EP1429003B1 - Méthode et dispositif influençant les oscillations thermoacoustiques dans les systèmes de combustion - Google Patents

Méthode et dispositif influençant les oscillations thermoacoustiques dans les systèmes de combustion Download PDF

Info

Publication number
EP1429003B1
EP1429003B1 EP03104405A EP03104405A EP1429003B1 EP 1429003 B1 EP1429003 B1 EP 1429003B1 EP 03104405 A EP03104405 A EP 03104405A EP 03104405 A EP03104405 A EP 03104405A EP 1429003 B1 EP1429003 B1 EP 1429003B1
Authority
EP
European Patent Office
Prior art keywords
fuel
gas flow
burner
acoustic
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03104405A
Other languages
German (de)
English (en)
Other versions
EP1429003A3 (fr
EP1429003A2 (fr
Inventor
Ephraim Gutmark
Christian Oliver Paschereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1429003A2 publication Critical patent/EP1429003A2/fr
Publication of EP1429003A3 publication Critical patent/EP1429003A3/fr
Application granted granted Critical
Publication of EP1429003B1 publication Critical patent/EP1429003B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2205/00Pulsating combustion
    • F23C2205/10Pulsating combustion with pulsating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a method and a device for influencing thermoacoustic oscillations in a combustion system with at least one burner and at least one combustion chamber having the features of the preamble of claim 1 or with the features of the preamble of claim 5.
  • thermoacoustic oscillations refers to mutually accelerating thermal and acoustic disturbances.
  • high vibration amplitudes can occur, which can lead to undesirable effects, such as a high mechanical load on the combustion chamber, increased NO x emissions through inhomogeneous combustion and even extinguishment of the flame. This is especially true for low acoustic attenuation combustion systems.
  • active control of combustion oscillations may be necessary.
  • thermoacoustic oscillations by modulating an injection of liquid or gaseous fuel.
  • thermoacoustic oscillations by introducing pressure pulsations into the combustion chamber with a loudspeaker.
  • thermoacoustic oscillations The known devices and methods are each tuned to influence a specific interference frequency of the thermoacoustic oscillations. There is a further need to further reduce the interference of the thermoacoustic vibration systems.
  • the present invention addresses the problem of finding a way to improve the effect of thermoacoustic oscillations in a combustion system.
  • the invention is based on the general idea of combining the basically known acoustic excitation of the gas flow with the basically known modulated injection of the fuel to influence the same interference frequency of the thermoacoustic oscillations.
  • the combination proposed according to the invention exhibits a surprisingly high suppression effect or damping effect for the respective interference frequency, taken singly by the damping effect of the known acoustic gas flow excitation and by the attenuation effect of the known modulated fuel injection and by the combination these two influencing methods expected attenuation effect goes beyond.
  • the unexpectedly strong improvement in the damping effect is attributed to surprisingly occurring, not yet explained synergy effects.
  • the instantaneous acoustic gas flow excitation and the instantaneous modulated fuel injection are phase locked to the same signal correlated with the thermoacoustic vibrations measured in the combustion system. This ensures that the two influencing methods do not work independently of each other, but interact in a phase-locked manner.
  • the phases relate to the amplitude curve of the interference frequency preferably to be influenced within the thermoacoustic oscillations.
  • Said measured signal is subjected to a first phase shift for the realization of the acoustic gas flow excitation, while it is subjected to a second phase shift for the realization of the modulated fuel injection excitation. It may be expedient to give the first phase shift a different value than the second phase shift. By separately adjusting the phase shifts, it is possible to optimize the synergetic interactions of the two combined influencing methods for improving the damping effect.
  • FIG. 1 shows a greatly simplified schematic diagram of a device according to the invention.
  • a device 1 comprises a controller 2, which is symbolized here only by a frame shown with broken lines.
  • the device 1 also has at least one acoustic source 3 and at least one control valve 4 of a fuel supply device 5.
  • the fuel supply device 5 is coupled to a combustion system 6, which usually has at least one burner 7 and at least one combustion chamber 8. To simplify burner 7 and combustion chamber 8 are symbolized by a common rectangle here.
