EP1435397B1 - High strength aluminium fin material for brazing - Google Patents

High strength aluminium fin material for brazing Download PDF

Info

Publication number
EP1435397B1
EP1435397B1 EP03078132A EP03078132A EP1435397B1 EP 1435397 B1 EP1435397 B1 EP 1435397B1 EP 03078132 A EP03078132 A EP 03078132A EP 03078132 A EP03078132 A EP 03078132A EP 1435397 B1 EP1435397 B1 EP 1435397B1
Authority
EP
European Patent Office
Prior art keywords
alloy
brazing
aluminium
strength
subjecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03078132A
Other languages
German (de)
French (fr)
Other versions
EP1435397A1 (en
Inventor
Torkel Stenqvist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Granges Sweden AB
Original Assignee
Sapa Heat Transfer AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20289240&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1435397(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sapa Heat Transfer AB filed Critical Sapa Heat Transfer AB
Publication of EP1435397A1 publication Critical patent/EP1435397A1/en
Application granted granted Critical
Publication of EP1435397B1 publication Critical patent/EP1435397B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the present invention is related to an aluminium alloy intended as a fin-stock material for brazed products, such as heat exchangers, either as a braze clad material containing said alloy as a core or unclad.
  • the alloy is heat treatable (precipitation hardenable)
  • the material obtained has got a high strength after brazing, especially after an artificial ageing treatment, and gives a high corrosion resistance to the brazed product as it is sacrificial to the tube.
  • the material may be used to make products by any brazing method, in particular the controlled atmosphere brazing method (CAB) when a flux that allows alloys with Mg is used.
  • CAB controlled atmosphere brazing method
  • Mg may form small precipitates that increase the strength of the alloy considerably. This mechanism is called age hardening.
  • the AA6xxx series of alloys are based on the Mg and Si precipitates, but alloys in that series are generally not suitable for brazing, as most of them has a too high Mg content. Others are without Mn, reducing the sag resistance of the alloy.
  • Age hardening alloys have not yet been utilised in a fin stock material to be brazed in the CAB process.
  • a challenge today is to manufacture light-weight components for the automotive market.
  • a lot of research is therefore directed to reduce the weight of heat exchangers by using thinner strip.
  • the new invention shows a higher strength compared to the presently used alloys, while the corrosion protection of the tubes is retained. This will allow thinner fins with retained strength of the brazed product, thereby reducing the weight compared to products brazed today.
  • the higher strength can be utilised to give a more rigid brazed product that will withstand higher stresses, such as vibrations or pulsation of the internal pressure.
  • US-6120848 discloses a method for providing the flux onto the surface of a brazing sheet, by mechanically embedding the flux in the cladding. It is mentioned that CsF fluxes allows a higher Mg in the core materials.
  • a modified flux containing caesium and/or lithium fluoride, and a modified braze cladding is used to braze the standard 1000, 3000, 5000 or 6000 alloys containing up to 3 wt-% Mg by CAB (Controlled Atmosphere Brazing).
  • the braze cladding on the tube surfaces contains, apart from the main alloying element silicon, lithium, magnesium, sodium, and optionally caesium.
  • a fin material with the following composition in wt.-%) is disclosed: 0.7 - 1.2 Si (0.75 - 1.0 preferred), up to 0.8 Fe (0.2 - 0.45 preferred), up to 0.5 Cu (0.2 - 0.4 preferred), 0.7 - 1.2 Mn (0.8 - 1.0 preferred), up to 0.35 Mg (0.2 - 0.35 preferred), up to 3 Zn, up to 0.25 Zr (0.05 - 0.15 preferred), up to 0.2 In (0.01 - 0.1 preferred), up to 1.5 Ni (0.3 - 1.2 preferred), up to 0.2 Ti, and up to 0.25 of Cr and V.
  • the object of the present invention is to provide a high strength, heat treatable, aluminium alloy while keeping the Mg content sufficiently low for brazing in a CAB furnace using a flux that tolerates Mg.
  • Another object is to provide a material with a sufficient corrosion sacrificial action to protect another material brazed to the invention.
  • Preferred applications are fins for heat exchangers, like automotive radiators, heaters, or charge-air coolers. Other applications are not excluded.
  • a quench sensitive alloy must be cooled rapidly after the solutionising treatment (i.e. the brazing operation) in order to keep the Mg and Si atoms in solid solution. A high Mn content will increase the quench sensitivity.
  • the tensile strength of the standard material AA3003 is about 110 MPa and that of the state of the art FA6815 is about 135 MPa.
