EP1409917B1 - Pressurized liquid container and method for the production thereof - Google Patents

Pressurized liquid container and method for the production thereof Download PDF

Info

Publication number
EP1409917B1
EP1409917B1 EP00967995A EP00967995A EP1409917B1 EP 1409917 B1 EP1409917 B1 EP 1409917B1 EP 00967995 A EP00967995 A EP 00967995A EP 00967995 A EP00967995 A EP 00967995A EP 1409917 B1 EP1409917 B1 EP 1409917B1
Authority
EP
European Patent Office
Prior art keywords
container structure
casing
truss means
composite material
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00967995A
Other languages
German (de)
French (fr)
Other versions
EP1409917A1 (en
Inventor
Laurent Thibout
Lorenzo Barlesi
Bernard Dewimille
Bruno Flaconneche
Jacques Renard
Philippe Piris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
ROXER
Original Assignee
IFP Energies Nouvelles IFPEN
ROXER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, ROXER filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1409917A1 publication Critical patent/EP1409917A1/en
Application granted granted Critical
Publication of EP1409917B1 publication Critical patent/EP1409917B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/08Integral reinforcements, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/013Reinforcing means in the vessel, e.g. columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0624Single wall with four or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2145Moulding by rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/017Improving mechanical properties or manufacturing by calculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles

