expansion phase and on the other hand the working frequency of the THK machine should be as low as possible for reasons of efficiency, leads to the flywheel not only conforming to the described fluctuating energy supply during expansion but also for relatively long periods of time during which the machine emits no energy must bridge. This naturally leads to large flywheels.

Deswegen besteht eine weitere erfindungsgemäße Ausgestaltung der THK-Maschine darin, diese als Mehrzylindermaschine auszuführen (Anzahl n der Zylinder ≥ 2) und die zeitliche Ansteuerung der Linearantriebe (12) der verschiedenen Zylinder so vorzunehmen, dass die daraus resultierende Zyklenüberlappung zu einem geglätteten Antriebsdrelunoment führt. Dies führt zu wesentlich kleineren Schwungrädern.Therefore, a further embodiment of the THK machine according to the invention is to design it as a multi-cylinder machine (number n of cylinders ≥ 2) and to control the linear drives (12) of the various cylinders in such a way that the resulting cycle overlap leads to a smoothed drive torque. This leads to much smaller flywheels.

Erfindungsgemäß soll aber auch die rein translatorische Bewegung der sich ausdehnenden und wieder kontrahierenden Flüssigkeitssäule zum Antrieb von Subsystemen wie typischerweise: Luftkompressoren, Wärmepumpen-Kältemaschinen, -Kompressoren, Reverse-Osmosis Anlagen und ähnlichen genutzt werden.According to the invention, however, the purely translatory movement of the expanding and contracting liquid column is also used to drive subsystems such as typically: air compressors, heat pump refrigeration machines, compressors, reverse osmosis systems and the like.

In Fig. 8 ist eine solche erfindungsgemäße THK Maschine mit linerarer Kraftauskoppelung und Linearkonformator dargestellt. Da die Subsysteme in diesem Falle einen festen Arbeitskolben (statt dem bisher beschriebenen "flüssigen" Arbeitskolben) nötig machen, ist die vorteilhafte Ausgestaltung dieser Variante des erfindungsgemäßen Gegenstandes durch die Integration des Arbeitskolbens (26) in den Druckzylinder (13) und dem sich darin auf- und abbewegendem Verdrängerkolben (11), gegeben. Das Luftpolster (27) unterhalb des Arbeitskolbens macht bei dieser Bauart das Ausdehnungsgefäß (Fig. 3, 26) unnötig. Der sich auch in diesem Falle periodisch während der Expansionsphase unter Kraftentfaltung nach unten bewegende Arbeitskolben wird so lange vom schaltbaren Absperrelement (29), das in diesem Falle vorteilhaft als um die Kolbenstange greifende Backenbremse ausgebildet ist, festgehalten, bis der gewünschte Höchstdruck (im PV-Indikationdiagramm Punkt b) erreicht ist. Die Kraft wird dann über den geometrisch als Parallelogramm ausgebildeten Kraftkonformator (30) ausgekoppelt. Das Parallelogramm ist in seinen vier Ecken mit Drehgelenken versehen, die dazu führen, dass sich seine Form durch die aufgeprägte Bewegung ständig verändert (durch 30, 31 angedeutet). Koppelt man nun in einem Eckpunkt dessen Verlaufsachse senkrecht zur durch den Arbeitskolben vorgegebenen Achse steht, die Kolbenstange des erwünschten, mit linearer Kraft zu betreibenden Subsystemes ein, so wird die Kraftwirkung des Arbeitskolbens des THK, die wegen der isothermen Entspannung von b → c assymptotisch verläuft, konformiert, d.h., über den ganzen Arbeitshub vergleichmäßigt. Da der THK nur während des Expansion mechanische Arbeit an die Außenwelt abgibt, ist der Arbeitskolben des Subsystemes über die Kolbenstange (33) nur während der Expansion kraftschlüssig verbunden, d.h., er wird vom Konformator nur "geschoben" und sitzt auf der Trennstelle (33a) lose auf ihm auf (Druck-lose Koppelung).FIG. 8 shows such a THK machine according to the invention with linear force decoupling and linear conformer. Since the subsystems in this case make a fixed working piston necessary (instead of the "liquid" working piston described so far), the advantageous embodiment of this variant of the object according to the invention is due to the integration of the working piston (26) in the pressure cylinder (13) and in it - And moving displacer (11) given. The air cushion (27) below the working piston makes the expansion vessel (Fig. 3, 26) unnecessary in this design. The working piston, which in this case also periodically moves downward during the expansion phase under the application of force, is held by the switchable shut-off element (29), which in this case is advantageously designed as a shoe brake which engages around the piston rod, until the desired maximum pressure (in the PV Indication diagram point b) is reached. The force is then decoupled via the force conformer (30), which is designed geometrically as a parallelogram. The parallelogram is provided with swivel joints in its four corners, which cause its shape to change constantly due to the imprinted movement (indicated by 30, 31). If you now couple the piston rod of the desired subsystem to be operated with linear force into a corner point whose axis is perpendicular to the axis defined by the working piston, the force effect of the working piston of the THK, which is asymptotic due to the isothermal relaxation of b → c , conformed, ie, evened out over the entire working stroke. Since the THK only releases mechanical work to the outside world during expansion, the working piston of the subsystem is only positively connected via the piston rod (33) during expansion, ie it is only "pushed" by the conformer and sits on the separation point (33a) loose on top of it (pressure-less coupling).