  • the yield strength of the standard material AA3003 is about 40 MPa and that of the state of the art FA6815 is about 50 MPa.
  • the alloy of the invention has a notably higher strength than the presently available alloys.
  • the concentration of silicon should be 0.5 - 1.0 wt-%, preferably 0.6 - 0.9 wt-%. Below 0.5 wt-% the ageing response is low, above 1.0 wt-% the solidus temperature of the alloy is significantly lowered.
  • the Mg content could therefore be as low as 0.25 wt-% and as high as 0.6 wt-%. Below the lower limit the alloy would not give a sufficient number of the Mg 2 Si precipitates, and a high strength would not be obtained. The more Mg the higher the strength, but with a too high level the brazeability will be reduced, and furthermore there is a risk for incipient melting of the material at the brazing temperature.
  • the preferred Mg level will depend on both the used flux and the used tube material.
  • Zn is added, up to 4 %.
  • Zn will increase the sacrificial action of the fin material and the level must be optimised together with the tube material.
  • zirconium preferably 0.05 - 0.25 wt-% is added to the alloy.
  • Zr is distributed as small Al 3 Zr in the material. They will inhibit the recrystallisation, giving large grains of the material after brazing. Below 0.05 wt-% this effect is negligible, above 0.3 wt-% coarse precipitates are formed which will reduce the effect and the workability of the material.
  • Mn in solid solution increases the strength, however the quench sensitivity is also increased. Thus, a low Mn content is beneficial to the strength if cooling rates are low. Furthermore, Mn is beneficial to the sagging resistance and corrosion resistance.
  • the Mn content should be 0.3 - 0.7 wt-%, preferably 0.4 - 0.7 wt-%, most preferably 0.5 - 0.7 wt-%.
  • Fe has an adverse effect on the corrosion resistance and in higher amounts on the sagging resistance. It is therefore limited to 0.3 wt-%.
  • Nickel is also avoided in the alloy. Nickel increases the risk for obtaining small grains in the product, and thereby reduce the sagging resistance.
  • the claimed material is produced by casting an aluminium alloy according to the invention, and thereafter subjecting the obtained material to a hot rolling and a cold rolling process. After said casting process the material may be scalped and clad with at least one additional layer. The material may be interannealed between two cold rolling passes, and partially or fully annealed after the final cold rolling step. The annealing step may also be omitted.
  • the 0.5 mm material was braze simulated with two different heating cycles, basically giving cooling rates of 2.5°C/s and 0.7°C/s between 400 and 200°C. This represents both an optimal cooling rate and one usually surpassed by brazing furnaces in practice.
  • Example 2 Material from the same braze simulations as in Example 1 was artificially aged at different temperatures after a delay of one day. Three temperatures were used: 160, 180, and 195°C. The tensile strength of the samples is shown in Figure 2 and the yield strength in figure 3. As can be seen, tensile strengths of 250 MPa and yield strengths surpassing 200 MPa may be obtained.
  • the material show a substantial age hardening response, and yield strengths more than three times as high as that of the standard materials in brazing of today were achieved.
  • the sagging resistance of the material was measured by mounting thin strip samples (gauge 0.1 mm) in a special jig, allowing 60 mm lever length ( Figure 4). The material in the jig was then subjected to a braze cycle with a 10 minute dwell at 600°C. The deflection is measured when the material has cooled off.
  • the mean deflection for the new invention was 27.6 mm, which may be compared to 17 to 23 mm for FA6815 and 35 to 40 mm for the standard heat treatable material AA6063.
  • the new invention shows a reasonable sagging resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Laminated Bodies (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The invention refers to an aluminium alloy, a clad or unclad material for brazed products containing said alloy as a core, as well as a method of producing materials to be used in brazed products from said alloy. The material is suitable for controlled atmosphere brazing (CAB) using fluxes that manage higher Mg levels in the materials. The alloy is intended as a fin-stock material for brazed products, such as heat exchangers. <??>The alloy comprises 0.5 - 1.0 wt-% silicon, 0.25 - 0.6 wt-% magnesium, 0.3 - 0.7 wt-% manganese, and 0.05 - 0.25 wt-% zirconium, and optionally up to 4 % Zn, the balance consisting of aluminium and unavoidable impurities. <??>The method for producing the material comprises the steps of subjecting said alloy to a casting process and subjecting the cast alloy to hot rolling and a cold rolling process, possibly followed by an annealing process.

