EP1443288A2 - Kühl-Container mit Adsorptions-Kühlapparat - Google Patents

Kühl-Container mit Adsorptions-Kühlapparat Download PDF

Info

Publication number
EP1443288A2
EP1443288A2 EP03027170A EP03027170A EP1443288A2 EP 1443288 A2 EP1443288 A2 EP 1443288A2 EP 03027170 A EP03027170 A EP 03027170A EP 03027170 A EP03027170 A EP 03027170A EP 1443288 A2 EP1443288 A2 EP 1443288A2
Authority
EP
European Patent Office
Prior art keywords
sorption
container
evaporator
sorber
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03027170A
Other languages
English (en)
French (fr)
Inventor
Peter Dr. Maier-Laxhuber
Andreas Becky
Reiner Dipl.-Ing. Wörz
Gert Richter
Norbert Weinzierl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeo Tech Zeolith Technologie GmbH
Original Assignee
Zeo Tech Zeolith Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeo Tech Zeolith Technologie GmbH filed Critical Zeo Tech Zeolith Technologie GmbH
Publication of EP1443288A2 publication Critical patent/EP1443288A2/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/003Transport containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/046Operating intermittently
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/38Refrigerating devices characterised by wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the invention relates to a cooling container with adsorption cooling un Procedure for its operation.
  • Adsorption devices are apparatus in which a solid sorbent is present second, boiling agent at lower temperatures, the working fluid in vapor form sorbed with heat release (sorption phase).
  • the working fluid evaporates in an evaporator with heat absorption. After the sorbent is saturated it can be desorbed again by adding heat (desorption phase).
  • Working fluid evaporates from the adsorbent. The working steam can be re-liquefied and then evaporate again in the evaporator.
  • Adsorption devices for cooling with solid sorbents are from EP 0 368 111 and DE-OS 34 25 419 known. Sorbent container filled with Sorbents, suck working steam, which in an evaporator arises and sorb with the release of heat. This heat of sorption must are removed from the sorbent filling. The coolers can used for cooling and keeping food warm in thermally insulated boxes become.
  • the sorption cooling system known from EP 0 368 111 consists of a transportable cooling unit and a separable, stationary charging station.
  • the cooling unit consists of a sorption container filled with a solid sorbent and an evaporator, the liquid working fluid and one embedded therein Contains heat exchanger.
  • Evaporator and sorption container are over one lockable steam pipe connected.
  • By one in the evaporator Embedded heat exchangers flow liquid media through temperature controlled Opening and closing the shut-off device to the desired temperature level be cooled.
  • the sorbent After the sorbent is saturated with working fluid, it can be heated in the charging station.
  • the working fluid vapor flowing out is re-liquefied in the evaporator.
  • the heat of condensation is through Cooling water that has to flow through the embedded heat exchanger is removed.
  • the object of the invention is a cooling container with adsorption cooling apparatus, the container contents over a longer period of time without an external energy source cools at a low temperature level and its cooling effect into one later loaded and then saved for any length without loss can be.
  • the adsorption cooling device accordingly contains a sorbent inside a sorber container, a valve and liquid working fluid inside an evaporator.
  • the sorbent is released during the desorption phase Heat applied and extracted during the sorption phase.
  • the work equipment heat of vaporization is supplied during the sorption phase and Liquefied heat removed during the desorption phase.
  • the amounts of heat are transmitted to air currents via electrically operated fans appropriately shaped heat surfaces are promoted.
  • Working medium vapor is desorbed during the desorption phase. This flows through the open or self-opening valve to the evaporator and condenses out there.
  • the air volume conveyed should be so large that the heat of condensation is dissipated at a relatively low temperature level can.
  • the heat supply to the sorbent is stopped.
  • the desorption of further working fluid vapor thus ends.
  • the closing of the valve prevents the working fluid vapor from flowing back.
  • the desorbed Working fluid is then in liquid form in the evaporator. In this When ready for use, the adsorption refrigerator can be stored for any length of time.
  • Sorber container with a temperature-stable thermal Insulation to prevent heat loss during the desorption process to minimize the environment.
  • the valve is opened to initiate the adsorption phase.
  • Working medium vapor can now flow from the evaporator into the Sorber container and from Sorbent can be sorbed exothermic.
  • Sorbent dissipates its heat of sorption in a heat exchanger to the environment can dissipate.
  • a particularly intensive cooling effect can be achieved if the Sorber tank has a sufficiently large heat exchanger area for the flow around it Has airflow. It is advantageous if the sorbent is at ambient temperatures can be cooled to the maximum amount of working fluid to be able to evaporate sufficiently low evaporation temperatures.
  • zeolite is used as the sorbent. Per kilogram Zeolite can use this to cool an adsorption cooler for approx. 130 watt hours save losslessly over any period of time. After opening the This quantity of refrigeration is immediately available to the valve.
  • Zeolite is a crystalline mineral that consists of a regular framework structure made of silicon and aluminum oxides. This scaffold structure contains cavities in which water molecules release heat can be sorbed. The water molecules are inside the structure exposed to strong field forces, the strength of which is already in the scaffolding structure amount of water contained and the temperature of the zeolite depends. For up to 25 grams of water can be used per 100 grams of zeolite be sorbed. Zeolites are solid substances with no annoying thermal expansion the sorption or desorption reaction. The scaffolding structure is from all sides for the water vapor molecules freely accessible. Adsorption devices are therefore Can be used in any position.
  • Some solid sorbents like zeolite, are stable enough to with no volume change also support external overpressures in thin-walled container walls can. Additional stiffeners or thick-walled heat exchanger surfaces are therefore not necessary. Because when using water as a working fluid, the sorption device is under vacuum and there are no gases for the entire functional life If the system should penetrate, vacuum-tight components must be used. For The manual actuation of the valve has bushings through metal bellows sealed, proven.
