EP1450114B1 - Heat exchanger with a optimised fluid flow heat absorbing channel, in particular for heating apparatus - Google Patents

Heat exchanger with a optimised fluid flow heat absorbing channel, in particular for heating apparatus Download PDF

Info

Publication number
EP1450114B1
EP1450114B1 EP03027439.3A EP03027439A EP1450114B1 EP 1450114 B1 EP1450114 B1 EP 1450114B1 EP 03027439 A EP03027439 A EP 03027439A EP 1450114 B1 EP1450114 B1 EP 1450114B1
Authority
EP
European Patent Office
Prior art keywords
heat
absorbing
flow
flow duct
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03027439.3A
Other languages
German (de)
French (fr)
Other versions
EP1450114A1 (en
Inventor
Albin Kehl
Franz Schmuker
Albrecht Schäfer
Jan Klosok
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1450114A1 publication Critical patent/EP1450114A1/en
Application granted granted Critical
Publication of EP1450114B1 publication Critical patent/EP1450114B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels

Definitions

  • the invention relates to a heat exchanger with a flow-optimized heat-absorbing flow channel, in particular for a heater, according to the preamble of claim 1.
  • a heat exchanger of this type for a heater is from the FR 695 311 Known: Here is a cylindrical body, which is produced by casting, executed with a heat-transferred wall.
  • the main body has inside a Schugaszug for serving as a heat-emitting medium heating gas.
  • the main body On the outside of the heat-transferring wall, the main body has a helical water channel for serving as a heat-absorbing medium heating water.
  • the water channel as a heat-absorbing flow channel is formed by a trench formed in a helical manner in the outer surface of the outer wall, which is surrounded to the outside with a separate enclosure enclosing the outer wall, so that the closed, helical water channel results on the outer surface of the main body.
  • the water channel is designed over its entire helical extension with a constant cross section, so that the flow rate of the heating water at each point in the water channel is substantially equal.
  • the US 5,403,180 A. shows the preamble of claim 1.
  • a water bucket is shown having a heat-absorbing flow channel for a heat-absorbing medium, wherein the heat-absorbing flow channel is arranged helically.
  • Object of the present invention is to provide a heat exchanger in which an optimal heat transfer from the heat-emitting medium is accomplished on the heat-absorbing medium.
  • the heat exchanger according to the invention with the characterizing features of claim 1 has the advantage that the heat transfer from the heat-emitting medium is improved on the heat-absorbing medium.
  • the heat transfer from the heat-emitting medium is optimized to the heat-absorbing medium.
  • the flow rate of the heat-absorbing medium is increased by reducing the cross-section of the heat-absorbing flow channel.
  • the flow cross-section of the heat-absorbing flow channel is widened in order to make the flow rate of the heat-absorbing medium in these areas smaller.
  • the different flow velocities of the heat-absorbing medium adapted to the local heat load of the heat-transferring wall of the base body are used to sum up to produce a minimum pressure drop of the heat-absorbing medium.
  • This minimized or optimized Duckabfall the heat-absorbing medium allows that required for the circulation of the heat-absorbing medium circulating pump can be set to optimum performance.
  • the present invention also serves to keep the pressure drop within the heat exchanger small.
  • the adaptation of the flow rate to the heat load of the respective region of the heat exchanger over the cross section of the heat-absorbing flow channel can be realized by varying the depth and / or the width of the heat-absorbing flow channel, so that the cross section of the flow channel along its spiral extension corresponding to the heat load is adapted in the respective area or at the respective location of the heat-transferring wall of the heat exchanger. Due to the construction concept of the heat-absorbing flow channel designed as an open trench-shaped depression on the outer wall of the main body of the heat exchanger, the variation of depth and / or width of the flow channel along its helical extension can be easily achieved by manufacturing in sand casting or chill casting.
  • Another measure for increasing the heat transfer is possible in that at points of high heat load, such as ribbed areas on the side of the heat-emitting medium, additional ribs protrude into the heat-absorbing flow channel and are flowed around by the heat-absorbing medium, whereby the heat-transferring surface is further increased toward the heat-absorbing medium.
  • longitudinal ribs can be introduced into the flow channel, whereby they protrude so high into the flow channel that the flow channel is divided into individual, parallel-connected individual channels. In the individual channels are different Flow velocities of the heat-absorbing medium. This increases the heat transferring surface to a maximum value.
  • the flow baffles can be designed so that they simultaneously dissipate heat and thereby further increase the heat transfer surface.
  • a particularly expedient embodiment of the flow baffles is that they simultaneously serve as heat-transmitting ribs and are arranged at an angle of approximately 45 ° inclined in the flow channel. This results in a mixture of different flow filaments, whereby the forming in the flow channel temperature stratification is mixed more and mix on the wall to the heat-emitting medium flowing hot layers with spaced from this wall colder layers are easier to mix. This increases the heat transfer and prevents boiling of the heat-absorbing medium.
  • FIG. 1 illustrated heat exchanger for a heater in particular a condensing boiler, has a base body 10 with a heat-transferring wall 11 and with a burner-side end portion 13 and an exhaust-side end portion 14 on.
  • a burner-side end portion 13 In the burner-side end portion 13 is an opening 17, in which an unillustrated burner is used.
  • the adjoining the burner space within the body 10 formed a combustion chamber 15.
  • a SchuG printer 19 As a heat-emitting flow channel through which the fuel gas generated by the burner flows as a heat-emitting medium.
  • the heat-transferring wall 11 on the inside of different longitudinal ribs 21 and transverse ribs 22 to increase the heat exchanger surface.
  • an exhaust port 18 is provided, via which the fuel gas generated by the burner is discharged as exhaust gas.
  • a filler 50 may be used.
  • the packing 50 causes the heating gas to be directed to the transverse ribs 22 and the wall 11.
  • the main body 10 is, for example, an aluminum sand casting component which, due to its corrosion resistance and heat absorption capacity and thermal conductivity, is particularly suitable as a material for heaters which are operated in condensing operation.
  • the main body 10 is designed with a circular cross section and is slightly conical in the flow direction of the heating gas with decreasing diameter. However, it is just as possible to carry out the basic body 10 cylindrically or with an oval cross-section.
  • the recess 23 is initially open at the base 10 to the outside.
  • the base body 10 is surrounded by an envelope 20, which is made of steel, for example.
  • the enclosure 20 is a separate component, which is connected to the base body 10 in a suitable manner, as will be described below.
  • a helically extending, heat-absorbing flow channel 25 is formed for a heat-absorbing medium.
  • the heat-absorbing medium is the heating water for a heating circuit, not shown, so that the heat-absorbing flow channel 25 is referred to on the lateral surface of the body 10 subsequent as a water channel for the heating water.
  • the casing 20 is pushed onto the main body 10 from the exhaust gas side until the casing 20 bears against the outer surface of the main body 10.
  • plastic deformation 33 in the form of a bead is introduced into the casing 20.
  • the circumferential deformation 33 is expediently produced by rolling, wherein the depth of the deformation must be designed such that the deformation 33 exerts a pressing force on the respective sealing ring 30.
  • the water channel 25 has along its helical course at certain points on a different cross-section, so that the heating water flowing in the water channel 25 has locally at the corresponding locations a different flow velocity.
  • the flow cross-section of the water channel 25 and thus the flow rate of the heating water in the water channel 25 is selected such that in the areas or at the locations of the heat-transferring wall 11, where there is a high heat load, there is a high flow rate heating water, and in the areas or at the points of the heat-transferring wall 11, where there is a lower heat load, sets a lower flow rate of the heating water. Areas with a high heat load has the heat-transferring wall 11 where the heating gas in the heating gas 19 generates a high heat input into the heat-transferring wall 11.
  • the heat load is the amount of heat present in the heat-transferring wall 11 per surface area and per time, the amount of heat being determined by the heat flow emitted by the heating gas.
  • the largest heat load is in the heat exchanger of the present embodiment in the adjoining the combustion chamber 15 section. In the flow direction of the heating gas, the heat load then decreases to the exhaust side end portion 14 from. In the area of the combustion chamber 15 itself is in the heat exchanger of the present Embodiment to find a lower heat load than in the adjoining the combustion chamber 15 section.
  • the widths X1 to X8 and / or the depths Y1 to Y5 of the trench-shaped recesses 23 are varied accordingly.
  • the turns 25.1 and 25.2 of the water channel 25 are designed with a depth Y1.
  • the width X2 of the winding 25.2 is greater than the width X1 of the winding 25.1, which sets in the winding 25.2 a larger flow cross-section and thus a lower flow velocity of the heating water.
  • the turns 25.3 and 25.4 have a smaller depth Y2, the width X4 being smaller than the width X3.
  • the winding 25.5 has a special design, wherein the cross section of the winding continuously widens in the flow direction of the heating gas. This results in a local reduction in the flow velocity within the water channel 25 in the area of the winding 25.5.
  • the winding 25.5 is formed at the transition from a region of high heat load to a region of lower heat load, which is in the local areas with a smaller cross-section with the depth Y3 sets a higher flow rate than in the larger cross-sectional area with depth Y4, where Y3 ⁇ Y4.
  • the turns 25.6, 25.7 and 25.8, which in the present embodiment have the same depth Y5 have a greater width X6 to X8 and thus a larger cross section.
  • the setting in the turns 25.6 to 25.8 lower flow velocity of the heating water is sufficient to dissipate the lower heat load there.
  • a further optimization of the heat transfer is achieved when, according to the embodiment in FIG. 2 the wall 11 at the locations where there is a high or the highest heat load or heat flow density, a thickening 27 has.
  • the thickening 27 is in FIG. 2 indicated by a dashed line.
  • the highest heat flux density exists where the transverse ribs 22 with the largest surface protrude into the heating gas and the heat flow of the heating gas according to the wall Insert 11. Due to the thickening 27 of the wall 11 in the direction of the flow channel 25, the depth Y of the trench-shaped recess 23 is reduced, whereby the flow cross section of the heat-absorbing flow channel 25 is reduced at these points.
  • the flow rate of the heating water increases in these sections or at these points, whereby a better heat transfer occurs at these locations.
  • the heat flow coming from the transverse ribs 22 is more evenly distributed to the side of the wall 11 facing the water channel 25 at these locations through the thicker wall 11. This reduces so-called hot spots.
  • Another possibility for optimizing the heat transfer exists according to FIG. 2 in that in the trench-shaped recess 23 opposite the transverse ribs 23 nubs 43 are formed, which project into the water channel 25. As a result, the outgoing of the transverse ribs 22 largest heat flow is better introduced into the water channel 25.
  • FIG. 3 Another embodiment goes out FIG. 3 out.
  • the depths Y of the individual turns 25.1 to 25.7 are substantially the same size.
  • the widths X1 to X7 of the trench-shaped depressions 23 are, as in the embodiment according to FIG. 1 , adapted to the corresponding local heat loads in the base body 10.
  • the width X2 of the winding 25.2 is greater than the width X3 of the winding 25.3 and the width X3 of the winding 25.3 greater than the width X4 of the winding 25.1.
  • widths X5, X6 and X7 increase again, where X5 ⁇ X6 ⁇ X7.
  • different cross sections of the water channel 25 are realized, so that different flow rates for the heating water occur within these turns.
  • Essential for the embodiment in FIG. 3 is that at locations with a large heat load in the water channel 25 additional water-side ribs 41 and / or flow baffles 42 and / or nubs 43 are available.
  • the flow baffles 42 are inclined in the flow direction of the heating water attached at an angle of for example 45 °.
  • the flow baffles 42 lead to turbulence and by mixing the boundary layers on the inner wall of the water channel 25 to increased heat transfer from the body 10 to the heating water flowing in the water channel 25.
  • the flow baffles 42 can be designed so that they at the same time dissipate heat and thereby increase the heat transferring surface.
  • the arrangement of the flow baffles at an angle of about 45 ° results in a mixture of different flow filaments, which disturbed the forming in the water channel 25 temperature stratification and mixing the flowing on the wall 11 hot layer with the spaced colder layers. This additionally increases the heat transfer and prevents boiling of the heating water.
  • a formation of at least one turn 25.7 with longitudinal ribs 44 is possible, which may be arranged in height in the water channel 25 so that the flow channel or the winding at the corresponding point in individual parallel-connected individual channels 45 divides, so that within a turn 25 different flow velocities occur in the water channel. This increases the heat transferring surface to a maximum possible value.
  • the formation of water-side ribs 41 and / or flow baffles 42 and / or nubs 43 and / or longitudinal ribs 44 is also in the embodiments according to the FIG. 1 and 2 possible.
  • the heat exchangers described are not only possible for use in heaters, but it is also conceivable to use the formation of the flow channels 19 and 25 for a heat exchanger for cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung betrifft einen Wärmetauscher mit einem strömungsoptimierten wärmeaufnehmenden Strömungskanal, insbesondere für ein Heizgerät, nach dem Oberbegriff des Anspruchs 1.The invention relates to a heat exchanger with a flow-optimized heat-absorbing flow channel, in particular for a heater, according to the preamble of claim 1.