Definitions

  • the present invention relates to a container for pressurized fluids.
  • the invention is capable of many applications involving fluids under pressure, it applies in particular to a tank of composite material for receiving "LPG” (liquefied petroleum gas) or other hydrocarbon compositions. It also relates to the manufacturing process of this tank.
  • LPG liquefied petroleum gas
  • the tanks used for liquefied petroleum gases or "LPLC" are subjected to a high pressure, of the order of 3 MPa. They must not only withstand this pressure, but also have a level of permeability that complies with standards, regulations or targets.
  • the prior art such as FR 2 764 671, considered as the closest prior art, and corresponding to the preamble of independent claim 1, describes different types of steel or composite tanks capable of at least partially checking these two requirements.
  • these tanks the most used have spherical or cylindrical shapes well known for their resistance to high pressures, the pressures being evenly distributed on the walls.
  • the cylindrical shape is the one that is used the most.
  • the tank is placed in the trunk of the vehicle, on the roof or even below the chassis of this vehicle.
  • the tank can also take a toric shape and be placed in place of the spare wheel.
  • the absence of the spare wheel has significant disadvantages.
  • the appearance of composites has made it possible to design tanks of various shapes, having the particular advantage of being lighter, while maintaining a good resistance to pressure.
  • the patent application WO 98/57 095 discloses containers for receiving pressurized fluids comprising a plurality of shafts continuously linking the main faces of the tank wall which are arranged facing each other. This tank is provided with a flexible inner envelope.
  • the object of the present invention relates to a structure for receiving a fluid under pressure and its manufacturing process.
  • the shape of the structure can be arbitrary, polymorphic, simple or convex, conciliating both the resistance to pressure and the desired lightness.
  • the structure obtained may have an optimized volume with respect to the available space or the geometry of the housing in which it is inserted.
  • the invention makes it possible to produce a reservoir of complex shape, adapted to that of the housing and resistant to overstressing generated by the complexity of the form.
  • reservoirs intended to contain pressurized fluids such as LPG, hydrocarbons, dimethyl ether, CNG or a gas / liquid mixture.
  • composite material will be used to denote a material comprising a matrix and reinforcing elements.
  • the matrix is generally made of polymeric material (for example thermoplastic, thermosetting, elastomer) or metallic or mineral materials.
  • the reinforcing elements may be in various forms such as fibers and / or ribbons, for example, and be of different types or types for example: mineral and / or organic and / or metallic.
  • reinforcing means is defined as a “physical” element, which can take various forms, such as: a “tie” connecting two or more walls of the structure, or an extra thickness of the wall of the structure and / or a rib or throat or any other physical means contributing to the resistance to pressure. These different means can be used alone or in combination.
  • the polymorphous reservoir structure for a fluid under pressure comprising at least one envelope delimiting at least one enclosure intended to receive a fluid under pressure, said structure being composed of a material of known mechanical characteristics, is characterized in that it comprises one or more means this reinforcement, the choice and / or the distribution of said reinforcement means being determined by taking into account the mechanical characteristics of the material, the stresses exerted by said fluid under pressure, to satisfy at least at a given constraint state.
  • the idea of the present invention is to design and produce from a given shape, a structure intended to receive a fluid under pressure, for example LPG, while maintaining a weight and a degree of sealing compatible with the stresses recused by its end use.
  • a fluid under pressure for example LPG
  • the structure thus complies with the standards in force or the regulations, particularly those of car manufacturers or states.
  • Figure 1 shows a schematic embodiment of such a structure.
  • the reservoir comprises a liner 1 or inner envelope surrounded by an outer shell 2 formed for example of composite material.
  • the liner 1 is made for example according to different types of processes such as rotomoslage, or extrusion blow molding.
  • the liner mainly performs a sealing function, acting as a barrier against the fluid under pressure. It can also help to distribute the forces due to the internal pressure exerted by the fluid on the walls of the structure. Finally, it serves, for example, to support the composite material during the introduction of the outer casing.
  • the liner is formed, for example, of a material capable of performing at least one of the three functions mentioned above. Different types of materials are given as non-limiting examples in the remainder of the description.
  • An orifice or opening 3 in the tank receives a filling-emptying valve 4.
  • the valve is for example equipped with the various devices usually used, such as a device for controlling the fluid level, safety devices, etc.
  • the valve is maintained at the level of the liner and the outer casing, for example, at the wing of an insert 5.
  • FIG. 1 mentions various examples of means which can, without departing from the scope of the invention, be used individually or in combination to produce a reservoir according to the invention.
  • the expression "reinforcing means” designates physical elements whose function is notably to improve the resistance or withstanding the pressure of the reservoir.
  • the distribution and type of reinforcement means equipping the reservoir are determined according to a methodology specified below.
  • a siphon 10 for communication between the different low points of the tank.
  • the low points can indeed be separated by wall shapes facing towards the inside of the tank.
  • One of the objects of the present invention is in particular to choose the reinforcing means and their distribution to obtain, from a given form compatible with the manufacturing process of the composite outer casing and the liner as well as the available space, a tank capable of withstanding the pressure resulting from the fluid.
  • tensile stress
  • T shear stress
  • shear strain
  • deformation at a given point in the structure
  • the steps 1) to 6) are replaced by a step in which the zones of excess thickness are determined by using a module or optimization software that allows, from the results obtained for a reservoir of thickness el, the range of values [emin, emax] and the characteristics of the material to obtain a reservoir having a wall of variable thickness.
  • a module or optimization software that allows, from the results obtained for a reservoir of thickness el, the range of values [emin, emax] and the characteristics of the material to obtain a reservoir having a wall of variable thickness.
  • a reservoir corresponds for example to the structure described in the optimization step 7).
  • Steps 8) to 12) of the method are then carried out.
  • step 1) the hull method and / or the volume method is used to produce the mesh.
  • the methodology applies in particular for tanks formed of a material having variable or non-directional mechanical characteristics, such as stiffness, strength.
  • the material of the liner and in particular its capacity to distribute the stresses or the forces exerted are taken into account. on its structure.
  • the mesh step takes into account the two types of materials, that of the liner and that of the outer envelope.
  • the method described above may also include a step of optimizing the shape of the final tank taking into account the housing in which it will integrate, or more generally the available space of the vehicle.
  • step 1) a step is taken to take into account the available space or the geometry of the housing in which the reservoir is arranged to optimize the shape of the reservoir. It is verified that this form does not generate overconstraints and possibly modifies the shape of the critical zones.
  • the outer casing of the structure is for example formed of a composite material.