Erfindungsgemäß kann dieser Bautyp des THK auch mit den in Fig. 5 und Fig. 6 dargestellten und im Text geschilderten Zpklusvarianten betrieben werden, sowie mit den in Fig. 7 dargestellten "By-pass" Anordnungen optimiert werden.According to the invention, this type of THK can also be operated with the cycle variants shown in FIGS. 5 and 6 and described in the text, and can be optimized with the "by-pass" arrangements shown in FIG. 7.

Da der THK eine reversible thermodynamische Maschine darstellt, besteht eine besonders vorteilhafte, erfindungsgemäße Variante in seiner Ausgestaltung als Kältemaschine-Wärmepumpe.Since the THK represents a reversible thermodynamic machine, there is a particularly advantageous variant according to the invention in its configuration as a refrigerator heat pump.

In den Figuren 9a, 9b, 9c ist eine solche THK-Maschine jeweils mit den korrespondierenden Arbeitsschritten während der drei Arbeitsphasen der antreibenden THK-Maschine und der angetriebenen THK-Kältemaschine-Wärmepumpe, dargestellt.Such a THK machine is shown in FIGS. 9a, 9b, 9c, each with the corresponding work steps during the three work phases of the driving THK machine and the driven THK refrigeration machine heat pump.

Dabei hat die antreibende THK-Maschine grundsätzlich denselben Ausbau wie er in Fig. 8 dargestellt und im vorhergehenden Text beschrieben wird. Durch den Konformatormechanismus (30) wird durch die ebenfalls beschriebene Druck-lose Koppelung (33a) periodisch und zur Antriebsmaschine phasenverschoben der Arbeitskolben (26a) der angetriebenen Kältemaschine, -Wärmepumpe in den Zylinder (13a) hineingeschoben. Die Kältemaschine besitzt erfindungsgemäß grundsätzlich dieselben Elemente wie die Arbeitsmaschine, die daher mit derselben Nr. und dem Index a gekennzeichnet sind (14a=Erhitzer, 15a=Regeneratior, 16a=Kühler, 11a=Verdränger, 12a=Verdrängerkolberlinearantrieb, 29a=schaltbares Absperrelement). In Fig. 9a sind im rechten oberen PV-Diagramm die phasenverschobenen Arbeitszyklen der THK-Arbeitsmaschine (― Linie) und der THK-Kältemaschine (- - - - Linie) dargestellt. Links daneben von Fig. 9a bis Fig. 9c sind nur die jeweils korrespondierenden Arbeitstakte der Arbeits- und der Kältemaschine für die drei wesentlichen Arbeitstakte dargestellt. Die sich darunter befindlichen Zeichnungen geben jeweils Auskunft über Lage, Bewegungsrichtung oder Stillstand von Arbeitskolben und Verdrängerkolben beider Maschinen (26, 26a, 11,11a) und des Zustandes der schaltbaren Absperrelemente (29,29a). Bei letzteren bedeutet ≅ 0 = geschlossen, ≅ 1 = geöffnet.The driving THK machine basically has the same configuration as shown in Fig. 8 and described in the previous text. The conformer mechanism (30) pushes the working piston (26a) of the driven refrigeration machine and heat pump into the cylinder (13a) periodically and out of phase with the drive machine due to the pressure-free coupling (33a), which is also described. According to the invention, the refrigeration machine basically has the same elements as the working machine, which is therefore identified by the same number and the index a (14a = heater, 15a = regenerator, 16a = cooler, 11a = displacer, 12a = displacement piston linear drive, 29a = switchable shut-off element). In FIG. 9a, the phase-shifted working cycles of the THK working machine (line) and the THK cooling machine (- - - - Line). To the left of FIGS. 9a to 9c, only the corresponding work cycles of the working machine and the refrigeration machine for the three main work cycles are shown. The drawings below provide information about the position, direction of movement or standstill of the working piston and displacement piston of both machines (26, 26a, 11, 11a) and the condition of the switchable shut-off elements (29, 29a). For the latter, ≅ 0 = closed, ≅ 1 = open.

Ferner kann an der Stellung des Konformators (30) und der Arbeitskolbenstangen Druck-lose Kopplung (33a) ersehen werden, ob die Arbeitsmaschine die Kältemaschine antreibt oder nicht. Fluid und Kolbenbewegungsrichtungen sind durch Pfeile gekennzeichnet.Furthermore, it can be seen from the position of the conformer (30) and the working piston rods pressure-free coupling (33a) whether the working machine drives the refrigerator or not. Fluid and piston directions of movement are indicated by arrows.