  • zeolite temperatures are from 250 to 350 ° C for regeneration and from 30 to 50 ° C for sorption recommended. It is particularly advantageous to use the regeneration with a hot air stream Air temperatures above 300 ° C. If the zeolite filling is in a thin Layer is arranged, the regeneration can be completed within an hour his. It is important to ensure that there is sufficient air flow around the evaporator, the condensation temperatures remain below 100 ° C. At higher temperatures, the internal pressure of the container would be greater than the external one Air pressure and thin-walled container structures are inevitably inflated.
  • the use of water as a working tool allows the necessary Reduce regulatory effort to a minimum.
  • water evaporates under vacuum the water surface cools to 0 ° C and freezes as it continues Evaporation to ice.
  • the layer of ice can advantageously be used to regulate the air temperature be used. With little heat given off to the air flow grows the layer of ice melts when it is very large.
  • the aqueous working fluid can also freezing point lowering substances can be added if the boiling temperature the liquid should be lowered below 0 ° C.
  • the adsorption refrigerator is particularly suitable for mobile applications, where no external drive power is available.
  • the to operate the According to the invention fan energy is stored in a battery. This can be recharged using a charger during the desorption phase.
  • the fans are only put into operation if the desired cooling temperature in the interior of the cooling container is exceeded. When the cooling temperature is reached or fallen below, the fan, which conveys air through the Sorber container, is also switched off.
  • the temperatures of the air streams exiting the evaporator heat exchanger can be regulated via a throttle function of the valve according to known methods become.
  • the air temperature can also be independent of the throttle function be managed.
  • the outlet temperature of the air flow from the evaporator can lower the air flow through the sorbent heat exchanger increase. Since that is always the case with the valve open thermodynamic equilibrium has a lowering of the sorbent temperature a reduction in the evaporation temperature. The one out The air flow exiting the evaporator is therefore inevitably colder.
  • valve it is also sensible to design the valve as a check valve.
  • the regeneration can also be carried out with the valve closed.
  • the working fluid vapor flowing out of the sorbent opens automatically the check valve to condense in the evaporator. Since the valve for Desorption does not have to be opened, it must be at the end of the regeneration phase are also not actively closed. This is for safe and easy handling the sorption device of great advantage.
  • FIG. 1 a cooling container according to the invention Adsorption cooling device in a schematic and sectional representation.
  • a mobile, insulated cooling container 1 contains, arranged on the ceiling, an evaporator 2, via a working fluid vapor line 3 and one Check valve 4 is connected to a Sorber container 5.
  • Both sorber containers 5 and evaporator 2 consist of plate-shaped heat exchanger arrangements.
  • the Sorber heat exchanger consists of three plates 6, which contain the sorbent Zeolite 7 included.
  • the zeolite filling is in the form of prefabricated Shaped body plates introduced, in which also for the flow of the working fluid vapor necessary distribution structure is incorporated. Between the plates 6, two electrical heating elements 8 are arranged, via which the air gaps can be heated between the plates 6 and thus also the plates 6 themselves.
  • the sorber container 5 is of a thermally insulated flow housing 9 enclosed by a sorber fan 10 after desorption and at times promotes ambient air during the sorption phase.
  • the Sorber fan 10 is just like an evaporator fan 12, during the sorption phase of a battery 11 fed.
  • the evaporator fan 12 circulates during the sorption phase the air to be cooled in the interior of the cooling container 1 along with arrows Marked ways on the evaporator 2, the air baffle 14 from the interior is shielded.
  • a temperature sensor 15 monitors the temperature of the Interior.
  • the evaporator 2 is constructed from two flat profile plates 13, in their interior support elements and a fleece distributing the working fluid ensure that the profile plates 13 do not implode and the work equipment can evaporate evenly.
  • a safety device 17 reports one (not control) whether the door 18 is open or closed.
  • the operation of the refrigerated container can be divided into one desorption phase and one Divide the sorption phase.
  • the two electrical heating elements 8 are in Business. With increasing zeolite temperatures, more and more water vapor is released the zeolite 7 evaporated. The rising steam pressure opens the check valve 4 and the working fluid vapor flows into the evaporator 2 to condense there. The heat of condensation is dissipated to the air flow that the Evaporator fan 12 promotes the profile plates 13. So that the temperature in the The interior of the cooling container must not become too high during the desorption phase the door 18 of the container remains open. This is done by the security device 17 monitors. With the door closed and when the container temperature at the temperature sensor 15 exceeds an upper limit, the Electric heating elements 8 are not activated or deactivated.
  • the cooling container 1 is connected to the fixed power grid, via which the electrical heating elements 8 are supplied. At the same time the battery 11 is charged. At the end of the desorption phase, the Zeolite filling stopped and the Sorber fan 10 started up. The Sorber container 5 cools down to ambient temperature. About that automatically closed check valve 4, however, can no steam from the evaporator 2 flow back.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Sorptions-Kühlapparat zum Kühlen eines thermisch isolierten Kühl-Containers 1, mit einem Sorber-Behälter 5, der ein Sorptionsmittel 7 enthält, das während einer Sorptionsphase ein Arbeitsmittel sorbiert, das in einem Verdampfer 2 verdampft, der im Innenbereich des Kühl-Containers 1 angeordnet ist, und mit einem absperrbaren Ventil 4 zwischen dem Sorber-Behälter 5 und dem Verdampfer 2, das die Strömung des Arbeitsmitteldampfes unterbinden kann, und wobei an den Verdampfer 2 ein Verdampfer-Lüfter 12 angordnet ist, der eine Luftströmung über den Verdampfer lenkt und an den Sorber-Behälter 5 ein Sorber-Lüfter 10 angebaut ist, der Luft über den Sorptionsmittel-Behälter führen kann. <IMAGE>

