EP1419818A1 - Vorrichtung zum schrittweisen Transport von Flüssigkeit unter Ausnutzung von Kapillarkräften - Google Patents

Vorrichtung zum schrittweisen Transport von Flüssigkeit unter Ausnutzung von Kapillarkräften Download PDF

Info

Publication number
EP1419818A1
EP1419818A1 EP03025615A EP03025615A EP1419818A1 EP 1419818 A1 EP1419818 A1 EP 1419818A1 EP 03025615 A EP03025615 A EP 03025615A EP 03025615 A EP03025615 A EP 03025615A EP 1419818 A1 EP1419818 A1 EP 1419818A1
Authority
EP
European Patent Office
Prior art keywords
channel
liquid
vent
capillary
vent opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03025615A
Other languages
English (en)
French (fr)
Other versions
EP1419818B1 (de
Inventor
Gert Blankenstein
Ralf-Peter Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Microparts GmbH
Original Assignee
Steag Microparts GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steag Microparts GmbH filed Critical Steag Microparts GmbH
Publication of EP1419818A1 publication Critical patent/EP1419818A1/de
Application granted granted Critical
Publication of EP1419818B1 publication Critical patent/EP1419818B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/044Connecting closures to device or container pierceable, e.g. films, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0694Valves, specific forms thereof vents used to stop and induce flow, backpressure valves

Definitions

  • the invention relates to a device for the stepwise transport of liquid by a plurality of fluidically arranged in series reaction chambers taking advantage of capillary forces, it being the fluids preferably to be examined sample liquids.
  • sample liquids In the most diverse application areas of analytics and diagnostics it is necessary to examine sample liquids. They are used Occasionally, assays require that the sample fluid be sequential be contacted with different reagents. With regard the automation of such assays is beneficial if one is able to to gradually transport the sample fluid to be examined.
  • An object of the invention is a device for stepwise transport of liquid, in particular sample liquid to be examined to create, which has a fairly simple structure and convenient and easy is manageable and works reliably.
  • the channel of the device through which Liquid to be transported, designed accordingly.
  • the channel is at least two Vent holes in fluid communication, which closed in their initial state are.
  • the fluid connection of the vents to the channel occurs at spaced along the channel joints.
  • the vents can directly form the joints, ie directly in the channel wall or a substrate in which the channel is formed is, be arranged.
  • Degass bleed ducts that end in the vents.
  • the Venting channels can be used for liquid transport by means of capillary forces be designed. However, this is not mandatory as the vent lines primarily serve the vent.
  • liquid enters the channel by the channel for example, from extends from a sample receiving chamber, so is the transport of liquid through the channel as long as the channel (at its end) and the vents are closed.
  • the transport of liquid through the channel will now be in the flow direction opened channel of the first vent, so passes liquid to be in fluid communication with the open vent Junction of the channel and thereby fills this junction upstream chamber; the further transport of the liquid through the channel beyond this junction is not possible because of the adjoining Part of the channel is closed to the outside.
  • Only when the in Flow direction is opened next vent fills the Channel section between the aforementioned junction and the next vent associated connection point as well as in this Channel section disposed chamber with liquid.
  • the chambers can empty or with substances, inserts (porous bodies or the like) or capillary forces generating devices, such as e.g. Surface finishes, be equipped.
  • reagents preferably immobilized, are arranged within the In the individual channel sections. By contact with the liquid the reagents are mobilized and can react with the fluid.
  • vents can in the simplest case directly in the wall be arranged of the channel. The joints then fall so with the Vents together. Alternatively, it is also possible that of the Branching off connection points from venting ducts in the vents end up.
  • a (re-) closure of the vents after the liquid front the assigned junctions of the channel has passed is not mandatory, but it can be done. Appropriately It is however, if it succeeds, that the liquid maximally up to the vent opening flows and ensures that the liquid does not escape Vent can emerge. This is with mechanisms leading to Transport of the liquid Take advantage of capillary forces, easily possible, Appropriately in this regard, it is when the vents are dimensioned accordingly, so that due to surface tensions the liquid is an outlet of the same from the openings omitted.
  • the transport through one of a connection point to the vent leading venting channel also takes place expediently taking advantage of capillary forces.
  • the vent also be preceded by a capillary stop. This is e.g. as hydrophobic (partial) surface of the venting channel or as hydrophobic Vent or formed as a gradual expansion of the channel system.
  • the opening of the vents is advantageously carried out selectively by means individual cover elements or a common cover element, with the vent openings according to their arrangement along the Selective release of channels.
  • it is the Cover element around an adhesive strip, the one or more vents is glued.
  • the Cover element for example, be peelable or punctiform.
  • the lid member meltable or by initiation a reaction is dissolved or permeable to air.
  • the lid member is an adhesive strip over the Vents of a substrate or the like. Carrier is placed, in which the inventive Channel system is formed.
  • For melting the lid elements it is for example advantageous; if these cover elements with a or more heating elements are thermally coupled. By control the heating elements are thus selectively melted and lid elements thus exposing vents.
  • the initiation of a lid element dissolving reaction can by Contacting the lid member with a reactant made from the outside. It should be only for the sample liquid inert reaction mixtures arise.
  • a hydrophilic material e.g., gel, such as agarose, sucrose or the like. Polysaccharides.
  • the device according to the invention can be used, for example, for a blood test be in which the blood to be examined in a first reaction chamber react with a first antibody or conjugate and then in a second chamber on the bound first antibodies bind second antibody.
  • Task for the blood to be examined then happens after that Exposing the first vent to the associated junction extending channel portion of the channel in which the first Reaction chamber with the first antibody or the conjugate arranged is.
  • the blood sample to be examined with the partially bound antibodies by exposing the flow direction next vent in a second channel section transferred, in which the second reaction chamber with the second antibodies is arranged. Subsequently, by exposing a further vent opening or by exposing the end of the channel, the sample liquid in this further transported or transported out of this.
  • the device according to the invention can advantageously also have several of the above described (sample liquid transport) channels with vents respectively. All of these channels are fluidically parallel to each other, extend from a sample receiving arrangement with a common Sample receiving chamber or more individual, the channels respectively assigned sample receiving chambers and preferably have mutually equal length channel sections between the individual connection points on.
  • the connecting points respectively associated vents are arranged immediately adjacent to each other and can be advantageously exposed with one and the same lid member.
  • Fig. 1 shows the basic structure of the capillary channel system according to the invention 10.
  • the capillary channel system 10 is in a substrate 12 (Plastic body or the like.) Formed and has a channel 14 which has a (in fluid communication with a reservoir, not shown) inlet opening 16 and an outlet opening 18. Liquid that is in the Channel 14 is in the channel taking advantage of capillary forces transported.
  • the channel 14 has a plurality of (four in the embodiment) connection points 20,22,24 and 26, from which branch off vent lines 28,30,32,34, which end in vents 36,38,40,42.
  • the channel 14 is through the connection points 20,22,24,26 into individual channel sections 44,46,48 divided; in each channel section 44,46,48 is a reaction chamber 50,52,54.
  • the capillary channel system 10 shown in FIG. 1 can be selectively entrained as follows Fill the liquid.
  • vents are 36,38,40,42 and the outlet 18 of the channel 14 closed. Will now be in the flow direction 56 (see arrow) first vent opening 36 is opened, then sample liquid, which is present at the inlet 16 of the channel 14, to the junction 20 and in the vent channel 28 to the vent opening 36. By shortening the venting channels 28 may be the dead volume of the capillary channel system 10 are minimized.
  • the vents 36 can also directly in the Wall of the channel 14 may be formed. After the opening 36 exposed Thus, the liquid front within the channel 14 migrates to the Joint 20; In any case, no liquid enters (yet) into the Channel section 44.
  • next vent opening 40 is opened, it is repeated previously described operation for the further channel section 46, so that Finally, the situation according to FIG. 3 sets.
  • next Vent 42 eventually becomes the next channel section 48 with liquid filled, which is shown in Fig. 4. If you then the outlet 18 of the channel 14 opens, the liquid passes out of the channel 14 in a (not shown) collecting container or a collecting chamber.
  • the capillary channel system 10 described above can still via so-called Capillary stops have, which only after impressing a pressure pulse on the Be overcome liquid, followed by the further transport of the Liquid in turn is induced by capillary forces.
  • Such capillary stops could, for example, at the outputs of the reaction chambers 50,52,54 be formed or arranged.
  • the selective transport of the liquid through the Kapillarkanalsystem 10 takes place in such a case so alternately by exposing vents and imprints one Pressure pulse.
  • a vent opening 36 is arranged before the first reaction chamber 50. This could be omitted together with the vent line 28, as shown in FIGS. 5-7 is shown.
  • FIG. 5 to 7 is a second embodiment of a capillary channel system 10 'shown.
  • the basic structure of the capillary channel system 10 'of FIGS. 5-7 is identical to that shown in FIGS. 1 to 4.
  • the cover strip 60 may be formed as an adhesive strip, the individual connected by perforation lines or other types of frangible lines 62 Subsections 64,66,68 has.
  • the predetermined breaking lines 62 are located between each two adjacent vents 38,40 and 40,42 and preferably about midway between these openings. At least up that side of a predetermined breaking line 62 leading to the downstream vent opening has, the adhesive side of the cover strip in one of the Rupture line 62 adjacent area 70 free of adhesive. After replacing the first section 64, which has a non-adhesive at its free end Area 72 has, which serves as a gripping, this subsection 64 demolished at the predetermined breaking line 62. The area 70 of the next Subsection 66 then again serves as a summary to facilitate the Detaching the portion 66 to expose the next vent opening 40th
  • FIG. 8 shows a further exemplary embodiment of the invention Capillary channel system 10 ", the more (in this embodiment two) channels 14, each of which, as in connection with the described above, procured and designed is, so several (in this embodiment, two) fluidically in Row has switched reaction chambers 50,52. From each channel 14 So branch several vent lines 28,30,32 with vents 36,38,40 at their ends. The first in the flow direction vents 36 of all channels 14 are in groups or all by several or a common cover element 74 is closed. The same constellation results for the next in the flow direction vents 38,40, which are closed by a cover member 76 and 78, respectively.
  • This System of common or groupwise common cover elements 74,76,78 is considered over the entire capillary channel system 10 " equal.
  • the channels 14 branch off from a reservoir 80 which communicates with the in and is filled by the reaction chambers 50,52 to conductive liquid or is.
  • first reaction chambers in the flow direction 50 upstream vents 36 of the channels 14 are clearly, taking into account that the channels 14 in their sections between the reservoir 80 and the first reaction chambers 50 (e.g., by design) can be different in length.
  • the connection points 20 the channels 14, at which the vent lines branch off 28, are in the same Distance along the channel 14 from the first reaction chambers 50 arranged. After exposure of the first vents 36 is then in Each channel 14, the liquid front equidistant from the first reaction chamber 50 on. This is the simultaneous filling of the first reaction chambers 50 after exposure of the second vents 38 ensured.
  • a common cover element be provided, which gradually releases vents (corresponding to the cover element of the embodiment according to FIGS 7).
  • the capillary channel systems 10 'and 10 "of FIG 8 are additionally provided with capillary stops which, as also mentioned above, for example, at the outlet end viewed with respect to the flow direction the reaction chambers 50,52 are arranged.
  • the capillary channel system according to the invention is characterized by a precise Timing and triggering of the further transport of the liquid. Further will be extremely simple opening mechanisms for the vents described.
  • the system is expediently designed for single use and designed as a disposable item. A minimum of test fluid is needed and no filter / membrane components used. Further allowed the system the completely closed training on a substrate or the like. Carrier, which is why the risk of contamination is minimized. For the Trigger the reactions and in particular the transport of the liquid no centrifugal forces or the like. required.
  • the system according to the invention works independent of position, since capillary forces are used for liquid transport become.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Abstract