Während der drei Arbeitsphasen geschieht folgendes:The following happens during the three work phases:

Fig. 9a. Arbeitsmaschine Das Fluid wird isochor von a nach b erhitzt. Der Verdränger (11) bewegt sich auf den fixierten Arbeitskolben (26) zu. Fig. 9a. Working machine The fluid is heated isochorically from a to b. The displacer (11) moves towards the fixed working piston (26).

Kältemaschine Das Fluid wird isobar durch Verschieben des Verdrängers von a' nach c' gekühlt. Der Arbeitskolben (26a) ist fixiert. Die Druck-lose Kopplung (33a) ist außer Eingriff. Chiller The fluid is cooled isobarically by moving the displacer from a 'to c'. The working piston (26a) is fixed. The pressure-less coupling (33a) is disengaged.

Fig. 9b Arbeitsmaschine Das Fluid expandiert isotherm von b nach c. Arbeitskolben (26) und Verdrängerkolben (11) bewegen sich gemeinsam nach unten. Die Druck-lose Kopplung (30) ist im Eingriff. Das Absperrelement (29) ist geöffnet. Fig. 9b work machine The fluid expands isothermally from b to c. Working piston (26) and displacement piston (11) move down together. The pressure-less coupling (30) is engaged. The shut-off element (29) is open.

Kältemaschine Der Arbeitskolben (26a) komprimiert das Fluid. Der Verdrängerkolben ist im äußeren Totpunkt fixiert. Das Absperrelement (29a) ist geöffnet. Refrigerating machine The working piston (26a) compresses the fluid. The displacement piston is fixed at the outer dead center. The shut-off element (29a) is open.

Fig. 9c Arbeitsmaschine Das Fluid kontrahiert durch regenerative Abkühlung von c nach a.. Arbeits- und Verdrängerkolben (26, 11) bewegen sich parallel nach oben. Das Absperrelement (29) ist geöffnet. Die Druck-lose Kopplung (30) ist außer Eingriff. Fig. 9c Working machine The fluid contracts by regenerative cooling from c to a .. Working and displacement pistons (26, 11) move upwards in parallel. The shut-off element (29) is open. The pressure-less coupling (30) is disengaged.

Kältemaschine Der Arbeitskolben (26a) ist durch das Absperrelement (29a) im unteren Totpunkt fixiert. Der Verdrängerkolben schiebt das Fluid von b' nach a' (isochore Kühlung). Refrigerating machine The working piston (26a) is fixed in the bottom dead center by the shut-off element (29a). The displacement piston pushes the fluid from b 'to a' (isochoric cooling).

Die Kältemaschine-Wärmepumpe nimmt also über (16a) Umgebungswärme auf (Kühler), komprimiert diese isotherm und gibt über (14a, Erhitzer) die Wärme wieder ab. Der dabei durchfahrene Dreitaktzyklus ist dem beschriebenen, erfindungsgemäßen Zyklus der Arbeitsmaschine prinzipiell analog, wird jedoch "umgekehrt" durchfahren und arbeitet auf tieferem Temperaturniveau.The chiller heat pump therefore absorbs ambient heat via (16a) (cooler), compresses it isothermally and releases the heat again via (14a, heater). The three-stroke cycle that is traveled through is basically analogous to the cycle of the working machine according to the invention, but is "reversed" and works at a lower temperature level.

Neben dem reversiblen, effizienten Zyklus ist es dabei besonders vorteilhaft, dass sämtliche Wärmetauschvorgänge von Flüssigkeit zu Flüssigkeit erfolgen können. Dies ermöglicht, im Gegensatz zu üblichen Zweiphasengernischen bei klassischen Kältemaschinen wesentlich ökonomischere und effizientere Kühler/Erhitzewärmetauscher. Erfindungsgemäß kann, analog zur By-pass Schaltung der Fig. 7 (24c, 25c) eine solche Anordnung auch bei der Kältemaschine zum Einsatz kommen und somit das gekühlte Fluid ohne Totraumeffekte direkt durch die entsprechenden Kühlkörper strömen.In addition to the reversible, efficient cycle, it is particularly advantageous that all heat exchange processes can take place from liquid to liquid. In contrast to the usual two-phase niches in classic chillers, this enables much more economical and efficient coolers / heat exchangers. According to the invention, analogous to the by-pass circuit of FIG. 7 (24c, 25c), such an arrangement can also be used in the refrigeration machine and the cooled fluid can thus flow directly through the corresponding heat sink without dead space effects.

Da die Antriebs THK-Maschine und die angetriebene THK-Kältemaschine auf verschiedenen Temperaturniveaus arbeiten, müssen die Drücke einander angepaßt werden. Dies kann erfindungsgemäß entweder durch entsprechende Volumenverhältnisse vom Arbeitsmaschinenrylinder (13) zum Kältemaschinenrylinder (13a) geschehen, oder durch eine entsprechende Druckreduzierung mittels eines Stufenarbeitskolbens zwischen Konformator (30) und Kältemaschine.Since the drive THK machine and the driven THK refrigeration machine work at different temperature levels, the pressures must be matched to one another. According to the invention, this can be done either by appropriate volume ratios from the machine cylinder (13) to the refrigerator machine cylinder (13a), or by a corresponding pressure reduction by means of a stepped working piston between the conformer (30) and the refrigerator.