Description

Die Erfindung betrifft einen Kühl-Container mit Adsorptions-Kühlapparat un Verfahren zu dessen Betrieb.
Adsorptionsvorrichtungen sind Apparate, in denen ein festes Sorptionsmittel ein zweites, bei tieferen Temperaturen siedendes Mittel, das Arbeitsmittel dampfförmig unter Wärmefreisetzung sorbiert (Sorptionsphase). Das Arbeitsmittel verdampft dabei in einem Verdampfer unter Wärmeaufnahme. Nachdem das Sorptionsmittel gesättigt ist, kann es durch Wärmezufuhr wieder desorbiert werden (Desorptionsphase). Dabei dampft Arbeitsmittel aus dem Adsorptionsmittel ab. Der Arbeitsmitteldampf kann rückverflüssigt werden und im Verdampfer anschließend erneut verdampfen.
Adsorptionsapparate zum Kühlen mit festen Sorptionsmitteln sind aus der EP 0 368 111 und der DE-OS 34 25 419 bekannt. Sorptionsmittelbehälter, gefüllt mit Sorptionsmitteln, saugen dabei Arbeitsmitteldampf, welcher in einem Verdampfer entsteht ab, und sorbieren ihn unter Wärmefreisetzung. Diese Sorptionswärme muss dabei aus der Sorptionsmittelfüllung abgeführt werden. Die Kühlapparate können zum Kühlen und Warmhalten von Lebensmitteln in thermisch isolierten Boxen eingesetzt werden.
Das aus der EP 0 368 111 bekannte Sorptionskühlsystem besteht aus einer transportablen Kühleinheit und einer davon separierbaren, stationären Ladestation. Die Kühleinheit besteht aus einem Sorptionsbehälter, gefüllt mit einem festen Sorptionsmittel und einem Verdampfer, der flüssiges Arbeitsmittel und einen darin eingebetteten Wärmetauscher enthält. Verdampfer und Sorptionsbehälter sind über eine absperrbare Dampfleitung miteinander verbunden. Durch einen im Verdampfer eingebetteten Wärmetauscher fließen flüssige Medien, die durch temperaturgeregeltes Öffnen und Schließen der Absperreinrichtung auf das gewünschte Temperaturniveau gekühlt werden. Nachdem das Sorptionsmittel mit Arbeitsmittel gesättigt ist, kann es in der Ladestation erhitzt werden. Der dabei abströmende Arbeitsmitteldampf wird im Verdampfer rückverflüssigt. Die Kondensationswärme wird durch Kühlwasser, das durch den eingebetteten Wärmetauscher strömen muss, abgeführt.
Aufgabe der Erfindung ist ein Kühl-Container mit Adsorptions-Kühlapparat, der über einen längeren Zeitraum den Containerinhalt ohne externe Energiequelle auf einem niedrigen Temperaturniveau kühlt und dessen Kühlwirkung zu einem späteren Zeitpunkt geladen und daran anschließend beliebig lange verlustlos gespeichert werden kann.
Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale der Ansprüche 1 und 10. Die abhängigen Ansprüche zeigen weitere erfinderische Vorrichtungen bzw. Verfahren zur Verwendung des Adsorptions-Kühlapparates auf.
Der erfindungsgemäße Adsorptions-Kühlapparat enthält demnach ein Sorptionsmittel innerhalb eines Sorber-Behälters, ein Ventil und flüssiges Arbeitsmittel innerhalb eines Verdampfers. Dem Sorptionsmittel wird während der Desorptionsphase Wärme zugeführt und während der Sorptionsphase entzogen. Dem Arbeitsmittel wird während der Sorptionsphase Verdampfungswärme zugeführt und während der Desorptionsphase Verflüssigungswärme entzogen. Die Wärmemengen werden dabei an Luftströme übertragen, die durch elektrisch betriebene Lüfter über entsprechend ausgeformte Wärmeoberflächen gefördert werden.
Während der Desorptionsphase wird Arbeitsmitteldampf desorbiert. Dieser strömt durch das geöffnete oder sich selbst öffnende Ventil zum Verdampfer und kondensiert dort aus. Die geförderten Luftmengen sollten dabei so groß sein, dass die Verflüssigungswärme auf relativ tiefem Temperaturniveau abgeführt werden kann. Am Ende dieser Phase wird die Wärmezufuhr in das Sorptionsmittel gestoppt. Die Desorption von weiterem Arbeitsmitteldampf endet damit. Das Schließen des Ventils verhindert die Rückströmung des Arbeitsmitteldampfes. Das desorbierte Arbeitsmittel befindet sich dann in flüssiger Form im Verdampfer. In diesem einsatzbereiten Zustand ist der Adsorptions-Kühlapparat beliebig lange lagerfähig.
Es ist vorteilhaft, den Sorber-Behälter mit'einer temperaturstabilen thermischen Isolierung zu versehen, um während des Desorptionsprozesses die Wärmeverluste an die Umgebung zu minimieren.
Zur Einleitung der Adsorptionsphase wird das Ventil geöffnet. Arbeitsmitteldampf kann nunmehr vom Verdampfer in den Sorber-Behälter strömen und vom Sorptionsmittel exotherm sorbiert werden. Durch Verdampfen einer Teilmenge kühlt die Arbeitsmittelmenge im Verdampfer sich und den am Wärmetauscher vorbeigeführten Luftstrom ab. Um die maximale Kälteleistung zu erzeugen, muss das Sorptionsmittel seine Sorptionswärme in einem Wärmetauscher an die Umgebung abführen können. Eine besonders intensive Kühlwirkung erreicht man, wenn der Sorber-Behälter eine ausreichend große Wärmetauscherfläche für den ihn umströmenden Luftstrom aufweist. Von Vorteil ist, wenn das Sorptionsmittel auf Umgebungstemperaturen gekühlt werden kann, um die maximale Arbeitsmittelmenge bei ausreichend tiefen Verdampfungstemperaturen verdampfen zu können.
