EP1417283B1 - Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele - Google Patents

Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele Download PDF

Info

Publication number
EP1417283B1
EP1417283B1 EP02767555A EP02767555A EP1417283B1 EP 1417283 B1 EP1417283 B1 EP 1417283B1 EP 02767555 A EP02767555 A EP 02767555A EP 02767555 A EP02767555 A EP 02767555A EP 1417283 B1 EP1417283 B1 EP 1417283B1
Authority
EP
European Patent Office
Prior art keywords
isomerization
fraction
effluents
carbon atoms
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02767555A
Other languages
German (de)
English (en)
Other versions
EP1417283A1 (fr
Inventor
Christophe Bouchy
Olivier Ducreux
Elsa Jolimaitre
Paul Broutin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1417283A1 publication Critical patent/EP1417283A1/fr
Application granted granted Critical
Publication of EP1417283B1 publication Critical patent/EP1417283B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only

Definitions

  • the present invention relates to an isomerization process in the presence of hydrogen (also sometimes called hydro-isomerization process), a feedstock comprising in majority hydrocarbons containing from 5 to 8 carbon atoms per molecule.
  • hydrogen also sometimes called hydro-isomerization process
  • C5-C8 cut will be used to designate a feedstock comprising, for the most part, normal paraffins containing from 5 to 8 carbon atoms per molecule.
  • the product of the isomerization (or isomerate) is aromatic-free in contrast to the reformate which usually contains a significant amount (80 mol% and more).
  • Isomerate and reformate are usually sent to the gasoline pool in which other bases or additives may also be involved: gasoline resulting from fluidized catalytic cracking (FCC), alkylation products, methyl-tertiobutyl-ether (MTBE), etc.
  • FCC fluidized catalytic cracking
  • MTBE methyl-tertiobutyl-ether
  • the patent application EP-A1-922747 proposes, for limiting the cracking rate of paraffins containing at least 7 carbon atoms per molecule during the isomerization of a C5-C8 cut, the use of an acid catalyst associated with relatively mild operating conditions.
  • This catalyst contains at least one halogen and at least one Group VIII metal, the reaction being carried out at a temperature between 30 and 150 ° C.
  • the patent application EP-A2-0256604 describes a process for the isomerization of paraffins of a feedstock comprising hydrocarbons containing from 5 to 7 carbon atoms per molecule without, in particular, the ratios R of the number of moles of hydrogen relative to the number of moles of hydrocarbons leaving from at least one reaction zone corresponds to the present invention.
  • the patent US3619408 describes a process for the isomerization of olefins, diolefins and aromatics of a feedstock comprising hydrocarbons containing from 5 to 8 carbon atoms per molecule without, in particular, the ratios R of the number of moles of hydrogen over the number of moles of hydrocarbons leaving at least one reaction zone corresponding to the present invention.
  • the patent US5994607 describes a process for the isomerization of paraffins of a feedstock comprising hydrocarbons containing from 5 to 8 carbon atoms per molecule without, in particular, the ratios R of the number of moles of hydrogen relative to the number of moles of hydrocarbons exiting from to at least one reaction zone corresponds to the present invention.
  • the present invention makes it possible to substantially improve the octane numbers of the products obtained by isomerization of a feed comprising mainly hydrocarbons containing from 5 to 8 carbon atoms, and possibly a significant amount of hydrocarbons containing from 2 to 4 carbon atoms (at least 0.1% by weight).
  • said feedstock is itself a naphtha (C5-C10 + cut), said fractionation then resulting in a fraction A (C5-C6) optionally also comprising C2-C4 hydrocarbons, a B fraction (C7-C8) and a heavy fraction C containing predominantly the heavier hydrocarbons of the initial naphtha fraction, ie containing at least 8 carbon atoms.
  • said reaction zones contain chemically different isomerization catalysts.
  • the isomerizing activity of the catalyst treating fraction A is greater than the isomerizing activity of the catalyst treating fraction B.
  • the isomerization catalysts of the process according to the invention are typically included in the group consisting of: the catalysts most often supported by a mineral support, typically an oxide and containing at least one halogen and at least one group VIII metal, the zeolitic catalysts, containing at least one Group VIII metal, Friedel and Crafts catalysts, acid or super acid catalysts of the type HPA (heteropolyanions) on zirconia, WOx (tungsten oxides) on zirconia, sulphated zirconias.
  • Said catalysts WOx (tungsten oxides) on zirconia are for example described in "Oxide Catalysts and Catalyst Development, PHILLIPS MJ and TERNAN M.
  • HPA type catalysts are for example described in "Heteropoly and Isopoly Oxometalates, Springer-Verlag, Thor Pope, Berlin Heidelberg New York Tokyo 1983” or in the French patent FR2795340 .
  • Other catalysts having an acidity comparable to that of catalysts mentioned above can also be used, for example catalysts comprising at least one mica and / or trioctaedric vermiculites with pillars.
  • the total pressure in the isomerization zones is typically about 0.1 to 10 MPa relative, the hourly space velocity being about 0.2 to 10 h -1 .
  • At least one of the isomerization reactions can be carried out in the presence of an excess of hydrogen such that the ratio R of the number of moles of hydrogen to the number of moles of hydrocarbons leaving the at least one reaction zone is between 0.06 and 0.3.
  • At least one of the isomerization reactions is carried out in the presence of an excess of hydrogen such that the ratio R of the number of moles of hydrogen to the number of moles of hydrocarbons leaving at least one zone reaction is between 0.3 and 30 and greater than 0.3.
  • the excess hydrogen is recycled to the inlet of the reactor, for example by means of a recycle compressor after separation of the cracking gases.
  • the isomerate resulting from the isomerization of the fractions A and B it is possible to mix the isomerate resulting from the isomerization of the fractions A and B. It is also possible to separate said mixture into two effluents, the first of said effluents comprising most of the isopentane and paraffins having at least two branches, the second of said effluents comprising most of the normal paraffins and paraffins containing at least six carbon atoms and a single branch, said second effluent being recycled and mixed with the feed or with the fraction B.
  • isomerization B is separated from the isomerization of fraction B into two effluents, the first of said effluents comprising most of the isopentane and paraffins having at least two branches, the second of said effluents comprising most of the normal paraffins and paraffins containing at least six carbon atoms and a single branch.