Stand der TechnikState of the art

Ein Wärmetauscher dieser Art für ein Heizgerät ist aus der FR 695 311 bekannt: Dabei ist ein zylindrischer Grundkörper, der gießtechnisch hergestellt ist, mit einer wärmeübertragenen Wand ausgeführt. Der Grundkörper besitzt im Inneren einen Heizgaszug für ein als wärmeabgebendes Medium dienendes Heizgas. An der Außenseite der wärmeübertragenden Wand weist der Grundkörper einen wendelförmigen Wasserkanal für ein als wärmeaufnehmendes Medium dienendes Heizwasser auf. Der Wasserkanal als wärmeaufnehmender Strömungskanal ist dabei durch einen in die Mantelfläche der Außenwand wendelförmig eingeformten Graben gebildet, der nach außen hin mit einer die Außenwand umschließenden separaten Umhüllung umgeben ist, so dass sich der geschlossene, wendelförmige Wasserkanal an der äußeren Mantelfläche des Grundkörpers ergibt. Der Wasserkanal ist dabei über seine gesamte wendelförmige Erstreckung mit einem gleichbleibenden Querschnitt ausgeführt, so dass die Strömungsgeschwindigkeit des Heizwassers an jeder Stelle im Wasserkanal im Wesentlichen gleich ist.A heat exchanger of this type for a heater is from the FR 695 311 Known: Here is a cylindrical body, which is produced by casting, executed with a heat-transferred wall. The main body has inside a Heizgaszug for serving as a heat-emitting medium heating gas. On the outside of the heat-transferring wall, the main body has a helical water channel for serving as a heat-absorbing medium heating water. The water channel as a heat-absorbing flow channel is formed by a trench formed in a helical manner in the outer surface of the outer wall, which is surrounded to the outside with a separate enclosure enclosing the outer wall, so that the closed, helical water channel results on the outer surface of the main body. The water channel is designed over its entire helical extension with a constant cross section, so that the flow rate of the heating water at each point in the water channel is substantially equal.