Eine weitere, erfindungsgemäße Ausgestaltung der THK-Kältemaschine-Wärmepumpe nutzt das Grundprinzip der bekannten, nach dem Stirling Prinzip arbeitenden Vuilleumier Kältemaschine-Wärmepumpe unter Anpassung an den speziellen Zyklus der THK-Maschine. In Fig. 10 ist diese Variante schematisch dargestellt.Another embodiment of the THK refrigeration machine heat pump according to the invention uses the basic principle of the known Vuilleumier refrigeration machine heat pump, which operates according to the Stirling principle, with adaptation to the special cycle of the THK machine. This variant is shown schematically in FIG.

In einem gemeinsamen, durch die gut wärmeisolierte und druckfeste Wand (34) in zwei Arbeitsbereiche getrennten Zylinder (1 = "heißer" Zylinder; II = "kalter" Zylinder) befinden sich jeweils ein linear angetriebener Verdrängerkolben mit angeschlossener Erhitzer-Regenerator-Kühler-Strecke. Dabei sind die dem "heißen" Zylinder zugeordneten Elemente mit dem Index a, die dem "kalten" Zylinder zugeordneten Elemente mit dem Index b gekennzeichnet. Durch das zeitlich steuerbare Ventil (35) werden zum gewünschten Zeitpunkt das Fluid aus Zylinder I und Zylinder II miteinander verbundenIn a common cylinder (1 = "hot"cylinder; II = "cold" cylinder) which is separated into two working areas by the well heat-insulated and pressure-resistant wall (34), there is a linearly driven displacement piston with connected heater-regenerator-cooler section , The elements assigned to the "hot" cylinder are identified by index a , the elements assigned to the "cold" cylinder by index b . The fluid from cylinder I and cylinder II are connected to one another at the desired point in time by means of the time-controllable valve (35)

Zu Beginn der Operation sind beide Zylinderhälften mit demselben Fluid bei gleichem Druck (vorteilhaft: 1 bar) gefüllt. Die Verdrängerantriebe 12a, 12b bewegen die Verdrängerkolben 11a, 11b mit um 90° verschobener Phase.At the start of the operation, both cylinder halves are filled with the same fluid at the same pressure (advantageously: 1 bar). The displacement drives 12a, 12b move the displacement pistons 11a, 11b with a phase shifted by 90 °.

Im heißen Zylinder 1 wird das Fluid durch Erhitzung mittels 14a isochor auf hohen Druck gebracht. Nach Erreichen dieses Druckes wird das Ventil (35) geöffnet und das Druckfluid aus Zylinder I komprimiert unter Wärmeentwicklung das Fluid im Zylinder II. Nach erfolgtem Druckausgleich bewegt sich im "heißen" Zylinder der Verdrängerkolben (11a) nach oben, während im "kalten" Zylinder der Verdrängerkolben sich nach unten bewegt.In the hot cylinder 1, the fluid is brought to high pressure by heating by means of 14a. After this pressure has been reached, the valve (35) is opened and the pressure fluid from cylinder I compresses the fluid in cylinder II with the development of heat. After the pressure has been equalized, the displacement piston (11a) moves upwards in the "hot" cylinder, while in the "cold" cylinder the displacement piston moves down.

Dabei werden sowohl im Zylinder I als auch im Zylinder II die jeweiligen Wärmeinhalte regenerativ auf die Regeneratoren 15a und 15b übertragen und für den folgenden Zyklusabschnitt zwischengespeichert. Im dritten Arbeitstakt bewegen sich (11a) und (11b) synchron nach oben. Sobald beide ihren oberen Totpunkt erreicht haben, schließt das Ventil (35) und der Zyklus beginnt wie beschrieben von Neuem.The respective heat contents in both cylinder I and cylinder II are regenerative the regenerators 15a and 15b are transferred and buffered for the following cycle section. In the third working cycle, (11a) and (11b) move up synchronously. As soon as both have reached their top dead center, the valve (35) closes and the cycle begins anew as described.

Grundsätzlich agiert bei dieser erfindungsgemäßen Variante der Zylinder I als regenerativer Druckpulsator, während Zylinder II als Kältemaschine-Wärmepumpe den in Zylinder I nacht rechts herum durchfahrenen Zyklus des THK-Pulsators nach links herum durchläuft. Dabei wird einem gewünschten Raum durch (14b) bei niedriger Temperatur Wärme entzogen (Kältemaschine) und durch (16c) auf einem mittleren Temperaturnineau (Wärmepumpe) wieder abgegeben. Bei Betrieb als Wärmepumpe oder als Kombiaggregat (simultane Erzeugung von Kälte und Wärme) ist es sinnvoll, die Wärmeströme durch (16c) und (16a) in Serie hintereinander zu schalten.Basically, in this variant according to the invention, cylinder I acts as a regenerative pressure pulsator, while cylinder II as a refrigeration machine heat pump runs through the cycle of the THK pulsator passed through to the right in cylinder I to the left. Heat is extracted from a desired room by (14b) at low temperature (refrigeration machine) and released again by (16c) at a medium temperature level (heat pump). When operating as a heat pump or as a combined unit (simultaneous generation of cold and heat), it makes sense to connect the heat flows in series using (16c) and (16a).