Die Vorrichtung (10) zum schrittweisen Transport von Flüssigkeit, insbesondere von zu untersuchender Probenflüssigkeit, durch mehrere strömungstechnisch in Reihe liegende Reaktionskammern unter Ausnutzung von Kapillarkräften weist mindestens einen Kanal (14) auf, durch den Flüssigkeit auf Grund von Kapillarkräften transportierbar ist. Ferner weist die Vorrichtung (10) mindestens zwei verschlossene Entlüftungsöffnungen (38,40,42) auf, die an längs des Kanals (14) voneinander beabstandeten Verbindungsstellen (22,24,26) in Fluidverbindung mit dem Kanal (14) stehen. Die Verbindungsstellen (22,24,26) unterteilen den Kanal (14) in mehrere Kanalabschnitte (44,46,48). Die Fluidverbindungen zwischen jeweils einem Kanalabschnitt (44,46,48) und der diesem zugeordneten Entlüftungsöffnungen (38,40,42) können einzeln geöffnet werden. <IMAGE>

Description

Die Erfindung betrifft eine Vorrichtung zum schrittweisen Transport von Flüssigkeit durch mehrere strömungstechnisch in Reihe liegende Reaktionskammern unter Ausnutzung von Kapillarkräften, wobei es sich bei den Flüssigkeiten vorzugsweise um zu untersuchende Probenflüssigkeiten handelt.
In den unterschiedlichsten Anwendungsgebieten der Analytik und Diagnostik ist es erforderlich, Probenflüssigkeiten zu untersuchen. Die dabei zum Einsatz kommenden Assays erfordern mitunter, dass die Probenflüssigkeit sequentiell mit unterschiedlichen Reagenzien in Kontakt gebracht werden. Im Hinblick auf die Automation derartiger Assays ist es von Vorteil, wenn man in der Lage ist, die zu untersuchende Probenflüssigkeit schrittweise zu transportieren.
Im Stand der Technik ist es grundsätzlich bekannt, den Transport von Flüssigkeit durch einen Kanal bzw. zur Befüllung einer Kammer dadurch zu initiieren, dass der Kanal bzw. die Kammer entlüftet wird, wodurch ein Flüssigkeitsstrom entsteht. Beispiele für derartige selektive Flüssigkeitsströmungsmechanismen sind in WO-A-99/46045, WO-A-01/64344, US-A-4,849,340, US-A-5,230,866, US-A-5,242,606 und US-A-5,478,751 beschrieben.
Des weiteren ist in US-A-3,799,742 ein Fluidsystem beschrieben, bei dem unter Ausnutzung von Schwerkraft und selektiver Entlüftung einzelner seriell und parallel geschalteter Kammern ein Flüssigkeitsstrom aus einem Reservoir in die einzelnen Kammern hervorgerufen wird. Bei dieser bekannten Vorrichtung erstreckt sich von einem Reservoir aus ein Flüssigkeitskanal. Längs dieses Flüssigkeitskanals zweigen mehrere Abzweigkanäle ab, die in zwei hintereinander geschalteten Kammern enden. In Höhe der Einmündungsstellen der Abzweigkanäle in die Kammern zweigen von diesen Entlüftungsleitungen ab, die sämtlich verschlossen sind und selektiv geöffnet werden können. Das zuvor beschriebene Kanalsystem lässt einen Flüssigkeitstransport ausschließlich unter Ausnutzung der Schwerkraft zu. Solange sämtliche Entlüftungsöffnungen verschlossen sind, wird der Flüssigkeitstransport aus dem Reservoir verhindert, indem die Flüssigkeit durch den Gasgegendruck zurückgehalten wird. Wird nun die in Strömungsrichtung erste der beiden pro Abzweigkanal angeordneten Kammern belüftet, so kann in diese Kammer Flüssigkeit aus dem Reservoir hineinströmen. Das Austreten der Flüssigkeit aus der Entlüftungsleitung dieser Kammer wird durch den Einbau eines für die Flüssigkeit hydrophoben Filters ausgeschlossen, das gasdurchlässig ist. Der Übertritt in die stromabwärts angeordnete zweite Kammer wird dadurch verhindert, dass diese Kammer nicht entlüftet ist. Erst wenn diese Kammer entlüftet wird, gelangt Flüssigkeit auch in die zweite Kammer. Dieses bekannte System erfordert im wesentlichen die vertikale Ausrichtung des Substrats, in dem das Kanalsystem ausgebildet ist. Dies schränkt die Anwendung des Systems insofern ein, als es im horizontalen Zustand des Substrats nicht zu einem Flüssigkeitstransport kommen kann, da die die Flüssigkeitsströmung initiierende Schwerkraftkomponente fehlt.
Eine Aufgabe der Erfindung ist es, eine Vorrichtung zum schrittweisen Transport von Flüssigkeit, insbesondere von zu untersuchender Probenflüssigkeit, zu schaffen, die einen recht einfachen Aufbau aufweist sowie bequem und einfach handhabbar ist und zuverlässig arbeitet.
Zur Lösung dieser Aufgabe wird mit der Erfindung eine Vorrichtung zum schrittweisen Transport von Flüssigkeit, insbesondere von zu untersuchender Probenflüssigkeit, durch mehrere strömungstechnisch in Reihe liegende Reaktionskammern unter Ausnutzung von Kapillarkräften vorgeschlagen, die versehen ist mit
  • mindestens einem Kanal, durch den Flüssigkeit auf Grund von Kapillarkräften transportierbar ist, und
  • mindestens zwei verschlossenen Entlüftungsöffnungen, die an längs des Kanals voneinander beabstandeten Verbindungsstellen in Fluidverbindung mit dem Kanal stehen,
  • wobei die Verbindungsstellen den Kanal in mehrere Kanalabschnitte unterteilen,
  • wobei die Fluidverbindungen zwischen jeweils einem Kanalabschnitt und der diesem zugeordneten Entlüftungsöffnungen einzeln geöffnet werden können und
  • wobei in den Kanalabschnitten den Verbindungsstellen in Strömungsrichtung betrachtet jeweils vorgelagert mindestens eine Kammer angeordnet ist.
Erfindungsgemäß werden zum schrittweisen Transport von Flüssigkeiten Kapillarkräfte ausgenutzt. Hierzu ist der Kanal der Vorrichtung, durch den Flüssigkeit transportiert werden soll, entsprechend ausgelegt. Dies gilt hinsichtlich der Querschnittsflächen, Querschnittsflächenausgestaltungen und Oberflächenbeschaffenheiten des Kanals. Der Kanal steht mit mindestens zwei Entlüftungsöffnungen in Fluidverbindung, die in ihrem Ausgangszustand verschlossen sind. Die Fluidverbindung der Entlüftungsöffnungen mit dem Kanal erfolgt an längs des Kanals voneinander beabstandeten Verbindungsstellen. Dabei können die Entlüftungsöffnungen direkt die Verbindungsstellen bilden, also direkt in der Kanalwandung bzw. einem Substrat, in dem der Kanal ausgebildet ist, angeordnet sein. Alternativ können von den Verbindungsstellen Entlüftungskanäle abzweigen, die in den Entlüftungsöffnungen enden. Die Entlüftungskanäle können für den Flüssigkeitstransport mittels Kapillarkräfte ausgelegt sein. Dies ist jedoch nicht zwingend erforderlich, da die Entlüftungsleitungen primär der Entlüftung dienen.