Die US 5 403 180 A zeigt den Oberbegriff von Anspruch 1. In diesem Dokument ist ein Wassererwämer gezeigt, der einen wärmeaufnehmenden Strömungskanal für ein wärmeaufnehmendes Medium aufweist, wobei der wärmeaufnehmende Strömungskanal wendelförmig angeordnet ist.The US 5,403,180 A. shows the preamble of claim 1. In this document a water bucket is shown having a heat-absorbing flow channel for a heat-absorbing medium, wherein the heat-absorbing flow channel is arranged helically.

Aus EP 287 142 B1 ist ein weiterer, gießtechnisch hergestellter Wärmetauscher bekannt, bei dem der Querschnitt des Wasserkanals von dem in der Zone niedriger Heizgastemperatur angeordneten Einlass zu dem in der Zone hoher Heizgastemperatur angeordneten Auslass hin abnimmt.Out EP 287 142 B1 There is known another casting heat exchanger in which the cross section of the water channel decreases from the inlet located in the zone of low temperature of the heating gas to the outlet situated in the zone of high temperature of the heating gas.

Bei einem Wärmetauscher in NL 100 13 74 A ragen zur Vergrößerung der wärmeübertragenden Oberfläche Strömungsrippe in das wärmeaufnehmende Heizwasser hinein.For a heat exchanger in NL 100 13 74 A To increase the heat-transferring surface, flow ribs project into the heat-absorbing heating water.

Aufgabe der vorliegenden Erfindung ist es, einen Wärmetauscher zu schaffen, bei dem ein optimaler Wärmeübergang vom wärmeabgebenden Medium auf das wärmeaufnehmende Medium bewerkstelligt wird.Object of the present invention is to provide a heat exchanger in which an optimal heat transfer from the heat-emitting medium is accomplished on the heat-absorbing medium.

Vorteile der ErfindungAdvantages of the invention

Der erfindungsgemäße Wärmetauscher mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, dass die Wärmeübertragung vom wärmeabgebenden Medium auf das wärmeaufnehmende Medium verbessert wird. Durch die Anpassung der Strömungsgeschwindigkeit des wärmeaufnehmenden Mediums im wärmeaufnehmenden Strömungskanal an die lokale Wärmebelastung der wärmeübertragenden Wand des Wärmetauschers in dem jeweiligen Bereich bzw. an der jeweiligen Stelle des wärmeaufnehmenden Strömungskanals wird die Wärmeübertragung vom wärmeabgebenden Medium auf das wärmeaufnehmende Medium optimiert. An Stellen hoher Wärmebelastung wird die Strömungsgeschwindigkeit des wärmeaufnehmenden Mediums durch Verringerung des Querschnitts des wärmeaufnehmenden Strömungskanals erhöht. An Stellen geringer Wärmebelastung wird dagegen der Strömungsquerschnitt des wärmeaufnehmenden Strömungskanals erweitert, um die Strömungsgeschwindigkeit des wärmeaufnehmenden Mediums in diesen Bereichen kleiner zu gestalten. Außerdem dienen die an die lokale Wärmebelastung der wärmeübertagenden Wand des Grundkörpers angepassten unterschiedlichen Strömungsgeschwindigkeiten des wärmeaufnehmenden Mediums dazu, um in Summe einen minimalen Druckabfall des wärmeaufnehmenden Mediums zu erzeugen. Dieser minimierte bzw. optimierte Duckabfall des wärmeaufnehmenden Mediums ermöglicht, dass die für die Umwälzung des wärmeaufnehmenden Mediums erforderliche Umwälzpumpe auf eine optimale Leistung eingestellt werden kann. Insofern dient die vorliegende Erfindung außerdem dazu, den Druckabfall innerhalb des Wärmetauschers klein zu halten.The heat exchanger according to the invention with the characterizing features of claim 1 has the advantage that the heat transfer from the heat-emitting medium is improved on the heat-absorbing medium. By adapting the flow rate of the heat-absorbing medium in the heat-receiving flow channel to the local heat load of the heat-transferring wall of the heat exchanger in the respective area or at the respective location of the heat-absorbing flow channel, the heat transfer from the heat-emitting medium is optimized to the heat-absorbing medium. At high heat load locations, the flow rate of the heat-absorbing medium is increased by reducing the cross-section of the heat-absorbing flow channel. At locations of low heat load, however, the flow cross-section of the heat-absorbing flow channel is widened in order to make the flow rate of the heat-absorbing medium in these areas smaller. In addition, the different flow velocities of the heat-absorbing medium adapted to the local heat load of the heat-transferring wall of the base body are used to sum up to produce a minimum pressure drop of the heat-absorbing medium. This minimized or optimized Duckabfall the heat-absorbing medium allows that required for the circulation of the heat-absorbing medium circulating pump can be set to optimum performance. In this respect, the present invention also serves to keep the pressure drop within the heat exchanger small.

Vorteilhafte Weiterbildungen der Erfindung sind durch die Maßnahmen der Unteransprüche möglich. Die Anpassung der Strömungsgeschwindigkeit an die Wärmebelastung des jeweiligen Bereiches des Wärmeübertragers über den Querschnitt des wärmeaufnehmenden Strömungskanals kann dabei durch eine Variierung der Tiefe und/oder der Breite des wärmeaufnehmenden Strömungskanals realisiert werden, so dass der Querschnitt des Strömungskanals entlang seiner spiralförmigen Erstreckung entsprechend an die Wärmebelastung in dem jeweiligen Bereich oder an der jeweiligen Stelle der wärmeübertragenden Wand des Wärmetauschers angepasst wird. Aufgrund des Konstruktionskonzeptes des als offene grabenförmige Vertiefung an der Außenwand des Grundkörpers des Wärmetauschers ausgeführten wärmeaufnehmenden Strömungskanals ist die Variierung von Tiefe und/oder Breite des Strömungskanals entlang seiner wendelförmigen Erstreckung fertigungstechnisch durch die Herstellung in Sandguss oder Kokillenguss einfach realisierbar. Eine Änderung des Verlaufes von Tiefe und/oder Breite des Strömungskanals durch die aufwändige Herstellung über verlorene Kerne wäre hingegen nur schwer möglich. Die somit vorliegende kernlose Herstellung des Strömungskanals ermöglicht insofern eine völlig freie und flexible Gestaltung der Führung des wärmeaufnehmenden Mediums an der Außenwand des Grundkörpers des Wärmetauschers.Advantageous developments of the invention are possible by the measures of the subclaims. The adaptation of the flow rate to the heat load of the respective region of the heat exchanger over the cross section of the heat-absorbing flow channel can be realized by varying the depth and / or the width of the heat-absorbing flow channel, so that the cross section of the flow channel along its spiral extension corresponding to the heat load is adapted in the respective area or at the respective location of the heat-transferring wall of the heat exchanger. Due to the construction concept of the heat-absorbing flow channel designed as an open trench-shaped depression on the outer wall of the main body of the heat exchanger, the variation of depth and / or width of the flow channel along its helical extension can be easily achieved by manufacturing in sand casting or chill casting. A change in the course of depth and / or width of the flow channel through the complex production over lost cores, however, would be difficult. The present coreless production of the flow channel thus allows a completely free and flexible design of the leadership of the heat-absorbing medium on the outer wall of the main body of the heat exchanger.