Description

The present invention is related to an aluminium alloy intended as a fin-stock material for brazed products, such as heat exchangers, either as a braze clad material containing said alloy as a core or unclad. The alloy is heat treatable (precipitation hardenable) The material obtained has got a high strength after brazing, especially after an artificial ageing treatment, and gives a high corrosion resistance to the brazed product as it is sacrificial to the tube. The material may be used to make products by any brazing method, in particular the controlled atmosphere brazing method (CAB) when a flux that allows alloys with Mg is used.
To attain an aluminium alloy with a very high strength precipitation hardenable alloys must be used as the precipitation hardening mechanism gives the highest strength of the aluminium alloys. In present commercial brazing applications only the AlMgSi system can be used as the alloys using the other precipitation hardenable systems have a too low melting point compared to the melting interval of the standard braze filler alloys.
When aluminium components are heated in air, the surface layer oxidises and forms aluminium oxide. Even in the protective atmosphere in the CAB process some oxygen and water vapour are present, which will oxidise the surface. A flux is therefore provided to disrupt the aluminium oxide, and protect the surface during the brazing. When alloys containing Mg is brazed magnesium oxides are formed, which will not be broken down by the common fluxes. Magnesium fluoride compounds are found as residues, indicating a consumption of the flux by Mg.
Present manufacturers using CAB has therefore been limited to use alloys without Mg as fins, and common fin alloys are modified AA3003 variants with 1 to 3 wt-% Zn. The Zn is added to provide a sacrificial action of the fin, thereby protecting the tube from corrosion attacks. Another well-used alloy is the FA6815 from SAPA Heat Transfer [protected by patent SE-510272]. However with the advent of fluxes (WO-8604007, EP-0091231) that tolerate and allow higher Mg levels, alloys containing Mg may be brazed in CAB furnaces.
In combination with Si, Mg may form small precipitates that increase the strength of the alloy considerably. This mechanism is called age hardening. The AA6xxx series of alloys are based on the Mg and Si precipitates, but alloys in that series are generally not suitable for brazing, as most of them has a too high Mg content. Others are without Mn, reducing the sag resistance of the alloy. Age hardening alloys have not yet been utilised in a fin stock material to be brazed in the CAB process.
A challenge today is to manufacture light-weight components for the automotive market. A lot of research is therefore directed to reduce the weight of heat exchangers by using thinner strip. The new invention shows a higher strength compared to the presently used alloys, while the corrosion protection of the tubes is retained. This will allow thinner fins with retained strength of the brazed product, thereby reducing the weight compared to products brazed today. Alternatively, the higher strength can be utilised to give a more rigid brazed product that will withstand higher stresses, such as vibrations or pulsation of the internal pressure.
In AlMgSi alloys small Mg2Si precipitates form during ageing, causing the strength to increase. Thus the trivial solution to increase the strength would be to increase the Mg and the Si contents, allowing more Mg2Si to form. However, Mg reacts with the flux during brazing and this limits the amount of Mg. This is also true for the new fluxes that is said to tolerate Mg, but at a much higher level (levels of 0.66 wt.-% Mg has been reported in the literature [Garcia J, Massoulier C, Faille Ph, VTMS 5, Nashville, TN, May 14-17, 2001]).
US-6120848 discloses a method for providing the flux onto the surface of a brazing sheet, by mechanically embedding the flux in the cladding. It is mentioned that CsF fluxes allows a higher Mg in the core materials.
In US-5771962 a modified flux, containing caesium and/or lithium fluoride, and a modified braze cladding is used to braze the standard 1000, 3000, 5000 or 6000 alloys containing up to 3 wt-% Mg by CAB (Controlled Atmosphere Brazing). The braze cladding on the tube surfaces contains, apart from the main alloying element silicon, lithium, magnesium, sodium, and optionally caesium.
In US-6234243 an attempt is made to increase the strength of aluminium heat exchangers tube material by adding Mg, and protecting the braze cladding with an intermediate Al-Li alloy layer. To improve the brazeability Cs is added to the braze cladding alloy, and finally a modified flux with Cs and Li is recommended. This is an expensive way to achieve high strength.