Gelangt nun Flüssigkeit in den Kanal, indem der Kanal sich beispielsweise von einer Probenaufnahmekammer aus erstreckt, so ist der Transport von Flüssigkeit durch den Kanal so lange unterbunden, wie der Kanal (an seinem Ende) und die Entlüftungsöffnungen verschlossen sind. Wird nun die in Strömungsrichtung des Kanals erste Entlüftungsöffnung geöffnet, so gelangt Flüssigkeit bis zur mit der geöffneten Entlüftungsöffnung in Fluidverbindung stehenden Verbindungsstelle des Kanals und befüllt dabei die dieser Verbindungsstelle vorgelagerte Kammer; der weitere Transport der Flüssigkeit durch den Kanal über diese Verbindungsstelle hinaus ist nicht möglich, da der sich daran anschließende Teil des Kanals nach außen hin verschlossen ist. Erst wenn die in Strömungsrichtung nächste Entlüftungsöffnung geöffnet wird, füllt sich der Kanalabschnitt zwischen der zuvor erwähnten Verbindungsstelle und der der nächsten Entlüftungsöffnung zugeordneten Verbindungsstelle sowie die in diesem Kanalabschnitt angeordnete Kammer mit Flüssigkeit. Die Kammern können leer oder mit Substanzen, Einsätzen (poröse Körper o.dgl.) oder Kapillarkräfte erzeugenden Einrichtungen, wie z.B. Oberflächenbeschaffenheiten, ausgestattet sein.
Durch das oben beschriebene Konzept ist es also auf denkbar einfache Weise, nämlich lediglich durch Öffnen von Entlüftungsöffnungen möglich, selektiv und schrittweise eine Flüssigkeit durch einen Kanal mit hintereinander angeordneten Kammern zu transportieren. Wenn also in den einzelnen Kanalabschnitten bzw. Kammern Reagenzsubstanzen bzw. Reagenzien angeordnet sind, so ist es möglich, die Flüssigkeit einer zuvor definierten Reihenfolge von Reaktionen auszusetzen. Durch Öffnen der letzten Entlüftungsöffnung schließlich könnte die Probenflüssigkeit in eine Untersuchungskammer o.dgl. Reservoir eingeleitet werden, in der dann auf die unterschiedlichsten Weisen eine Untersuchung (beispielsweise lichttechnische Untersuchung) der Probenflüssigkeit erfolgen kann. Es ist aber ebenso möglich, dass (Zwischen-) Untersuchungen auch bereits in den anderen Reaktionskammern durchgeführt werden. Untersuchungen erfolgen allgemein z.B. lichttechnisch (optisch), insbesondere durch Ermittlung der Transmission oder Verfärbung der Probenflüssigkeit, oder mikroskopisch.
In vorteilhafter Weiterbildung der Erfindung ist vorgesehen, dass innerhalb der in den einzelnen Kanalabschnitte befindlichen Kammern Reagenzien, vorzugsweise immobilisiert, angeordnet sind. Durch den Kontakt mit der Flüssigkeit werden die Reagenzien mobilisiert und können mit der Flüssigkeit reagieren.
Die Entlüftungsöffnungen können im einfachsten Fall direkt in der Wandung des Kanals angeordnet sein. Die Verbindungsstellen fallen dann also mit den Entlüftungsöffnungen zusammen. Alternativ ist es auch möglich, dass von den Verbindungsstellen aus Entlüftungskanäle abzweigen, die in den Entlüftungsöffnungen enden.
Ein (Wieder-)Verschluss der Entlüftungsöffnungen, nachdem die Flüssigkeitsfront die zugeordneten Verbindungsstellen des Kanals passiert hat, ist nicht zwingend erforderlich, kann aber durchaus vorgenommen werden. Zweckmäßiger ist es jedoch, wenn es gelingt, dass die Flüssigkeit maximal bis zur Entlüftungsöffnung fließt und sichergestellt ist, dass die Flüssigkeit nicht aus der Entlüftungsöffnung heraustreten kann. Dies ist mit Mechanismen, die zum Transport der Flüssigkeit Kapillarkräfte ausnutzen, problemlos möglich, Zweckmäßig diesbezüglich wiederum ist es, wenn die Entlüftungsöffnungen entsprechend bemessen sind, so dass auf Grund von entstehenden Oberflächenspannungen der Flüssigkeit ein Austritt derselben aus den Öffnungen unterbleibt. Der Transport durch einen von einer Verbindungsstelle zur Entlüftungsöffnung führenden Entlüftungskanal erfolgt dabei ebenfalls zweckmäßigerweise unter Ausnutzung von Kapillarkräften. Alternativ oder zusätzlich kann der Entlüftungsöffnung auch ein Kapillarstop vorgelagert sein. Dieser ist z.B. als hydrophobe (Teil-)Oberfläche des Entlüftungskanals oder als hydrophobe Entlüftungsöffnung oder als stufenweise Aufweitung des Kanalsystems ausgebildet.
Das Öffnen der Entlüftungsöffnungen erfolgt zweckmäßigerweise selektiv mittels einzelner Deckelelemente bzw. eines gemeinsamen Deckelelements, mit dem sich die Entlüftungsöffnungen entsprechend ihrer Anordnung längs des Kanals selektiv freilegen lassen. Im einfachsten Fall handelt es sich bei dem Deckelelement um einen Klebestreifen, der über eine oder mehrere Entlüftungsöffnungen geklebt ist. Zum Öffnen einer Entlüftungsöffnung kann das Deckelelement beispielsweise abziehbar oder punktierbar sein. Alternativ dazu ist es auch möglich, dass das Deckelelement aufschmelzbar oder durch Initiierung einer Reaktion aufgelöst oder luftdurchlässig wird. Im einfachsten Fall handelt es sich bei dem Deckelelement um einen Klebestreifen, der über die Entlüftungsöffnungen eines Substrats o.dgl. Träger gelegt ist, in dem das erfindungsgemäße Kanalsystem ausgebildet ist. Zum Aufschmelzen der Deckelelemente ist es beispielsweise von Vorteil; wenn diese Deckelelemente mit ein oder mehreren Heizelementen thermisch gekoppelt sind. Durch Ansteuerung der Heizelemente werden somit selektiv Deckelelemente aufgeschmolzen und damit Entlüftungsöffnungen freigelegt.
Die Initiierung einer ein Deckelelement auflösenden Reaktion kann durch Kontaktierung des Deckelelements mit einem Reaktionsmittel von außen erfolgen. Es sollten ausschließlich für die Probenflüssigkeit inerte Reaktionsgemische entstehen. Z.B. wird als Deckelelement ein hydrophiles Material (z.B. Gel, wie beispielsweise Agarose, Sucrose o.dgl. Polysaccharide) verwendet. Nach Auflösung des Deckelelements durch Applizierung von außen gelangt die Probenflüssigkeit bis in den nächsten Kanalabschnitt hinein. Die Deckelelemente sind also in diesem Fall in Strömungsrichtung unmittelbar hinter einer Entlüftungsöffnung bzw. einer Verbindungsstelle angeordnet, so dass ein von einem aufgelösten Deckelelement freigegebener Kanalabschnitt über die diesem zugeordnete Entlüftungsöffnung entlüftet werden kann.