Eine weitere Maßnahme zur Steigerung des Wärmeübergangs ist dadurch möglich, dass an Stellen großer Wärmebelastung, wie beispielsweise an Bereichen, die auf der Seite des wärmeabgebenden Mediums berippt sind, zusätzliche Rippen in den wärmeaufnehmenden Strömungskanal hineinragen und vom wärmeaufnehmenden Medium umströmt werden, wodurch die wärmeübertragende Oberfläche zum wärmeaufnehmenden Medium hin weiter erhöht wird. Zusätzlich können Längsrippen in den Strömungskanal eingebracht sein, wobei diese so hoch in den Strömungskanal hineinragen, dass der Strömungskanal in einzelne, parallel geschaltete Einzelkanäle aufgeteilt wird. In den Einzelkanälen bilden sich unterschiedliche Strömungsgeschwindigkeiten des wärmeaufnehmenden Mediums aus. Dadurch wird die wärmeübertragende Oberfläche auf einen maximalen Wert erhöht. Eine weitere Möglichkeit zur Verbesserung des Wärmeübergangs besteht in der Ausbildung von Strömungsschikanen im Strömungskanal, die zu Turbulenzen und zur Vermischung der Grenzschicht an der Wandung und damit zu einem erhöhten Wärmeübergang führen. Die Strömungsschikanen können dabei so ausgebildet sein, dass sie gleichzeitig auch Wärme abführen und dadurch die wärmeübertragende Oberfläche weiter vergrößern. Eine besonders zweckmäßige Ausführung der Strömungsschikanen besteht darin, dass diese gleichzeitig als wärmeübertragende Rippen dienen und in einem Winkel von ca. 45° geneigt im Strömungskanal angeordnet sind. Dadurch entsteht eine Mischung unterschiedlicher Strömungsfäden, wodurch die in dem Strömungskanal sich bildende Temperaturschichtung stärker durchmischt wird und die an der Wandung zum wärmeabgebenden Medium hin strömenden heißen Schichten mit von dieser Wandung beabstandeten kälteren Schichten sich leichter vermischen. Dadurch wird der Wärmeübergang erhöht und ein Sieden des wärmeaufnehmenden Mediums vermieden.Another measure for increasing the heat transfer is possible in that at points of high heat load, such as ribbed areas on the side of the heat-emitting medium, additional ribs protrude into the heat-absorbing flow channel and are flowed around by the heat-absorbing medium, whereby the heat-transferring surface is further increased toward the heat-absorbing medium. In addition, longitudinal ribs can be introduced into the flow channel, whereby they protrude so high into the flow channel that the flow channel is divided into individual, parallel-connected individual channels. In the individual channels are different Flow velocities of the heat-absorbing medium. This increases the heat transferring surface to a maximum value. Another possibility for improving the heat transfer is the formation of flow baffles in the flow channel, which lead to turbulence and mixing of the boundary layer on the wall and thus to an increased heat transfer. The flow baffles can be designed so that they simultaneously dissipate heat and thereby further increase the heat transfer surface. A particularly expedient embodiment of the flow baffles is that they simultaneously serve as heat-transmitting ribs and are arranged at an angle of approximately 45 ° inclined in the flow channel. This results in a mixture of different flow filaments, whereby the forming in the flow channel temperature stratification is mixed more and mix on the wall to the heat-emitting medium flowing hot layers with spaced from this wall colder layers are easier to mix. This increases the heat transfer and prevents boiling of the heat-absorbing medium.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description.

Es zeigen:

Figur 1
eine Schnittdarstellung durch einen erfindungsgemäßen Wärmetauscher gemäß einem ersten Ausführungsbeispiel,
Figur 2
eine Schnittdarstellung nach der Linie II - II in Figur 1 gemäß einem zweiten Ausführungsbeispiel und
Figur 3
eine Seitenansicht eines Grundkörpers eines erfindungsgemäßen Wärmetauschers gemäß einem dritten Ausführungsbeispiel.
Show it:
FIG. 1
a sectional view through a heat exchanger according to the invention according to a first embodiment,
FIG. 2
a sectional view along the line II - II in FIG. 1 according to a second embodiment and
FIG. 3
a side view of a main body of a heat exchanger according to the invention according to a third embodiment.

Ausführungsbeispieleembodiments

Der in Figur 1 dargestellte Wärmetauscher für ein Heizgerät, insbesondere ein Brennwertgerät, weist einen Grundkörper 10 mit einer wärmeübertragenden Wand 11 sowie mit einem brennerseitigen Endabschnitt 13 und einem abgasseitigen Endabschnitt 14 auf. Im brennerseitigen Endabschnitt 13 befindet sich eine Öffnung 17, in die ein nicht dargestellter Brenner eingesetzt wird. Der sich an den Brenner anschleißende Raum innerhalb des Grundkörpers 10 bildete eine Brennkammer 15. An die Brennkammer 15 schließt sich innerhalb des Grundkörpers 10 ein Heizgaszug 19 als wärmeabgebender Strömungskanal an, durch den das vom Brenner erzeugte Heizgas als wärmeabgebendes Medium strömt. Innerhalb des Heizgaszuges 19 weist die wärmeübertragende Wand 11 an der Innenseite verschiedene Längsrippen 21 und Querrippen 22 zur Vergrößerung der Wärmetauscherfläche auf. Im abgasseitigen Endabschnitt 14 ist eine Abgasöffnung 18 vorhanden, über die das vom Brenner erzeugte Heizgas als Abgas abgeleitet wird. In das Zentrum des Heizgaszuges 19 kann gemäß Figur 2 ein Füllkörper 50 eingesetzt sein. Der Füllkörper 50 bewirkt, dass das Heizgas zu den Querrippen 22 und zur Wand 11 hin gelenkt wird.The in FIG. 1 illustrated heat exchanger for a heater, in particular a condensing boiler, has a base body 10 with a heat-transferring wall 11 and with a burner-side end portion 13 and an exhaust-side end portion 14 on. In the burner-side end portion 13 is an opening 17, in which an unillustrated burner is used. The adjoining the burner space within the body 10 formed a combustion chamber 15. At the combustion chamber 15 is followed within the body 10 a Heizgaszug 19 as a heat-emitting flow channel through which the fuel gas generated by the burner flows as a heat-emitting medium. Within the Heizgaszuges 19, the heat-transferring wall 11 on the inside of different longitudinal ribs 21 and transverse ribs 22 to increase the heat exchanger surface. In the exhaust side end portion 14, an exhaust port 18 is provided, via which the fuel gas generated by the burner is discharged as exhaust gas. In the center of Heizgaszuges 19 can according to FIG. 2 a filler 50 may be used. The packing 50 causes the heating gas to be directed to the transverse ribs 22 and the wall 11.

Der Grundkörper 10 ist beispielsweise ein Aluminium-Sandguss-Bauteil, das sich auf Grund seiner Korrosionsbeständigkeit sowie Wärmeaufnahmefähigkeit und Wärmeleitfähigkeit besonders als Material für Heizgeräte eignet, die im kondensierenden Betrieb betrieben werden. Der Grundkörper 10 ist mit einem kreisförmigen Querschnitt ausgeführt und verläuft in Strömungsrichtung des Heizgases mit abnehmendem Durchmesser leicht konisch. Es ist aber genauso möglich, den Grundkörper 10 zylindrisch oder mit einem ovalen Querschnitt auszuführen.The main body 10 is, for example, an aluminum sand casting component which, due to its corrosion resistance and heat absorption capacity and thermal conductivity, is particularly suitable as a material for heaters which are operated in condensing operation. The main body 10 is designed with a circular cross section and is slightly conical in the flow direction of the heating gas with decreasing diameter. However, it is just as possible to carry out the basic body 10 cylindrically or with an oval cross-section.