The effort put into trying to find a way to increase the strength of fin materials above that achievable with the standard aluminium alloys shows, exemplified by the above patent documents, shows that there has been a long felt need for a stronger alloy that may be brazed using CAB. One example can be found in the patent WO 01/36697 (Corus), where a fin material with the following composition (in wt.-%) is disclosed: 0.7 - 1.2 Si (0.75 - 1.0 preferred), up to 0.8 Fe (0.2 - 0.45 preferred), up to 0.5 Cu (0.2 - 0.4 preferred), 0.7 - 1.2 Mn (0.8 - 1.0 preferred), up to 0.35 Mg (0.2 - 0.35 preferred), up to 3 Zn, up to 0.25 Zr (0.05 - 0.15 preferred), up to 0.2 In (0.01 - 0.1 preferred), up to 1.5 Ni (0.3 - 1.2 preferred), up to 0.2 Ti, and up to 0.25 of Cr and V. It is stated in the patent that a key feature is the, compared to the standard AA3xxx alloys, relatively high Si content in combination with a medium Mn content, increasing the strength. The alloy is not reported to be age hardenable, and the amount of Mn will certainly make the material quench sensitive, i.e. the age hardening response, if any, will be low.
None of the above documents discloses a high strength, heat treatable aluminium alloy suitable as fin-stock for CAB according to this invention.
Summary of the invention
The object of the present invention is to provide a high strength, heat treatable, aluminium alloy while keeping the Mg content sufficiently low for brazing in a CAB furnace using a flux that tolerates Mg. Another object is to provide a material with a sufficient corrosion sacrificial action to protect another material brazed to the invention. Preferred applications are fins for heat exchangers, like automotive radiators, heaters, or charge-air coolers. Other applications are not excluded.
An important aspect considering the strength of heat treatable brazing alloys is the quench sensitivity. A quench sensitive alloy must be cooled rapidly after the solutionising treatment (i.e. the brazing operation) in order to keep the Mg and Si atoms in solid solution. A high Mn content will increase the quench sensitivity.
The invention will now be described in more detail, references below being made to the accompanying drawings wherein
  • Figure 1 shows the yield (Rp0.2) and the tensile strength (Rm) of the invented alloy compared to two reference materials after a braze simulation with cooling rates of 0.7°C/s and 2.5°C/s, natural ageing at room temperature.
  • Figure 2 shows the tensile strength (Rm) of the invented alloy after a braze simulation with a cooling rate of 0.7°C/s and 2.5°C/s, artificial ageing at different temperatures.
  • Figure 3 shows the yield strength (Rp0.2) of the invented alloy after a braze simulation with a cooling rate of 0.7°C/s and 2.5°C/s, artificial ageing at different temperatures.
  • Figure 4 shows the sagging test jig.
  • Note that standard materials available presently are not age hardenable after a controlled atmosphere brazing cycle. The tensile strength of the standard material AA3003 is about 110 MPa and that of the state of the art FA6815 is about 135 MPa. The yield strength of the standard material AA3003 is about 40 MPa and that of the state of the art FA6815 is about 50 MPa. The alloy of the invention has a notably higher strength than the presently available alloys.
    The reason for the limitation of the composition of the alloy according to the present invention and its range will now be described.
    The concentration of silicon should be 0.5 - 1.0 wt-%, preferably 0.6 - 0.9 wt-%. Below 0.5 wt-% the ageing response is low, above 1.0 wt-% the solidus temperature of the alloy is significantly lowered.
    Magnesium increases the strength by forming Mg2Si precipitates during ageing, but lowers the brazeability by reacting with the flux, even when the flux contains Cs or Li. The Mg content could therefore be as low as 0.25 wt-% and as high as 0.6 wt-%. Below the lower limit the alloy would not give a sufficient number of the Mg2Si precipitates, and a high strength would not be obtained. The more Mg the higher the strength, but with a too high level the brazeability will be reduced, and furthermore there is a risk for incipient melting of the material at the brazing temperature. However, the preferred Mg level will depend on both the used flux and the used tube material. Different flux mixtures are available which have different tolerances to Mg [Garcia et al., cited previously]. Thus, if a flux with a high Mg tolerance and a tube material without Mg is used, then an alloy with 0.5 - 0.6 wt-% could be used, while another flux with less tolerance and/or a tube material with some Mg would limit the Mg in the fin.