  • Said second effluent is optionally recycled, ie for example mixed with the feedstock or with fraction B.
  • the first effluent will advantageously be mixed with the isomerization resulting from the isomerization of the fraction A.
  • the isopentane fraction and paraffins having at least two branches and / or the fraction of normal paraffins and paraffins containing at least six carbon atoms and a single branch contained in each of the effluents in each of the embodiments of the invention. will obviously depend on the nature of the separation means used.
  • Said separation of said one or more isomerate in two effluents will be carried out according to any known technique or process of the prior art, preferably by gas phase adsorption, on molecular sieves by PSA methods, ie known to those skilled in the art. under the Anglo-Saxon term “pressure swing adsorption” or counter-current simulated.
  • Said separation will advantageously employ at least one zeolitic adsorbent whose structural type is included in the group constituted, according to the reference " Atlas of Zeolite Structure Types, M.
  • the isomerization A resulting from the isomerization of the fraction A into two effluents, the first of the said effluents comprising most of the isopentane and paraffins having at least one branch, the second said effluents comprising most of the normal paraffins, said second effluent being recycled and mixed with the feed or with the fraction A.
  • said first effluent resulting from isomerate A and said first effluent from isomerate B will be advantageously mixed.
  • Said separation of said one or more isomers resulting from the isomerization of the fraction A into two effluents will be carried out according to any known technique, in particular by a distillation column of the deisohexanizer type, by gas phase adsorption on a molecular sieve, for example according to the processes described. in patents US 5,233,120 or US 5,602,291 . Said separation will advantageously employ an adsorbent as described in the patent US 2,882,243 .
  • the operating conditions are as follows:
  • the isomerization reactor is fed with a feed comprising hydrocarbons containing from 5 to 7 carbon atoms (C5-C7) with a flow rate of 87 g / h, said feed containing 800 ppm of perchlorethylene.
  • the mass of catalyst present in the reactor is 86 g, the PPH of 1.01 h -1 .
  • the hydrogen flow rate is 4.5 l / h.
  • the total pressure is 3 MPa relative.
  • the isomerization is carried out at a temperature of 115 ° C. and the ratio R of the number of moles of hydrogen to the number of moles of hydrocarbons at the outlet of the reactor is equal to 0.11. The results obtained are shown in Table 1.
  • Example 1 The same IS 612 A catalyst is used as in Example 1 in two different isomerization reactors: reactor A for a synthetic feed containing predominantly hydrocarbons containing 5 or 6 carbon atoms (C5-C6 feedstock) and reactor B for a reactor. synthetic filler mainly containing hydrocarbons containing 7 carbon atoms C7). By mixing the charges A and B, an initial charge C5-C7 identical to that of Example 1 is obtained.
  • the isomerization reactor A is fed with the feed C5-C6 with a flow rate of 20.21 g / h (gram per hour), said feed containing 800 ppm by weight of perchlorethylene (C 2 Cl 4 ).
  • the mass of catalyst present in reactor A is 20.01 g, the PPH (hourly space velocity) of 1.01 h -1 .
  • the hydrogen flow rate is 1.41 / hr (liter per hour).
  • the total pressure is 3 MPa relative.
  • the isomerization reactor A operates at 140 ° C. This temperature makes it possible to optimize the conversion to C5 and C6 by approaching the thermodynamic equilibrium of the reaction.
  • the ratio R A of the number of moles of hydrogen over the number of moles of hydrocarbon at the outlet of reactor A is equal to 0.19.
  • Isomerization reactor B is fed with charge C7 with a flow rate of 66.79 g / h, said feed containing 800 ppm of perchlorethylene.
  • the mass of catalyst present in reactor B is 66.13 g and the PPH is 1.01 h -1 .
  • the hydrogen flow rate is 3.2 l / h.
  • the total pressure is 3 MPa relative.
  • the temperature of the isomerization reaction in reactor B is set at 115 ° C.
  • the ratio R B of the number of moles of hydrogen relative to the number of moles of hydrocarbon at the outlet of reactor B is equal to 0.19.
  • the compositions of the isomerate A and B respectively from reactors A and B and that of the mixture of these two isomerate are shown in Table 3 below.
  • n-paraffins present in the feed For each of the n-paraffins present in the feed is calculated a conversion rate from the composition of the mixture of the two isomerate.
  • Example 2 two different reactors, but catalysts of a different chemical nature, are used as in Example 2: an acidic catalyst (IS 612 A) having a high activity for reactor A and a zeolitic catalyst type Pt / H-beta minus acid but more selective for the isomerization of nC7.
  • Said zeolite is marketed by the company Zeolyst and corresponds to zeolite beta in its protonic form.
  • the isomerization reactor A is fed with the feed C5-C6 at the rate of 20.21 g / h, said feed containing 800 ppm by weight of perchlorethylene (C 2 Cl 4 ).
  • the mass of catalyst present in reactor A is 20.01 g, the PPH is 1.01 h 1 .
  • the hydrogen flow rate is 1.4 l / h.
  • the total pressure is 3 MPa relative.
  • the isomerization reactor A operates at 140 ° C.
  • the ratio R A of the number of moles of hydrogen relative to the number of moles of hydrocarbon at the outlet of reactor A is equal to 0.19.
  • the isomerization reactor B is fed with charge C7 at the rate of 66.79 g / h.
  • the mass of catalyst present in reactor B is 22.26 g, the PPH is 3 h -1 .
  • the hydrogen flow rate is 33.45 l / h.
  • the total pressure is 3 MPa relative.
  • the isomerization reactor B operates at 240 ° C so as to optimize the yield of iso-paraffins.
  • This embodiment of the invention also appears more favorable than the example according to the prior art. Indeed, for a comparable nC7 hydrocarbon conversion, the conversion nC5 and nC6 hydrocarbons are significantly increased as well as the C5 + yield.
  • the present process thus makes it possible to improve the octane numbers of the isomerate compounds, on the one hand by increasing the conversion rates of hydrocarbons containing 5 to 6 carbon atoms, while minimizing the cracking rate of hydrocarbons containing 7 carbon atoms. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Procédé d'isomérisation d'une charge comprenant des hydrocarbures contenant de 5 a 8 atomes de carbone par molécule, dans lequel ladite charge est séparée en au moins deux fractions, une fraction A comprenant majoritairement des hydrocarbures contenant 5 ou 6 atomes de carbone, et une fraction B comprenant majoritairement des hydrocarbures contenant 7 ou 8 atomes de carbone, et en ce que lesdites fractions A et B sont ensuite séparément traitées, dans des conditions spécifiques, dans des zones réactionnelles d'isomérisation distinctes.