Als Sorptionsmittel kommt erfindungsgemäß Zeolith zum Einsatz. Je Kilogramm Zeolith kann damit ein Adsorptions-Kühlapparat ca. 130 Wattstunden Kälte verlustlos über einen beliebig langen Zeitraum speichern. Nach dem Öffnen des Ventils steht diese Kältemenge sofort bereit. Zeolith ist ein kristallines Mineral, das aus einer regelmäßigen Gerüststruktur aus Silizium- und Aluminiumoxiden besteht. Diese Gerüststruktur enthält Hohlräume, in welchen Wassermoleküle unter Wärmefreisetzung sorbiert werden können. Innerhalb der Gerüststruktur sind die Wassermoleküle starken Feldkräften ausgesetzt, deren Stärke von der bereits in der Gerüststruktur enthaltenen Wassermenge und der Temperatur des Zeolithen abhängt. Für den praktischen Gebrauch können pro 100 Gramm Zeolith bis zu 25 Gramm Wasser sorbiert werden. Zeolithe sind feste Stoffe ohne störende Wärmeausdehnung bei der Sorptions- bzw. Desorptionsreaktion. Die Gerüststruktur ist von allen Seiten für die Wasserdampfmoleküle frei zugänglich. Adsorptionsvorrichtungen sind deshalb in jeder Lage einsatzfähig.
Verwendbar sind jedoch auch andere Sorptionsmittelpaarungen, bei denen das Sorptionsmittel fest ist und auch bei der Sorptionsreaktion fest bleibt. Feste Sorptionsmittel haben allerdings eine geringe Wärmeleitung und einen schlechten Wärmeübergang. Da auch der Wärmeübergang von einer Luftströmung auf den Sorptionsmittel-Wärmetauscher in der gleichen Größenordnung liegt, empfehlen sich prinzipiell Wärmetauscher ohne Berippung, wie beispielsweise Zylinder-, Platten- oder Rohrgeometrien. Da insbesondere Zeolithgranulate eine geringe Wärmeleitung haben, sind die Sorber-Behälter so auszulegen, dass der durchschnittliche Wärmeleitungsweg für die umgesetzten Wärmemengen 2 cm nicht übersteigt.
Einige feste Sorptionsmittel, wie Zeolith, sind stabil genug, um ohne Volumenänderung auch äußere Überdrücke bei dünnwandigen Behälterwänden abstützen zu können. Zusätzliche Versteifungen oder dickwandige Wärmetauscherflächen sind deshalb nicht nötig. Da bei der Verwendung von Wasser als Arbeitsmittel die Sorptionsvorrichtung unter Vakuum steht und für die gesamte Funktionsdauer keine Gase in das System eindringen sollten, sind vakuumdichte Bauteile zu verwenden. Für die manuelle Betätigung des Ventils haben sich Durchführungen, die durch Metallbälge abgedichtet sind, bewährt.
Für eine wirtschaftliche Betriebsweise sind Zeolithtemperaturen von 250 bis 350° C bei der Regeneration und von 30 bis 50° C bei der Sorption empfehlenswert. Besonders vorteilhaft ist es, die Regeneration durch einen Heißluftstrom mit Lufttemperaturen über 300° C durchzuführen. Falls die Zeolithfüllung in einer dünnen Schicht angeordnet ist, kann die Regeneration innerhalb einer Stunde abgeschlossen sein. Dabei ist darauf zu achten, dass durch eine ausreichende Luftströmung um den Verdampfer, die Kondensationstemperaturen unter 100°C bleiben. Bei höheren Temperaturen würde der Behälter-Innendruck größer als der äußere Luftdruck und dünnwandige Behälterstrukturen zwangsläufig aufgeblasen werden.
Die Verwendung von Wasser als Arbeitsmittel gestattet es, den erforderlichen Regelungsaufwand auf ein Minimum zu reduzieren. Beim Verdampfen von Wasser unter Vakuum kühlt sich die Wasseroberfläche auf 0°C ab und gefriert bei fortgesetzter Verdampfung zu Eis. Die Eisschicht kann vorteilhaft zur Regelung der Lufttemperatur genutzt werden. Bei geringer Wärmeabgabe an den Luftstrom wächst die Eisschicht, bei sehr großer schmilzt sie ab. Dem wässrigen Arbeitsmittel können auch gefrierpunktabsenkende Stoffe beigemischt sein, wenn die Siedetemperatur der Flüssigkeit unter 0°C abgesenkt werden soll.
Der Adsorptions-Kühlapparat eignet sich insbesondere für mobile Anwendungen, bei denen keine externe Antriebsenergie verfügbar ist. Die zum Betrieb der Lüfter notwendige Energie wird erfindungsgemäß in einem Akku gespeichert. Dieser kann während der Desorptionsphase über ein Ladegerät wieder aufgeladen werden. Um elektrische Energie zu sparen, werden die Lüfter nur dann in Betrieb genommen, wenn die gewünschte Kühltemperatur im Innenraum des Kühl-Containers überschritten ist. Wenn die Kühltemperatur erreicht oder unterschritten ist, wird auch der Lüfter, der Luft über den Sorber-Behälter fördert abgestellt.
Die Temperaturen der aus dem Verdampfer-Wärmetauscher austretenden Luftströme können über eine Drosselfunktion des Ventils nach bekannten Verfahren geregelt werden.
Erfindungsgemäß kann die Lufttemperatur auch unabhängig von der Drosselfunktion geregelt werden. Um beispielsweise die Austrittstemperatur der Luftströmung aus dem Verdampfer abzusenken, kann die Luftströmung durch den Sorptionsmittel-Wärmetauscher erhöht werden. Da sich bei geöffnetem Ventil immer das thermodynamische Gleichgewicht einstellt, hat eine Absenkung der Sorptionsmitteltemperatur eine Absenkung der Verdampfungstemperatur zur Folge. Der aus dem Verdampfer austretende Luftstrom wird damit zwangsweise kälter.