  • the composite material consists of a matrix, for example, of epoxy resin or polyester, etc — and a reinforcing element mentioned above.
  • the fibers can be arranged in different ways, for example in the form of an oriented fabric (the majority of the fibers is oriented predominantly), or non-oriented.
  • the fibers may be glass or carbon fibers.
  • the composite may comprise several layers of fibers, the orientation of the layers between them being chosen with respect to the desired pressure resistance.
  • the liner is made of a material capable of filling at least the sealing function.
  • the level of sealing is determined by the regulations in force and / or the specifications of the manufacturers. The material and its thickness are imposed by this level of sealing.
  • thermoplastic polymer chosen, for example, from the following list:
  • Polyolefins polyethylenes, polypropylenes), PE or PP, polyamides (PA11, PA12, PA6, 6-6, etc.), aliphatic polyketone such as carilon (trademark registered by SHELL), polyethylene terephthalate or PET, polybutylene terephthalate or PBT, polyacetals, for example POM (polyoxymethylene), EVOH, fluoropolymers, PVDF, PTFE (polytetrafluoroethylene or Teflon), etc.
  • POM polyoxymethylene
  • EVOH fluoropolymers
  • PVDF polytetrafluoroethylene or Teflon
  • the aforementioned materials can be treated to enhance the barrier effect, for example, but not exclusively, according to the fluorination method of high density polyethylene, known in the field of conventional liquid fuel tanks.
  • the liner may itself be a multi-layer, the layer in contact with the fluid under pressure being the least permeable. It is possible to use a metal film, for example based on aluminum, or a metal deposit deposited on the inner surface of the liner, that is to say the surface in contact with the fluid. A thin film will be used to minimize the weight of the tank.
  • the liner may be formed of an alloy or a mixture of several polymers including elastomers and comprise one or more additives such as antioxidants, plasticizers, flame retardants, or mineral fillers for example.
  • the method of manufacturing the liner is chosen according to the material used, the number of parts to manufacture or to achieve.
  • the rotational molding processes or extrusion blow molding are the most used in this field.
  • the liner material in addition to its ability to act as a sealing barrier, may be chosen to support the placement of the reinforcements constituting the composite material, then the molding and baking of composite.
  • FIGS. 2A and 2B show a first example of reinforcing means formed of a tie rod.
  • the envelope constituted by the liner 1 comprises one or more wells 6.
  • the well 6 is intended to receive the tie rod 7 whose resistant part or reinforcing element 11 may be a braid or unidirectional reinforcements or any other means capable of providing additional pressure resistance.
  • the reinforcement 12 of the composite material constituting the wall of the reservoir comes towards the interior of the well 6 and is preferably covered by reinforcement of the tie rod.
  • Reinforcement of the tie is for example set up in this well and maintained by means of cylinder 13 (full or hollow, reinforced or not) which can participate in the resistance of the tie rod.
  • Parts 14 of substantially conical shape may possibly be placed at the ends of these cylinders 13 in order to keep in place the reinforcement layers coming from the wall and the tie rod.
  • the tie rods can take various forms schematically in Figure 2C. They can be circular, elliptical or be formed of a combination of arcs and straight segments.
  • some or all of the reinforcements of the tie rod may extend beyond the walls, or even form a strapping 15 as illustrated in this figure.
  • the strapping concerns two adjacent tie rods or not, or a tie rod and an edge of the tank. This provision can be applied regardless of the shape of the tie rod.
  • This variant of embodiment makes it possible in particular to increase the local resistance by the effect of excess thickness thus generated and also by the strapping effect.
  • Such a reinforcement may be unidirectional or not, for example it may be formed of a fabric. Said tie connects two faces substantially parallel to each other or between them an angle ⁇ of determined value.
  • FIGS. 4A, 4B, 4C and 4D schematize ribs acting as reinforcement means.
  • the geometry of the ribs is chosen for example according to the manufacturing mode of the reservoir and in particular the liner.
  • the radius of curvature of a rib is chosen so that the powder used in the rotational molding process remains in place during the manufacturing steps.
  • the other parameters are for example chosen as a function of the over-stress exerted at this point in the structure, or else the manufacturing process.
  • the direction of the rib is given, for example, by the direction of the main stresses that one wishes to reduce or by the analysis of the deformations of the envelope.
  • FIGS 4A and 4B show two reinforced ribs.
  • the reinforcing means comprises the rib 16 formed in the liner 1, the reinforcing elements 12 of the composite material and the reinforcing elements 17 of the rib.
  • the reinforcing elements 17 of the rib may be arranged above or below the reinforcing element of the composite material.
  • the strengthening of the rib is, for example, unidirectional or not depending on the intensity and the direction of the main stresses exerted on the walls of the structure (stress level, main tensile stress, ......)
  • the single shape of the rib provides the necessary increase in rigidity.
  • Figure 4C schematizes an internal rib and Figure 4D a rib facing outwards.
  • FIGS. 5A and 5B show two examples of reinforcing means formed of an excess thickness.
  • the overthickness 19 serves in particular to stiffen an area likely to deform too much. This extra thickness may be disposed near an insert, for example the insert 5 serving to hold the valve 4 to the tank wall.
  • the extra thickness is formed, for example, of reinforcing elements 20 which are placed in these two examples above a reinforcing element 12 of the composite.
  • the reinforcing elements used for the ribs and the extra thicknesses are for example identical to those used for the tie rods.
  • FIGS. 6A and 6B schematize means of reinforcements formed of one or more "deep" ribs 21 in the liner 1. This deep rib is similar to a tie whose sectional shape would be fairly flat but could be directly linked at the outer walls of the tank.
  • FIG. 7 represents a variant where the reinforcement means consists of the holding device 22, corresponding to the insert 5 of FIG. 1, of the valve.
  • the reinforcing means may consist of the valve or one of the elements of the filling-emptying system mentioned above.
  • One way of proceeding is to make the inner envelope or liner using a rotational molding process.
  • the calculation methodology made it possible to define a geometry or shape of the final envelope of the reservoir and the locations of the various reinforcement means.
  • the shape of the inner wall of this envelope defines the outer shape of the liner.
  • a mold having an inner shape which is substantially identical to the desired outer shape for the liner and also takes into account the locations of the tie rods and / or ribs and / or thicknesses and / or inscribed.
  • a liner is obtained, the casing of which is provided with wells adapted to receive reinforcements for forming the tie rods or else locations. corresponding to the desired ribs and overthicknesses.
  • This liner has the reinforcing elements of the composite material and the reinforcement means. Then the resin is injected and subjected to a treatment to obtain the final structure.
  • the manufacturing process may use an extrusion-blowing process, the implementation steps of which are known to those skilled in the art and will therefore not be detailed.
  • the structure or the tank according to the invention can thus be integrated into the available space of a vehicle. Furthermore, particularly in the case of a vehicle tank, it is currently necessary to provide an auxiliary reservoir for containing a different kind of fluid to provide backup autonomy. For this purpose and, as shown in FIG. 8, provision is made to form in the body of the LPG reservoir a housing in which the auxiliary tank 24 is placed provided with all the usual means of connection and the functional organs such as a pump which significantly facilitates the assembly of this tank assembly.