Description

  • La présente invention concerne un procédé d'isomérisation en présence d'hydrogène (également parfois appelé procédé d'hydro-isomérisation), d'une charge comprenant en majeure partie des hydrocarbures contenant de 5 à 8 atomes de carbone par molécule. Dans la suite de la description, on utilisera l'abréviation « coupe C5-C8 » pour désigner une charge comprenant en majeure partie des paraffines normales contenant de 5 à 8 atomes de carbone par molécule.
  • La suppression des alkyles de plomb dans les essences automobiles, notamment à des fins de protection de l'environnement, a généré un développement des procédés de production de paraffines ramifiées qui ont un meilleur indice d'octane que les composés linéaires, et en particulier du procédé d'isomérisation des paraffines normales en paraffines ramifiées. Ce procédé revêt actuellement une importance croissante dans l'industrie pétrolière.
  • Les schémas actuels de valorisation du naphta (coupe C5-C10) issue de la distillation atmosphérique comprennent le plus souvent un fractionnement produisant :
    • un naphta léger (coupe C5-C6) qui est envoyé à l'isomérisation,
    • un naphta lourd (coupe C7-C10) qui est envoyé au reformage.
  • Le produit de l'isomérisation (ou isomérat) est exempt d'aromatique contrairement au reformat qui en contient en général une quantité non négligeable (80 % molaire et plus). Isomérat et reformat sont habituellement envoyés au pool essence dans lequel peuvent intervenir également d'autres bases ou additifs: essence issu de craquage catalytique en lit fluidisé (FCC), produits d'alkylation, méthyl-tertiobutyl-ether (MTBE), etc.
  • Si les aromatiques présentent habituellement de hauts indices d'octane propices à leur utilisation dans les moteurs à allumage commandé, des spécifications de plus en plus sévères conduisent à réduire la teneur totale en aromatiques dans les essences. Par exemple, une spécification européenne prévoit dès 2005 de réduire à un maximum de 35 % en volume la teneur totale en aromatiques dans les supercarburants alors qu'actuellement ladite teneur est de l'ordre de 42 % volume.
  • Ainsi, il est impératif de développer de nouveaux procédés permettant de synthétiser de nouvelles bases exemptes d'aromatiques mais présentant de forts indices d'octane. La considération des indices d'octane des différents isomères C7 montre par exemple que les isomères du normal-heptane (n-C7) présentant plusieurs ramifications possèdent un indice d'octane suffisamment élevé pour pouvoir être envoyés directement dans le pool essence. Par contre, les isomères ne présentant qu'une seule ramification présentent des indices d'octane insuffisants pour être mélangés au pool essence.
  • D'autres part, l'isomérisation des paraffines contenant 5 et 6 atomes de carbone par molécule conduit également à la production de bases essences à hauts indices d'octane qui peuvent être également directement incorporés aux fractions essence. L'isomérisation des paraffines C5-C6 a fait l'objet de nombreux travaux, trois types de catalyseurs différents sont traditionnellement utilisés pour réaliser cette réaction d'isomérisation:
    • les catalyseurs de type Friedel et Crafts, tels que les catalyseurs contenant du chlorure d'aluminium, qui sont utilisés à basses températures (environ 20 à 130°C),
    • les catalyseurs à base de métaux du groupe VIII de la classification périodique des éléments (Handbook of Chemistry and Physics, 45ème édition, 1964-1965) déposés sur alumine et contenant généralement un halogène, qui sont utilisés à des températures moyennes (environ 110 à 160°C). Les brevets US 2,906,798 , US 2,993,398 , US 3,791,960 , US 4,113,789 , US 4,149,993 , US 4,804,803 décrivent, par exemple, ce type de catalyseurs,
    • les catalyseurs zéolithiques comprenant un métal du groupe VIII déposé sur une zéolithe, qui sont utilisés à des températures élevées (de 250°C à 350° C), ces catalyseurs conduisent à l'obtention d'un mélange d'hydrocarbures ayant un indice d'octane amélioré mais moins bon que celui obtenu par les procédés utilisant les catalyseurs cités ci-dessus, cependant ils présentent l'avantage d'être plus faciles à mettre en oeuvre et plus résistants aux poisons. Leur faible acidité ne permet pas de les employer pour l'isomérisation du n-butane. Le brevet US 4,727,217 décrit par exemple ce type de catalyseurs.
  • Les procédés actuels d'isomérisation des paraffines contenant 5 et 6 atomes de carbone utilisant des catalyseurs de type alumine chlorée et comprenant du platine sont des catalyseurs à haute activité. Ces procédés sont utilisés sans recyclage ou avec un recyclage partiel après fractionnement des paraffines normales non converties, par exemple sur des systèmes de tamis moléculaires. Ces procédés conduisent à l'obtention d'une base pour carburants ne contenant pas d'aromatiques et dont l'indice d'octane recherche (en anglais Research Octane Number : R.O.N.) est généralement compris entre 82 et 88, suivant que le procédé d'isomérisation des paraffines normales utilisé comprend ou non un recyclage.
  • De nombreux brevets ont pour objet des catalyseurs mono-métalliques à base de platine déposé sur une alumine halogénée, et leur utilisation dans des procédés d'isomérisation des paraffines normales. On peut citer le brevet US 3,963,643 , qui impose un traitement par un composé de type Friedel et Crafts suivi par un traitement avec un composé chloré comportant au moins deux atomes de chlore, ce traitement s'appliquant plus particulièrement aux hydrocarbures à chaîne linéaire contenant de 4 à 6 atomes de carbone. Le brevet US 5,166,121 décrit un catalyseur comprenant de l'alumine gamma mise en forme sous forme de billes et comportant entre 0,1 et 3,5 % en masse d'halogène sur le support.
  • Un inconvénient majeur de ces procédés, selon l'état actuel des connaissances mises à la disposition du public, est qu'ils ne permettent pas de traiter convenablement des charges présentant des teneurs en paraffines normales contenant au moins 7 atomes de carbone par molécule supérieures à environ 2 % en poids. Les conditions opératoires connues pour favoriser l'isomérisation des coupes contenant des paraffines à 5 et 6 atomes de carbone par molécule (c'est à dire plus particulièrement la température réactionnelle et la nature du catalyseur) conduisent à des taux de craquage des paraffines contenant au moins 7 atomes de carbone par molécule trop importants.