  • the combustion system 6 is also associated with a gas supply device 9. While with the control valve 4, the amount of liquid or gaseous fuel supplied to the combustion system 6 can be controlled, with the acoustic source 3, a gas flow forming in the combustion system 6 can be influenced. In this case, the acoustic source 3 - as here - act indirectly via the gas supply device 9 or directly to the combustion system 6.
  • the device 1 is assigned to the combustion system 6 and serves to influence thermoacoustic oscillations, which can occur in the combustion system 6.
  • the controller 2 includes a first control path 10 and a second control path 11, the input side, a first time delay element 12 and a second time delay element 13 contain.
  • the control paths 10, 11 contain a first amplifier 14 and a second amplifier 15 on the output side.
  • the second control path 11 between the second time delay element 13 and the second amplifier 15 contains a high-pass filter 16. While the first control path 10 is connected to the acoustic source 3 on the output side is, the second control path 11 on the output side connected to the control valve 4.
  • the controller 2 contains a control algorithm 17, which emits corresponding signals to the input sides of the control paths 10, 11 connected in parallel in response to incoming signals.
  • the control algorithm 17 receives its input signals from a sensor, not shown here, which is designed to measure thermoacoustic oscillations in the combustion system 6.
  • the signals determined by this sensor system correlate with the thermoacoustic oscillations in the combustion system 6.
  • the measured signals can be pressure signals, the sensors then comprising pressure sensors, preferably microphones, in particular water-cooled microphones and / or microphones with piezoelectric pressure sensors. It is likewise possible for the signals measured by the sensor system to be formed by chemiluminescence signals, preferably by chemiluminescence signals from the emission of one of the radicals OH or CH.
  • the sensors can then expediently have optical sensors for visible or infrared radiation, in particular optical fiber probes.
  • the measured for example in the combustion chamber 8 pressure or luminescence signal is processed accordingly by the control algorithm 7 and the time delay elements 12, 13 fed in parallel.
  • the time delay elements 12, 13 then provided for the respective control path 10, 11 phase shifts of the incoming signal.
  • the high-pass filter 16 retains unwanted, low-frequency interference, so that only the desired, high-frequency phase-shifted signals reach the second amplifier 15. With the aid of the amplifier 14, 15 then takes place a signal amplification.
  • the phase shifts achieved by the time delay elements 12, 13 are chosen to be different.
  • the controller 2 in particular via its control algorithm 17 the Phase shifts of the time delay elements 12, 13 can set independently.
  • the controller 2 for example via the control algorithm 17, controls the amplifiers 14, 15 independently of each other for generating different signal amplitudes.
  • the high-pass filter 16 can be designed to be adjustable.
  • thermoacoustic oscillations in the combustion system 6 can be achieved.
  • the controller 2 in particular its control algorithm 17, can actuate the time delay elements 12, 13 and / or the amplifiers 14, 15 and / or the high-pass filter 16 as a function of the instantaneous pressure or luminescence signals.
  • the influence of the respective control path 10, 11 can be varied or tracked to the interference frequency to be damped. In that regard, arise here for both control paths 10, 11 closed control loops.
  • EP 0 918 152 A1 For the mode of operation of influencing the thermoacoustic oscillations by means of acoustic excitation of the gas flow, reference is made to EP 0 918 152 A1, the content of which is hereby incorporated by express reference in the disclosure content of the present invention. In a corresponding manner, reference is made to EP 0 985 810 A1 for the mode of operation of influencing the thermoacoustic oscillations by means of modulated fuel injection, the content of which is hereby expressly indicated Reference is incorporated in the disclosure of the present invention.
  • the fluid mechanical stability of a gas turbine burner is of crucial importance for the occurrence of thermoacoustic vibrations.
  • the fluid-mechanical instability waves arising in the burner lead to the formation of vortices.
  • These vortices also known as coherent structures, play an important role in air-fuel mixing.