Abstract

A polymorphous reservoir structure for a pressurized liquid, comprising at least one outer shell, an enclosure for receiving a pressurized liquid, whereby said structure (2) is provided with one or more means of reinforcement (7,8, 9) and the choice and/or distribution of said means of reinforcement is determined by taking the mechanical characteristics into account in addition to the stress exerted by said pressurized liquid in order to meet at least one given stress state.

Description

La présente invention concerne un conteneur destiné à des fluides sous pression.The present invention relates to a container for pressurized fluids.

Bien que l'invention soit susceptible de nombreuses applications où interviennent des fluides sous pression, elle s'applique notamment à un réservoir en matériau composite destiné à recevoir du " GPLc " (gaz de pétrole liquéfié) ou d'autres compositions d'hydrocarbures. Elle concerne également le procédé de fabrication de ce réservoir.Although the invention is capable of many applications involving fluids under pressure, it applies in particular to a tank of composite material for receiving "LPG" (liquefied petroleum gas) or other hydrocarbon compositions. It also relates to the manufacturing process of this tank.

Les réservoirs utilisés pour des gaz de pétrole liquéfiés ou "GPLc " sont soumis à une forte pression, de l'ordre de 3 MPa. Ils doivent non seulement résister à cette pression, mais aussi présenter un niveau de perméabilité conforme aux normes, ou aux réglementations en vigueur ou répondant à des objectifs fixés.The tanks used for liquefied petroleum gases or "LPLC" are subjected to a high pressure, of the order of 3 MPa. They must not only withstand this pressure, but also have a level of permeability that complies with standards, regulations or targets.

L'art antérieur tel que FR 2 764 671, considéré comme art antérieur le plus proche, et correspondant au préambule de la revendication indépendante 1, décrit différents types de réservoirs en acier ou en composite capables de vérifier au moins partiellement ces deux impératifs. Parmi ces réservoirs, les plus utilisés ont des formes sphériques ou cylindriques bien connues pour leur résistance aux pressions élevées, les pressions se répartissant régulièrement sur les parois.The prior art such as FR 2 764 671, considered as the closest prior art, and corresponding to the preamble of independent claim 1, describes different types of steel or composite tanks capable of at least partially checking these two requirements. Among these tanks, the most used have spherical or cylindrical shapes well known for their resistance to high pressures, the pressures being evenly distributed on the walls.