Sinnvoll ist auch die Ausgestaltung des Ventils als Rückschlag-Ventil. In diesem Fall kann die Regeneration auch bei geschlossenem Ventil durchgeführt werden. Der aus dem Sorptionsmittel abströmende Arbeitsmittel-Dampf öffnet selbsttätig das Rückschlag-Ventil, um im Verdampfer zu kondensieren. Da das Ventil zur Desorption nicht geöffnet werden muss, muss es am Ende der Regenerationsphase auch nicht aktiv geschlossen werden. Dies ist für die sichere und einfache Handhabung der Sorptionsvorrichtung von großem Vorteil.
Die Zeichnung zeigt in Fig. 1 einen erfindungsgemäßen Kühl-Container mit Adsorptions-Kühlapparat in schematischer und geschnittener Darstellung.
Ein fahrbarer, isolierter Kühl-Container 1 enthält innen, an der Decke angeordnet, einen Verdampfer 2, der über eine Arbeitsmitteldampf-Leitung 3 und einem Rückschlag-Ventil 4 mit einem Sorber-Behälter 5 verbunden ist. Sowohl Sorber-Behälter 5 als auch Verdampfer 2 bestehen aus plattenförmigen Wärmetauscheranordnungen. Der Sorber-Wärmetauscher besteht aus drei Platten 6, die das Sorptionsmittel Zeolith 7 enthalten. Die Zeolithfüllung ist in Form von vorgefertigten Formkörper-Platten eingebracht, in welche auch die für die Strömung des Arbeitsmitteldampfes notwendige Verteilungsstruktur eingearbeitet ist. Zwischen den Platten 6 sind zwei elektrische Heizelemente 8 angeordnet, über welche die Luftspalte zwischen den Platten 6 und damit auch die Platten 6 selbst, aufgeheizt werden können. Der Sorber-Behälter 5 ist von einem thermisch isolierten Strömungsgehäuse 9 umschlossen, durch das ein Sorber-Lüfter 10 nach der Desorption und zeitweise während der Sorptionsphase Umgebungsluft fördert. Der Sorber-Lüfter 10 wird, ebenso wie ein Verdampfer-Lüfter 12, während der Sorptionsphase von einem Akku 11 gespeist. Während der Sorptionsphase zirkuliert der Verdampfer-Lüfter 12 die zu kühlende Luft im Innenraum des Kühl-Containers 1 entlang der mit Pfeilen markierten Wege über den Verdampfer 2, der von einem Luftleitblech 14 vom Innenraum abgeschirmt ist. Ein Temperatursensor 15 überwacht die Temperatur des Innenraumes. Der Verdampfer 2 ist aus zwei flachen Profilplatten 13 aufgebaut, in deren Innenraum Stützelemente und ein das Arbeitsmittel Wasser verteilendes Vlies dafür sorgen, dass die Profilplatten 13 nicht implodieren und das Arbeitsmittel gleichmäßig verdampfen kann. Eine Sicherheitseinrichtung 17 meldet einer (nicht gezeichneten) Steuerung, ob die Tür 18 geöffnet oder geschlossen ist.
Der Betrieb des Kühl-Containers lässt sich in eine Desorptionsphase und in eine Sorptionsphase unterteilen.
Während der Desorptionsphase sind die beiden elektrischen Heizelemente 8 in Betrieb. Mit steigenden Zeolithtemperaturen wird mehr und mehr Wasserdampf aus dem Zeolith 7 ausgedampft. Der steigende Dampfdruck öffnet das Rückschlag-Ventil 4 und der Arbeitsmitteldampf strömt in den Verdampfer 2 um dort zu kondensieren. Die Kondensationswärme wird an den Luftstrom abgeführt, den der Verdampfer-Lüfter 12 über die Profilplatten 13 fördert. Damit die Temperatur im Innenraum des Kühl-Containers nicht zu hoch wird, muss während der Desorptionsphase die Tür 18 des Containers geöffnet bleiben. Dies wird von der Sicherheitseinrichtung 17 überwacht. Bei geschlossener Tür und wenn die Containertemperatur am Temperatursensor 15 einen oberen Grenzwert überschreitet, werden die elektrischen Heizelemente 8 nicht freigeschaltet bzw. abgeschaltet. Während der Desorptionsphase ist der Kühl-Container 1 mit dem ortsfesten Stromnetz verbunden, über das die elektrischen Heizelemente 8 versorgt werden. Gleichzeitig wird der Akku 11 aufgeladen. Am Ende der Desorptionsphase wird die Aufheizung der Zeolithfüllung gestoppt und der Sorber-Lüfter 10 in Betrieb genommen. Der Sorber-Behälter 5 kühlt sich dadurch auf Umgebungstemperatur ab. Über das automatisch geschlossene Rückschlag-Ventil 4 kann jedoch kein Dampf aus dem Verdampfer 2 zurückströmen.
Dies wird erst in der Sorptionsphase durch Öffnen des Ventils 4 mittels des Ventil-Betätigungselementes 16 erlaubt. Jetzt kühlt sich der Verdampfer 2 durch Verdampfen des Arbeitsmittels Wasser ab. Der Dampf strömt in den Sorber-Behälter 5, wo er vom Zeolith 7 unter Wärmefreisetzung sorbiert wird. Diese Sorptionswärme wird vom Sorber-Lüfter 10 an die Umgebungsluft abgeführt. Da der Kühl-Container 1 während der Sorptionsphase in aller Regel vom elektrischen Netz getrennt ist, werden sowohl der Sorber-Lüfter 10 als auch der Verdampfer-Lüfter 12 über den Akku 11 betrieben. Um elektrische Energie zu sparen, wird sowohl der Sorber-Lüfter 10 als auch der Verdampfer-Lüfter 12 gestoppt, sobald die Innentemperatur im Kühl-Container am Temperatursensor 15 die voreingestellte Kühlraumtemperatur unterschritten hat. Damit ist sichergestellt, dass insbesondere zu Beginn der Kühlphase, wo oftmals auch der Kühl-Container 15 vorgekühlt werden muss, die maximale Kühlleistung zur Verfügung steht. Das Rückschlagventil 4 kann solange offen bleiben, bis der Kühl-Container 1 wieder ans Netz geht, um erneut aufgeladen zu werden.