Die erfindungsgemäße Vorrichtung kann beispielsweise für einen Bluttest verwendet werden, bei dem das zu untersuchende Blut in einer ersten Reaktionskammer mit einem ersten Antikörper oder einem Konjugat reagiert und anschließend in einer zweiten Kammer an den gebundenen ersten Antikörpern zweite Antikörper binden. Ausgehend von einer Blutprobenaufnahmekammer o.dgl. Aufgabe für das zu untersuchende Blut passiert dieses dann also nach Freilegung der ersten Entlüftungsöffnung den bis zur zugeordneten Verbindungsstelle sich erstreckenden Kanalabschnitt des Kanals, in dem die erste Reaktionskammer mit den ersten Antikörpern oder dem Konjugat angeordnet ist. Nach einer bestimmten Verweilzeit wird dann die zu untersuchende Blutprobe mit den teilweise gebundenen Antikörpern durch Freilegen der in Strömungsrichtung nächsten Entlüftungsöffnung in einen zweiten Kanalabschnitt überführt, in dem die zweite Reaktionskammer mit den zweiten Antikörpern angeordnet ist. Anschließend kann durch Freilegen einer weiteren Entlüftungsöffnung oder durch Freilegen des Endes des Kanals die Probenflüssigkeit in diesem weiter transportiert bzw. aus diesem heraus transportiert werden.
Die erfindungsgemäße Vorrichtung kann mit Vorteil auch mehrere der zuvor beschriebenen (Probenflüssigkeitstransport-)Kanäle mit Entlüftungsöffnungen aufweisen. Sämtliche diese Kanäle sind strömungstechnisch parallel zueinander, erstrecken sich von einer Probenaufnahmenanordnung aus mit einer gemeinsamen Probenaufnahmekammer oder mehreren einzelnen, den Kanälen jeweils zugeordneten Probenaufnahmekammern und weisen vorzugsweise untereinander gleich lange Kanalabschnitte zwischen den einzelnen Verbindungsstellen auf. Die den Verbindungsstellen jeweils zugeordneten Entlüftungsöffnungen sind dabei unmittelbar benachbart zueinander angeordnet und lassen sich vorteilhafterweise mit ein und demselben Deckelelement freilegen. Hierdurch wird ein paralleler schrittweise Transport von Flüssigkeit durch die einzelnen Kanäle ermöglicht.
Die Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele unter Bezugnahme auf die Zeichnung näher erläutert. Im einzelnen zeigen:
Fig. 1
ein erstes Ausführungsbeispiel für eine erfindungsgemäße Kanalstruktur zum schrittweisen Transport von Flüssigkeit unter Ausnutzung von Kapillarkräften,
Fign. 2 bis 4
die einzelnen Phasen, in denen die Kanalstruktur gemäß Fig. 1 nach sukzessivem Öffnen der einzelnen längs des Kanals angeordneten Entlüftungsöffnungen dargestellt ist,
Fig. 5
ein zweites Ausführungsbeispiel einer erfindungsgemäßen Kanalstruktur,
Fign. 6 und 7
die einzelnen Phasen, in denen die Kanalstruktur gemäß Fig. 5 nach sukzessivem Öffnen der einzelnen längs des Kanals angeordneten Entlüftungsöffnungen dargestellt ist, und
Fig. 8
ein drittes Ausführungsbeispiel einer erfindungsgemäßen Kanalstruktur zum sukzessiven parallelen Transport von Flüssigkeiten durch mehrere Kanäle.
Fig. 1 zeigt den grundsätzlichen Aufbau des erfindungsgemäßen Kapillarkanalsystems 10. Das Kapillarkanalsystem 10 ist in einem Substrat 12 (Kunststoffkörper o.dgl.) ausgebildet und weist einen Kanal 14 auf, der eine (in Fluidverbindung mit einem nicht gezeigten Reservoir stehende) Einlassöffnung 16 und eine Auslassöffnung 18 umfasst. Flüssigkeit, die sich in dem Kanal 14 befindet, wird in dem Kanal unter Ausnutzung von Kapillarkräften transportiert.
Der Kanal 14 weist mehrere (im Ausführungsbeispiel vier) Verbindungsstellen 20,22,24 und 26 auf, von denen aus Entlüftungsleitungen 28,30,32,34 abzweigen, die in Entlüftungsöffnungen 36,38,40,42 enden. Der Kanal 14 ist durch die Verbindungsstellen 20,22,24,26 in einzelne Kanalabschnitte 44,46,48 unterteilt; in jedem Kanalabschnitt 44,46,48 befindet sich eine Reaktionskammer 50,52,54.
Das in Fig. 1 gezeigte Kapillarkanalsystem 10 lässt sich wie folgt selektiv mit Flüssigkeit befüllen.
Im Ausgangszustand sind sämtliche Entlüftungsöffnungen 36,38,40,42 sowie der Auslass 18 des Kanals 14 verschlossen. Wird nun die in Strömungsrichtung 56 (siehe Pfeil) erste Entlüftungsöffnung 36 geöffnet, so gelangt Probenflüssigkeit, die am Einlass 16 des Kanals 14 ansteht, bis zur Verbindungsstelle 20 sowie in den Entlüftungskanal 28 bis zur Entlüftungsöffnung 36. Durch Verkürzen der Entlüftungskanäle 28 kann das Totvolumen des Kapillarkanalsystems 10 minimiert werden. Die Entlüftungsöffnungen 36 können auch direkt in der Wandung des Kanals 14 ausgebildet sein. Nachdem die Öffnung 36 freigelegt worden ist, wandert die Flüssigkeitsfront innerhalb des Kanals 14 also bis zur Verbindungsstelle 20; in jedem Fall gelangt (noch) keine Flüssigkeit in den Kanalabschnitt 44.
Wird hingegen anschließend die in Strömungsrichtung nächste Entlüftungsöffnung 38 freigelegt, so gelangt Flüssigkeit in den zweiten Kanalabschnitt 44 und füllt diesen aus, was bedeutet, dass auch die Reaktionskammer 50 mit zu untersuchender Flüssigkeit ausgefüllt wird. Die fortschreitende Flüssigkeitsfront kommt in dem Kanal an der Verbindungsstelle 22 zum Stillstand, wobei die Flüssigkeit von dort aus lediglich noch in den Entlüftungskanal 30 bis zur Entlüftungsöffnung 38 fließt. Dieser Zustand ist in Fig. 2 wiedergegeben.
Wird nun die nächste Entlüftungsöffnung 40 geöffnet, so wiederholt sich der zuvor beschriebene Vorgang für den weiteren Kanalabschnitt 46, so dass sich schließlich die Situation gemäß Fig. 3 einstellt. Durch Freilegen der nächsten Entlüftungsöffnung 42 wird schließlich der nächste Kanalabschnitt 48 mit Flüssigkeit aufgefüllt, was in Fig. 4 gezeigt ist. Wenn man anschließend den Auslass 18 des Kanals 14 öffnet, so gelangt die Flüssigkeit aus dem Kanal 14 heraus in ein (nicht dargestelltes) Auffangbehältnis oder einer Auffangkammer.
Das zuvor beschriebene Kapillarkanalsystem 10 kann noch über sogenannte Kapillarstops verfügen, die erst nach Aufprägen eines Druckimpulses auf die Flüssigkeit überwunden werden, wobei anschließend der weitere Transport der Flüssigkeit wiederum durch Kapillarkräfte induziert erfolgt. Derartige Kapillarstops könnten beispielsweise an den Ausgängen der Reaktionskammern 50,52,54 ausgebildet bzw. angeordnet sein. Der selektive Transport der Flüssigkeit durch das Kapillarkanalsystem 10 erfolgt in einem solchen Falle also wechselweise durch Freilegen von Entlüftungsöffnungen und Aufprägen eines Druckimpulses.