  • the spatial and temporal dynamics of these coherent structures influence combustion and heat release.
  • the formation of these coherent structures can be counteracted. If the formation of vortex structures at the burner outlet is reduced or prevented, this also reduces the periodic heat release fluctuation.
  • these periodic heat release fluctuations form the basis for the occurrence of thermoacoustic oscillations, so that the amplitude of the thermoacoustic fluctuations can be reduced by the acoustic excitation.
  • shear layer here refers to the mixture layer that forms between two fluid flows of different speeds.
  • the influence of the shear layer has the advantage that introduced excitations are amplified in the shear layer. Thus, only a small amount of excitation energy is needed to extinguish an existing sound field. In contrast, in a pure anti-sound principle, an existing sound field is canceled out by a phase-shifted sound field of the same energy.
  • the shear layer can be excited both downstream and upstream of the burner. Downstream of the burner, the shear layer can be excited directly. In an excitation upstream of the burner, the acoustic excitation is first introduced into a working gas, such as air, wherein the excitation then transmits after passage of the working gas through the burner in the shear layer. Since only low excitation powers are required, the acoustic source 3 may be formed by an acoustic driver, such as one or more loudspeakers, which is aligned with the gas flow. Alternatively, one or more chamber walls may be mechanically excited to vibrate at the particular desired frequency.
  • acoustic driver such as one or more loudspeakers
  • the instantaneous acoustic excitation of the gas flow or its shear layer is phase-coupled with a signal measured in the combustion system, which is correlated with the thermoacoustic fluctuations.
  • This signal can be measured downstream of the burner in the combustion chamber or in a settling chamber located upstream of the burner.
  • the instantaneous acoustic excitation is then controlled as a function of this measurement signal.
  • the acoustic excitation counteracts the formation of coherent structures, so that the amplitude of the pressure pulsation is reduced.
  • the said phase difference is set by the time delay element 12 and takes into account that phase shifts usually occur due to the arrangement of the measuring sensors and acoustic drivers or sources 3 as well as by the measuring devices and lines themselves. If the set relative phase is chosen such that the greatest possible reduction in the pressure amplitude results, all these phase-rotating Effects implicitly taken into account. Since the most favorable relative phase can change over time, the relative phase advantageously remains variable and can be tracked, for example, via a control of the pressure fluctuations so that a large suppression is always ensured.
  • the modulated fuel injection can also influence the formation of thermoacoustic vibrations.
  • a modulated fuel injection means any time-varying injection of liquid or gaseous fuel. This modulation can be done, for example, at any frequency.
  • the injection can be carried out phase-independently of the pressure oscillations in the combustion system; however, the embodiment shown here is preferred, in which the injection is phase-locked with a signal measured in the combustion system 6, which is correlated with the thermoacoustic oscillations.
  • the modulation of the fuel injection takes place by a corresponding opening and closing of the control valve or valves 4, whereby the injection times (start and end of the injection) and / or the injection quantity are varied. Due to the modulated fuel supply, the amount of fuel reacted in large-scale vortices can be controlled. As a result, the formation of the coherent heat release and thus the formation of thermoacoustic instabilities can be influenced.
  • the acoustic excitation of the gas flow takes place upstream of the modulated injection of the fuel.
  • the modulated injection of the fuel preferably takes place in the already mentioned above shear layer within the burner 7. It can be sufficient to modulate only a relatively small proportion of the injected fuel quantity. In particular, it may be appropriate to inject less than 20% of the total injected fuel quantity modulated.
  • the control algorithm 17 it may be possible in particular to vary the interference frequency of the thermoacoustic oscillations to be influenced with the aid of the device 1 according to the invention.
  • the main noise frequency may depend on the respective operating state of the combustion system 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Control Of Combustion (AREA)

