EP1421290A1 - Procede pour commander un embrayage et dispositif pour actionner un embrayage - Google Patents

Procede pour commander un embrayage et dispositif pour actionner un embrayage

Info

Publication number
EP1421290A1
EP1421290A1 EP02754515A EP02754515A EP1421290A1 EP 1421290 A1 EP1421290 A1 EP 1421290A1 EP 02754515 A EP02754515 A EP 02754515A EP 02754515 A EP02754515 A EP 02754515A EP 1421290 A1 EP1421290 A1 EP 1421290A1
Authority
EP
European Patent Office
Prior art keywords
clutch
temperature
gripping point
displacement
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02754515A
Other languages
German (de)
English (en)
Inventor
Martin Vornehm
Jens Martin
Joachim Hirt
Norbert Esly
Jens Horstmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Buehl Verwaltungs GmbH
LuK Lamellen und Kupplungsbau GmbH
Original Assignee
LuK Lamellen und Kupplungsbau Beteiligungs KG
LuK Lamellen und Kupplungsbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LuK Lamellen und Kupplungsbau Beteiligungs KG, LuK Lamellen und Kupplungsbau GmbH filed Critical LuK Lamellen und Kupplungsbau Beteiligungs KG
Publication of EP1421290A1 publication Critical patent/EP1421290A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0291Clutch temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • F16D2500/1025Electric motor with threaded transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30404Clutch temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30406Clutch slip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50245Calibration or recalibration of the clutch touch-point
    • F16D2500/50266Way of detection
    • F16D2500/50275Estimation of the displacement of the clutch touch-point due to the modification of relevant parameters, e.g. temperature, wear