Pour des raisons d'encombrement, la forme cylindrique est celle qui est la plus employée. Dans ce cas, le réservoir est placé dans le coffre du véhicule, sur le toit ou encore en dessous du châssis de ce véhicule.For reasons of space, the cylindrical shape is the one that is used the most. In this case, the tank is placed in the trunk of the vehicle, on the roof or even below the chassis of this vehicle.

Le réservoir peut aussi prendre une forme torique et être disposé à la place de la roue de secours. L'absence de la roue de secours présente toutefois des inconvénients non négligeables.The tank can also take a toric shape and be placed in place of the spare wheel. The absence of the spare wheel, however, has significant disadvantages.

Dans certaines applications, il est souhaitable d'avoir un réservoir de forme plate. Pour résister à la pression à laquelle il est soumis, un tel réservoir doit être muni d'une paroi épaisse. Cette augmentation d'épaisseur va à l'encontre d'un des résultats souhaité, c'est-à-dire, diminuer le poids du réservoir. De plus cette augmentation conduit à un réservoir ayant un volume plus important qui peut rendre ce dernier incompatible avec l'espace disponible dans lequel il est logé.In some applications, it is desirable to have a flat-shaped reservoir. To resist the pressure to which it is subjected, such a tank must be provided with a thick wall. This increase in thickness goes against one of the desired results, that is to say, reduce the weight of the reservoir. Moreover this increase leads to a reservoir with a larger volume which can make this last incompatible with the available space in which it is housed.

L'apparition des composites a permis de concevoir des réservoirs de formes diverses, présentant notamment comme avantage d'être plus légers, tout en conservant une bonne résistance à la pression.The appearance of composites has made it possible to design tanks of various shapes, having the particular advantage of being lighter, while maintaining a good resistance to pressure.

Toutefois, pour résister à des pressions élevées il est alors nécessaire de les doter de paroi très épaisse.However, to withstand high pressures it is necessary to provide them with very thick wall.

En effet, dans le cas des réservoirs GPLc, ces réservoirs doivent supporter une pression maximale de l'ordre de 7 MPa en tenant compte des marges de sécurité.In fact, in the case of LPG tanks, these tanks must withstand a maximum pressure of the order of 7 MPa, taking into account the safety margins.

La demande de brevet WO 98/57 095 divulgue des conteneurs destinés à recevoir des fluides sous pression comportant plusieurs arbres liant de façon continue les faces principales de la paroi du réservoir qui sont disposées en vis-à-vis. Ce réservoir est muni d'une enveloppe interne souple.The patent application WO 98/57 095 discloses containers for receiving pressurized fluids comprising a plurality of shafts continuously linking the main faces of the tank wall which are arranged facing each other. This tank is provided with a flexible inner envelope.

L'objet de la présente invention concerne une structure destinée à recevoir un fluide sous pression et son procédé de fabrication. La forme de la structure peut être quelconque, polymorphe, simple ou encore convexe, conciliant à la fois la résistance à la pression et la légèreté souhaitée.The object of the present invention relates to a structure for receiving a fluid under pressure and its manufacturing process. The shape of the structure can be arbitrary, polymorphic, simple or convex, conciliating both the resistance to pressure and the desired lightness.

La structure obtenue peut présenter un volume optimisé par rapport à la place disponible ou a la géométrie du logement dans lequel elle s'insère.The structure obtained may have an optimized volume with respect to the available space or the geometry of the housing in which it is inserted.

Lorsque ce logement, ce qui est généralement le cas, présente une forme complexe conduisant à une répartition irrégulière des contraintes mécaniques, l'invention permet de réaliser un réservoir de forme complexe, adaptée à celle du logement et résistant aux surcontraintes générées par la complexité de la forme.When this housing, which is generally the case, has a complex shape leading to an uneven distribution of mechanical stresses, the invention makes it possible to produce a reservoir of complex shape, adapted to that of the housing and resistant to overstressing generated by the complexity of the form.