    Optionally Zn is added, up to 4 %. Zn will increase the sacrificial action of the fin material and the level must be optimised together with the tube material.
    To improve the sagging resistance 0.1 - 0.3 wt-% zirconium, preferably 0.05 - 0.25 wt-% is added to the alloy. Zr is distributed as small Al3Zr in the material. They will inhibit the recrystallisation, giving large grains of the material after brazing. Below 0.05 wt-% this effect is negligible, above 0.3 wt-% coarse precipitates are formed which will reduce the effect and the workability of the material.
    Manganese in solid solution increases the strength, however the quench sensitivity is also increased. Thus, a low Mn content is beneficial to the strength if cooling rates are low. Furthermore, Mn is beneficial to the sagging resistance and corrosion resistance. The Mn content should be 0.3 - 0.7 wt-%, preferably 0.4 - 0.7 wt-%, most preferably 0.5 - 0.7 wt-%.
    Fe has an adverse effect on the corrosion resistance and in higher amounts on the sagging resistance. It is therefore limited to 0.3 wt-%.
    Copper is avoided in the alloy. Even though copper will further increase the strength, it has a negative influence on the corrosion behaviour. The electrochemical potential will increase, thereby reducing the anodic action and the protection of the tubes by the fin material.
    Nickel is also avoided in the alloy. Nickel increases the risk for obtaining small grains in the product, and thereby reduce the sagging resistance.
    The claimed material is produced by casting an aluminium alloy according to the invention, and thereafter subjecting the obtained material to a hot rolling and a cold rolling process. After said casting process the material may be scalped and clad with at least one additional layer. The material may be interannealed between two cold rolling passes, and partially or fully annealed after the final cold rolling step. The annealing step may also be omitted.
    Example 1
    An alloy was designed according to the composition described above. The actual composition is shown in Table 1, together with the limits for two reference materials. The material was first scalped, hot rolled, and then cold rolled down to 0.1 mm, with an interannealing. Samples for tests were extracted at 0.5 mm (not interannealed) and in the final gauge.
    The 0.5 mm material was braze simulated with two different heating cycles, basically giving cooling rates of 2.5°C/s and 0.7°C/s between 400 and 200°C. This represents both an optimal cooling rate and one usually surpassed by brazing furnaces in practice.
    The increase in strength with time at room temperature is shown in Figure 1. It is compared with the strength of the standard material AA3003 and the high strength fin material FA6815, the present state of the art. The increase in strength after natural ageing is substantial for the new material, even though the cooling rate after brazing is not optimal.
    Designation Si Fe Cu Mn Mg Zn Zr
    New invention 0.88 0.27 0.02 0.69 0.26 0.7 0.12
    Reference AA3003 +Zn <0.6 <0.7 0.05 - 0.20 1.0 - 1.5 <0.05 <0.05
    Reference FA6815 0.5 - 1.0 <0.7 <0.10 1.4 - 1.8 <0.05 1.2 - 1.8 0.05 - 0.20
    Reference AA6063 0.20 - 0.6 <0.35 <0.10 <0.10 0.45 - 0.9 <0.10 <0.05
    Example 2
    Material from the same braze simulations as in Example 1 was artificially aged at different temperatures after a delay of one day. Three temperatures were used: 160, 180, and 195°C. The tensile strength of the samples is shown in Figure 2 and the yield strength in figure 3. As can be seen, tensile strengths of 250 MPa and yield strengths surpassing 200 MPa may be obtained.
    The material show a substantial age hardening response, and yield strengths more than three times as high as that of the standard materials in brazing of today were achieved.
    Example 3
    The sagging resistance of the material was measured by mounting thin strip samples (gauge 0.1 mm) in a special jig, allowing 60 mm lever length (Figure 4). The material in the jig was then subjected to a braze cycle with a 10 minute dwell at 600°C. The deflection is measured when the material has cooled off.
    The mean deflection for the new invention was 27.6 mm, which may be compared to 17 to 23 mm for FA6815 and 35 to 40 mm for the standard heat treatable material AA6063. The new invention shows a reasonable sagging resistance.