Claims (16)

  1. Sorptions-Kühlapparat zum Kühlen eines thermisch isolierten Kühl-Containers 1, mit einem Sorber-Behälter 5, der ein Sorptionsmittel 7 enthält, das während einer Sorptionsphase ein Arbeitsmittel sorbiert, das in einem Verdampfer 2 verdampft, der im Innenbereich des Kühl-Containers 1 angeordnet ist,
    und mit einem absperrbaren Ventil 4 zwischen dem Sorber-Behälter 5 und dem Verdampfer 2, das die Strömung des Arbeitsmitteldampfes unterbinden kann,
    dadurch gekennzeichnet, dass
    dem Verdampfer 2 ein Verdampfer-Lüfter 12 zugeordnet ist, der eine Luftströmung über den Verdampfer lenkt und
    dass dem Sorber-Behälter 5 ein Sorber-Lüfter 10 zugeordnet ist, der Luft über den Sorptionsmittel-Behälter führen kann.
  2. Sorptions-Kühlapparat nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Oberflächen des Sorber-Behälters 5 oder des Verdampfers 2 plattenförmig und zum Wärmetausch mit einer Luftströmung geeignet sind.
  3. Sorptions-Kühlapparat nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Ventil 4 als Regelventil ausgebildet ist, das die Verdampfertemperatur durch Drosseln des Arbeitsmitteldampfstromes regelt.
  4. Sorptions-Kühlapparat nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Sorber-Behälter 5 so gestaltet ist, dass der maximale Wärmeleitweg im Sorptionsmittel zur Oberfläche des Behälters weniger als 2 cm beträgt.
  5. Sorptions-Kühlapparat nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    dem Sorber-Behälter 5 eine elektrische Heizung 8 zugeordnet ist.
  6. Sorptions-Kühlapparat nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Sorber-Lüfter 10 und der Verdampfer-Lüfter 12 von einem elektrischen Akku 11 mit Strom versorgt werden können.
  7. Sorptions-Kühlapparat nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Sorptionsmittel 7 Zeolith und das Arbeitsmittel Wasser enthält.
  8. Sorptions-Kühlapparat nach Anspruch 5,
    dadurch gekennzeichnet, dass
    der Verdampfer 2 mit einem Temperatursensor 15 gekoppelt ist, der bei Überschreiten einer vorgewählten Grenztemperatur die elektrische Heizung 8 für den Sorber-Behälter 5 abstellt.
  9. Sorptions-Kühlapparat nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Kühl-Container 1 eine Sicherheitseinrichtung 17 enthält, die verhindert, dass die Desorptionsphase bei geschlossener Tür erfolgt.
  10. Verfahren zur Verwendung eines Sorptions-Kühlapparates nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    während der Sorptionsphase die Innenraumtemperatur des Kühl-Containers 1 dadurch geregelt wird, dass der Verdampfer-Lüfter 12 getaktet wird und das Ventil 4 geöffnet bleibt.
  11. Verfahren zur Verwendung eines Sorptions-Kühlapparates nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    während der Sorptionsphase der Sorber-Lüfter 10 zeitgleich zum Verdampfer-Lüfter 12 getaktet wird.
  12. Verfahren zur Verwendung eines Sorptions-Kühlapparates nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    während der Desorptionsphase, der Akku geladen wird.
  13. Verfahren zur Verwendung eines Sorptions-Kühlapparates nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Sorptionsphase mindestens dreimal länger dauert, als die Desorptionsphase.
  14. Verfahren zur Verwendung eines Sorptions-Kühlapparates nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    während der Sorptionsphase die Lufttemperatur im Kühl-Container 1 zwischen minus 20°C und 0 °C einstellbar ist.
  15. Verfahren zur Verwendung eines Sorptions-Kühlapparates nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    während der Desorptionsphase die Verflüssigung des Arbeitsmittels im Verdampfer 2 erfolgt und die Verflüssigungswärme an eine Luftströmung, die vom Verdampfer-Lüfter 12 erzeugt wird, abgeführt wird.
  16. Verfahren zur Verwendung eines Sorptions-Kühlapparates nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    während der Desorptionsphase die Tür des Kühl-Containers. 1 geöffnet ist und ein Luftwechsel mit der Außenluft erfolgt.
EP03027170A 2003-01-28 2003-11-27 Kühl-Container mit Adsorptions-Kühlapparat Withdrawn EP1443288A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10303292 2003-01-28
DE10303292A DE10303292A1 (de) 2003-01-28 2003-01-28 Kühl-Container mit Adsorptions-Kühlapparat