Elle permet notamment d'obtenir des réservoirs destinés à contenir des fluides sous pression, tels que le GPLc, des hydrocarbures, du diméthyléther, du GNV ou encore un mélange gaz/liquide.It makes it possible to obtain reservoirs intended to contain pressurized fluids, such as LPG, hydrocarbons, dimethyl ether, CNG or a gas / liquid mixture.

Dans la suite de la description, on désignera sous l'expression " matériau composite ", un matériau comportant une matrice et des éléments de renforcement. La matrice est constituée en générale de matériau polymère (par exemple thermoplastique, thermodurcissable, élastomère) ou de matériaux métalliques ou minéraux. Les éléments de renforcement peuvent se présenter sous des formes diverses telles que des fibres et/ou des rubans, par exemple, et être de différents types ou nature par exemple : minéral et/ou organique et/ou métallique.In the remainder of the description, the expression "composite material" will be used to denote a material comprising a matrix and reinforcing elements. The matrix is generally made of polymeric material (for example thermoplastic, thermosetting, elastomer) or metallic or mineral materials. The reinforcing elements may be in various forms such as fibers and / or ribbons, for example, and be of different types or types for example: mineral and / or organic and / or metallic.

De la même façon, on définit sous l'expression moyens de renforts' un élément " physique ", qui peut se présenter sous différentes formes, telles que : un " tirant " reliant deux ou plusieurs parois de la structure, ou une surépaisseur de la paroi de la structure et/ ou une nervure ou gorge ou encore tout autre moyen physique contribuant à la résistance à la pression. Ces différents moyens peuvent être utilisés seuls ou en combinaison.In the same way, "reinforcing means" is defined as a "physical" element, which can take various forms, such as: a "tie" connecting two or more walls of the structure, or an extra thickness of the wall of the structure and / or a rib or throat or any other physical means contributing to the resistance to pressure. These different means can be used alone or in combination.

Selon l'invention, la structure de réservoir polymorphe destiné à un fluide sous pression, ladite structure comportant au moins une enveloppe délimitant au moins une enceinte destinée à recevoir un fluide sous pression, ladite structure étant composée d'un matériau de caractéristiques mécaniques connues, est caractérisée en ce qu'elle comporte un ou plusieurs moyens ce renfort, le choix et/ou la répartition desdits moyens de renfort étant déterminés en tenant compte des caractéristiques mécaniques du matériau, des contraintes exercées par ledit fluide sous pression, pour satisfaire au moins à un état de contraintes donné.According to the invention, the polymorphous reservoir structure for a fluid under pressure, said structure comprising at least one envelope delimiting at least one enclosure intended to receive a fluid under pressure, said structure being composed of a material of known mechanical characteristics, is characterized in that it comprises one or more means this reinforcement, the choice and / or the distribution of said reinforcement means being determined by taking into account the mechanical characteristics of the material, the stresses exerted by said fluid under pressure, to satisfy at least at a given constraint state.

L'invention présente notamment les avantages suivants :

  • Elle permet d'adapter la forme et le volume du réservoir à la géométrie du logement où il sera disposé quelle que soit la complexité de sa forme,
  • En adaptant la forme et le volume du réservoir, on utilise au mieux la place disponible sur les véhicules,
  • La structure obtenue présente une tenue en pression et un niveau de perméabilité respectant les normes actuelles en vigueur ou les contraintes requises notamment par les constructeurs, tout en présentant une valeur de rapport poids/contenance la plus faible possible, compatible avec l'utilisation finale du réservoir,
  • Dans le cas de réservoir composé d'une enveloppe extérieure et d'une enveloppe interne ou liner, il est possible d'adapter la matière du liner aux exigences de niveau de perméation et de sa compatibilité avec le fluide contenu. On peut notamment ajuster le niveau d'étanchéité aux contraintes de l'environnement,
  • La conductivité thermique d'un réservoir de type composite est très inférieure à un réservoir entièrement métallique, ainsi dans les réservoirs en composite la montée en température est retardée, de même que la montée en pression.
The invention particularly has the following advantages:
  • It makes it possible to adapt the shape and the volume of the tank to the geometry of the housing where it will be arranged whatever the complexity of its shape,
  • By adapting the shape and the volume of the tank, the space available on the vehicles is best used,
  • The structure obtained has a pressure resistance and a level of permeability meeting current standards in force or the constraints required in particular by the manufacturers, while presenting a value weight / capacity ratio as low as possible, compatible with the final use of the reservoir,
  • In the case of a tank consisting of an outer casing and an inner casing or liner, it is possible to adapt the material of the liner to the permeation level requirements and its compatibility with the contained fluid. In particular, it is possible to adjust the level of tightness to the constraints of the environment,
  • The thermal conductivity of a composite type tank is much lower than an all-metal tank, so in composite tanks the temperature rise is delayed, as is the rise in pressure.