    Claims (14)

    1. An aluminium alloy for brazed products with high strength, characterized in that the alloy comprises 0.5 - 1.0 wt-% silicon, 0.25 - 0.6 wt-% magnesium, 0.3 - 0.7 wt-% manganese, and 0.05 - 0.25 wt-% zirconium, and optionally up to 4 % Zn, the balance consisting of aluminium and unavoidable impurities, the Fe in said impurities being controlled up to 0.3%.
    2. An aluminium alloy according to claim 1,characterized in that the manganese content is 0.4 - 0.7 wt-%.
    3. An aluminium alloy according to claim 1, characterized in that the manganese content is 0.5 - 0.7 wt-%.
    4. An aluminium alloy according to any of claims 1-3, characterized in that the silicon content is 0.6 - 0.9 wt-%.
    5. A clad material for brazed products with high strength, characterized in that the core alloy comprises 0.5 - 1.0 wt-% silicon, 0.25 - 0.6 wt-% magnesium, 0.3 - 0.7 wt-% manganese, and 0.05 - 0.25 wt-% zirconium and optionally up to 4 % Zn, the balance consisting of aluminium and unavoidable impurities, the Fe in said impurities being controlled up to 0.3%.
    6. A clad material according to claim 5, characterized in that the manganese content is 0.4 - 0.7 wt-%.
    7. A clad material according to claim 5 or 6, characterized in that the manganese content is 0.5 - 0.7 wt-%.
    8. A clad material according to any of claims 5-7, characterized in that the silicon content is 0.6 - 0.9 wt-%.
    9. A method of producing a material from the alloy of any of claims 1-8, characterized by the steps of
      subjecting said alloy to a casting process,
      subjecting the obtained material to a hot rolling process
      subjecting the obtained material to a cold rolling process.
    10. The method as claimed in claim 9, characterized in that after said casting process the material is scalped and clad with at least one additional layer.
    11. The method as claimed in claims 9 or 10, characterized in that after said cold rolling the material is subjected to an annealing process.
    12. Use of the material in any of claims 1-8 to produce a fin-stock for heat exchangers.
    13. Use of the material in any of claims 1-8 in a brazing process where an inert atmosphere is used.
    14. Use of the material in any of claims 1-8 in a brazing process using a controlled atmosphere and a suitable flux.
    EP03078132A 2002-10-14 2003-10-07 High strength aluminium fin material for brazing Expired - Lifetime EP1435397B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    SE0203009A SE0203009D0 (en) 2002-10-14 2002-10-14 High strenth aluminum fine material for brazing
    SE0203009 2002-10-14