Grundsätzlich kann die hiermit beschriebene "Vuilleumier THK"-Kältemaschine-Wärmepumpe auch ohne das Ventil (35) betrieben werden. Erfindungsgemäß wird in diesem Falle das Ventil (35) durch eine permanente, kleine Durchgangsöffnung in der Wand (34) ersetzt. In diesem Falle werden die Verdränger (11a, 11b) nicht diskontinuierlich um 90° phasenverschoben bewegt, sondern kontinuierlich um 90° phasenverschoben. Diese Vereinfachung des erfindungsgemäßen Zyklus hat jedoch, wegen der geringeren nutzbaren Druckschwankung, eine geringere Leistungsdichte. Dies kann grundsätzlich durch eine erhöhte Arbeitsfrequenz kompensiert werden, die jedoch, wegen der überproportional ansteigenden hydraulischen Druckverluste mit einem schlechteren Wirkungsgrad behaftet ist.In principle, the "Vuilleumier THK" chiller heat pump described here can also be operated without the valve (35). According to the invention, in this case the valve (35) is replaced by a permanent, small passage opening in the wall (34). In this case, the displacers (11a, 11b) are not moved discontinuously out of phase by 90 °, but continuously out of phase by 90 °. This simplification of the cycle according to the invention, however, has a lower power density because of the smaller usable pressure fluctuation. This can generally be compensated for by an increased working frequency, which, however, is associated with a poorer efficiency because of the disproportionately increasing hydraulic pressure losses.

Bei der Wahl der Arbeitsfluide bietet sich eine breite Palette von Möglichkeiten an. Die wichtigsten Auswahlkriterien sind: Temperatur und Zyklenstabilität, starke thermische Volumenvergrößerung, geringe Kompressibilität, hohe Wärmekapazität, cp deutlich größer als cv, hohe Siedepunkte, niedrige Gefrierpunkte, Umweltkompatibilität und Kosten.There is a wide range of options for choosing the working fluids. The most important selection criteria are: temperature and cycle stability, strong thermal volume increase, low compressibility, high heat capacity, c p significantly larger than c v , high boiling points, low freezing points, environmental compatibility and costs.

Das, wie eingangs geschildert, von Malone benutzte Wasser weist zwar viele Vorteile auf, jedoch auch den grundsätzlichen Nachteil, dass es, um über den gesamten Arbeitszyklus flüssig zu bleiben mit >100 bar Vordruck belastet werden muss. Dies ist zwar mit den geschilderten THK Maschinen grundsätzlich realisierbar. macht allerdings Ausdehnungsbehälter und Windkessel nötig, die mit diesem Vordruck gefüllt sind.The water used by Malone, as described at the outset, has many advantages, but also the fundamental disadvantage that, in order to remain fluid over the entire working cycle, it must be subjected to a pre-pressure of> 100 bar. This can basically be achieved with the THK machines described. however, requires expansion tanks and air tanks that are filled with this form.

Bevorzugt werden daher beim heutigen Stand der Technik insbesondere synthetische Öle, bei denen wie geschildert, gegen Atmosphärendruck gearbeitet werden kann, und die in Viskosität, Temperaturfestigkeit, Kompressibilität und anderen wichtigen Parametern der Thermodynamik des THK maßgeschneidert angepasst werden können.In the current state of the art, preference is therefore given in particular to synthetic oils in which, as described, it is possible to work against atmospheric pressure, and which can be tailored in terms of viscosity, temperature resistance, compressibility and other important parameters of the thermodynamics of the THK.

Da die THK Maschinen auch schon im mittleren Temperaturbereich von ca. 100°C bis ca. 400°C mit guten Wirkungsgraden arbeiten, und die Wärmeeinbringung (und Kühlung) des Fluids technisch besonders einfach zu realisieren ist, sind folgende Energiequellen zum Betrieb der THK von besonderem Interesse: Sonnenenergie inklusive des Nachtbetriebes durch thermische Speicher, alle biogenen Brennstoffe, Abwärmen im angesprochenen Temperaturbereich. Besonders geeignet sind THK Maschinen und kombinierte THK-Kältemaschinen-Wärmepumpen zur Kraft-Wärme Koppelung in Gebäuden, zur dezentralen Energieversorgung mit Sonne und/oder Biomasse und zur Rückverstromung von (Industrie)-Abwärme.Since the THK machines work well in the medium temperature range from approx. 100 ° C to approx. 400 ° C, and the heat input (and cooling) of the fluid is technically particularly easy to implement, the following energy sources for operating the THK are Of particular interest: solar energy including night operation through thermal storage, all biogenic fuels, waste heat in the temperature range mentioned. THK machines and combined THK refrigeration machine heat pumps are particularly suitable for cogeneration in buildings, for decentralized energy supply with sun and / or biomass and for the re-generation of (industrial) waste heat.