Claims (7)

  1. Procédé pour influencer les oscillations thermoacoustiques dans un système de combustion (6) comprenant au moins un brûleur (7) et au moins une chambre de combustion (8), un écoulement de gaz se formant dans la région du brûleur (7) étant excité acoustiquement et une injection de combustible se produisant de manière modulée,
    - l'excitation acoustique de l'écoulement de gaz et l'injection modulée du combustible s'effectuant de manière combinée et étant adaptées pour influencer la même fréquence parasite des oscillations thermoacoustiques,
    - l'excitation acoustique momentanée de l'écoulement de gaz et l'injection modulée momentanée du combustible étant verrouillées en phase avec le même signal mesuré dans le système de combustion, corrélé aux oscillations thermoacoustiques,
    - le signal mesuré étant soumis à un premier déphasage et étant utilisé pour produire un premier signal d'attaque qui commande au moins une source acoustique (3) pour produire l'excitation acoustique momentanée de l'écoulement de gaz,
    - le signal mesuré étant soumis à un deuxième déphasage et étant utilisé pour produire un deuxième signal d'attaque qui commande au moins une soupape de commande (4) pour produire l'injection modulée momentanée du combustible.
  2. Procédé selon la revendication 1,
    dans lequel le premier déphasage possède une valeur différente du deuxième déphasage.
  3. Procédé selon la revendication 1 ou 2,
    dans lequel l'excitation acoustique de l'écoulement de gaz s'effectue en amont de l'injection modulée du combustible.
  4. Procédé selon l'une quelconque des revendications 1 à 3,
    dans lequel l'injection modulée du combustible s'effectue dans une couche de cisaillement se formant dans l'écoulement de gaz.
  5. Dispositif pour influencer les oscillations thermoacoustiques dans un système de combustion (6) comprenant au moins un brûleur (7) et au moins une chambre de combustion (8), au moins une source acoustique (3) étant disposée dans la région du brûleur (7) pour produire une excitation acoustique d'un écoulement de gaz se formant dans la région du brûleur (7) et le brûleur (7) présentant au moins un dispositif d'alimentation en combustible (5) avec au moins une soupape de commande (4) pour produire une injection modulée du combustible,
    - une commande (2) étant prévue, laquelle commande de manière combinée l'au moins une source acoustique (3) et l'au moins une soupape de commande (4) pour influencer la même fréquence parasite des oscillations thermoacoustiques,
    - la commande (2) présentant une première voie de commande (10) pour l'excitation acoustique de l'écoulement de gaz et une deuxième voie de commande (11) pour l'injection modulée du combustible,
    - le même signal corrélé aux oscillations thermoacoustiques étant acheminé parallèlement du côté de l'entrée aux deux voies de commande (10, 11),
    - les deux voies de commande (10, 11) contenant chacune un organe de retard temporel (12, 13) pour produire un déphasage,
    - la première voie de commande (10) guidant du côté de la sortie un premier signal d'attaque vers la source acoustique (3),
    - la deuxième voie de commande (11) guidant du côté de la sortie un deuxième signal d'attaque vers la soupape de commande (4).
  6. Dispositif selon la revendication 5,
    dans lequel le premier organe de retard temporel (12) produit un déphasage différent du deuxième organe de retard temporel (13).
  7. Dispositif selon la revendication 5 ou 7,
    dans lequel l'au moins une source acoustique (3) est disposée en amont du point où a lieu l'injection modulée du combustible.
EP03104405A 2002-12-07 2003-11-27 Méthode et dispositif influençant les oscillations thermoacoustiques dans les systèmes de combustion Expired - Lifetime EP1429003B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10257244 2002-12-07
DE10257244A DE10257244A1 (de) 2002-12-07 2002-12-07 Verfahren und Vorrichtung zur Beeinflussung thermoakustischer Schwingungen in Verbrennungssystemen

Publications (3)

Publication Number Publication Date
EP1429003A2 EP1429003A2 (fr) 2004-06-16
EP1429003A3 EP1429003A3 (fr) 2005-04-27
EP1429003B1 true EP1429003B1 (fr) 2007-02-21