  • La demande de brevet EP-A1-922747 propose, pour limiter lors de l'isomérisation d'une coupe C5-C8 le taux de craquage des paraffines contenant au moins 7 atomes de carbone par molécule, l'utilisation d'un catalyseur acide associé à des conditions opératoires relativement douces. Ce catalyseur contient au moins un halogène et au moins un métal du groupe VIII, la réaction étant effectuée à une température comprise entre 30 et 150°C.
  • La demande de brevet EP-A2-0256604 décrit un procédé d'isomérisation des paraffines d'une charge comprenant des hydrocarbures contenant de 5 à 7 atomes de carbone par molécules sans que notamment les rapports R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures sortant d'au moins une zone réactionnelle correspondent à la présente invention.
  • Le brevet US3619408 décrit un procédé d'isomérisation des oléfines, dioléfines et des aromatiques d'une charge comprenant des hydrocarbures contenant de 5 à 8 atomes de carbone par molécule sans que notamment les rapports R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures sortant d'au moins une zone réactionnelle correspondent à la présente invention.
  • Le brevet US5994607 décrit un procédé d'isomérisation des paraffines d'une charge comprenant des hydrocarbures contenant de 5 à 8 atomes de carbone par molécules sans que notamment les rapports R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures sortant d'au moins une zone réactionnelle correspondent à la présente invention.
  • Dans sa forme la plus générale, la présente invention permet d'améliorer sensiblement les indices d'octane des produits obtenus par isomérisation d'une charge comprenant majoritairement des hydrocarbures contenant de 5 à 8 atomes de carbone, et éventuellement une quantité significative d'hydrocarbures contenant de 2 à 4 atomes de carbone (au moins 0,1 % poids).
  • Plus précisément, la présente invention concerne un procédé d'isomérisation d'une charge comprenant des hydrocarbures contenant de 5 à 8 atomes de carbone par molécule, dans lequel :
    • Ladite charge est séparée en au moins deux fractions, une fraction A comprenant au moins 80 % d'hydrocarbures contenant 5 ou 6 atomes de carbone, et une fraction B comprenant au moins 80 % d'hydrocarbures contenant 7 ou 8 atomes de carbone et lesdites fractions A et B sont ensuite séparément traitées dans des zones réactionnelles d'isomérisation distinctes,
    • dans lequel lesdites zones réactionnelles contiennent des catalyseurs d'isomérisation chimiquement différents, l'activité isomérisante du catalyseur traitant la fraction A étant supérieure à l'activité isomérisante du catalyseur traitant la fraction B,
    • dans lequel soit l'isomérat B issu de l'isomérisation de la fraction B, soit le mélange des isomérats issus de l'isomérisation des fractions A et B est séparé en deux effluents, le premier desdits effluents comprenant la majeure partie de l'isopentane et des paraffines présentant au moins deux ramifications, le deuxième desdits effluents comprenant la majeure partie des normales paraffines et des paraffines contenant au moins six atomes de carbone et une seule ramification,
    • dans lequel ledit deuxième effluent est recyclé et mélangé avec la charge ou avec la fraction B et
    • dans lequel au moins l'une des réactions d'isomérisation est effectuée en présence d'un excès d'hydrogène tel que le rapport R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures sortant d'au moins une zone réactionnelle est compris entre 0,06 et 0,3 et ,
    • au moins l'une des réactions d'isomérisation est effectuée en présence d'un excès d'hydrogène tel que ledit rapport R est compris entre 0,3 et 30 et supérieur à 0,3.
  • En général, ladite charge est elle-même un naphta (coupe C5-C10+), ledit fractionnement aboutissant alors à une fraction A (C5-C6) comprenant éventuellement également des hydrocarbures C2-C4, une fraction B (C7-C8) et une fraction lourde C contenant majoritairement les hydrocarbures les plus lourds de la coupe de naphta initiale, c'est à dire contenant au moins 8 atomes de carbone. Selon les spécifications requises (quant au nombre d'octane, par exemple), il est possible selon l'invention d'effectuer un fractionnement pour lequel entre 0 et 100% molaire, de préférence entre 0,1 et 50% molaire et de manière très préférée entre 0,1 et 10% molaire des C8 présents dans la coupe de naphta initiale sont finalement présents dans la fraction B.
  • Il a été trouvé par le demandeur que la séparation de ladite charge en deux fractions et le traitement de chaque fraction dans des conditions opératoires spécifiques permettaient d'une part l'augmentation finale du taux de conversion des paraffines contenant cinq ou six atomes de carbone et d'autre part la diminution du taux de craquage des hydrocarbures à 7 et 8 atomes de carbone. Par suite, le présent procédé permet d'enregistrer des gains substantiels dans les indices d'octane des bases obtenues après isomérisation.
  • Selon l'invention, lesdites zones réactionnelles contiennent des catalyseurs d'isomérisation chimiquement différents.
  • L'activité isomérisante du catalyseur traitant la fraction A est supérieure à l'activité isomérisante du catalyseur traitant la fraction B.
  • Les catalyseurs d'isomérisation du procédé selon l'invention sont typiquement compris dans le groupe constitué par : les catalyseurs supportés le plus souvent par un support minéral, typiquement un oxyde et contenant au moins un halogène et au moins un métal du groupe VIII, les catalyseurs zéolithiques, contenant au moins un métal du groupe VIII, les catalyseurs de Friedel et Crafts, les catalyseurs acides ou superacides de type HPA (hétéropolyanions) sur zircone, WOx (oxydes de tungstène) sur zircone, les zircones sulfatées. Lesdits catalyseurs WOx (oxydes de tungstène) sur zircone sont par exemple décrits dans « Oxide Catalysts and Catalyst Development, PHILLIPS M.J. et TERNAN M. eds » ou dans le brevet US 5,422,327 . Lesdits catalyseurs de type HPA (hétéropolyanions) sont par exemple décrits dans « Heteropoly and Isopoly Oxometalates, Springer-Verlag, M. Thor Pope, Berlin Heidelberg New York Tokyo 1983 »ou dans le brevet français FR2795340 . D'autres catalyseurs présentant une acidité comparable à celle de catalyseurs mentionnés ci-avant peuvent également être utilisés, par exemple des catalyseurs comprenant au moins un mica et/ou vermiculites trioctaédriques à piliers.