Der wegen des neuartigen Zyklusses einfache und kompakte Aufbau macht ökonomische Anlagen möglich. Aufgrund der hohen Energiedichte der Fluide können bei vertretbaren Anlagegewichten (stationäre Anwendungen) Arbeitsfrequenzen von deutlich unter 1 Hz gefahren werden. Dies minimiert nicht nur die Antriebsleistung der Verdrängerkolben, sondern erhöht zudem die Lebensdauer der Systeme.The simple and compact design due to the new cycle makes economical systems possible. Due to the high energy density of the fluids, working frequencies of well below 1 Hz can be achieved with reasonable system weights (stationary applications). This not only minimizes the drive power of the displacement pistons, but also increases the service life of the systems.

Claims (9)

  1. A thermohydrodynamic force amplifier in which a liquid is displaced by a driven auxiliary piston (11) inside a rigid cylinder (13) through conducts of a heater-regenerator-cooler (14, 15, 16) or a heater-recuperator-cooler arrangement (14, 15, 16) between a hot region (14) and a cold region (16) in such a manner that the liquid periodically contracts and expands and thereby delivers a driven work (19) that is greater in each cycle than a driving work (12) on the auxiliary piston (11), characterized in that the liquid is displaced periodically in an alternating flow direction in the arrangement (14, 15, 16) and performs the driven work (19) on a separate machine (18, 33).
  2. The force amplifier according to claim 1, characterized in that the liquid performs the driven work (19) during expansion, said liquid being expanded to atmospheric pressure (P0) or to a slightly higher pressure and that the liquid is then brought back by contraction via a reversible cooling process to an initial state of the period.
  3. The force amplifier according to one of the afore-mentioned claims, characterized by a switchable shut-off member (17) by which the pressure generated by the expanding liquid column can be regulated in time and amount
  4. The force amplifier according to one of the afore-mentioned claims, characterized by a working frequency of clearly under 1 Hz.
  5. The force amplifier according to one of the afore-mentioned claims, characterized in that the separate machine (18, 33) is coupled to the driven part (30) of the force transmitter in such a manner that the linear work output of the periodically expanding liquid is directly input into the separate machine, the separate machine (18, 33) being an energy converter operating with linear movements, more specifically an air compressor, a pressure generator of a reverse osmosis apparatus or similar.
  6. The force amplifier according to one of the afore-mentioned claims, characterized in that the separate machine (18, 33) is coupled to the force amplifier via a force compensator (30) and a pressure coupling (33a) and works as a refrigerator heat pump.
  7. The force amplifier according to one of the claims 1 to 4, characterized in that the separate machine is a hydraulic motor (18), through which the thermically expanding liquid flows periodically in such a manner that rotational energy (19) is generated on a shaft of the hydraulic motor.
  8. The force amplifier according to claim 7, characterized in that the periodically expanding and contracting liquid is simultaneously used as hydraulic liquid by the hydraulic motor (18).
  9. The force amplifier according to claim 7 or 8, characterized in that an expansion tank (20) is pressurized to atmospheric pressure (P0) or a pressure slightly above atmospheric is mounted downstream of the hydraulic motor (18).
EP03752650A 2002-09-02 2003-08-20 Thermohydrodynamic power amplifier Expired - Lifetime EP1454051B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10240924A DE10240924B4 (en) 2002-09-02 2002-09-02 Thermo-hydrodynamic power amplifier
DE10240924 2002-09-02
PCT/DE2003/002810 WO2004022962A1 (en) 2002-09-02 2003-08-20 Thermohydrodynamic power amplifier

Publications (2)

Publication Number Publication Date
EP1454051A1 EP1454051A1 (en) 2004-09-08
EP1454051B1 true EP1454051B1 (en) 2004-12-29

Family

ID=31724352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03752650A Expired - Lifetime EP1454051B1 (en) 2002-09-02 2003-08-20 Thermohydrodynamic power amplifier

Country Status (16)