Es sei darauf hingewiesen, dass es nach der Erfindung nicht zwingend erforderlich ist, dass vor der ersten Reaktionskammer 50 eine Entlüftungsöffnung 36 angeordnet ist. Diese könnte mitsamt der Entlüftungsleitung 28 entfallen, wie dies in den Fign. 5 bis 7 gezeigt ist.
In den Fign. 5 bis 7 ist ein zweites Ausführungsbeispiels eines Kapillarkanalsystems 10' dargestellt. Der grundsätzliche Aufbau des Kapillarkanalsystems 10' der Fign. 5 bis 7 ist identisch mit demjenigen gemäß den Fign. 1 bis 4. Ein Unterschied besteht in der Art und Weise der Freilegung der Entlüftungsöffnungen. Diese wurden bei dem Ausführungsbeispiel gemäß den Fign. 1 bis 4 durch beispielsweise einzelne Deckelelemente 58 freigelegt, während bei dem Ausführungsbeispiel gemäß den Fign. 5 bis 7 ein durchgehender Abdeckstreifen 60 als Deckelelement vorgesehen ist, der mehr oder weniger weit abgezogen wird und somit nach und nach die Entlüftungsöffnungen 36,38,40,42 freilegt. Der Abdeckstreifen 60 kann als Klebestreifen ausgebildet sein, der einzelne durch Perforationslinien oder andere Arten von Sollbruchlinien 62 verbundene Teilabschnitte 64,66,68 aufweist. Die Sollbruchlinien 62 befinden sich zwischen jeweils zwei benachbarten Entlüftungsöffnungen 38,40 bzw. 40,42 und vorzugsweise etwa in der Mitte zwischen diesen Öffnungen. Zumindest auf derjenigen Seite einer Sollbruchlinie 62, die zu der stromab nächsten Entlüftungsöffnung weist, ist die Klebeseite des Abdeckstreifens in einem an der Sollbruchlinie 62 angrenzenden Bereich 70 frei von Kleber. Nach Ablösen des ersten Teilabschnitts 64, der an seinem freien Ende einen nicht klebenden Bereich 72 aufweist, welcher als Anfassende dient, kann dieser Teilabschnitt 64 an der Sollbruchlinie 62 abgerissen werden. Der Bereich 70 des nächsten Teilabschnitts 66 dient dann wiederum als Anfassende zur Erleichterung des Ablösens des Teilabschnitts 66 zwecks Freilegung der nächsten Entlüftungsöffnung 40.
Fig. 8 schließlich zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kapillarkanalsystems 10", das mehrere (in diesem Ausführungsbeispiel zwei) Kanäle 14 aufweist, von denen jeder so, wie im Zusammenhang mit den vorstehenden Ausführungsbeispielen beschrieben, beschaffen und ausgestaltet ist, also mehrere (in diesem Ausführungsbeispiel zwei) strömungstechnisch in Reihe geschaltete Reaktionskammern 50,52 aufweist. Von jedem Kanal 14 zweigen also mehrere Entlüftungsleitungen 28,30,32 mit Entlüftungsöffnungen 36,38,40 an ihren Enden ab. Die in Strömungsrichtung ersten Entlüftungsöffnungen 36 sämtlicher Kanäle 14 sind gruppenweise oder sämtlich durch mehrere bzw. ein gemeinsames Deckelelement 74 verschlossen. Dieselbe Konstellation ergibt sich für die in Strömungsrichtung nächsten Entlüftungsöffnungen 38,40, die durch ein Deckelelement 76 bzw. 78 verschlossen sind. Dieses System von gemeinsamen bzw. gruppenweise gemeinsamen Deckelelementen 74,76,78 ist über das gesamte Kapillarkanalsystem 10" hinweg betrachtet gleich. Die Kanäle 14 zweigen von einem Reservoir 80 ab, das mit der in und durch die Reaktionskammern 50,52 zu leitenden Flüssigkeit gefüllt wird bzw. ist.
Durch die Deckelelemente 74,76,78 ist es nun möglich, den schrittweisen Flüssigkeitstransport durch sämtliche Kanäle 14 zeitgleich und parallel zu initiieren bzw. durchzuführen. Der Zweck der den in Strömungsrichtung ersten Reaktionskammern 50 vorgelagerten Entlüftungsöffnungen 36 der Kanäle 14 wird deutlich, wenn man berücksichtigt, dass die Kanäle 14 in ihren Abschnitten zwischen dem Reservoir 80 und den ersten Reaktionskammern 50 (z.B. konstruktionsbedingt) unterschiedlich lang sein können. Die Verbindungsstellen 20 der Kanäle 14, an denen die Entlüftungsleitungen 28 abzweigen, sind in gleicher Entfernung längs des Kanals 14 von den ersten Reaktionskammern 50 angeordnet. Nach Freilegung der ersten Entlüftungsöffnungen 36 steht dann in jedem Kanal 14 die Flüssigkeitsfront gleich weit von der ersten Reaktionskammer 50 an. Damit ist das zeitgleiche Befüllen der ersten Reaktionskammern 50 nach Freilegen der zweiten Entlüftungsöffnungen 38 sichergestellt.
Alternativ kann für sämtliche Entlüftungsöffnungen ein gemeinsames Deckelelement vorgesehen sein, das nach und nach Entlüftungsöffnungen freigibt (entsprechend dem Deckelelement des Ausführungsbeispiels gemäß Fign. 5 bis 7). Ferner kann bei dem Ausführungsbeispiel gemäß Fig. 8 alternativ vorgesehen sein, dass die von den Probenflüssigkeitstransportkanälen 14 abzweigenden Entlüftungskanäle 28,30,32 gruppenweise (die erste Gruppe umfasst dabei die in Strömungsrichtung ersten Entlüftungskanäle 28, die zweite Gruppe den in Strömungsrichtung zweiten Entlüftungskanäle 30 usw.) in einer gemeinsamen Entlüftungsöffnung 36,38,40 enden.
Wie im Zusammenhang mit dem ersten Ausführungsbeispiel gemäß den Fign. 1 bis 4 erwähnt, können auch die Kapillarkanalsysteme 10' und 10" der Fign. 5 bis 8 zusätzlich mit Kapillarstops versehen sein, die, wie oben ebenfalls erwähnt, beispielsweise am bezüglich der Strömungsrichtung betrachtet Auslassende der Reaktionskammern 50,52 angeordnet sind.
Das erfindungsgemäße Kapillarkanalsystem zeichnet sich durch ein präzises Timing und Triggern des Weitertransports der Flüssigkeit aus. Ferner werden extrem einfache Öffnungsmechanismen für die Entlüftungsöffnungen beschrieben. Das System ist zweckmäßigerweise für den Einfachgebrauch ausgelegt und als Einwegartikel konzipiert. Es wird ein Minimum an Testflüssigkeit benötigt sowie keinerlei Filter/Membran-Komponenten eingesetzt. Ferner erlaubt das System die vollständig geschlossene Ausbildung auf einem Substrat o.dgl. Träger, weshalb das Risiko bezüglich Kontaminationen minimiert ist. Für die Auslösung der Reaktionen und insbesondere den Transport der Flüssigkeit sind keinerlei Zentrifugalkräfte o.dgl. erforderlich. Das erfindungsgemäße System arbeitet lagenunabhängig, da zum Flüssigkeitstransport Kapillarkräfte ausgenutzt werden.