Publications (1)

Publication Number Publication Date
EP1443288A2 true EP1443288A2 (de) 2004-08-04

Family

ID=32602999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03027170A Withdrawn EP1443288A2 (de) 2003-01-28 2003-11-27 Kühl-Container mit Adsorptions-Kühlapparat

Country Status (4)

Country Link
US (1) US7213403B2 (de)
EP (1) EP1443288A2 (de)
JP (1) JP2004233039A (de)
DE (1) DE10303292A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016091627A1 (de) * 2014-12-10 2016-06-16 Mahle International Gmbh Sorptionsmodul

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034297A1 (de) * 2005-02-25 2006-08-31 Zeo-Tech Zeolith-Technologie Gmbh Sorptions-Kühlelement mit gasdichter Folie
JP5057429B2 (ja) * 2006-10-30 2012-10-24 国立大学法人 千葉大学 ケミカルヒートポンプ並びにこれを用いたハイブリッド冷凍システム及びハイブリッド冷凍車
EP1967799B1 (de) * 2007-03-05 2012-11-21 ZEO-TECH Zeolith Technologie GmbH Sorptions-Kühlelement mit Regelorgan und zusätzlicher Wärmequelle
TWI477726B (zh) * 2012-01-20 2015-03-21 Innovation Thru Energy Co Ltd Mixed refrigerated cabinets
US9657982B2 (en) 2013-03-29 2017-05-23 Tokitae Llc Temperature-controlled medicinal storage devices
US10941971B2 (en) 2013-03-29 2021-03-09 Tokitae Llc Temperature-controlled portable cooling units
US9170053B2 (en) 2013-03-29 2015-10-27 Tokitae Llc Temperature-controlled portable cooling units
US11105556B2 (en) * 2013-03-29 2021-08-31 Tokitae, LLC Temperature-controlled portable cooling units
DE102015006857B4 (de) * 2015-05-27 2021-07-15 Audi Ag Adsoptionspeicher zum Kühlen einer Fahrgastzelle eines eine Klimaanlage aufweisenden Fahrzeugs
AT518924A1 (de) 2016-08-09 2018-02-15 Rep Ip Ag Transportbehälter
AT518923A1 (de) 2016-08-09 2018-02-15 Rep Ip Ag Transportbehälter
KR102549953B1 (ko) * 2018-03-07 2023-06-29 에너전 인크. 흡착 기반 히트 펌프
EP3952815A4 (de) 2019-05-31 2023-04-12 Gobi Technologies Inc. Wärmeregulierungssystem
US20210310711A1 (en) 2019-05-31 2021-10-07 Gobi Technologies Inc. Temperature-controlled sorption system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3425419A1 (de) 1984-07-10 1986-01-23 Fritz Dipl.-Ing. Kaubek Adiabatische heiz- und kuehlverfahren und tragbare vorrichtungen nach dem adsorptionsprinzip
EP0368111A2 (de) 1988-11-08 1990-05-16 ZEO-TECH Zeolith Technologie GmbH Sorptionskühlsystem