    Publications (2)

    Publication Number Publication Date
    EP1435397A1 EP1435397A1 (en) 2004-07-07
    EP1435397B1 true EP1435397B1 (en) 2005-09-14

    Family

    ID=20289240

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03078132A Expired - Lifetime EP1435397B1 (en) 2002-10-14 2003-10-07 High strength aluminium fin material for brazing

    Country Status (5)

    Country Link
    US (1) US20040118492A1 (en)
    EP (1) EP1435397B1 (en)
    AT (1) ATE304617T1 (en)
    DE (1) DE60301614T2 (en)
    SE (1) SE0203009D0 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2177638A1 (en) 2008-10-15 2010-04-21 "Impexmetal" S.A. Aluminium alloy, in particular for heat exchangers manufacturing

    Families Citing this family (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1666620B1 (en) * 2003-09-26 2012-01-18 Kobe Steel, Ltd. Aluminum brazing sheet
    CN101408757B (en) * 2007-10-11 2010-10-13 上海梅山钢铁股份有限公司 Method for tracking hot rolling production management level graphic rolling line material
    DE102008056819B3 (en) * 2008-11-11 2010-04-29 F.W. Brökelmann Aluminiumwerk GmbH & Co. KG Aluminum alloy used as a material for heat transfer equipment contains alloying additions of silicon, iron, manganese, zinc, titanium and bismuth
    JP6247225B2 (en) 2011-12-16 2017-12-13 ノベリス・インコーポレイテッドNovelis Inc. Aluminum fin alloy and manufacturing method thereof
    US9732169B2 (en) 2014-07-22 2017-08-15 University Of South Carolina Raft agents and their use in the development of polyvinylpyrrolidone grafted nanoparticles
    WO2016022457A1 (en) 2014-08-06 2016-02-11 Novelis Inc. Aluminum alloy for heat exchanger fins
    US20210310754A1 (en) * 2018-09-24 2021-10-07 Aleris Rolled Products Germany Gmbh Aluminium alloy fin stock material

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1335309A (en) * 1970-12-21 1973-10-24 Olin Corp Heat exchanger
    AU663819B2 (en) * 1993-08-03 1995-10-19 Denso Corporation A1 alloy brazing material and brazing sheet for heat-exchangers and method for fabricating A1 alloy heat-exchangers
    FR2713664B1 (en) * 1993-11-17 1996-05-24 Pechiney Rhenalu Al-Si-Mg alloy with improved ductility and stampability and process for obtaining it.
    US5771962A (en) * 1996-04-03 1998-06-30 Ford Motor Company Manufacture of heat exchanger assembly by cab brazing
    DE69805527T2 (en) * 1997-08-04 2002-11-28 Corus Aluminium Walzprod Gmbh HIGHLY DEFORMABLE, CORROSION-RESISTANT AL ALLOY
    US6120848A (en) * 1998-11-17 2000-09-19 Ford Motor Company Method of making a braze sheet
    US6800244B2 (en) * 1999-11-17 2004-10-05 Corus L.P. Aluminum brazing alloy
    US6234243B1 (en) * 1999-12-14 2001-05-22 Visteon Global Technologies, Inc. Heat exchanger assembly with magnesium barrier

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2177638A1 (en) 2008-10-15 2010-04-21 "Impexmetal" S.A. Aluminium alloy, in particular for heat exchangers manufacturing

    Also Published As

    Publication number Publication date
    ATE304617T1 (en) 2005-09-15
    DE60301614D1 (en) 2005-10-20
    SE0203009D0 (en) 2002-10-14
    DE60301614T2 (en) 2006-03-16
    US20040118492A1 (en) 2004-06-24
    EP1435397A1 (en) 2004-07-07