An der Außenseite der wärmeübertragenden Wand 11 verläuft wendelförmig eine grabenförmige Vertiefung 23 mit einer umlaufenden Wand 24, wobei die Windungen als Windungen 25.1 bis 25.8 bezeichnet sind. Die Vertiefung 23 ist dabei am Grundkörper 10 nach außen hin zunächst offen. Zum Verschließen der nach außen hin offenen Vertiefung 23 ist der Grundkörper 10 von einer Umhüllung 20 umgeben, die beispielsweise aus Stahl ausgeführt ist. Die Umhüllung 20 ist dabei ein separates Bauteil, das mit dem Grundkörper 10 in geeigneter Weise, wie nachfolgend noch beschrieben wird, verbunden wird. Nach der Montage des Grundkörpers 10 mit der Umhüllung 20 entsteht ein wendelförmig verlaufender, wärmeaufnehmender Strömungskanal 25 für ein wärmeaufnehmendes Medium. Beim vorliegenden Ausführungsbeispiel ist das wärmeaufnehmende Medium das Heizwasser für einen nicht dargestellten Heizkreis, so dass der wärmeaufnehmende Strömungskanal 25 an der Mantelfläche des Grundkörpers 10 nachfolgende als Wasserkanal für das Heizwasser bezeichnet wird.On the outside of the heat-transferring wall 11 runs helically a trench-shaped recess 23 with a circumferential wall 24, wherein the windings are designated as turns 25.1 to 25.8. The recess 23 is initially open at the base 10 to the outside. For closing the recess 23, which is open toward the outside, the base body 10 is surrounded by an envelope 20, which is made of steel, for example. The enclosure 20 is a separate component, which is connected to the base body 10 in a suitable manner, as will be described below. After assembly of the base body 10 with the sheath 20, a helically extending, heat-absorbing flow channel 25 is formed for a heat-absorbing medium. In the present embodiment, the heat-absorbing medium is the heating water for a heating circuit, not shown, so that the heat-absorbing flow channel 25 is referred to on the lateral surface of the body 10 subsequent as a water channel for the heating water.

Am brennerseitigen Endabschnitt 13 und am abgasseitigen Endabschnitt 14 befindet sich im Grundkörper 10 jeweils eine umlaufende Nut 26, in der sich jeweils ein Dichtring 30 befindet. Zur Herstellung des Wärmetauschers wird die Umhüllung 20 von der Abgasseite aus auf den Grundkörper 10 geschoben, bis die Umhüllung 20 an der äußeren Mantelfläche des Grundkörpers 10 anliegt. Zur Realisierung einer Dichtwirkung zwischen Umhüllung 20 und Grundkörper 10 ist im Bereich der Nuten 26 in die Umhüllung 20 beispielsweise jeweils eine umlaufende, plastische Verformung 33 in Form einer Sicke eingebracht. Die umlaufende Verformung 33 wird dabei zweckmäßig durch Rollieren erzeugt, wobei die Tiefe der Verformung derart gestaltet sein muss, dass die Verformung 33 eine Presskraft auf den jeweiligen Dichtring 30 ausübt. Zum Anschluss eines Heizwasservorlaufs weist die Umhüllung 20 am brennerseitigen Endabschnitt 13 einen nicht dargestellten Anschluss-Stutzen auf. Ein ebenfalls nicht dargestellter weiterer Anschluss-Stutzen für den Heizwasserrücklauf ist beispielsweise an der Stirnfläche des abgasseitigen Endabschnitts 14 am Grundkörpers 10 angeordnet.On the burner-side end portion 13 and the exhaust-side end portion 14 is located in the main body 10 each have a circumferential groove 26, in each of which a sealing ring 30 is located. To produce the heat exchanger, the casing 20 is pushed onto the main body 10 from the exhaust gas side until the casing 20 bears against the outer surface of the main body 10. To realize a sealing effect between the casing 20 and the base body 10, in the region of the grooves 26, for example, in each case an encircling, plastic deformation 33 in the form of a bead is introduced into the casing 20. The circumferential deformation 33 is expediently produced by rolling, wherein the depth of the deformation must be designed such that the deformation 33 exerts a pressing force on the respective sealing ring 30. To connect a Heizwasservorlaufs, the envelope 20 at the burner-side end portion 13 on a connecting piece, not shown. A likewise not shown further connection piece for Heizwasserrücklauf is arranged for example on the end face of the exhaust-side end portion 14 on the base body 10.

Der Wasserkanal 25 weist entlang seines wendelförmigen Verlaufs an bestimmten Stellen einen unterschiedlichen Querschnitt auf, so dass das im Wasserkanal 25 strömende Heizwasser an den entsprechenden Stellen lokal eine unterschiedliche Strömungsgeschwindigkeit aufweist. Dabei wird der Strömungsquerschnitt des Wasserkanals 25 und damit die Strömungsgeschwindigkeit des Heizwassers im Wasserkanal 25 derart gewählt, dass in den Bereichen bzw. an den Stellen der wärmeübertragenden Wand 11, an denen eine hohe Wärmebelastung vorliegt, sich eine hohe Strömungsgeschwindigkeit Heizwassers, und in den Bereichen bzw. an den Stellen der wärmeübertragenden Wand 11, an denen eine geringere Wärmebelastung vorliegt, sich eine geringere Strömungsgeschwindigkeit des Heizwassers einstellt. Bereiche mit einer hohen Wärmebelastung weist die wärmeübertragende Wand 11 dort auf, wo das Heizgas im Heizgaszug 19 einen hohen Wärmeeintrag in die wärmeübertragende Wand 11 erzeugt. Die Wärmebelastung ist dabei die in der wärmeübertragenden Wand 11 vorhandene Wärmemenge pro Flächeninhalt und pro Zeit, wobei die Wärmemenge von dem vom Heizgas abgegebenen Wärmestrom bestimmt wird. Die größte Wärmebelastung liegt beim Wärmetauscher des vorliegenden Ausführungsbeispiels in dem sich an die Brennkammer 15 anschließenden Abschnitt vor. In Strömungsrichtung des Heizgases nimmt die Wärmebelastung dann zum abgasseitigen Endabschnitt 14 hin ab. Im Bereich der Brennkammer 15 selbst ist bei dem Wärmetauscher des vorliegenden Ausführungsbeispiels eine geringere Wärmebelastung anzutreffen als in dem sich an die Brennkammer 15 anschließenden Abschnitt.The water channel 25 has along its helical course at certain points on a different cross-section, so that the heating water flowing in the water channel 25 has locally at the corresponding locations a different flow velocity. In this case, the flow cross-section of the water channel 25 and thus the flow rate of the heating water in the water channel 25 is selected such that in the areas or at the locations of the heat-transferring wall 11, where there is a high heat load, there is a high flow rate heating water, and in the areas or at the points of the heat-transferring wall 11, where there is a lower heat load, sets a lower flow rate of the heating water. Areas with a high heat load has the heat-transferring wall 11 where the heating gas in the heating gas 19 generates a high heat input into the heat-transferring wall 11. The heat load is the amount of heat present in the heat-transferring wall 11 per surface area and per time, the amount of heat being determined by the heat flow emitted by the heating gas. The largest heat load is in the heat exchanger of the present embodiment in the adjoining the combustion chamber 15 section. In the flow direction of the heating gas, the heat load then decreases to the exhaust side end portion 14 from. In the area of the combustion chamber 15 itself is in the heat exchanger of the present Embodiment to find a lower heat load than in the adjoining the combustion chamber 15 section.