Claims (11)

  1. Vorrichtung zum schrittweisen Transport von Flüssigkeit, insbesondere von zu untersuchender Probenflüssigkeit, durch mehrere strömungstechnisch in Reihe liegende Reaktionskammern unter Ausnutzung von Kapillarkräften mit
    einem Kanal (14), durch den Flüssigkeit auf Grund von Kapillarkräften transportierbar ist, und
    mindestens zwei verschlossenen Entlüftungsöffnungen (38,40,42), die an längs des Kanals (14) voneinander beabstandeten Verbindungsstellen (22,24,26) in Fluidverbindung mit dem Kanal (14) stehen,
    wobei die Verbindungsstellen (22,24,26) den Kanal (14) in mehrere Kanalabschnitte (44,46,48) unterteilen,
    wobei die Fluidverbindungen zwischen jeweils einem Kanalabschnitt (44,46,48) und der diesem zugeordneten Entlüftungsöffnungen (38,40,42) einzeln geöffnet werden können und
    wobei in den Kanalabschnitten (44,46,48) den Verbindungsstellen (22,24,26) in Strömungsrichtung betrachtet jeweils vorgelagert mindestens eine Kammer (50,52,54) angeordnet ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass in zumindest einer Kammer (50,52,54) eine Reagenzsubstanz angeordnet ist.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Reagenzsubstanz immobilisiert ist und bei Kontakt mit der Flüssigkeit mobilisierbar ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass an den Verbindungsstellen (22,24,26) von dem Kanal (14) Entlüftungskanäle (30,32,34) abzweigen, die in den Entlüftungsöffnungen (38-42) enden.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass bei geöffneter Entlüftungsöffnung (38,40,42) Flüssigkeit mittels Kapillarwirkung durch den Entlüftungskanal (30,32,34) bis zur Entlüftungsöffnung (38,40,42) transportierbar ist.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass bei geöffneter Entlüftungsöffnung (38,40,42) Flüssigkeit, die nach dem Öffnen der Entlüftungsöffnung (38,40,42) durch den der Entlüftungsöffnung (38,40,42) in Strömungsrichtung betrachtet vorgelagerten Kanalabschnitt (44,46,48) fließt, bis zur Entlüftungsöffnung (38,40,42) gelangt.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass jede Entlüftungsöffnung (38,40,42) durch ein Deckelelement (60,74,76,78) verschlossen ist, das abziehbar, punktierbar, aufschmelzbar und/oder durch Initiierung einer Reaktion auflösbar oder luftdurchlässig ist.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass sämtliche Entlüftungsöffnungen (38,40,42) durch ein gemeinsames Deckelelement (60,74,76,78) überdeckt sind, wobei das Deckelelement (60,74,76,78) selektiv abziehbar, punktierbar, aufschmelzbar und/oder durch Initiierung einer Reaktion auflösbar oder luftdurchlässig ist.
  9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass zum Aufschmelzen des Deckelelements (60,74,76,78) ein oder mehrere thermisch mit dem Deckelelement (60,74,76,78) gekoppelte Heizelemente vorgesehen sind.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mehrere Kanäle (14) vorgesehen sind, deren in Strömungsrichtung aufeinanderfolgende ersten, zweiten und weiteren Entlüftungsöffnungen (38,40,42) jeweils gruppenweise gemeinsam freilegbar sind.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Entlüftungsöffnungen (38,40,42) kapillare Öffnungen sind.
EP03025615.0A 2002-11-14 2003-11-06 Vorrichtung zum schrittweisen Transport von Flüssigkeit unter Ausnutzung von Kapillarkräften Expired - Lifetime EP1419818B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10254874 2002-11-14
DE10254874 2002-11-14

Publications (2)

Publication Number Publication Date
EP1419818A1 true EP1419818A1 (de) 2004-05-19
EP1419818B1 EP1419818B1 (de) 2013-10-30

Family

ID=32115581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03025615.0A Expired - Lifetime EP1419818B1 (de) 2002-11-14 2003-11-06 Vorrichtung zum schrittweisen Transport von Flüssigkeit unter Ausnutzung von Kapillarkräften

Country Status (4)

Country Link
US (1) US7316802B2 (de)
EP (1) EP1419818B1 (de)
JP (1) JP2004170408A (de)
CN (1) CN100571871C (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1685900A1 (de) 2005-01-27 2006-08-02 Boehringer Ingelheim microParts GmbH Vorrichtung und Verfahren zur Untersuchung von Probenflüssigkeit
DE102005042601A1 (de) * 2005-04-09 2006-10-12 Boehringer Ingelheim Microparts Gmbh Vorrichtung und Verfahren zur Untersuchung einer Probenflüssigkeit
DE102005016509A1 (de) * 2005-04-09 2006-10-12 Boehringer Ingelheim Microparts Gmbh Vorrichtung und Verfahren zur Untersuchung einer Probenflüssigkeit
DE102005016508A1 (de) * 2005-04-09 2006-10-12 Boehringer Ingelheim Microparts Gmbh Vorrichtung und Verfahren zur Untersuchung einer Probenflüssigkeit
EP1714698A2 (de) 2005-04-15 2006-10-25 Boehringer Ingelheim microParts GmbH Vorrichtung und Verfahren zur Manipulation einer Flüssigkeit
WO2008000276A2 (en) * 2006-06-28 2008-01-03 Microlytic Aps A device and a method for promoting crystallisation
WO2014041364A1 (en) * 2012-09-14 2014-03-20 Carclo Technical Plastics Limited Sample metering device
WO2014083496A1 (en) * 2012-11-29 2014-06-05 Koninklijke Philips N.V. Cartridge for uptake and processing of a sample
WO2016092333A3 (en) * 2014-12-12 2016-08-04 Bio Amd Holdings Limited Assay apparatus
WO2018007819A1 (en) 2016-07-06 2018-01-11 Oxford Nanopore Technologies Limited Microfluidic device
US11561216B2 (en) 2012-02-13 2023-01-24 Oxford Nanopore Technologies Plc Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
US11789006B2 (en) 2019-03-12 2023-10-17 Oxford Nanopore Technologies Plc Nanopore sensing device, components and method of operation
EP4344777A3 (de) * 2022-09-07 2024-05-29 Shanghai Ruiyu Biotech Co. Ltd. Probenanalysevorrichtungen und -systeme