    Similar Documents

    Publication Publication Date Title
    KR101216820B1 (en) Method of producing an aluminium alloy brazing sheet and light brazed heat exchanger assemblies
    AU717614B2 (en) Aluminium alloy for use as core material in brazing sheet
    US20050211345A1 (en) High conductivity bare aluminum finstock and related process
    JP4040253B2 (en) Aluminum alloy suitable for use in brazed assemblies
    JP2011202285A (en) Brazing sheet
    US6592688B2 (en) High conductivity aluminum fin alloy
    EP1000179A1 (en) HIGH STRENGTH Al-Mg-Zn-Si ALLOY FOR WELDED STRUCTURES AND BRAZING APPLICATION
    EP1580286B1 (en) High strength long-life aluminium tube material with high sagging resistance
    EP1435397B1 (en) High strength aluminium fin material for brazing
    JP3333600B2 (en) High strength Al alloy fin material and method of manufacturing the same
    EP1254965B1 (en) High strength aluminium tube material
    JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
    JP2001105173A (en) Aluminum alloy compound material for heat exchanger and its manufacturing method
    JPH038569A (en) Production of heat exchanger made of aluminum
    JPH01102297A (en) Aluminum alloy compound fin material for heat exchanger suitable for brazing and corrosion resistance
    JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
    JPH0313550A (en) Production of high strength aluminum alloy fin material for heat exchanger
    JPH0931614A (en) Production of aluminum alloy fin material with high strength and high heat resistance for heat exchanger
    JP2002256403A (en) Method of producing fin material for use in heat exchanger
    JPH01259146A (en) Manufacture of aluminum alloy plate having excellent heat resistance
    JP2004084015A (en) Method for producing aluminum alloy fin material for heat exchanger having excellent erosion resistance and strength
    JPH08291377A (en) Production of high strength and high heat resistant fin material for heat exchanger
    JP2005125362A (en) Brazing sheet
    JPH01246380A (en) Aluminum-alloy clad material for heat exchanger member
    JPH0313548A (en) Production of high strength aluminum alloy fin material for heat exchanger

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    17P Request for examination filed

    Effective date: 20040527

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050914

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050914

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050914

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050914

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050914

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050914

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050914

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050914

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050914

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CZ

    Payment date: 20050927

    Year of fee payment: 3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20050930

    Year of fee payment: 3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SK

    Payment date: 20051006

    Year of fee payment: 3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051007

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051007

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20051013

    Year of fee payment: 3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    REF Corresponds to:

    Ref document number: 60301614

    Country of ref document: DE

    Date of ref document: 20051020

    Kind code of ref document: P

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20051024

    Year of fee payment: 3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20051026

    Year of fee payment: 3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051114

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: HU

    Payment date: 20051125

    Year of fee payment: 3

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051214

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051214

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051225

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: EP

    Ref document number: 20050403700

    Country of ref document: GR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060214

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: RO

    Ref legal event code: EPE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    ET Fr: translation filed
    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    26 Opposition filed

    Opponent name: PECHINEY

    Effective date: 20060607

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 20060609

    R26 Opposition filed (corrected)

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 20060609

    Opponent name: PECHINEY

    Effective date: 20060607

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061007

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061007

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061007

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061007

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061008

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061008

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    R26 Opposition filed (corrected)

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 20060609

    Opponent name: PECHINEY

    Effective date: 20060607

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070501

    R26 Opposition filed (corrected)

    Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

    Effective date: 20060609

    Opponent name: ALCAN ALCAN FRANCE S.A.S.

    Effective date: 20060607

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20070629

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: RO

    Payment date: 20051003

    Year of fee payment: 3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061031

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20071007

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071007

    PLBD Termination of opposition procedure: decision despatched

    Free format text: ORIGINAL CODE: EPIDOSNOPC1

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080505

    PLBM Termination of opposition procedure: date of legal effect published

    Free format text: ORIGINAL CODE: 0009276

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

    27C Opposition proceedings terminated

    Effective date: 20090606