D'autres buts avantages et caractéristiques de l'invention apparaîtront plus clairement au cours de la description explicative qui va suivre, faite en référence aux dessins schématiques annexés donnés uniquement à titre d'exemples non limitatifs, illustrant différents modes de réalisation dans lesquels :

  • La figure 1 schématise un exemple de réalisation d'un réservoir destiné à recevoir un fluide sous pression ou GPLc, le réservoir étant équipé de moyens de renforts, et de moyens d'étanchéité,
  • Les figures 2A à 2C schématisent une variante où les moyens de renforts sont des tirants, et la figure 3 une variante,
  • Les figures 4A à 4D représentent des variantes de moyens de renforts constitués de nervures,
  • Les figures 5A et 5B montrent une variante où les moyens de renfort sont formés par des surépaisseurs,
  • Les figures 6A et 6B schématisent une variante de nervure profonde,
  • La figure 7 montre une variante où le moyen de renfort est constitué du support de la vanne, et.
  • La figure 8 montre un réservoir GPLc-essence automobile.
Other advantages and features of the invention will appear more clearly in the following explanatory description, with reference to the appended diagrammatic drawings given solely by way of nonlimiting examples, illustrating various embodiments in which:
  • FIG. 1 schematizes an exemplary embodiment of a reservoir intended to receive a fluid under pressure or LPG, the reservoir being equipped with reinforcing means, and sealing means,
  • FIGS. 2A to 2C show a variant in which the reinforcement means are tie rods, and FIG.
  • FIGS. 4A to 4D show variants of reinforcing means consisting of ribs,
  • FIGS. 5A and 5B show a variant in which the reinforcement means are formed by extra thicknesses,
  • FIGS. 6A and 6B schematize a variant of deep rib,
  • FIG. 7 shows a variant where the reinforcement means consists of the support of the valve, and.
  • Figure 8 shows a GPLc tank-automotive gasoline.

Comme il a été indiqué précédemment, l'idée de la présente invention est de concevoir et de réaliser à partir d'une forme donnée, une structure destinée à recevoir un fluide sous pression, par exemple du GPLc, tout en conservant un poids et un degré d'étanchéité compatibles avec les contraintes recuises par son utilisation finale.As indicated above, the idea of the present invention is to design and produce from a given shape, a structure intended to receive a fluid under pressure, for example LPG, while maintaining a weight and a degree of sealing compatible with the stresses recused by its end use.

La structure respecte ainsi les normes en vigueur ou les réglementations notamment des constructeurs automobiles ou des états.The structure thus complies with the standards in force or the regulations, particularly those of car manufacturers or states.

De manière à mieux illustrer l'objet de l'invention, la description, donnée ci-après à titre illustratif et nullement limitatif, concerne un réservoir en matériau composite utilisé comme réservoir de GPLc, monté sur véhicule.In order to better illustrate the object of the invention, the description, given below by way of illustration and in no way limiting, relates to a tank of composite material used as a reservoir of LPG, mounted on a vehicle.

La figure 1 schématise un exemple de réalisation d'une telle structure.Figure 1 shows a schematic embodiment of such a structure.

Le réservoir comporte un liner 1 ou enveloppe intérieure entourée d'une enveloppe extérieure 2 formée par exemple en matériau composite. Le liner 1 est réalisé par exemple selon différents types de procédés tels que le rotomoslage, ou l'extrusion soufflage.The reservoir comprises a liner 1 or inner envelope surrounded by an outer shell 2 formed for example of composite material. The liner 1 is made for example according to different types of processes such as rotomoslage, or extrusion blow molding.