Family

ID=32318997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03104405A Expired - Lifetime EP1429003B1 (fr) 2002-12-07 2003-11-27 Méthode et dispositif influençant les oscillations thermoacoustiques dans les systèmes de combustion

Country Status (4)

Country Link
US (1) US7232308B2 (fr)
EP (1) EP1429003B1 (fr)
AT (1) ATE354724T1 (fr)
DE (2) DE10257244A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257275A1 (de) * 2002-12-07 2004-06-24 Alstom Technology Ltd Verfahren und Vorrichtung zur Beeinflussung thermoakustischer Schwingungen in Verbrennungssystemen
US8359837B2 (en) * 2006-12-22 2013-01-29 Cummins Inc. Temperature determination and control of exhaust aftertreatment system adsorbers
US8028512B2 (en) 2007-11-28 2011-10-04 Solar Turbines Inc. Active combustion control for a turbine engine
US9759424B2 (en) * 2008-10-29 2017-09-12 United Technologies Corporation Systems and methods involving reduced thermo-acoustic coupling of gas turbine engine augmentors
US20100192577A1 (en) * 2009-02-02 2010-08-05 General Electric Company System and method for reducing combustion dynamics in a turbomachine
EP3450848B1 (fr) * 2017-09-01 2021-01-06 Technische Universität Berlin Procédé pour commander un appareil de combustion et un dispositif de commande
CN112253317A (zh) * 2020-11-10 2021-01-22 上海电气燃气轮机有限公司 闭环式燃烧控制***及其控制方法
CN114487259B (zh) * 2022-04-18 2022-08-02 北京航空航天大学 研究金属粉对热声不稳定性影响的实验装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473906A (en) * 1980-12-05 1984-09-25 Lord Corporation Active acoustic attenuator
EP0091926B1 (fr) * 1981-10-21 1987-08-26 Sound Attenuators Limited Procede et dispositif ameliores d'annulation de vibrations
US4909731A (en) * 1986-03-06 1990-03-20 Sonotech, Inc. Method and apparatus for conducting a process in a pulsating environment
US5349811A (en) * 1992-12-16 1994-09-27 Avco Corporation Pulsed fuel injection system for reducing NOx emissions
US5719791A (en) * 1995-03-17 1998-02-17 Georgia Tech Research Corporation Methods, apparatus and systems for real time identification and control of modes of oscillation
DE19636093B4 (de) * 1996-09-05 2004-07-29 Siemens Ag Verfahren und Vorrichtung zur akustischen Modulation einer von einem Hybridbrenner erzeugten Flamme
DE59708564D1 (de) * 1997-07-15 2002-11-28 Alstom Verfahren und Vorrichtung zum Minimieren thermoakustischer Schwingungen in Gasturbinenbrennkammern
DE59711378D1 (de) * 1997-11-24 2004-04-08 Alstom Switzerland Ltd Verfahren zum Minimieren thermoakustischer Schwingungen in Gasturbinenbrennkammern
US6464489B1 (en) 1997-11-24 2002-10-15 Alstom Method and apparatus for controlling thermoacoustic vibrations in a combustion system
EP0918152A1 (fr) * 1997-11-24 1999-05-26 Abb Research Ltd. Procédé et dispositif pour contrÔler les vibrations thermoacoustiques dans les chambres de combustion
EP0985810B1 (fr) * 1998-09-10 2003-10-29 ALSTOM (Switzerland) Ltd Procédé pour minimiser les oscillations thermoacoustiques dans la chambre de combustion de turbines à gaz
EP0985882B1 (fr) * 1998-09-10 2003-12-03 ALSTOM (Switzerland) Ltd Amortissement des vibrations dans des combusteurs
US6179265B1 (en) * 1998-12-08 2001-01-30 Dura Global Technologies Inc. Single horizontal drive configuration for a seat adjuster
DE10040868A1 (de) * 2000-08-21 2002-03-07 Alstom Power Nv Verfahren zur Reduzierung thermoakustischer Schwingungen in Strömungskraftmaschinen mit einem Brennersystem