Definitions

  • the invention relates to a method for controlling a clutch of an electronic clutch management system (EKM) and / or an automated gearbox (ASG). Furthermore, the invention relates to a device for actuating a clutch with a motor, which is coupled to a release system via a transmission.
  • EKM electronic clutch management system
  • ASG automated gearbox
  • Such a method and such a device are known from vehicle technology.
  • the invention has for its object to propose a method and a device according to the types mentioned, which avoid the disadvantages known from the prior art.
  • this object is achieved in that a gripping point of the clutch is determined as a function of the clutch temperature and is taken into account when the clutch is actuated.
  • a suitable modification e.g. the torque characteristic and / or the clutch control. It is possible that after an energy input into the clutch, which increases the clutch temperature, a change in the torque characteristic on the clutch occurs. This can negatively affect the function and comfort e.g. affect automatic clutch control.
  • the effects of the thermal effects in an automated clutch control are preferably determined for the compensation by taking the clutch temperature into account when determining the gripping point.
  • the position of the plate spring tongues of the clutch to be shifted after an energy input with the aid of measurement technology in the vehicle and / or a test bench, in particular an EKM functional test bench.
  • the gripping point is a decisive variable for the control of an automated clutch or the like.
  • the gripping point corresponds to the path of the actuator to a predetermined point, which preferably corresponds to a clutch torque of approximately 9 Nm.
  • the gripping point is not constant, but can e.g. also change by introducing energy into the clutch.
  • the displacement of the gripping point when the vehicle is crawling is considered as an example.
  • the position of the plate spring tongues is shifted when the clutch is closed. This results in a change of the actuator gripping point if the so-called sniffing function is not activated.
  • the torque characteristic of the clutch is also changed. This also results in a change in the actuator gripping point.
  • Sniff function is activated.
  • the sniffer function When the sniffer function is activated, only the torque characteristic of the clutch is preferably changed.
  • the change in the gripping point is calculated in relation to an initial state within a short time range, for example ⁇ 3 min, and is taken into account in the control of the automated clutch.
  • the coupling temperature can, for example, briefly, eg during a creep process change several approaches in a row and / or during a traffic jam on the mountain. It can be important whether the sniff function is activated or not. It has been shown that there may be no long-term or absolute dependence of the gripping point on the coupling temperature.
  • Other influences on the gripping point can also be important, such as, for example, the temperature distribution within the clutch, in particular a self-adjusting clutch (SAG), adjusting the clutch, in particular an SAC clutch, setting the main actuator spring and / or setting or
  • Energy input is integrated into the EKM control so that the functionality and comfort can be improved by controlling the automatic clutch.
  • the energy input per journey can be less than 50 kJ.
  • the friction power can be less than 2 kW.
  • a light stall test can be carried out before and after each start-up program, in which the accelerator pedal is pressed to determine the torque characteristic of the clutch.
  • the gripping point can be determined using the torque characteristics of the coupling determined during the stall test.
  • the clutch temperature can be calculated using an EKM temperature model, whereby the temperature of the pressure plate, the path of the central release and the pressure are used as measured variables. It is conceivable that other measured variables are also used. The measurement results are shown in the table below:
  • gripping point When the term gripping point is used in general, the gripping point with respect to the actuator travel can preferably be considered. When examining the processes on the clutch, a distinction is made between the clutch gripping point and the actuator gripping point.
  • the clutch gripping point is the disengagement path of the clutch at a predetermined point, which is present on the torque characteristic curve of the clutch at 9 Nm.
  • the release path begins with the clutch closed, ie the clutch zero point.
  • the clutch grip point only includes the influence of the clutch.
  • the actuator gripping point is the path of the actuator at the point at which the torque characteristic of the clutch 9 Nm are present.
  • the Swiftrweg begins at a so-called sniffing position, ie the
  • the actuator gripping point includes influences of the clutch and the
  • the actuator gripping point can be influenced in particular by shifting the tongue position when the clutch is closed. This corresponds to a parallel shift of the characteristic of the clutch torque including the zero point of the clutch. It follows that the zero point of the clutch is not equal to the zero point of the actuator. This in turn means that there is a parallel shift in the characteristic curve of the clutch torque f (Stellerweg). The actuator gripping point thus changes. When sniffing, the two zero points can be compared, i.e. the zero point of the clutch is equal to the zero point of the actuator.
  • the clutch torque f characteristic curve (Stellerweg) is similar again as before.