Zur Realisierung der an die lokalen Wärmebelastungen der wärmeübertragenden Wand 11 angepassten Strömungsgeschwindigkeiten des Heizwassers sind die Breiten X1 bis X8 und/oder die Tiefen Y1 bis Y5 der grabenförmigen Vertiefungen 23 entsprechend variiert. So sind im vorliegenden Ausführungsbeispiel die Windungen 25.1 und 25.2 des Wasserkanals 25 mit einer Tiefe Y1 ausgeführt. Die Breite X2 der Windung 25.2 ist dabei jedoch größer als die Breite X1 der Windung 25.1, wodurch sich in der Windung 25.2 ein größerer Strömungsquerschnitt und damit eine geringere Strömungsgeschwindigkeit des Heizwassers einstellt. In dem Abschnitt, der sich an die Brennkammer 15 anschließt und der eine höhere Wärmebelastung aufweist, besitzen die Windungen 25.3 und 25.4 eine geringere Tiefe Y2, wobei die Breite X4 geringer ist als die Breite X3. Dadurch entsteht in der Windung 25.4 eine größere Strömungsgeschwindigkeit des Heizwassers. Die Windung 25.5 weist eine spezielle Ausführung auf, wobei sich der Querschnitt der Windung in Strömungsrichtung des Heizgases kontinuierlich erweitert. Dadurch entsteht im Bereich der Windung 25.5 eine lokale Reduzierung der Strömungsgeschwindigkeit innerhalb des Wasserkanals 25. Die Windung 25.5 ist dabei am Übergang von einem Bereich mit hoher Wärmebelastung zu einem Bereich niedrigerer Wärmebelastung ausgebildet, wobei sich in den lokalen Bereichen mit einem geringeren Querschnitt mit der Tiefe Y3 eine höhere Strömungsgeschwindigkeit einstellt als in dem größeren Querschnittsbereich mit der Tiefe Y4, wobei Y3 < Y4 ist. Anschließend an die Windung 25.5 weisen die Windungen 25.6, 25.7 und 25.8, die im vorliegenden Ausführungsbeispiel die gleiche Tiefe Y5 besitzen, eine größere Breite X6 bis X8 und damit einen größeren Querschnitt auf. Die sich in den Windungen 25.6 bis 25.8 einstellende geringere Strömungsgeschwindigkeit des Heizwassers ist ausreichend, um die dort vorliegende geringere Wärmebelastung abzuführen.For realizing the flow rates of the heating water adapted to the local heat loads of the heat-transferring wall 11, the widths X1 to X8 and / or the depths Y1 to Y5 of the trench-shaped recesses 23 are varied accordingly. Thus, in the present embodiment, the turns 25.1 and 25.2 of the water channel 25 are designed with a depth Y1. However, the width X2 of the winding 25.2 is greater than the width X1 of the winding 25.1, which sets in the winding 25.2 a larger flow cross-section and thus a lower flow velocity of the heating water. In the section which adjoins the combustion chamber 15 and which has a higher heat load, the turns 25.3 and 25.4 have a smaller depth Y2, the width X4 being smaller than the width X3. This results in the winding 25.4 a greater flow velocity of the heating water. The winding 25.5 has a special design, wherein the cross section of the winding continuously widens in the flow direction of the heating gas. This results in a local reduction in the flow velocity within the water channel 25 in the area of the winding 25.5. The winding 25.5 is formed at the transition from a region of high heat load to a region of lower heat load, which is in the local areas with a smaller cross-section with the depth Y3 sets a higher flow rate than in the larger cross-sectional area with depth Y4, where Y3 <Y4. Subsequent to the winding 25.5, the turns 25.6, 25.7 and 25.8, which in the present embodiment have the same depth Y5, have a greater width X6 to X8 and thus a larger cross section. The setting in the turns 25.6 to 25.8 lower flow velocity of the heating water is sufficient to dissipate the lower heat load there.

Eine weitere Optimierung des Wärmeübergangs wird dadurch erreicht, wenn gemäß dem Ausführungsbeispiel in Figur 2 die Wand 11 an den Stellen, an denen eine hoher oder die höchste Wärmebelastung bzw. Wärmestromdichte vorliegt, eine Verdickung 27 aufweist. Die Verdickung 27 ist in Figur 2 durch eine gestrichelte Linie angedeutet. Die höchste Wärmestromdichte existiert dabei dort, wo die Querrippen 22 mit der größten Oberfläche in den Heizgaszug ragen und den Wärmestrom des Heizgases entsprechend in die Wand 11 einkoppeln. Durch die Verdickung 27 der Wand 11 in Richtung des Strömungskanals 25 wird die Tiefe Y der grabenförmigen Vertiefung 23 reduziert, wodurch sich an diesen Stellen der Strömungsquerschnitt der wärmeaufnehmenden Strömungskanals 25 verringert. Dadurch steigt die Strömungsgeschwindigkeit des Heizwassers in diesen Abschnitten bzw. an diesen Stellen an, wodurch ein besserer Wärmeübergang an diesen Stellen auftritt. Zusätzlich wird durch die stärkere Wand 11 an diesen Stellen der aus den Querrippen 22 kommende Wärmestrom gleichmäßiger auf die dem Wasserkanal 25 zugekehrte Seite der Wand 11 verteilt. Dadurch werden sogenannte Hot Spots verringert. Eine weitere Optimierungsmöglichkeit des Wärmeüberganges besteht gemäß Figur 2 darin, dass in der grabenförmigen Vertiefung 23 gegenüber den Querrippen 23 Noppen 43 ausgebildet sind, die in den Wasserkanal 25 hineinragen. Dadurch wird der von den Querrippen 22 ausgehende größte Wärmestrom besser in den Wasserkanal 25 eingeleitet.A further optimization of the heat transfer is achieved when, according to the embodiment in FIG. 2 the wall 11 at the locations where there is a high or the highest heat load or heat flow density, a thickening 27 has. The thickening 27 is in FIG. 2 indicated by a dashed line. The highest heat flux density exists where the transverse ribs 22 with the largest surface protrude into the heating gas and the heat flow of the heating gas according to the wall Insert 11. Due to the thickening 27 of the wall 11 in the direction of the flow channel 25, the depth Y of the trench-shaped recess 23 is reduced, whereby the flow cross section of the heat-absorbing flow channel 25 is reduced at these points. As a result, the flow rate of the heating water increases in these sections or at these points, whereby a better heat transfer occurs at these locations. In addition, the heat flow coming from the transverse ribs 22 is more evenly distributed to the side of the wall 11 facing the water channel 25 at these locations through the thicker wall 11. This reduces so-called hot spots. Another possibility for optimizing the heat transfer exists according to FIG. 2 in that in the trench-shaped recess 23 opposite the transverse ribs 23 nubs 43 are formed, which project into the water channel 25. As a result, the outgoing of the transverse ribs 22 largest heat flow is better introduced into the water channel 25.