Country Link
US (1) US20050268607A1 (en)
EP (1) EP1454051B1 (en)
JP (1) JP2005537433A (en)
KR (1) KR20060111356A (en)
CN (1) CN100412346C (en)
AT (1) ATE286204T1 (en)
AU (1) AU2003266179A1 (en)
BR (1) BR0314462A (en)
CA (1) CA2497603A1 (en)
DE (2) DE10240924B4 (en)
ES (1) ES2236677T3 (en)
MX (1) MXPA05002392A (en)
NO (1) NO20051185L (en)
TR (1) TR200500719T2 (en)
WO (1) WO2004022962A1 (en)
ZA (1) ZA200501785B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT5488B (en) * 2007-06-28 2008-04-25 Antanas BANEVIČIUS The device and method for converting of thermal energy
DE102008031524A1 (en) * 2008-07-03 2010-01-14 Schiessl, Siegfried Thermal engine i.e. stirling engine, for use in e.g. biogas plant, has heat discharging unit movable back and forth between cold area and hot area of cylinder, and operating unit comprising fluid and interacting with displacement piston
CN102269021B (en) * 2010-06-03 2013-11-13 韩树君 Air heat energy cycle power generating unit
CN102971497B (en) * 2010-06-18 2015-04-22 环动态私人有限公司 A method of converting thermal energy into mechanical energy, and an apparatus
JP6071678B2 (en) * 2013-03-22 2017-02-01 株式会社東芝 Sealed secondary battery and manufacturing method of sealed secondary battery
US9841146B2 (en) * 2014-01-10 2017-12-12 Electro-Motive Diesel, Inc. Gas production system for producing high pressure gas
CN103925113B (en) * 2014-04-30 2015-04-08 郭远军 In-line arrangement type high-low pressure power machine and work-doing method of in-line arrangement type high-low pressure power machine
ES2579056B2 (en) * 2015-02-04 2017-03-09 Universidade Da Coruña Energy contribution system to the reliquation plant for natural gas transport ships using residual thermal energy from the propulsion system.
BR102017003822A8 (en) * 2017-02-23 2022-12-20 Associacao Paranaense Cultura Apc DIFFERENTIAL CYCLE HEAT ENGINE COMPOSED OF TWO ISOCORIC PROCESSES, FOUR ISOTHERMAL PROCESSES AND TWO ADIABTIC PROCESSES AND CONTROL PROCESS FOR THE THERMAL ENGINE THERMODYNAMIC CYCLE
BR102017008548A8 (en) * 2017-04-25 2022-12-13 Associacao Paranaense Cultura Apc DIFFERENTIAL CYCLE HEAT ENGINE COMPOSED OF FOUR ISOTHERMAL PROCESSES, FOUR POLYTROPIC PROCESSES WITH REGENERATOR AND CONTROL PROCESS FOR THE THERMAL ENGINE THERMODYNAMIC CYCLE
SI25712A (en) * 2018-09-04 2020-03-31 Gorenje Gospodinjski Aparati, D.O.O. Heat transfer method in the united structure of recuperation unit and the recuperation unit construction
CN109300646B (en) * 2018-11-27 2021-05-18 上海联影医疗科技股份有限公司 Coil structure for superconducting magnet and superconducting magnet
CN110029944B (en) * 2019-04-23 2020-11-03 西南石油大学 PDC drill bit for realizing impact rock breaking by pulse oscillation
EP4248077A1 (en) * 2020-11-23 2023-09-27 Dharmendra Kumar Power engine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1487664A (en) * 1923-02-27 1924-03-18 Malone John Fox Jennens Heat engine
US1717161A (en) * 1923-02-28 1929-06-11 Malone John Fox Jennens Heat engine operated by the expansion of liquids
GB769368A (en) * 1955-03-30 1957-03-06 James Windrum Improvements in hot gas reciprocating engines
US2963853A (en) * 1958-08-11 1960-12-13 Cleveland Pneumatic Ind Inc Liquid cycle heat engine
US4353218A (en) * 1980-05-28 1982-10-12 The United States Of America As Represented By The United States Department Of Energy Heat pump/refrigerator using liquid working fluid
EP0043879A3 (en) * 1980-07-16 1982-08-11 Thermal Systems Limited. Reciprocating external-combustion engine and method of operating the same
US4498295A (en) * 1982-08-09 1985-02-12 Knoeoes Stellan Thermal energy transfer system and method
DE3305253A1 (en) * 1983-02-16 1984-08-16 Karlheinz Dipl.-Phys. Dr. 3300 Braunschweig Raetz Malone thermal engine
US4543793A (en) * 1983-08-31 1985-10-01 Helix Technology Corporation Electronic control of cryogenic refrigerators
JPS6179842A (en) * 1984-09-28 1986-04-23 Aisin Seiki Co Ltd Liquid type stirling engine
US4637211A (en) * 1985-08-01 1987-01-20 Dowell White Apparatus and method for converting thermal energy to mechanical energy
US5327745A (en) * 1993-09-28 1994-07-12 The United States Of America As Represented By The Secretary Of The Navy Malone-Brayton cycle engine/heat pump
US5737925A (en) * 1995-11-30 1998-04-14 Sanyo Electric Co., Ltd. Free piston Vuillermier machine
KR100233198B1 (en) * 1997-07-04 1999-12-01 윤종용 Pumping apparatus for stirring refrigerrator
US6282908B1 (en) * 1999-02-25 2001-09-04 Mark Weldon High efficiency Malone compressor
DE19959687C2 (en) * 1999-12-02 2002-01-24 Andreas Gimsa Heat engine with rotating cylinders