  • the actuator gripping point can be calculated depending on the pressure. Since the so-called sniffing has a significant influence on the actuator gripping point, an evaluation can be carried out both with and without the sniffing function.
  • Tongue position i.e. the zero position of the clutch directly on the actuator G maturing point.
  • the actuator gripping point can be calculated by compensating for the displacement of the tongue position by sniffing. Only the change of the clutch grip point is effective.
  • the change in the gripping point can be calculated within a short time range of approximately less than 3 minutes and taken into account in the control.
  • Coupling temperature can change briefly, for example during a crawl process, with multiple starts in succession and / or with a traffic jam on the mountain.
  • increasing coupling temperature up to 300 ° C
  • Clutch gripping point becomes smaller.
  • the tongues can move towards the engine.
  • the pressure, which corresponds to the release force, becomes smaller at the gripping point.
  • the coupling temperature can be determined in particular using a suitable EKM temperature model.
  • the shift of the actuator gripping point is taken into account in the EKM control, which advantageously enables an improvement in functionality and comfort.
  • a short-term thermal effect is considered when energy is introduced into the clutch.
  • the short-term displacement of the plate spring tongues is considered due to, for example, potting effects on the flywheel and / or on the pressure plate, in order to be able to preferably indicate effects on the EKM system.
  • a lot of friction energy can be supplied to the clutch in a relatively short time, especially when starting at full load, starting bangs and / or stall tests.
  • short-term, reversible shifts in the position of the plate spring tongues can occur, which are caused in particular by thermal deformation as a result of temperature gradients within the pressure plate and the flywheel. Furthermore, this can be dependent on the friction power supplied.
  • long-term, reversible There is a shift in the position of the plate spring tongues, which is particularly dependent on the temperature of the clutch (pressure plate).
  • the long-term shift in the position of the plate spring tongues can preferably be compensated for by the EKM control.
  • the short-term displacement of the position of the plate spring tongues and the time for regression can preferably be proportional to the friction power supplied.
  • the sniffing function can be prevented at least for a predetermined period.
  • the friction power supplied to the clutch can e.g. are constantly determined by the EKM control system, using a suitable EKM clutch temperature model as the basis.
  • test bench tests can be determined.
  • a predetermined clutch is loaded in slipping phases with parameters which are listed in the table below.
  • the clutch can then be closed and the position of the plate spring tongues determined.
  • So-called potting effects can preferably be on the pressure plate and on the flywheel depending on their geometry.
  • the short-term displacement ⁇ S of the plate spring tongues and the time t R in which this displacement is reduced by 90% can be evaluated accordingly. This results in a dependency between the short-term shift and the time for regression on the friction power supplied.
  • the mean values of the evaluated slip phases are shown in the table below.
  • the friction power supplied can be a product of the clutch torque and the slip number and can be calculated using the following equation:
  • the short-term displacement of the position of the plate spring tongues and the time of the regression in the vehicle can preferably be proportionally dependent on the friction power supplied.
  • the sniffing function should be deactivated, otherwise the release system will be adjusted to an incorrect clutch zero point, since sniffing will set the clutch zero point to the actuator zero point. If you sniff the disc spring tongues during this short-term shift, an incorrect actuating torque characteristic curve can result for all driving situations until the next sniffing after the shift has receded. This should be avoided in order to have a positive influence on the driving comfort of a vehicle with an automated clutch system.
  • the frictional power supplied to the clutch is continuously determined by the EKM controller, the EKM clutch temperature model preferably being used again as the basis.
  • the so-called sniffing ban can therefore be interpreted without great difficulty.
  • a fully loaded vehicle can be stopped repeatedly on the mountain.
  • the starting speeds may drop due to the excessive torque transmission, so that under certain circumstances starting at a 30% gradient is not possible.
  • dragging moments can also prevent gear selection.
  • a suitable overtemperature can be recognized in time by suitable devices. It has been shown that a suitable control system for compensating should therefore be provided.
  • the gripping point is adapted to the currently correct value and / or the deactivation of the coefficient of friction adaptation is provided. Furthermore, the stall takes place with a significant increase in temperature. Furthermore, the gripping point is adapted (catching up any shift). Then, by adapting the gripping point, the displacement is tracked during cooling. The sniffer function is activated before the gripping point is adapted. Then the gripping point is adapted to the correct value.
  • the characteristic curve is shifted through the barn, which can be recognized by catching the gripping point.
  • the characteristic curve can shift back when cooling.