Ein weiteres Ausführungsbeispiel geht aus Figur 3 hervor. Bei dem in Figur 3 dargestellten Grundkörper 10 eines Wärmetauschers sind die Tiefen Y der einzelnen Windungen 25.1 bis 25.7 im Wesentlichen gleich groß. Die Breiten X1 bis X7 der grabenförmigen Vertiefungen 23 sind, wie im Ausführungsbeispiel gemäß Figur 1, an die entsprechenden lokalen Wärmebelastungen im Grundkörper 10 angepasst. Hierbei ist die Breite X2 der Windung 25.2 größer als die Breite X3 der Windung 25.3 und die Breite X3 der Windung 25.3 größer als die Breite X4 der Windung 25.1. Ab der Windung 25.5 nehmen die Breiten X5, X6 und X7 wieder zu, wobei X5 < X6 < X7 ist. Dadurch werden unterschiedliche Querschnitte des Wasserkanals 25 realisiert, so dass innerhalb dieser Windungen unterschiedliche Strömungsgeschwindigkeiten für das Heizwasser auftreten.Another embodiment goes out FIG. 3 out. At the in FIG. 3 shown main body 10 of a heat exchanger, the depths Y of the individual turns 25.1 to 25.7 are substantially the same size. The widths X1 to X7 of the trench-shaped depressions 23 are, as in the embodiment according to FIG FIG. 1 , adapted to the corresponding local heat loads in the base body 10. Here, the width X2 of the winding 25.2 is greater than the width X3 of the winding 25.3 and the width X3 of the winding 25.3 greater than the width X4 of the winding 25.1. From 25.5 turn, widths X5, X6 and X7 increase again, where X5 <X6 <X7. As a result, different cross sections of the water channel 25 are realized, so that different flow rates for the heating water occur within these turns.

Wesentlich für das Ausführungsbeispiel in Figur 3 ist, dass an Stellen mit einer großen Wärmebelastung im Wasserkanal 25 zusätzliche wasserseitige Rippen 41 und/oder Strömungsschikanen 42 und/oder Noppen 43 vorhanden sind. Die Strömungsschikanen 42 sind dabei in Strömungsrichtung des Heizwassers geneigt mit einem Winkel von beispielsweise 45° angebracht. Durch die Rippen 41 wird die wärmeübertragende Oberfläche innerhalb des Wasserkanals 25 erhöht und damit die Wärmeübertragung verbessert. Die Strömungsschikanen 42 führen zu Turbulenzen und durch Vermischung der Grenzschichten an der inneren Wandung des Wasserkanals 25 zu einem erhöhten Wärmeübergang vom Grundkörper 10 zu dem im Wasserkanal 25 strömenden Heizwasser. Die Strömungsschikanen 42 können dabei so ausgeführt sein, dass sie gleichzeitig auch Wärme abführen und dadurch die wärmeübertragende Oberfläche vergrößern. Durch die Anordnung der Strömungsschikanen in einem Winkel von ca. 45° kommt es zu einer Mischung unterschiedlicher Strömungsfäden, wodurch die sich im Wasserkanal 25 bildende Temperaturschichtung gestört und die an der Wand 11 strömende heiße Schicht mit den beabstandeten kälteren Schichten vermischt wird. Dadurch wird zusätzlich der Wärmeübergang erhöht und das Sieden des Heizwassers vermieden.Essential for the embodiment in FIG. 3 is that at locations with a large heat load in the water channel 25 additional water-side ribs 41 and / or flow baffles 42 and / or nubs 43 are available. The flow baffles 42 are inclined in the flow direction of the heating water attached at an angle of for example 45 °. By the ribs 41, the heat-transmitting surface is increased within the water channel 25 and thus improves the heat transfer. The flow baffles 42 lead to turbulence and by mixing the boundary layers on the inner wall of the water channel 25 to increased heat transfer from the body 10 to the heating water flowing in the water channel 25. The flow baffles 42 can be designed so that they at the same time dissipate heat and thereby increase the heat transferring surface. The arrangement of the flow baffles at an angle of about 45 ° results in a mixture of different flow filaments, which disturbed the forming in the water channel 25 temperature stratification and mixing the flowing on the wall 11 hot layer with the spaced colder layers. This additionally increases the heat transfer and prevents boiling of the heating water.

Schließlich ist eine Ausbildung zumindest einer Windung 25.7 mit Längsrippen 44 möglich, die in ihrer Höhe derart im Wasserkanal 25 angeordnet sein können, dass sich der Strömungskanal bzw. die Windung an der entsprechenden Stelle in einzelne parallel geschaltete Einzelkanäle 45 aufteilt, so dass innerhalb einer Windung im Wasserkanal 25 unterschiedliche Strömungsgeschwindigkeiten entstehen. Dadurch wird die wärmeübertragende Oberfläche auf einen maximal möglichen Wert erhöht. Die Ausbildung von wasserseitigen Rippen 41 und/oder Strömungsschikanen 42 und/oder Noppen 43 und/oder Längsrippen 44 ist auch bei den Ausführungsbeispielen gemäß den Figur 1 und 2 möglich.Finally, a formation of at least one turn 25.7 with longitudinal ribs 44 is possible, which may be arranged in height in the water channel 25 so that the flow channel or the winding at the corresponding point in individual parallel-connected individual channels 45 divides, so that within a turn 25 different flow velocities occur in the water channel. This increases the heat transferring surface to a maximum possible value. The formation of water-side ribs 41 and / or flow baffles 42 and / or nubs 43 and / or longitudinal ribs 44 is also in the embodiments according to the FIG. 1 and 2 possible.

Die beschriebenen Wärmetauscher sind nicht nur für die Verwendung in Heizgeräten möglich, sondern es ist auch denkbar, die Ausbildung der Strömungskanäle 19 und 25 für einen Wärmetauscher zum Kühlen zu verwenden.The heat exchangers described are not only possible for use in heaters, but it is also conceivable to use the formation of the flow channels 19 and 25 for a heat exchanger for cooling.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Grundkörperbody
1111
wärmeübertragende Wandheat transferring wall
1313
brennerseitiger Endabschnittburner end section
1414
abgasseitiger Endabschnittexhaust side end section
1515
Brennkammercombustion chamber
1717
Öffnungopening
1818
Abgasöffnungexhaust port
1919
wärmeabgebender Strömungskanal/Heizgaszugheat-emitting flow channel / Heizgaszug
2020
Umhüllungwrapping
2121
Längsrippenlongitudinal ribs
2222
Querrippentransverse ribs
2323
grabenförmige Vertiefungtrench-shaped depression
2424
Wandwall
2525
wärmeaufnehmender Strömungskanal/Wasserkanalheat-absorbing flow channel / water channel
25.1 bis 25.825.1 to 25.8
Windungenturns
2626
Nutgroove
2727
Verdickungthickening
3030
Dichtringseal
3333
Verformungdeformation
4141
Rippenribs
4242
Strömungsschikanenflow baffles
4343
Noppenburl
4444
Längsrippenlongitudinal ribs
4545
Einzelkanäleindividual channels
5050
Füllkörperpacking

Claims (9)