  • La pression totale dans les zones d'isomérisation est typiquement d'environ 0,1 à 10 MPa relatifs, la vitesse volumique horaire étant d'environ 0,2 à 10 h-1.
  • Ainsi selon l'invention au moins l'une des réactions d'isomérisation peut être effectuée en présence d'un excès d'hydrogène tel que le rapport R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures sortant d'au moins une zone réactionnelle est compris entre 0,06 et 0,3. Dans ce cas, il n'est pas nécessaire de recycler l'hydrogène non consommé vers l'entrée du réacteur. On opère alors à « hydrogène perdu ».
  • Et, au moins l'une des réactions d'isomérisation est effectuée en présence d'un excès d'hydrogène tel que le rapport R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures sortant d'au moins une zone réactionnelle est compris entre 0,3 et 30 et supérieur à 0,3. Dans ce cas, l'excès d'hydrogène est recyclé vers l'entrée du réacteur par exemple au moyen d'un compresseur de recyclage après séparation des gaz de craquage.
  • Selon l'invention il est possible de mélanger les isomérats issus de l'isomérisation des fractions A et B. On peut également séparer ledit mélange en deux effluents, le premier desdits effluents comprenant la majeure partie de l'isopentane et des paraffines présentant au moins deux ramifications, le deuxième desdits effluents comprenant la majeure partie des normales paraffines et des paraffines contenant au moins six atomes de carbone et une seule ramification, ledit deuxième effluent étant recyclé et mélangé avec la charge ou avec la fraction B.
  • Selon un autre mode de réalisation, on sépare l'isomérat B issu de l'isomérisation de la fraction B en deux effluents, le premier desdits effluents comprenant la majeure partie de l'isopentane et des paraffines présentant au moins deux ramifications, le deuxième desdits effluents comprenant la majeure partie des normales paraffines et des paraffines contenant au moins six atomes de carbone et une seule ramification. Ledit deuxième effluent est éventuellement recyclé, c'est à dire par exemple mélangé avec la charge ou avec la fraction B. On mélangera avantageusement le premier effluent avec l'isomérat issu de l'isomérisation de la fraction A.
  • La fraction d'isopentane et des paraffines présentant au moins deux ramifications et/ou la fraction des normales paraffines et des paraffines contenant au moins six atomes de carbone et une seule ramification contenue dans chacun des effluents dans chacun des modes de réalisation de l'invention sera bien évidemment dépendante de la nature du moyen de séparation employé.
  • Ladite séparation dudit ou desdits isomérats en deux effluents sera effectuée selon toute technique ou procédé connu de l'art antérieur, préférentiellement par adsorption en phase gazeuse, sur tamis moléculaire par des procédés PSA c'est à dire connu par l'homme du métier sous le terme anglo-saxon «pressure swing adsorption » ou par contre-courant simulé. Ladite séparation mettra avantageusement en oeuvre au moins un adsorbant zéolithique dont le type structurel est compris dans le groupe constitué, selon la référence "Atlas of Zeolite Structure Types, M. Meier et D.H. Olson, 4ème édition (1996)", par : les MFI (silicate, ZMS-5), les FAU (zéolithesX, Y, faujasite), les MTT (ZSM-23, EU-13), EUO (Eu1, ZSM-50, TPZ-3), NES (Nu-87, ssz-37), BEA (beta), MWW (MCM-22, ERB-1, ITQ-1), MEL (ZSM-11), FER (ferrierite), MTW (ZSM-12), AFI (SAPO-5), ATO (SAPO-31), AEL (SAPO-11), ERI (erriobite), MOR (mordenite). Lesdites zéolithes pourront être échangés avce un seul ou avec un mélange de cations des colonnes IA et IIA de la classification périodique.
  • Il est également possible selon l'invention de séparer l'isomérat A issu de l'isomérisation de la fraction A en deux effluents, le premier desdits effluents comprenant la majeure partie de l'isopentane et des paraffines présentant au moins une ramification, le deuxième desdits effluents comprenant la majeure partie des normales paraffines, ledit deuxième effluent étant recyclé et mélangé avec la charge ou avec la fraction A.
  • On mélangera finalement avantageusement ledit premier effluent issu de l'isomérat A et ledit premier effluent issu de l'isomérat B.
  • Ladite séparation dudit ou desdits isomérats issus de l'isomérisation de la fraction A en deux effluents sera effectuée selon toute technique connue, en particulier par une colonne à distillation du type déisohexaniseur, par adsorption en phase gazeuse sur tamis moléculaire par exemple selon les procédés décrits dans les brevets US 5,233,120 ou US 5,602,291 . Ladite séparation mettra avantageusement en oeuvre un adsorbant tel que décrit dans le brevet US 2,882,243 .
  • L'invention sera mieux comprise à la lecture des exemples suivants qui illustrent l'invention sans en limiter la portée :
  • Exemple 1 (selon l'art antérieur)
  • Dans cet exemple, selon la méthode utilisée dans l'exemple 1 de la demande de brevet EP-A1-922747 on utilise un catalyseur à base d'alumine chlorée commercialisé par la société Procatalyse sous la référence IS 612.
  • Les conditions opératoires sont les suivantes :
    Le réacteur d'isomérisation est alimenté par une charge comprenant des hydrocarbures contenant de 5 à 7 atomes de carbone (C5-C7) avec un débit de 87 g/h, ladite charge contenant 800 ppm de perchloroéthylène. La masse de catalyseur présente dans le réacteur est de 86 g, la PPH de 1,01 h-1. Le débit d'hydrogène est de 4,5 1/h. La pression totale est de 3 MPa relatifs. L'isomérisation est effectuée à une température de 115°C et le rapport R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures en sortie du réacteur est égal à 0,11. Les résultats obtenus sont présentés dans le tableau 1. Tableau 1
    composés charge C5-C7
    (% en poids)
    Après isomérisation
    C2-C4 0,74 7,15
    Isopentane (iC5) 4,19 7,62
    Normalpentane (nC5) 10,53 7,50
    cyclopentane 0,28 0,28
    isohexane (iC6) 4,01 4,73
    normalhexane (nC6) 1,06 0,88
    cyclohexane 1,40 2,60
    méthylcyclopentane 1,01 1,62
    benzène 0,01 0
    normalheptane (nC7) 65,07 17,35
    Isoheptane (iC7) 11,70 50,27
    Taux de conversion
    nC5 29%
    nC6 17%
    nC7 73,6%
    C5+ 93,5%
  • Exemple 2 (selon l'art antérieur)