  • the shift takes place parallel to the gripping point shift of the characteristic curve when calculating NPUNKT (in b lag.c). As a result, the shift takes effect at the end of the status sequence when determining the new clutch target travel (KUPPLUNGSWEG_NORMIEREN in k_solnom.c) and also when querying the modulation limits etc. (e.g. DRIVING in s_fahr.c).
  • a global variable (short) TEMP_ALT can be used for the calculation of the shift, which is set equal to the current temperature when SNOWING (in s ahr.c). This can also be done at the STEUERUNGJNIT (in m_ Kunststoff.c) and be provided during the initialization of the temperature when the engine starts (in t_temp.c), in particular to avoid or intercept jumps in temperature.
  • the compensation can preferably be slowly reduced to 0 (in emp.c).
  • intervention can be made, for example, at a relatively sensitive point in the control when the model temperature is used for the first time.
  • the described compensation can advantageously avoid a dangerous self-amplification of the clutch torque when creeping continuously.
  • the compensation can be used in particular in vehicles that are at operating temperature.
  • the slight over- or under-compensation can possibly be caused by the fact that the temperature model (as the trigger of the shift) is not adapted to the warm-up phase of the vehicle. For this reason, an adaptation can be provided in order to also advantageously use the compensation in vehicles that are not at operating temperature.
  • the model can deliver an excessively high temperature of 80-120 ° C, because the model involves cooling against a transmission bell at 100 ° C.
  • the model is optimized to achieve high accuracy at high temperatures (where measures are also taken by the control). Accordingly, it is advisable that the known engine temperature be used as the transmission bell temperature in the temperature model. Other measures for optimizing the temperature model are also possible.
  • the influence of characteristic fields on the compensation described is predetermined qualitatively. For example, if the grip point and / or the coefficient of friction is too low, the actual creep torque can be greater than the controlled one
  • the compensation can preferably depend on whether the characteristic is correct. If the above-mentioned GP / RW error amplification leads to the instability of the adaptations, it could be checked whether the adaptation result is rejected if the amount of compensation is large.
  • the object of the invention with respect to the device can be achieved in that a device for actuating a clutch with a motor, which is coupled to a disengagement system via a gearbox, is proposed, in which the gearbox enables a rotational-translational conversion, the The transmission has a high efficiency in the forward drive and a low efficiency in the reverse drive, so that the transmission is designed to be self-locking and / or self-braking when a load is applied.
  • the device according to the invention can preferably be used in a vehicle with an electronic clutch management (EKM). This is intended in particular to keep the clutch actuator in a predetermined position without additional power consumption by the drive. Accordingly, a drive system is proposed which operates in the drive direction, i.e. Motor for load for round trip
  • Return movement has a high efficiency and, conversely, has a lower efficiency, so that the entire transmission is self-holding, self-locking or self-braking without counteracting drive power.
  • a double helical gear or the like can be provided in the gear.
  • the double helical gear mechanism for the rotational-translational conversion can preferably have a ball screw drive or the like.
  • a helical gear drive or the like can also be used within the scope of an advantageous development of the invention.
  • the helical gear drive preferably comprises at least one pinion and a toothed rack.
  • the device according to the invention can be integrated into an actuator which is used to actuate clutches.
  • the helical gear unit can be used both as a single link and as an intermediate link in a strand which has a drive gear unit and an actuator gear unit for actuating clutches.
  • the device according to the invention in a clutch actuator with a rotary and / or linear drive, intermediate or output for electromechanical and / or hydraulic actuation of a clutch and in combination with an electric drive and an incremental and / or absolute travel or angle measurement is used.
  • a ball screw drive is integrated into the gearbox, which is characterized by a high power density and high efficiency and can be used for rotation-translation conversion.
  • the proposed device has the property of being self-locking or self-braking when subjected to external forces or moments.
  • the force of the clutch spring is uncompensated or compensated by an opposing force or the resulting moment, which acts on the clutch spring
  • Clutch actuator works, suitably compensated.
  • a development of the invention can provide that a modified
  • Helical gearbox is used, which e.g. is used in a shift and / or selector actuator of a manual transmission or in a clutch release system.
  • the system-related high axial forces on the toothing e.g. can be used to actuate a brake or a mechanical, electrical or electromechanical system.
  • the proposed drive system can also serve as a basis for other applications, so that, taking into account the respective properties of each application, use is also possible in these applications.
  • Figure 1 is a diagram with different clutch gripping points depending on the clutch temperature
  • FIG. 2 shows a diagram with different positions of the plate spring tongues as a function of the clutch temperature
  • Figure 4 is a diagram with various determined gripper points in
  • Figure 5 is a representation of the slip speed, the friction, the path on
  • Figure 6 shows the tongue shift and the time for regression as a function of