  1. Heat exchanger having a main body (10) in which there are formed a heat-releasing flow duct (19) for a heat releasing medium and a heat-absorbing flow duct (25) for a heat-absorbing medium, wherein a transfer of heat from the heat-releasing medium to the heat-absorbing medium takes place via a heat-transferring wall (11) formed on the main body (10), wherein the heat-absorbing flow duct (25) is led in helical fashion along the heat-transferring wall (11), wherein the heat-absorbing flow duct (25) is formed by the main body (10) and a casing (20), and wherein the heat-absorbing flow duct (25) has locally different flow cross sections along its helical extent, characterized in that the flow speed of the heat-absorbing medium flowing within the heat-absorbing flow duct (25) is adapted to the thermal load of the corresponding region of the heat-transferring wall (11) by virtue of the heat-transferring wall (11) having a thickened portion (27) in regions with a high thermal load, wherein, by way of the thickened portion (27), the flow cross section of the heat-absorbing flow duct (25) is reduced.
  2. Heat exchanger according to Claim 1, characterized in that, on the outer side of the heat-transferring wall (11), there are formed windings (25.1 to 25.8) which form the heat-absorbing flow duct (25), and in that the cross section of the windings (25.1 to 25.8) is locally adapted to the thermal load of the corresponding region of the heat-transferring wall (11).
  3. Heat exchanger according to Claim 2, characterized in that the cross section of the windings (25.1 to 25.8) is set by way of a corresponding width (X) and/or depth (Y) in the corresponding region of the heat-transferring wall (11).
  4. Heat exchanger according to Claim 1, characterized in that, within the heat-absorbing flow duct of the heat exchanger, the heat-absorbing medium (25) has a higher flow speed in those regions of the heat-transferring wall (11) which have a high thermal load than in regions with a low thermal load.
  5. Heat exchanger according to Claim 1, characterized in that, in the heat-absorbing flow duct (25), there are arranged ribs (41) and/or studs (43) which narrow the cross section and which serve for increasing the heat-transferring surface area.
  6. Heat exchanger according to Claim 1, characterized in that, in the heat-absorbing flow duct (25), there are arranged flow chicanes (42) for the mixing of the heat-absorbing medium flowing in the flow duct (25).
  7. Heat exchanger according to Claim 6, characterized in that that the flow chicanes (42) are arranged at an angle of approximately 45° with respect to the flow direction of the heat-absorbing medium.
  8. Heat exchanger according to Claim 2, characterized in that, in the heat-absorbing flow duct (25), there are formed longitudinal ribs (44) which divide up the winding (25.1 to 25.8) into individual ducts (45) connected in parallel, such that different flow speeds are set within the respective winding (25.1 to 25.8).
  9. Heat exchanger according to Claim 8, characterized in that, on the main body (10), there is formed an outwardly trench-like helical depression (23), and in that the main body (10) is enclosed by the separate casing (20) such that the depression (23) forms the heat-absorbing flow duct (25).
EP03027439.3A 2003-02-18 2003-12-01 Heat exchanger with a optimised fluid flow heat absorbing channel, in particular for heating apparatus Expired - Lifetime EP1450114B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10306699A DE10306699A1 (en) 2003-02-18 2003-02-18 Heat exchanger with a flow-optimized heat-absorbing flow channel, in particular for a heater
DE10306699 2003-02-18

Publications (2)

Publication Number Publication Date
EP1450114A1 EP1450114A1 (en) 2004-08-25
EP1450114B1 true EP1450114B1 (en) 2016-08-31

Family

ID=32731030

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03027439.3A Expired - Lifetime EP1450114B1 (en) 2003-02-18 2003-12-01 Heat exchanger with a optimised fluid flow heat absorbing channel, in particular for heating apparatus

Country Status (2)

Country Link
EP (1) EP1450114B1 (en)
DE (1) DE10306699A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004740B3 (en) * 2005-02-02 2006-06-14 Robert Bosch Gmbh Heat exchanger for hot water heating has in one section of hot gas flue at least one transversely lying heat transfer element with cross section with larger extent at right angles to direction of exhaust gas flow than that parallel to it
DE102007042232A1 (en) 2007-09-05 2009-03-12 Robert Bosch Gmbh Heat exchanger and method of manufacture and operation
TR200706718A1 (en) 2007-09-28 2009-04-21 Bosch Termotekni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇@ Exchanger.
DE102017204043A1 (en) 2017-03-10 2018-09-13 Robert Bosch Gmbh A sectional boiler
IT201700035879A1 (en) * 2017-03-31 2018-10-01 Ali Group Srl Carpigiani MACHINE FOR LIQUID OR SEMILIQUID FOOD PRODUCTS.
WO2019168481A1 (en) * 2018-02-28 2019-09-06 Emas Maki̇na Sanayi̇ A. Ş. A heat exchanger
NL2027319B1 (en) * 2021-01-14 2022-07-25 Remeha B V Heat exchanger body, heat exchanger and condensing boiler

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT64990B (en) * 1911-05-01 1914-05-25 Der Briansker Schienen Eisenhu Device for casting multilayer steel ingots and the like.
FR695311A (en) * 1930-05-08 1930-12-13 Gawa Patentverwaltungs A G Water heater
GB1448670A (en) * 1972-10-02 1976-09-08 Shell Int Research Boiler
DE3400048A1 (en) * 1984-01-03 1985-07-11 Webasto-Werk W. Baier GmbH & Co, 8035 Gauting WATER HEATER
NL8700641A (en) * 1987-03-18 1988-10-17 Radson Bv BOILER ELEMENT.
GB9013154D0 (en) 1990-06-13 1990-08-01 Chato John D Improvements in pulsating combustors
JP2901761B2 (en) * 1995-04-29 1999-06-07 ヨット エーバーシュペッヘル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー Heat exchanger
NL1001374C2 (en) * 1995-10-06 1997-04-08 Holding J H Deckers N V Heat exchanger for hot water storage tanks e.g. boilers, used in central heating circuits
NL1002562C2 (en) * 1996-03-08 1997-09-09 Holding J H Deckers N V Cast aluminum alloy polygonal heat exchanger with spiral water channel.
NL1002561C2 (en) * 1996-03-08 1997-09-09 Holding J H Deckers N V Cast, alloy, mainly cylindrical heat exchanger.
DE10134619A1 (en) * 2001-07-17 2003-02-06 Bosch Gmbh Robert Heat exchanger for a gas heater, especially a condensing boiler
DE10157267A1 (en) * 2001-11-22 2003-06-12 Witzenmann Gmbh Heat exchangers, in particular for heating systems

Also Published As

Publication number Publication date
DE10306699A1 (en) 2004-09-02
EP1450114A1 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
DE102007005370A1 (en) heat exchangers
DE102009047620C5 (en) Heat exchanger with tube bundle
DE112009000888T5 (en) Calibrated bypass structure for a heat exchanger
DE69910301T2 (en) Heat exchanger coil
EP1450114B1 (en) Heat exchanger with a optimised fluid flow heat absorbing channel, in particular for heating apparatus
WO2006063840A1 (en) Heat exchanger
AT215562B (en) Cover for fuel elements of nuclear reactors
DE2349202A1 (en) BOILERS FOR CENTRAL HEATING SYSTEMS
DE112013005192T5 (en) heat exchanger tube
DE212013000202U1 (en) Convection Oven
DE102005001662A1 (en) Heat exchanger body and vehicle heater with a heat exchanger body
EP2313698B1 (en) Cast iron or aluminum sectional boiler
DE10061949A1 (en) Internal combustion engine exhaust gas heat exchanger involves exhaust gas recirculation system cooler with core area of several small pipes through which cooling water flows and several ribs between adjacent pipes
DE102006029043B4 (en) Heat transfer unit for an internal combustion engine
DE112007003550B4 (en) Kettle with flat horizontal tubes
EP2149636B1 (en) Device for heating a heat distributer for in particular laundry machines and preferred usage of the device
DE19854910B4 (en) boiler
DE112011104558T5 (en) Fluid flow mixing box with fluid flow control device
EP3203173B1 (en) Exhaust gas heat exchanger
AT513300B1 (en) heat exchangers
DE3830800C1 (en) Heat exchanger
EP3161402B1 (en) Heat exchanger
DE3730566C2 (en)
DE2742745C3 (en) Heat exchanger
DE102011081457A1 (en) Heat exchanger housing, particularly for fuel-operated vehicle heater, comprises multiple heat transferring ribs extending from bottom area to free end area of peripheral wall, where peripheral wall has opening angle in peripheral area

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050225

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 20061123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315532

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315532

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181219

Year of fee payment: 16

Ref country code: IT

Payment date: 20181218

Year of fee payment: 16

Ref country code: FR

Payment date: 20181218

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50315532

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200221

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315532

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701