Also Published As

Publication number Publication date
JP2005537433A (en) 2005-12-08
EP1454051A1 (en) 2004-09-08
DE10240924B4 (en) 2005-07-14
MXPA05002392A (en) 2005-10-05
BR0314462A (en) 2005-12-13
DE50300228D1 (en) 2005-02-03
ES2236677T3 (en) 2005-07-16
TR200500719T2 (en) 2005-05-23
AU2003266179A1 (en) 2004-03-29
DE10240924A1 (en) 2004-03-18
KR20060111356A (en) 2006-10-27
CN1708638A (en) 2005-12-14
ATE286204T1 (en) 2005-01-15
US20050268607A1 (en) 2005-12-08
ZA200501785B (en) 2005-09-14
WO2004022962A1 (en) 2004-03-18
CN100412346C (en) 2008-08-20
NO20051185L (en) 2005-06-01
CA2497603A1 (en) 2004-03-18

Similar Documents

Publication Publication Date Title
EP1454051B1 (en) Thermohydrodynamic power amplifier
DE60305982T2 (en) STIRLING-MOTORIZED HEAT PUMP WITH FLUID CONNECTION
EP1017933B1 (en) Method and device for entropy transfer with a thermodynamic cyclic process
DE102008042828A1 (en) Method and apparatus for operating a Stirling cycle
DE10052993A1 (en) Process for converting thermal energy into mechanical energy in a thermal engine comprises passing a working medium through an expansion phase to expand the medium, and then passing
DE102009057210B4 (en) Stirling evaporator heat power plant
DE3500124A1 (en) Decentral supply unit operated by external heat supply for the alternative and combined generation of electrical energy, heat and cold
JP2005537433A5 (en)
DE2342103A1 (en) Hot gas engine - has cycle involving isothermal, isochoric and isobaric phases and incorporates regenerative heat exchanger
EP3320189B1 (en) Supercritical cyclic process comprising isothermal expansion and free-piston heat engine comprising hydraulic extracting of energy for said cyclic process
WO2016146096A2 (en) Membrane stirling engine
DE102008041939A1 (en) A method of operating a heat pump or chiller or engine and heat pump or chiller and engine
EP0796392B1 (en) Device with a drive and machine capable of being driven by the drive
DE102006028561B3 (en) Hydro-Stirling motor has two-cylinders linked by pipe with hydraulic motor power take-off
DE3314705A1 (en) THROUGH HEAT SUPPLY DIRECTLY OPERATED GAS COMPRESSOR
EP1509690B1 (en) Method and device for converting thermal energy into kinetic energy
DE102007017663A1 (en) Thermal energy conversion arrangement, has cylinders coupled with heat pump, where one cylinder or cylinder head is supported in heat medium heated by pump and another cylinder or cylinder foot is supported in cooling medium cooled by pump
DE112016002485B4 (en) EXPANSION MACHINE AND METHOD FOR PRODUCING COOLING
DE10051115A1 (en) Pulse-tube cooler for cooling cryogenic spacecraft applications has given phase difference between compression cylinder and expansion cylinder
DE3732123A1 (en) Prime mover
DE801956C (en) Gas engine
DE3227643A1 (en) Domestic energy system
DE19635976A1 (en) External combustion heat engine with rotating piston
AT500640B1 (en) Method of converting thermal into kinetic energy involves feeding working fluid between two working spaces
DE3607432A1 (en) Regenerative machine and heat engine with external heat supply

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50300228

Country of ref document: DE

Date of ref document: 20050203

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050401066

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: POWERFLUID GMBH

RIN2 Information on inventor provided after grant (corrected)

Inventor name: WEBER, ECKHART

Inventor name: KLEINWAECHTER, JUERGEN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: POWERFLUID GMBH

Free format text: KLEINWAECHTER, JUERGEN#LINDENSTRASSE 15#79400 KANDERN (DE) $ COLSMAN-FREYBERGER, CLAUS#715 NORTH BROADWAY#HASTING-ON-HUDSON, NY 10706 (US) $ WEBER, ECKHART#AM LAUFER SCHLAGTURM 6#90403 NUERNBERG (DE) -TRANSFER TO- POWERFLUID GMBH#INDUSTRIESTRASSE 8#79541 LOERRACH (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050509

NLS Nl: assignments of ep-patents

Owner name: POWERFLUID GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: POWERFLUID GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2236677

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050820

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050930

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: POWERFLUID GMBH

Free format text: POWERFLUID GMBH#INDUSTRIESTRASSE 8#79541 LOERRACH (DE) -TRANSFER TO- POWERFLUID GMBH#INDUSTRIESTRASSE 8#79541 LOERRACH (DE)

BERE Be: lapsed

Owner name: *WEBER ECKHART

Effective date: 20050831

Owner name: *KLEINWACHTER JURGEN

Effective date: 20050831

Owner name: *COLSMAN-FREYBERGER CLAUS

Effective date: 20050831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080829

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081015

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081015

Year of fee payment: 6

Ref country code: CZ

Payment date: 20081030

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081013

Year of fee payment: 6

Ref country code: ES

Payment date: 20080929

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080930

Year of fee payment: 6

Ref country code: SE

Payment date: 20081014

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20081017

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100301

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090821