  • FIG. 8 shows the temperature effect through a gripping point adaptation
  • Figure 9 shows an exact temperature compensation for a continuous creep of the
  • FIG. 10 shows an undercompensation at the clutch temperature when the vehicle creeps continuously
  • FIG. 11 shows a further temperature compensation during the continuous creep of the
  • FIG. 12 shows a next temperature compensation during the continuous creeping of the
  • Figure 13 shows a first embodiment of a device according to the invention with a double helical gear
  • Figure 14 shows a second embodiment of the device according to the invention with a helical gear drive
  • Figure 15 shows a third embodiment of the device according to the invention with a ball screw drive.
  • FIG. 1 shows a diagram with different clutch gripping points as a function of the clutch temperature. It can be seen that the clutch grip point becomes smaller as the temperature rises. A trend line results from the various measuring points, which is represented by the following
  • FIG. 2 shows a diagram with different positions of the plate spring tongues as a function of the clutch temperature. It can be seen that the plate spring tongues move towards the engine.
  • FIG. 3 shows a diagram in which the pressure corresponding to the release force is plotted as a function of the clutch temperature. It can be seen from FIG. 3 that the pressure at the gripping point becomes smaller. A falling trend line results from the various measuring points, which can be described by the following equation:
  • FIG. 4 shows a diagram with various determined gripper points depending on the clutch temperature. It can be seen that there is a short-term dependence of the actuator gripping point on the clutch temperature. It is very important whether the sniff function is activated or not. With increasing clutch temperature (up to 300 ° C) it can be determined that the actuator gripping point increases without sniffing because the tongues of the disc springs move towards the motor with increasing temperature (clutch zero point shifts).
  • the actuator gripping point becomes smaller when the sniffing function is activated, because the clutch gripping point also becomes smaller and the snifting causes the coupling zero point to be adjusted.
  • R 2 0.7229 without sniffing function
  • R 2 0.4764 with sniffing function
  • FIG. 5 shows representations of the slip speed A, the friction power B, the path at the releaser C, the temperature at the pressure plate T and the friction energy D over time.
  • the short-term displacement ⁇ S of the plate spring tongues and the time t R in which this displacement is reduced by 90% are evaluated.
  • the long-term shift is denoted by ⁇ S
  • FIG. 6 shows the tongue shift and the time for regression as a function of the friction.
  • Trend lines are obtained on the basis of the measurement points, a trend line representing the time t_Regeneration as a function of the friction power P_Reib according to the equation
  • Figure 7 shows the relationship between the actual and the model temperature at the coupling. It follows that the model delivers optimal values in a range between an upper limit and a lower limit.
  • the course of the temperature (T-model) and the gripping point GP during the aforementioned actions is shown schematically in FIG.
  • the temperature effect becomes clear through the gripping point adaptation.
  • the characteristic curve is shifted through the barn, which can be recognized by catching the gripping point.
  • the characteristic curve can shift back, which can also be recognized by the gripping point.
  • FIG. 9 shows the result of a measurement with 15 Nm continuous creep with an increase in temperature according to the model from 130 ° C. to 260 ° C.
  • the compensation causes a delta GP of approx. +1.3 mm. Due to the compensation, the engine torque runs parallel to the clutch torque. Without compensation (+/- 0 Nm), an estimated increase in the actually transmitted torque by approx. 20 Nm would have occurred. Self-reinforcement, i.e. Increased torque, resulting in increased energy input and thus a greater temperature rise, resulting in increased torque etc., is not taken into account in this estimation.
  • the result of a measurement at 10 Nm continuous creep with temperature increase according to the model from 150 ° C. to 240 ° C. is shown graphically in FIG.
  • the compensation causes a Delta_GP of approx. + 1 mm.
  • the motor torque drops by approx. 5 Nm (-5 Nm) due to the compensation, i.e. it is slightly overcompensated. Without compensation, an estimated increase in the actual torque of approx. 15 Nm would have occurred.
  • FIGS. 13 to 15 show various exemplary embodiments of the device according to the invention for actuating a clutch 101 with a motor 102, which is coupled to a release system 104 via a gear 103.
  • the same components are provided with the same reference numbers.
  • FIG. 13 shows a first exemplary embodiment of the device according to the invention with a double helical gear 105.
  • the double screw gear 105 is coupled to the mechanical release system 104, the release system 104 having a spring element 109 for compensation.
  • the clutch 101 can be actuated via the release system 104.
  • FIG. 14 shows a second exemplary embodiment of the device according to the invention with a helical gear drive 106.
  • the helical gear drive 106 comprises a rack 107 and a pinion 108, with which a rotational-translational conversion takes place.
  • FIG. 15 shows a third exemplary embodiment of the device according to the invention with the double helical gear transmission, which is coupled to a ball screw drive 110.
  • the ball screw drive 110 enables the rotation-translation conversion.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