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3207656A1 (de) * 1982-02-15 1983-08-25 Hieronimi, Ulrich, 8000 München Sorptionsapparate und verfahren fuer ihren betrieb
DE3342985A1 (de) * 1983-11-28 1985-06-13 Fritz Dipl.-Ing. Kaubek Kontinuierlichwirkende sorptionsapparate und verfahren zu deren betrieb
DE3347700C2 (de) * 1983-12-31 1994-07-07 Zeolith Tech Zeolithformling mit hoher Wärmeleitung und Verfahren zur Herstellung
DE3413349C2 (de) * 1984-04-09 1986-09-25 Fritz Dipl.-Ing. Kaubek Verfahren und Vorrichtung zum Heizen mit einer periodischen Adsorptionsspeicher-Wärmepumpe
DE3521484A1 (de) * 1985-06-14 1986-12-18 Fritz Dipl.-Ing. Kaubek Adsorptionskuehler
DE3837880A1 (de) * 1988-11-08 1990-05-10 Zeolith Tech Kuehlbehaelter fuer einen sorptionsapparat
DE3901558A1 (de) * 1989-01-20 1990-07-26 Zeolith Tech Sorptionsbehaelter fuer feste sorptionsmittel
US5477706A (en) * 1991-11-19 1995-12-26 Rocky Research Heat transfer apparatus and methods for solid-vapor sorption systems
US5664427A (en) * 1989-03-08 1997-09-09 Rocky Research Rapid sorption cooling or freezing appliance
DE4003107A1 (de) * 1990-02-02 1991-08-08 Zeolith Tech Eiserzeuger nach dem sorptionsprinzip
DE4121131A1 (de) * 1991-06-26 1993-01-07 Zeolith Tech Sorptionsmittelbehaelter-anordnung und sorptionsverfahren mit regenerativem waermetausch
DE4126960A1 (de) * 1991-08-14 1993-02-18 Zeolith Tech Sorptionsapparat zum kuehlen und/oder heizen
DE4138114A1 (de) * 1991-11-19 1993-05-27 Zeolith Tech Kuehlvorrichtung und kuehlverfahren zur kuehlung eines mediums innerhalb eines gefaesses
EP0577869B1 (de) * 1992-07-06 1997-01-08 ZEO-TECH Zeolith Technologie GmbH Kühlsystem mit einer vakuumdichten Arbeitsmitteldampf-Sammelleitung
DE4243816A1 (de) * 1992-12-23 1994-06-30 Zeolith Tech Sorptionsmittel-Patrone
DE4243817A1 (de) * 1992-12-23 1994-06-30 Zeolith Tech Adapter für ein Sorptionssystem und Verfahren zur Verwendung dieses Adapters
WO1996008684A1 (de) * 1994-09-12 1996-03-21 Electrolux Leisure Appliances Ag Sorptions-kühlaggregat
US5855119A (en) * 1995-09-20 1999-01-05 Sun Microsystems, Inc. Method and apparatus for cooling electrical components
FR2774460B1 (fr) * 1998-02-03 2000-03-24 Elf Aquitaine Procede de gestion d'une reaction thermochimique ou d'une adsorption solide-gaz
DE19922848A1 (de) * 1999-05-19 2000-11-23 Zeolith Tech Vorrichtung und Verfahren zum Kühlen einer Flüssigkeit in einem Behälter
DE10016352A1 (de) * 2000-04-03 2001-10-04 Zeolith Tech Sorptionskühler
DE10028030A1 (de) * 2000-06-09 2001-12-13 Zeolith Tech Sorptionsvorrichtung zum Heizen und Kühlen von Gasströmen
US6503298B1 (en) * 2001-04-30 2003-01-07 Battelle Memorial Institute Apparatus and methods for hydrogen separation/purification utilizing rapidly cycled thermal swing sorption
US6688132B2 (en) * 2001-06-06 2004-02-10 Nanopore, Inc. Cooling device and temperature-controlled shipping container using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3425419A1 (de) 1984-07-10 1986-01-23 Fritz Dipl.-Ing. Kaubek Adiabatische heiz- und kuehlverfahren und tragbare vorrichtungen nach dem adsorptionsprinzip
EP0368111A2 (de) 1988-11-08 1990-05-16 ZEO-TECH Zeolith Technologie GmbH Sorptionskühlsystem

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016091627A1 (de) * 2014-12-10 2016-06-16 Mahle International Gmbh Sorptionsmodul
US10203137B2 (en) 2014-12-10 2019-02-12 Mahle International Gmbh Sorption module

Also Published As

Publication number Publication date
US7213403B2 (en) 2007-05-08
JP2004233039A (ja) 2004-08-19
US20040211215A1 (en) 2004-10-28
DE10303292A1 (de) 2004-07-29

Similar Documents

Publication Publication Date Title
EP0368111B1 (de) Sorptionskühlsystem
EP0655592B1 (de) Anordnung zur Kühlung von Lebensmitteln, insbesondere in einem Flugzeug
EP1162415B1 (de) Sorptionsvorrichtung zum Heizen und Kühlen von Gasströmen
EP1443288A2 (de) Kühl-Container mit Adsorptions-Kühlapparat
EP1416233B1 (de) Adsorptions-Kühlapparat mit Pufferspeicher
DE3413349C2 (de) Verfahren und Vorrichtung zum Heizen mit einer periodischen Adsorptionsspeicher-Wärmepumpe
EP1143210B1 (de) Sorptionskühler
EP0527466A1 (de) Sorptionsverfahren zum Kühlen und/oder Heizen
EP0577869A1 (de) Kühlsystem mit einer vakuumdichten Arbeitsmitteldampf-Sammelleitung
EP1054222A2 (de) Vorrichtung und Verfahren zum Kühlen einer Flüssigkeit in einem Behälter
DE4334808C1 (de) Verfahren zum Betreiben einer Sorptionsanlage zum Klimatisieren von Fahrzeugen, insbesondere Elektrofahrzeugen, und eine Sorptionsanlage, insbesondere zur Durchführung desselben
DE10330104A1 (de) Kühlsystem mit Adsorptions-Kühlgerät
WO2019105909A1 (de) Verfahren zur temperierung einer batterieanordnung und temperierte batterieanordnung
WO2019034462A1 (de) Verfahren und vorrichtung zur temperierung einer batterieanordnung
EP2743675A1 (de) Prüfanlage mit Prüfkammer, Temperiereinheit und Pufferspeicher und Verfahren zu Betreiben derselben
WO2020079182A1 (de) Wärmeenergiespeichersystem und kraftfahrzeug mit wärmeenergiespeichersystem
DE19908666B4 (de) Sorptionswärmepumpe/-Kältemaschine mit Erwärmung des bisherigen Adsorbers auf Desorptionstemperatur durch Adsorption
EP2637883B1 (de) Abgas angetriebene adsorptionskältemaschine
DE102005056245A1 (de) Kühlvorrichtung und Verfahren zu deren Betrieb
DE10047503A1 (de) Sorptionsreaktor
DE102008020605B4 (de) Heiz- und Kühlanordnung
DE102004001805B3 (de) Evakuierbarer Isolierbehälter für eine zu kühlende Anwendung
DE4431388C2 (de) Vorrichtung zur Aufnahme und Abgabe von Wärmeenergie
DE102018204333A1 (de) Temperierungseinrichtung und Verfahren zum Temperieren wenigstens einer Fahrzeugkomponente eines elektrisch betreibbaren Kraftfahrzeugs sowie Kraftfahrzeug
WO2018029521A1 (de) Transportbehälter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120601