Also Published As

Publication number Publication date
DE50306572D1 (de) 2007-04-05
EP1429003A3 (fr) 2005-04-27
ATE354724T1 (de) 2007-03-15
US20050016180A1 (en) 2005-01-27
DE10257244A1 (de) 2004-07-15
EP1429003A2 (fr) 2004-06-16
US7232308B2 (en) 2007-06-19

Similar Documents

Publication Publication Date Title
EP1050713A1 (fr) Procédé de suppression respectivement de contrôle de vibrations thermoacoustiques dans une chambre de combustion ainsi que chambre de combustion pour la mise en oeuvre du procédé
EP0985810B1 (fr) Procédé pour minimiser les oscillations thermoacoustiques dans la chambre de combustion de turbines à gaz
EP0961906B1 (fr) Procede d'attenuation active d'une oscillation de combustion, et utilisation de la procede
DE69508344T2 (de) Aktive Regeleinrichtung der Verbrennungsinstabilität und der Entkohlung eines Brennstoffeinspritzventils
DE3439903A1 (de) Verbrennungssystem fuer ein gasturbinentriebwerk
DE19636093B4 (de) Verfahren und Vorrichtung zur akustischen Modulation einer von einem Hybridbrenner erzeugten Flamme
EP2617956B1 (fr) Dispositif de gaz d'échappement pour un moteur à combustion interne
EP1429003B1 (fr) Méthode et dispositif influençant les oscillations thermoacoustiques dans les systèmes de combustion
EP0987495B1 (fr) Procédé pour minimiser les vibrations thermoacoustiques dans les chambres de combustion de turbines à gaz
DE4241729A1 (de) Aktuator zum Aufprägen von Massenstrom- bzw. Druckschwankungen auf unter Druck stehende Flüssigkeitsströme
DE60021296T2 (de) Abstimmung einer Brennkammer
EP0732513B1 (fr) Procédé et dispositif d'amortissement actif des oscillations dans les courants instables détachés
EP1348908A2 (fr) Procédé et dispositif pour contrôler les instabilités ou les vibrations thermoacoustiques dans un système de combustion
EP0918152A1 (fr) Procédé et dispositif pour contrÔler les vibrations thermoacoustiques dans les chambres de combustion
DE4040745A1 (de) Aktive regelung von durch verbrennung hervorgerufene instabilitaeten
EP1429004B1 (fr) Méthode et dispositif influençant les oscillations thermoacoustiques dans les systèmes de combustion
EP1429002A2 (fr) Méthode et dispositif influençant les oscillations thermoacoustiques dans les systèmes de combustion
DE102005035085B4 (de) Verfahren zur Einstellung der akustischen Eigenschaften einer Brennkammer
DE10040868A1 (de) Verfahren zur Reduzierung thermoakustischer Schwingungen in Strömungskraftmaschinen mit einem Brennersystem
DE10000415A1 (de) Verfahren und Vorrichtung zur Unterdrückung von Strömungswirbeln innerhalb einer Strömungskraftmaschine
DE102020101799A1 (de) Vorrichtung und Verfahren zum Betreiben eines Kraftstoffbrenners
EP0918153B1 (fr) Procédé et dispositif pour minimiser les vibrations thermoacoustiques dans les chambres de combustion de turbine à gaz
DE102013113702A1 (de) Aktives Brennstoffdüsensteuerungssystem
EP1776627A1 (fr) Dispositif et procede pour commander la vitesse d'ecoulement d'un flux de liquide dans une conduite hydraulique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050908

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50306572

Country of ref document: DE

Date of ref document: 20070405

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070522

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070723

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

26N No opposition filed

Effective date: 20071122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070522

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

BERE Be: lapsed

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070221

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101022

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111130

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306572

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121127