L'invention concerne un procédé pour commander un embrayage d'un système électronique de gestion de l'embrayage et/ou d'une boîte de vitesses automatisée. Ce procédé consiste à déterminer un point d'engagement de l'embrayage en fonction de la température de l'embrayage, ce point étant pris en considération lors de la commande de l'embrayage. L'invention concerne également un dispositif pour actionner un embrayage (101) à l'aide d'un moteur (102) qui est couplé à un système de débrayage (104) par l'intermédiaire d'une boîte de vitesses (103). Ce dispositif se caractérise en ce que la boîte de vitesses permet une conversion d'un mouvement de rotation à un mouvement de translation, cette boîte de vitesses présentant une efficacité élevée en marche avant et une efficacité réduite en marche arrière de telle sorte qu'elle se bloque automatiquement et/ou freine automatiquement en présence d'une charge.
EP02754515A 2001-08-16 2002-08-09 Procede pour commander un embrayage et dispositif pour actionner un embrayage Withdrawn EP1421290A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10140125 2001-08-16
DE10140125 2001-08-16
PCT/DE2002/002938 WO2003016743A1 (fr) 2001-08-16 2002-08-09 Procede pour commander un embrayage et dispositif pour actionner un embrayage

Publications (1)

Publication Number Publication Date
EP1421290A1 true EP1421290A1 (fr) 2004-05-26

Family

ID=7695571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754515A Withdrawn EP1421290A1 (fr) 2001-08-16 2002-08-09 Procede pour commander un embrayage et dispositif pour actionner un embrayage

Country Status (6)