  • On utilise le même catalyseur IS 612 A que dans l'exemple 1 dans deux réacteurs d'isomérisation distincts : réacteur A pour une charge synthétique contenant majoritairement des hydrocarbures contenant 5 ou 6 atomes de carbone (charge C5-C6) et réacteur B pour une charge synthétique contenant majoritairement des hydrocarbures contenant 7 atomes de carbone (charge C7). Par le mélange des charges A et B, on obtient une charge initiale C5-C7 identique à celle de l'exemple 1. Les pourcentages en poids des différents hydrocarbures dans la charge C5-C6 (réacteur A), la charge C7 (réacteur B) et la charge totale sont donnés dans le tableau 2 : Tableau 2
    composés charge synthétique C5-C6 charge synthétique C7 charge totale
    (% en poids) (% en poids) (% en poids)
    C2-C4 3,18 0 0,74
    Isopentane (iC5) 18,04 0 4,19
    Normalpentane (nC5) 45,33 0 10,53
    cyclopentane 1,20 0 0,28
    isohexane (iC6) 17,26 0 4,01
    normalhexane (nC6) 4,56 0 1,06
    cyclohexane 6,03 0 1,40
    méthylcyclopentane 4,36 0 1,01
    benzène 0,04 0 0,01
    normalheptane (nC7) 0 84,76 65,07
    Isoheptane (iC7) 0 15,24 11,70
  • Le réacteur A d'isomérisation est alimenté par la charge C5-C6 avec un débit de 20,21 g /h (gramme par heure), ladite charge contenant 800 ppm en poids de perchloroéthylène (C2Cl4). La masse de catalyseur présente dans le réacteur A est de 20,01 g, la PPH (vitesse volumique horaire) de 1,01 h-1. Le débit d'hydrogène est de 1,41/h (litre par heure). La pression totale est de 3 MPa relatifs. Le réacteur d'isomérisation A opère à 140°C. Cette température permet d'optimiser la conversion en C5 et C6 en se rapprochant de l'équilibre thermodynamique de la réaction. Le rapport RA du nombre de moles d'hydrogène sur le nombre de mole d'hydrocarbure en sortie de réacteur A est égal à 0,19.
  • Le réacteur d'isomérisation B est alimenté par la charge C7 avec un débit de 66,79 g/h, ladite charge contenant 800 ppm de perchloroéthylène. La masse de catalyseur présente dans le réacteur B est de 66,13 g, la PPH de 1,01 h-1. Le débit d'hydrogène est de 3,2 l/h. La pression totale est de 3 MPa relatifs. La température de la réaction d'isomérisation dans le réacteur B est fixée à 115°C. Le rapport RB du nombre de moles d'hydrogène sur le nombre de mole d'hydrocarbure en sortie de réacteur B est égal à 0,19. Les compositions des isomérats A et B issus respectivement des réacteurs A et B et celle du mélange de ces deux isomérats sont reportées dans le tableau 3 ci-dessous. Tableau 3
    Composés isomérat A isomérat B (% en poids) isomérat A + B (% en poids)
    (% en poids) (% en poids) (% en poids)
    C2-C4 4,32 8,15 7,26
    iC5 43,14 0 10,02
    nC5 18,22 0 4,23
    cyclopentane 1,20 0 0,28
    iC6 19,54 0 4,54
    nC6 2,74 0 0,64
    cyclohexane 5,94 0 1,38
    méthylcyclopentane 4,90 0 1,14
    benzène 0 0 0
    nC7 0 22,67 17,40
    iC7 0 69,18 53,11
    T. de réaction 140°C 115°C
  • Pour chacune des n-paraffines présentes dans la charge est calculé un taux de conversion à partir de la composition du mélange des deux isomérats.
  • Les taux de conversion totaux sont donnés dans le tableau 4: Tableau 4
    Taux de conversion
    nC5 59,8%
    nC6 39,6%
    nC7 73,3%
    C5+ 93,4%
  • Les résultats reportés dans le tableau 4 indique que, dans des conditions opératoires optimisés par rapport à l'exemple 1 et pour une charge initiale identique, le schéma d'isomérisation permet d'améliorer notablement la conversion en nC5 et nC6 tout en conservant un taux de conversion du normal-heptane et un rendement en hydrocarbures comportant au moins cinq atomes de carbone (C5+) sensiblement identiques. L'indice d'octane des produits d'isomérisation est donc amélioré.
  • Exemple 3 (selon l'invention)
  • Dans cet exemple, on utilise comme dans l'exemple 2 deux réacteurs différents mais des catalyseurs de nature chimique différente : un catalyseur acide (IS 612 A) présentant une forte activité pour le réacteur A et un catalyseur zéolithique type Pt/H-bêta moins acide mais plus sélectif pour l'isomérisation du nC7. Ladite zéolithe est commercialisée par la société Zeolyst et correspond à la zéolithe bêta sous sa forme protonique.
  • Les charges initiales sont similaires à celles données dans l'exemple 2 (Tableau 2).
  • Le réacteur A d'isomérisation est alimenté par la charge C5-C6 au débit de 20,21 g/h, ladite charge contenant 800 ppm en poids de perchloroéthylène (C2Cl4). La masse de catalyseur présente dans le réacteur A est de 20,01 g, la PPH de 1,01 h1. Le débit d'hydrogène est de 1,4 l/h, La pression totale est de 3 MPa relatifs.
  • Le réacteur d'isomérisation A opère à 140°C. Le rapport RA du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbure en sortie de réacteur A est égal à 0,19.
  • Le réacteur B d'isomérisation est alimenté par la charge C7 au débit de 66,79 g/h. La masse de catalyseur présente dans le réacteur B est de 22,26 g, la PPH est de 3 h-1. Le débit d'hydrogène est de 33,45 l/h. La pression totale est de 3 MPa relatifs. Le réacteur d'isomérisation B opère à 240°C de façon à optimiser le rendement en iso-paraffines.
  • Le rapport RB du nombre de mole d'hydrogène sur le nombre de moles d'hydrocarbure en sortie de réacteur B est égal 1,86. Les résultats obtenus sont reportés dans le tableau 5. Tableau 5
    Composés isomérat A isomérat B isomérat A + B
    (% en poids) (% en poids) (% en poids)
    C2-C4 4,32 5,39 5,14
    iC5 43,14 0 10,02
    nC5 18,22 0 4,23
    cyclopentane 1,20 0 0,28
    iC6 19,54 0 4,54
    nC6 2,74 0 0,64
    cyclohexane 5,94 0 1,38
    méthylcyclopentane 4,90 0 1,14
    benzène 0 0 0
    nC7 0 22,07 16,94
    iC7 0 72,54 55,69
    Température de réaction 140°C 240°C
    Catalyseur IS612A Pt/H-bêta
  • Les taux de conversion totaux sont donnés dans le tableau 6: Tableau 6
    Isomérisation A + B
    conversion nC5 59,8%
    conversion nC6 39,6%
    conversion nC7 74,0%
    rendement C5+ 95,6%
  • Cet exemple de réalisation de l'invention apparaît également plus favorable que l'exemple selon l'art antérieur. En effet, pour une conversion des hydrocarbures nC7 comparable, la conversion des hydrocarbures nC5 et nC6 est notablement augmentée ainsi que le rendement en C5+. Le présent procédé permet donc d'améliorer les indices d'octane des isomérats, d'une part en augmentant les taux de conversion des hydrocarbures contenant 5 à 6 atomes de carbone, tout en minimisant le taux de craquage des hydrocarbures contenant 7 atomes de carbone.