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6571651B1 (en) * 2000-03-27 2003-06-03 Lifescan, Inc. Method of preventing short sampling of a capillary or wicking fill device
US7148257B2 (en) * 2002-03-04 2006-12-12 Merck Hdac Research, Llc Methods of treating mesothelioma with suberoylanilide hydroxamic acid
CN1650173B (zh) * 2002-04-30 2012-06-06 爱科来株式会社 分析用具、使用分析用具的试样分析方法及分析装置、和分析用具的开口形成方法
US20070014694A1 (en) * 2003-09-19 2007-01-18 Beard Nigel P High density plate filler
US20050220675A1 (en) * 2003-09-19 2005-10-06 Reed Mark T High density plate filler
US20060233673A1 (en) * 2003-09-19 2006-10-19 Beard Nigel P High density plate filler
US20050232821A1 (en) * 2003-09-19 2005-10-20 Carrillo Albert L High density plate filler
US7695688B2 (en) * 2003-09-19 2010-04-13 Applied Biosystems, Llc High density plate filler
US7407630B2 (en) * 2003-09-19 2008-08-05 Applera Corporation High density plate filler
US20050226782A1 (en) * 2003-09-19 2005-10-13 Reed Mark T High density plate filler
US8277760B2 (en) * 2003-09-19 2012-10-02 Applied Biosystems, Llc High density plate filler
US9492820B2 (en) 2003-09-19 2016-11-15 Applied Biosystems, Llc High density plate filler
US20060233671A1 (en) * 2003-09-19 2006-10-19 Beard Nigel P High density plate filler
US7998435B2 (en) * 2003-09-19 2011-08-16 Life Technologies Corporation High density plate filler
US20060272738A1 (en) * 2003-09-19 2006-12-07 Gary Lim High density plate filler
EP1824600B1 (de) * 2004-10-18 2016-12-28 Life Technologies Corporation Fluidbehandlungsvorrichtung mit grössenändernder barriere
DE102004054551B4 (de) * 2004-11-11 2021-07-22 Orgentec Diagnostika Gmbh Vorrichtung zur vollautomatischen Durchführung eines Einzelimmunoassays
WO2006099042A2 (en) * 2005-03-09 2006-09-21 The Regents Of The University Of California Microfluidic valve for liquids
JP4837725B2 (ja) * 2005-04-09 2011-12-14 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング サンプル液の検査装置及び方法
US7935318B2 (en) * 2005-06-13 2011-05-03 Hewlett-Packard Development Company, L.P. Microfluidic centrifugation systems
US7723120B2 (en) * 2005-10-26 2010-05-25 General Electric Company Optical sensor array system and method for parallel processing of chemical and biochemical information
US8905073B2 (en) * 2006-03-09 2014-12-09 Sekisui Chemical Co. Ltd. Micro fluid device and trace liquid diluting method
TWI310835B (en) * 2006-06-23 2009-06-11 Ind Tech Res Inst Gravity-driven fraction separator and method thereof
EP1878498A1 (de) 2006-07-14 2008-01-16 Roche Diagnostics GmbH Zusammenstellung zur Analyse einer flüssigen Probe durch Nukleinsäure-Amplifizierung
WO2008108481A1 (ja) * 2007-03-05 2008-09-12 Nec Corporation マイクロチップの流体制御機構
EP2282190B1 (de) 2008-05-29 2017-07-12 Nippon Telegraph and Telephone Corporation Durchflusszelle und flüssigkeitsausgabeverfahren
JP5155800B2 (ja) * 2008-09-29 2013-03-06 富士フイルム株式会社 反応方法及び反応装置
WO2011066361A1 (en) 2009-11-24 2011-06-03 Claros Diagnostics, Inc. Fluid mixing and delivery in microfluidic systems
US20110312732A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Test module using lanthanide metal-ligand complex, electrochemiluminescent luminophores
WO2012062646A1 (de) * 2010-11-10 2012-05-18 Boehringer Ingelheim Microparts Gmbh Verfahren zum befüllen einer blisterverpackung mit flüssigkeit und blisterverpackung mit einer kavität zur befüllung mit flüssigkeit
WO2012123750A1 (en) * 2011-03-15 2012-09-20 Carclo Technical Plastics Limited Surface preparation
WO2012178187A1 (en) 2011-06-23 2012-12-27 Paul Yager Reagent patterning in capillarity-based analyzers and associated systems and methods
WO2013011652A1 (ja) * 2011-07-20 2013-01-24 株式会社エンプラス 流体取扱装置、流体取扱方法および流体取扱システム
EP2559488A1 (de) * 2011-08-18 2013-02-20 Koninklijke Philips Electronics N.V. Steuerung einer Flüssigkeitsströmung in einem mikrofluidischen System
EP2751021A4 (de) 2011-08-30 2015-09-30 Univ Mcgill Verfahren und system für vorprogrammierte und selbstangetriebene mikrofluidische schaltungen
EP2948249A1 (de) 2013-01-22 2015-12-02 University of Washington through its Center for Commercialization Sequenzielle freisetzung von flüssigkeitsmengen und zugehörige vorrichtungen, systeme und verfahren
FR3003033B1 (fr) * 2013-03-07 2015-04-17 Commissariat Energie Atomique Dispositif de prelevement d'un echantillon de liquide par capillarite et procede d'analyse associe
JP6290261B2 (ja) * 2013-12-26 2018-03-07 京セラ株式会社 検体液センサ、検体液センサユニット及び検体液検査方法
RU2685660C2 (ru) * 2014-06-16 2019-04-22 Конинклейке Филипс Н.В. Картридж для быстрого отбора пробы
WO2017056748A1 (ja) * 2015-09-28 2017-04-06 パナソニックヘルスケアホールディングス株式会社 アナライトを分析するセンサ、測定装置、及びアナライトの分析方法
CN108828737B (zh) * 2016-04-14 2020-07-03 杭州富通通信技术股份有限公司 一种光缆
CN105964315B (zh) * 2016-05-23 2017-12-22 杭州霆科生物科技有限公司 一种多级自控的微流控芯片
JP6799308B2 (ja) * 2016-09-30 2020-12-16 株式会社アイビー 液体試料搬送方法および試薬チップ
EP3978134A1 (de) * 2017-07-05 2022-04-06 miDiagnostics NV Anordnung in einem kapillaren angetriebenen mikrofluidischen system zum auflösen eines reagens in einem fluid
GB2568895B (en) * 2017-11-29 2021-10-27 Oxford Nanopore Tech Ltd Microfluidic device
US11154864B2 (en) 2018-01-17 2021-10-26 Qiagen Sciences, Llc Microfluidic device with vented microchambers
CN109738632B (zh) * 2019-01-09 2022-04-29 南京岚煜生物科技有限公司 多指标微流控芯片及其使用方法
GB202105032D0 (en) * 2021-04-08 2021-05-26 Kromek Ltd Microfludic system and method
DE102021211545A1 (de) * 2021-10-13 2023-04-27 Robert Bosch Gesellschaft mit beschränkter Haftung Klebefolie für eine mikrofluidische Vorrichtung, mikrofluidische Vorrichtung mit Klebefolie und Verwendung einer Klebefolie zum Verschließen einer Öffnung einer mikrofluidischen Vorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799742A (en) * 1971-12-20 1974-03-26 C Coleman Miniaturized integrated analytical test container
US4849340A (en) * 1987-04-03 1989-07-18 Cardiovascular Diagnostics, Inc. Reaction system element and method for performing prothrombin time assay
US5230866A (en) * 1991-03-01 1993-07-27 Biotrack, Inc. Capillary stop-flow junction having improved stability against accidental fluid flow
US5242606A (en) * 1990-06-04 1993-09-07 Abaxis, Incorporated Sample metering port for analytical rotor having overflow chamber
US5478751A (en) * 1993-12-29 1995-12-26 Abbott Laboratories Self-venting immunodiagnositic devices and methods of performing assays
WO1999046045A1 (de) * 1998-03-11 1999-09-16 MICROPARTS GESELLSCHAFT FüR MIKROSTRUKTURTECHNIK MBH Probenträger
WO2001064344A2 (en) * 2000-03-02 2001-09-07 Microchips, Inc. Microfabricated devices for the storage and selective exposure of chemicals and devices
WO2002042650A1 (en) * 2000-11-27 2002-05-30 Pyrosequencing Ab Fluid handling in microfluidic devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426451A (en) * 1981-01-28 1984-01-17 Eastman Kodak Company Multi-zoned reaction vessel having pressure-actuatable control means between zones
USRE33858E (en) * 1985-01-25 1992-03-24 Mallinckrodt Sensor Systems Inc. Apparatus for measuring a chemical entity in a liquid
US4806316A (en) * 1987-03-17 1989-02-21 Becton, Dickinson And Company Disposable device for use in chemical, immunochemical and microorganism analysis
US4946795A (en) * 1987-08-27 1990-08-07 Biotrack, Inc. Apparatus and method for dilution and mixing of liquid samples
US6130098A (en) * 1995-09-15 2000-10-10 The Regents Of The University Of Michigan Moving microdroplets
US6117396A (en) * 1998-02-18 2000-09-12 Orchid Biocomputer, Inc. Device for delivering defined volumes
ATE287291T1 (de) * 2000-03-07 2005-02-15 Symyx Technologies Inc Prozessoptimierungsreaktor mit parallelem durchfluss
US6627159B1 (en) * 2000-06-28 2003-09-30 3M Innovative Properties Company Centrifugal filling of sample processing devices
US7010391B2 (en) * 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US6883957B2 (en) * 2002-05-08 2005-04-26 Cytonome, Inc. On chip dilution system
JP4081721B2 (ja) * 2004-02-20 2008-04-30 富士フイルム株式会社 科学現象の評価装置、及びその製造方法
US20050249641A1 (en) * 2004-04-08 2005-11-10 Boehringer Ingelheim Microparts Gmbh Microstructured platform and method for manipulating a liquid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799742A (en) * 1971-12-20 1974-03-26 C Coleman Miniaturized integrated analytical test container
US4849340A (en) * 1987-04-03 1989-07-18 Cardiovascular Diagnostics, Inc. Reaction system element and method for performing prothrombin time assay
US5242606A (en) * 1990-06-04 1993-09-07 Abaxis, Incorporated Sample metering port for analytical rotor having overflow chamber
US5230866A (en) * 1991-03-01 1993-07-27 Biotrack, Inc. Capillary stop-flow junction having improved stability against accidental fluid flow
US5478751A (en) * 1993-12-29 1995-12-26 Abbott Laboratories Self-venting immunodiagnositic devices and methods of performing assays
WO1999046045A1 (de) * 1998-03-11 1999-09-16 MICROPARTS GESELLSCHAFT FüR MIKROSTRUKTURTECHNIK MBH Probenträger
WO2001064344A2 (en) * 2000-03-02 2001-09-07 Microchips, Inc. Microfabricated devices for the storage and selective exposure of chemicals and devices
WO2002042650A1 (en) * 2000-11-27 2002-05-30 Pyrosequencing Ab Fluid handling in microfluidic devices