Country Link
EP (1) EP1421290A1 (fr)
KR (1) KR20040048397A (fr)
DE (3) DE10236540A1 (fr)
FR (2) FR2828719A1 (fr)
IT (1) ITMI20021827A1 (fr)
WO (1) WO2003016743A1 (fr)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029558A1 (de) * 2003-06-23 2005-01-13 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und Vorrichtung zur Steuerung einer Kupplung
SE527004C2 (sv) * 2003-11-26 2005-12-06 Kvaser Consultant Ab Anordning av distribuerat för simulering i distribuerade styrsystem t ex i fordon
ATE389165T1 (de) 2003-12-13 2008-03-15 Gkn Driveline Int Gmbh Verfahren zum bestimmen der lamellentemperatur einer lamellenkupplung
DE102005021742B4 (de) * 2004-06-03 2015-02-05 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Bestimmung des Totweges eines hydraulischen Systems
EP1790546B1 (fr) * 2004-07-01 2014-09-24 Yamaha Hatsudoki Kabushiki Kaisha Vehicule de type a selle
US7739019B2 (en) * 2004-12-20 2010-06-15 Gm Global Technology Operations, Inc. Rough road detection
DE102005007132A1 (de) * 2005-02-17 2006-08-31 Zf Friedrichshafen Ag Verfahren zur Steuerung einer automatisierten Fahrkupplung
DE102005015159B4 (de) * 2005-04-02 2007-04-19 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verhindern einer ungewollten Fahrzeugbewegung
DE502005006276D1 (de) * 2005-07-06 2009-01-29 Getrag Ford Transmissions Gmbh Verfahren zur Bestimmung der Temperatur einer Reibkupplung
DE102006045386B4 (de) * 2006-09-26 2019-08-14 Volkswagen Ag Verfahren zur Steuerung einer automatisierten Kupplung
FR2907867B1 (fr) * 2006-10-25 2009-07-03 Peugeot Citroen Automobiles Sa Systeme et procede d'estimation d'un couple transmis par un embrayage a friction de vehicule automobile
FR2908484B1 (fr) * 2006-11-10 2009-07-10 Peugeot Citroen Automobiles Sa Procede et systeme de diagnostic de l'etat de fonctionnement d'un embrayage a friction seche de vehicule automobile.
DE102007019461A1 (de) * 2007-04-25 2008-11-06 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
DE102007053706B4 (de) 2007-11-10 2021-09-16 Volkswagen Ag Verfahren zur Steuerung mindestens einer Reibkupplung
DE102007055743A1 (de) 2007-12-10 2009-06-18 Zf Friedrichshafen Ag Verfahren zur Ermittlung des axialen Verschleißes und der Gegenkraftsteigung bei einem Lamellenschaltelement
DE102008026554B4 (de) * 2008-06-03 2022-12-15 Magna powertrain gmbh & co kg Verfahren zum Steuern einer Kupplungseinheit, sowie Drehmomentübertragungsanordnung
DE102008032476B4 (de) * 2008-07-10 2022-04-28 Magna powertrain gmbh & co kg Verfahren zum Steuern einer Kupplungseinheit und Drehmomentübertragungsanordnung
DE102010060704A1 (de) * 2010-11-22 2012-05-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Antriebssystems für ein Kraftfahrzeug
DE112011103921B4 (de) * 2010-11-25 2021-05-20 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung von Kupplungsreibwerten sowie Verfahren zur Ermittlung von Kupplungstastpunkten
SE535667C2 (sv) * 2011-03-14 2012-10-30 Scania Cv Ab Förfarande och system för bestämning av ett behov av kontaktpunktsadaption
DE102011087126A1 (de) * 2011-11-25 2013-05-29 Zf Friedrichshafen Ag Steuerungseinrichtung eines Kraftfahrzeugs
CN104755782B (zh) * 2012-10-31 2017-04-12 舍弗勒技术股份两合公司 用于操纵摩擦离合器的方法
DE102013205798B4 (de) * 2013-04-02 2022-09-29 Man Truck & Bus Se Verfahren zum Steuern eines Anfahrvorgangs eines Kraftfahrzeugs
DE102014205121A1 (de) * 2013-04-04 2014-10-09 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Ermittlung einer Fehlfunktion einer, einem Steuergerät zugeordneten Zeitmesseinheit
US10487927B2 (en) * 2013-12-06 2019-11-26 Schaeffler Technologies AG & Co. KG Actuator with planetary screw drive (PSD)
KR101755755B1 (ko) 2013-12-17 2017-07-07 현대자동차주식회사 Dct의 클러치 특성 보정방법
DE102015208447A1 (de) * 2015-05-06 2016-11-10 Schaeffler Technologies AG & Co. KG Verfahren zur Unterbindung einer Schädigung einer nassen Reibkupplung
DE102015222007B4 (de) 2015-11-09 2020-07-09 Audi Ag Verfahren zum Betreiben einer elektrohydraulischen Getriebekupplung eines Kraftfahrzeugs, Steuervorrichtung für eine elektrohydraulische Getriebekupplung eines Kraftfahrzeugs sowie Kraftfahrzeug mit einer elektrohydraulischen Getriebekupplung
DE102016202188A1 (de) * 2016-02-12 2017-08-17 Zf Friedrichshafen Ag Schaltaktor zum Ausführen einer Gangwahl eines Schaltgetriebes für ein Fahrzeug, Schaltgetriebesystem für ein Fahrzeug, Antriebsstrang für ein Fahrzeug und Verfahren zum Verbauen eines Schaltaktors für ein Schaltgetriebe eines Fahrzeugs
DE102017113064A1 (de) * 2017-06-14 2018-12-20 Schaeffler Technologies AG & Co. KG Verfahren zur Temperaturkompensation eines Vorlastpunktes einer Kupplung eines Fahrzeuges
US11331991B2 (en) 2019-12-20 2022-05-17 Allison Transmission, Inc. Motor configurations for multiple motor mixed-speed continuous power transmission
US11173781B2 (en) 2019-12-20 2021-11-16 Allison Transmission, Inc. Component alignment for a multiple motor mixed-speed continuous power transmission
US11371589B2 (en) 2020-04-30 2022-06-28 Allison Transmission, Inc. Clutch configurations for a multiple motor mixed-speed continuous power transmission
US11608864B2 (en) 2021-03-31 2023-03-21 Dana Italia S.R.L. Hydraulic system and piston filling control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835887B2 (ja) * 1975-06-25 1983-08-05 日産自動車株式会社 ジドウクラツチニオケルクラツチバンノ マサツケイスウホシヨウソウチ
DE3631244A1 (de) * 1986-09-13 1988-03-24 Bosch Gmbh Robert Einrichtung zum betaetigen einer kupplung
NO314174B1 (no) * 1995-12-18 2003-02-10 Luk Getriebe Systeme Gmbh Motorkjöretöy
DE19630014C2 (de) * 1996-07-25 1998-05-20 Daimler Benz Ag Automatisch gesteuerte Kupplung
NO981839L (no) * 1997-04-30 1998-11-02 Luk Getriebe Systeme Gmbh Anordning for styring av et dreiemomentoverf°ringssystem
DE19744695A1 (de) * 1997-08-01 1998-11-26 Bosch Gmbh Robert Stelleinrichtung, insbesondere für eine Kraftfahrzeug-Reibungskupplung
DE19951527C1 (de) * 1999-10-26 2001-06-13 Siemens Ag Steuerung für eine automatisch betätigte Kupplung eines Kraftfahrzeugs und Verfahren zum Steuern einer automatisch betätigten Kupplung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03016743A1 *