Claims (6)

  1. Procédé d'isomérisation d'une charge comprenant des hydrocarbures contenant de 5 à 8 atomes de carbone par molécule, dans lequel :
    - ladite charge est séparée en au moins deux fractions, une fraction A comprenant au moins 80 % d'hydrocarbures contenant 5 ou 6 atomes de carbone, et une fraction B comprenant au moins 80 % d'hydrocarbures contenant 7 ou 8 atomes de carbone et lesdites fractions A et B sont ensuite séparément traitées dans des zones réactionnelles d'isomérisation distinctes,
    - dans lequel lesdites zones réactionnelles contiennent des catalyseurs d'isomérisation chimiquement différents, l'activité isomérisante du catalyseur traitant la fraction A étant supérieure à l'activité isomérisante du catalyseur traitant la fraction B,
    - dans lequel soit l'isomérat B issu de l'isomérisation de la fraction B, soit le mélange des isomérats issus de l'isomérisation des fractions A et B est séparé en deux effluents, le premier desdits effluents comprenant la majeure partie de l'isopentane et des paraffines présentant au moins deux ramifications, le deuxième desdits effluents comprenant la majeure partie des normales paraffines et des paraffines contenant au moins six atomes de carbone et une seule ramification,
    - dans lequel ledit deuxième effluent est recyclé et mélangé avec la charge ou avec la fraction B et
    - dans lequel au moins l'une des réactions d'isomérisation est effectuée en présence d'un excès d'hydrogène tel que le rapport R du nombre de moles d'hydrogène sur le nombre de moles d'hydrocarbures sortant d'au moins une zone réactionnelle est compris entre 0,06 et 0,3 et,
    - au moins l'une des réactions d'isomérisation est effectuée en présence d'un excès d'hydrogène tel que ledit rapport R est compris entre 0,3 et 30 et supérieur à 0,3.
  2. Procédé selon la revendication 1 dans lequel l'isomérat B issu de l'isomérisation de la fraction B est séparé en deux effluents et on mélange ledit premier effluent avec l'isomérat issu de l'isomérisation de la fraction A.
  3. Procédé selon la revendication 2 dans lequel on sépare en outre l'isomérat A issu de l'isomérisation de la fraction A en deux effluents, le premier desdits effluents comprenant la majeure partie de l'isopentane et des paraffines présentant au moins une ramification, le deuxième desdits effluents comprenant la majeure partie des normales paraffines, ledit deuxième effluent étant recyclé et mélangé avec la charge ou avec la fraction A.
  4. Procédé selon la revendication 3 dans lequel on mélange ledit premier effluent issu de l'isomérat B et ledit premier effluent issu de l'isomérat A.
  5. Procédé selon l'une des revendications 1 à 7 dans lequel le ou lesdits catalyseurs d'isomérisation sont compris dans le groupe constitué par: les catalyseurs supportés contenant au moins un halogène et au moins un métal du groupe VIII, les catalyseurs zéolithiques contenant au moins un métal du groupe VIII, les catalyseurs de Friedel et Crafts, les catalyseurs superacides de type HPA sur zircone, WOx sur zircone, les zircones sulfatées.
  6. Procédé selon l'une des revendications 1 à 8 dans lequel la pression totale dans les zones réactionnelles d'isomérisation est d'environ 0,1 à 10 MPa relatifs, la vitesse volumique horaire étant d'environ 0,2 à 10 h-1.
EP02767555A 2001-08-06 2002-07-08 Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele Expired - Fee Related EP1417283B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0110566 2001-08-06
FR0110566A FR2828205B1 (fr) 2001-08-06 2001-08-06 Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele
PCT/FR2002/002385 WO2003014265A1 (fr) 2001-08-06 2002-07-08 Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele

Publications (2)

Publication Number Publication Date
EP1417283A1 EP1417283A1 (fr) 2004-05-12
EP1417283B1 true EP1417283B1 (fr) 2011-04-20

Family

ID=8866361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02767555A Expired - Fee Related EP1417283B1 (fr) 2001-08-06 2002-07-08 Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele