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1685900A1 (de) 2005-01-27 2006-08-02 Boehringer Ingelheim microParts GmbH Vorrichtung und Verfahren zur Untersuchung von Probenflüssigkeit
DE102005042601A1 (de) * 2005-04-09 2006-10-12 Boehringer Ingelheim Microparts Gmbh Vorrichtung und Verfahren zur Untersuchung einer Probenflüssigkeit
DE102005016509A1 (de) * 2005-04-09 2006-10-12 Boehringer Ingelheim Microparts Gmbh Vorrichtung und Verfahren zur Untersuchung einer Probenflüssigkeit
DE102005016508A1 (de) * 2005-04-09 2006-10-12 Boehringer Ingelheim Microparts Gmbh Vorrichtung und Verfahren zur Untersuchung einer Probenflüssigkeit
EP1714698A2 (de) 2005-04-15 2006-10-25 Boehringer Ingelheim microParts GmbH Vorrichtung und Verfahren zur Manipulation einer Flüssigkeit
WO2008000276A2 (en) * 2006-06-28 2008-01-03 Microlytic Aps A device and a method for promoting crystallisation
WO2008000276A3 (en) * 2006-06-28 2008-03-06 Microlytic Aps A device and a method for promoting crystallisation
US8986449B2 (en) 2006-06-28 2015-03-24 Microlytic North America Inc. Device and a method for promoting crystallisation
US11561216B2 (en) 2012-02-13 2023-01-24 Oxford Nanopore Technologies Plc Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
US11913936B2 (en) 2012-02-13 2024-02-27 Oxford Nanopore Technologies Plc Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
WO2014041364A1 (en) * 2012-09-14 2014-03-20 Carclo Technical Plastics Limited Sample metering device
GB2521081A (en) * 2012-09-14 2015-06-10 Carclo Technical Plastics Ltd Sample metering device
WO2014083496A1 (en) * 2012-11-29 2014-06-05 Koninklijke Philips N.V. Cartridge for uptake and processing of a sample
US10525465B2 (en) 2012-11-29 2020-01-07 Koninklijke Philips N.V. Cartridge for uptake and processing of a sample
WO2016092333A3 (en) * 2014-12-12 2016-08-04 Bio Amd Holdings Limited Assay apparatus
WO2018007819A1 (en) 2016-07-06 2018-01-11 Oxford Nanopore Technologies Limited Microfluidic device
US11596940B2 (en) 2016-07-06 2023-03-07 Oxford Nanopore Technologies Plc Microfluidic device
US11789006B2 (en) 2019-03-12 2023-10-17 Oxford Nanopore Technologies Plc Nanopore sensing device, components and method of operation
EP4344777A3 (de) * 2022-09-07 2024-05-29 Shanghai Ruiyu Biotech Co. Ltd. Probenanalysevorrichtungen und -systeme

Also Published As

Publication number Publication date
CN100571871C (zh) 2009-12-23
US7316802B2 (en) 2008-01-08
US20040096358A1 (en) 2004-05-20
EP1419818B1 (de) 2013-10-30
JP2004170408A (ja) 2004-06-17
CN1500555A (zh) 2004-06-02

Similar Documents

Publication Publication Date Title
EP1419818B1 (de) Vorrichtung zum schrittweisen Transport von Flüssigkeit unter Ausnutzung von Kapillarkräften
EP2413138B1 (de) Vorrichtung und verfahren zur abtrennung von bestandteilen einer probenflüssigkeit
EP1441131B1 (de) Verwendung eines mikrofluidischen Schalters zum Anhalten eines Flüssigkeitsstroms während eines Zeitintervalls
DE3800036C2 (de)
EP1685900B1 (de) Verwendung einer Vorrichtung zur Untersuchung von Probenflüssigkeit
WO1999046045A1 (de) Probenträger
EP1899702A2 (de) Vorrichtung und verfahren zur untersuchung einer probenflüssigkeit
DE102005019195A1 (de) Chemische Reaktionspatrone, Verfahren zum Herstellen einer chemischen Reaktionspatrone und Mechanismus zum Betätigen einer chemischen Reaktionspatrone
EP2437890A1 (de) Vorrichtung zum transportieren eines fluids in einem kanalstrang eines mikrofluidelements
DE10352535A1 (de) Mikrostrukturierte Trennvorrichtung und Verfahren zum Abtrennen von flüssigen Bestandteilen aus einer Partikel enthaltenden Flüssigkeit
EP3049186B1 (de) Analyseeinheit zum durchführen einer polymerasekettenreaktion, verfahren zum betreiben einer solchen analyseeinheit und verfahren zum herstellen einer solchen analyseeinheit
DE3220444A1 (de) Pipetten-probenehmer
DE602005001235T2 (de) Ein mikrofluidisches System und ein Behandlungsverfahren
EP1315553A1 (de) Vorrichtung und verfahren zur separation von ungelösten bestandteilen aus biologischen flüssigkeiten
WO2019219844A1 (de) Fluidisches system zur aufnahme, abgabe und bewegung von flüssigkeiten, verfahren zur verarbeitung von fluiden in einem fluidischen system
EP2552586B1 (de) Bauteil eines biosensors und verfahren zur herstellung
DE102010047384B4 (de) Vorrichtung und Verfahren zur Erzeugung oder zur Ablage eines Fluidstroms aus Fluidsegmenten und ihre Verwendung
EP2754495A2 (de) Mikrofluidisches Kanalsystem mit Blasenfängereinrichtung und Verfahren zum Entfernen von Gasblasen
EP2486313B1 (de) Mikrofluidische struktur und verfahren zum positionieren eines flüssigkeitsvolumens in einem mikrofluidischen system
EP3757571B1 (de) Fliesstest-einheit, set und verwendung einer fliesstest-einheit zur durchführung einer nachweisreaktion
EP3973288B1 (de) Mikrofluidisches analysesystem zur analyse von blutproben
DE102005016508A1 (de) Vorrichtung und Verfahren zur Untersuchung einer Probenflüssigkeit
WO2015121034A1 (de) Einheit zum bereitstellen eines fluids für eine biochemische analysevorrichtung sowie verfahren und vorrichtung zum herstellen einer solchen einheit
DE10244154A1 (de) Trägerelement für diagnostische Tests
DE102004058828B4 (de) Vorrichtung und Verfahren zur parallelen Aufbereitung von Biopolymeren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041113

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHRINGER INGELHEIM MICROPARTS GMBH

17Q First examination report despatched

Effective date: 20070911

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAV Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 638296

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314922

Country of ref document: DE

Effective date: 20131224

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

BERE Be: lapsed

Owner name: BOEHRINGER INGELHEIM MICROPARTS G.M.B.H.

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314922

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

26N No opposition filed

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314922

Country of ref document: DE

Effective date: 20140731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 638296

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131030

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20031106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131030

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221125

Year of fee payment: 20

Ref country code: FR

Payment date: 20221128

Year of fee payment: 20

Ref country code: DE

Payment date: 20220620

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50314922

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231105