Also Published As

Publication number Publication date
FR2828719A1 (fr) 2003-02-21
FR2834322A1 (fr) 2003-07-04
FR2834322B1 (fr) 2005-05-06
DE10293628D2 (de) 2004-07-08
DE10236539A1 (de) 2003-08-07
WO2003016743A1 (fr) 2003-02-27
KR20040048397A (ko) 2004-06-09
DE10236540A1 (de) 2003-02-27
ITMI20021827A1 (it) 2003-02-17

Similar Documents

Publication Publication Date Title
EP1421290A1 (fr) Procede pour commander un embrayage et dispositif pour actionner un embrayage
WO2002101258A2 (fr) Dispositif d'actionnement d'embrayage et procede pour determiner des parametres d'embrayage
EP1775449B1 (fr) Ligne de transmission pour véhicule et méthode pour l'utilisation d'une telle ligne de transmission
DE19818809A1 (de) Vorrichtung zur Ansteuerung eines Drehmomentübertragungssystems
WO2002059493A1 (fr) Procede pour adapter la courbe caracteristique d'un embrayage automatique de vehicule
WO2000026552A2 (fr) Vehicule automobile pourvu d'un systeme de reconnaissance d'une intention de changement de vitesse
DE10316454B4 (de) Vorrichtung und Verfahren zum Überwachen einer Kupplung
DE102007015679A1 (de) Verfahren zur Steuerung einer automatisierten Reibungskupplung
DE10027330A1 (de) Verfahren zum Betreiben einer Drehmoment-Übertragungseinrichtung
DE102013210357A1 (de) Verfahren zum Bestimmen eines Verschleißes einer Kupplung
DE10304130A1 (de) Verfahren zum Verhindern des Abwürgens eines Motors eines Kraftfahrzeuges
DE102005033077A1 (de) Verfahren zum Schutz einer automatisiert betätigten Kupplung eines Fahrzeugs gegen Überlastung
DE10351906A9 (de) Verfahren, Vorrichtung und deren Verwendung zum Betrieb eines Kraftfahrzeuges
DE10316459B4 (de) Verfahren zur Überwachung einer automatisierten Kupplung beim Kriechen
DE19824772A1 (de) Vorrichtung zur Steuerung eines Einrückzustandes
WO2002097290A2 (fr) Procede pour regler le point d'attaque d'un embrayage actionne par un actionneur d'embrayage, et systeme de commande
DE10308713B4 (de) Doppelkupplungsgetriebe und Verfahren zum Steuern und/oder Regeln eines Doppelkupplungsgetriebes bei einer Überschneidungsschaltung
DE10316446B4 (de) Steuereinrichtung und Verfahren zum Ansteuern eines Motormomentes und eines Kupplungsmomentes bei einem Antriebsstrang
DE10308748A1 (de) Verfahren, Vorrichtung und deren Verwendung zum Betrieb eines Kraftfahrzeuges, insbesondere zur Ansteuerung eines Parallelschaltgetriebes
DE19949204A1 (de) Kraftfahrzeug mit Kupplungseinrichtung
DE10316458B4 (de) Getriebesteuerung und Verfahren zum Durchführen einer Reibwertadaption
DE10209839A1 (de) Kraftfahrzeug sowie Verfahren zum Betreiben eines Kraftfahrzeuges
EP1590194A2 (fr) Dispositif servant a proteger un embrayage d'une boite de vitesses automatique
DE102007037831A1 (de) Verfahren der lastzustandsabhängigen Anpassung von Anfahrparametern eines Fahrzeugs mit einer automatisierten Kupplung und/oder einem automatisierten Getriebe
DE10308714A1 (de) Doppelkupplungsgetriebe und Verfahren zum Steuern von wenigstens zwei Kupplungen bei einem Doppelkupplungsgetriebe eines Fahrzeuges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HORSTMANN, JENS

Inventor name: ESLY, NORBERT

Inventor name: HIRT, JOACHIM

Inventor name: MARTIN, JENS

Inventor name: VORNEHM, MARTIN

17Q First examination report despatched

Effective date: 20040819

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050719