Country Status (5)

Country Link
US (1) US7429685B2 (fr)
EP (1) EP1417283B1 (fr)
DE (1) DE60239808D1 (fr)
FR (1) FR2828205B1 (fr)
WO (1) WO2003014265A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857371B1 (fr) * 2003-07-11 2007-08-24 Inst Francais Du Petrole Procede ameliore d'isomerisation d'une coupe c7 avec ouverture des cycles naphteniques
JP4861838B2 (ja) * 2007-01-15 2012-01-25 Jx日鉱日石エネルギー株式会社 液体燃料の製造方法
AU2008206002B2 (en) * 2007-01-15 2011-11-17 Nippon Oil Corporation Processes for production of liquid fuel
KR100964227B1 (ko) * 2008-05-06 2010-06-17 삼성모바일디스플레이주식회사 평판 표시 장치용 박막 트랜지스터 어레이 기판, 이를포함하는 유기 발광 표시 장치, 및 이들의 제조 방법
US8808534B2 (en) * 2011-07-27 2014-08-19 Saudi Arabian Oil Company Process development by parallel operation of paraffin isomerization unit with reformer
FR3020374B1 (fr) * 2014-04-29 2017-10-27 Axens Procede de production d'essence comprenant une etape d'isomerisation suivie d'au moins deux etapes de separation.
US20160311732A1 (en) 2015-04-27 2016-10-27 Uop Llc Processes and apparatuses for isomerizing hydrocarbons
US10106476B1 (en) * 2017-03-31 2018-10-23 David Norbert Kockler Energy efficient methods for isomerization of a C5-C7 fraction with dividing wall fractional distillation
FR3068966B1 (fr) * 2017-07-12 2019-06-28 IFP Energies Nouvelles Nouveau schema de production de benzene a partir de reformat sans colonne de toluene
US10118875B1 (en) * 2017-09-13 2018-11-06 David Norbert Kockler Energy efficient methods for isomerization of a C5-C6 fraction with dividing wall fractional distillation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2399765A (en) * 1943-09-18 1946-05-07 Standard Oil Co Isomerization of light naphtha paraffinic hydrocarbons
US2434437A (en) * 1944-03-15 1948-01-13 Shell Dev Process for isomerization of paraffin hydrocarbons with fluid friedel-crafts catalyst and added dicyclic naphthenic hydrocarbons
US2944959A (en) * 1958-02-26 1960-07-12 Gulf Research Development Co Process for upgrading a wide range gasoline
US3619408A (en) * 1969-09-19 1971-11-09 Phillips Petroleum Co Hydroisomerization of motor fuel stocks
GB8619784D0 (en) * 1986-08-14 1986-09-24 Shell Int Research Isomerization of unbranched hydrocarbons
US5994607A (en) * 1996-02-05 1999-11-30 Institut Francais Du Petrole Paraffin isomerization process comprising fractionation having at least two draw-off levels associated with at least two isomerization zones

Also Published As

Publication number Publication date
DE60239808D1 (de) 2011-06-01
US20040254415A1 (en) 2004-12-16
WO2003014265A1 (fr) 2003-02-20
FR2828205B1 (fr) 2004-07-30
US7429685B2 (en) 2008-09-30
EP1417283A1 (fr) 2004-05-12
FR2828205A1 (fr) 2003-02-07

Similar Documents

Publication Publication Date Title
US5284986A (en) Upgrading of normal pentane to cyclopentene
EP1640436B1 (fr) Procédé d'isomérisation d'une coupe C7 avec coproduction d'une coupe cycliques riche en méthylcyclohexane
EP2243814A1 (fr) Amélioration de naphte léger pour améliorer la production d'oléfines
EP0242260B1 (fr) Procédé de réformage catalytique
EP1417283B1 (fr) Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele
WO1997009397A1 (fr) Procede d'hydroisomerisation selective de paraffines longues lineaires et/ou peu ramifiees avec un catalyseur a base de tamis moleculaire
US5294328A (en) Production of reformulated gasoline
Kuchar et al. Paraffin isomerization innovations
EP3126047A1 (fr) Catalyseur de conversion de naphta léger en composés aromatiques
EP1640435B1 (fr) Procédé d'isomérisation d'une coupe C7 avec coproduction d'une coupe aromatique riche en toluène
EP0661095B1 (fr) Catalyseur pour la réduction de la teneur en benzène dans les essences
US5135639A (en) Production of reformulated gasoline
FR2714388A1 (fr) Procédé de réduction de la teneur en benzène dans les essences.
EP0552070B1 (fr) Réduction de la teneur en benzène dans les essences
EP0552069B1 (fr) Réduction de la teneur en benzène dans les essences par un procédé d'isomérisation
FR2976941A1 (fr) Procede ameliore d'isomerisation d'une coupe c8 aromatique
EP0552072B1 (fr) Réduction de la teneur en benzène dans les essences
EP1496099B1 (fr) Procédé amélioré d'isomérisation d'une coupe C7 avec ouverture des cycles naphténiques
FR2744441A1 (fr) Procede d'isomerisation de paraffines
EP0922747B1 (fr) Procédé d'isomérisation des coupes paraffiniques C5-C8 riches en paraffines à plus de sept atomes de carbone
EP4092096A1 (fr) Procédé d'isomérisation d'hydrocarbures c5-c7 dans la gamme des naphtas légers
WO2023117594A1 (fr) Unité de production et de séparation des aromatiques avec valorisation d'un extrait et/ou d'un raffinat provenant d'un procédé d'extraction liquide-liquide
EP1063012A1 (fr) Nouveaux catalyseurs contenant des hétéropolyanions utilisables dans des procédés de conversion de paraffines
EP1068897B1 (fr) Catalyseur et procédé d'isomérisation d'une charge comprenant des normales paraffines C5-C10
FR2686094A1 (fr) Production de base pour carburant exempt de benzene, presentant un indice d'octane eleve.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20041222

17Q First examination report despatched

Effective date: 20041222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60239808

Country of ref document: DE

Date of ref document: 20110601

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60239808

Country of ref document: DE

Effective date: 20110601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60239808

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60239808

Country of ref document: DE

Effective date: 20120123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190729

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190725

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190729

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190930

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60239808

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200708