Le liner assure principalement une fonction d'étanchéité, en jouant un rôle de barrière vis-à-vis du fluide sous pression. Il peut aussi contribuer à répartir les efforts dus à la pression interne exercée par le fluide sur les parois de la structure. Enfin, il sert, par exemple, de support du matériau composite lors de la mise en place de l'enveloppe extérieure.The liner mainly performs a sealing function, acting as a barrier against the fluid under pressure. It can also help to distribute the forces due to the internal pressure exerted by the fluid on the walls of the structure. Finally, it serves, for example, to support the composite material during the introduction of the outer casing.

Le liner est formé, par exemple, d'un matériau capable d'assurer au moins une des trois fonctions précitées. Différents types de matériaux sont donnés à titre d'exemples non limitatifs dans la suite de la description.The liner is formed, for example, of a material capable of performing at least one of the three functions mentioned above. Different types of materials are given as non-limiting examples in the remainder of the description.

Un orifice ou ouverture 3 dans le réservoir reçoit une vanne 4 de remplissage-vidange. La vanne est par exemple équipée des différents dispositifs habituellement utilisés, tels que un dispositif de contrôle du niveau de fluide, des organes de sécurité, etc. La vanne est maintenue au niveau du liner et de l'enveloppe extérieure, par exemple, à l'aile d'un insert 5.An orifice or opening 3 in the tank receives a filling-emptying valve 4. The valve is for example equipped with the various devices usually used, such as a device for controlling the fluid level, safety devices, etc. The valve is maintained at the level of the liner and the outer casing, for example, at the wing of an insert 5.

Pour obtenir un réservoir capable de tenir à la pression d'un fluide sous pression, le réservoir est pourvu de plusieurs moyens de renfort. Sur la figure 1 on a mentionné différents exemples de moyens qui peuvent, sans sortir du cadre de l'invention, être utilisés individuellement ou en combinaison pour réaliser un réservoir selon l'invention.To obtain a reservoir capable of withstanding the pressure of a fluid under pressure, the reservoir is provided with several reinforcing means. FIG. 1 mentions various examples of means which can, without departing from the scope of the invention, be used individually or in combination to produce a reservoir according to the invention.

Comme il a été indiqué ci-dessus l'expression " moyens de renfort " désigne des éléments physiques dont la fonction est notamment d'améliorer la résistance ou tenue à la pression du réservoir.As indicated above, the expression "reinforcing means" designates physical elements whose function is notably to improve the resistance or withstanding the pressure of the reservoir.

Le réservoir comporte par exemple :

  • Un ou plusieurs tirants 7 placé dans un passage 6 ou puits du liner 1, et/ou
  • Une ou plusieurs nervures 8 remplies ou non de renfort, et/ou
  • Une ou plusieurs surépaisseurs 9 composées par exemple d'un matériau identique à celui du composite formant l'enveloppe extérieure 2, et/ou
  • Un ou plusieurs inserts disposés entre le liner et la paroi interne de l'enveloppe extérieure du réservoir.
The reservoir comprises for example:
  • One or more tie rods 7 placed in a passage 6 or well of the liner 1, and / or
  • One or more ribs 8 filled or not with reinforcement, and / or
  • One or more oversizes 9 composed for example of a material identical to that of the composite forming the outer shell 2, and / or
  • One or more inserts disposed between the liner and the inner wall of the outer shell of the tank.

Différents exemples détaillés de ces moyens renforts, tant sur le plan de leur géométrie qu'au niveau du matériau les constituants, sont donnés aux figures 2A à 7.Various detailed examples of these reinforcing means, both in terms of their geometry and at the constituent material level, are given in FIGS. 2A to 7.

La répartition et le type des moyens de renforts équipant le réservoir sont déterminés selon une méthodologie spécifiée ci-après.The distribution and type of reinforcement means equipping the reservoir are determined according to a methodology specified below.

Sur cette figure 1, on a aussi représenté un siphon 10 permettant la communication entre les différents points bas du réservoir. Les points bas peuvent en effet être séparés par des formes de la paroi tournées vers l'intérieur du réservoir.In this Figure 1, there is also shown a siphon 10 for communication between the different low points of the tank. The low points can indeed be separated by wall shapes facing towards the inside of the tank.

L'un des objets de la présente invention est notamment de choisir les moyens de renfort et leur répartition pour obtenir, à partir d'une forme donnée compatible avec le procédé de fabrication de l'enveloppe extérieure en composite et du liner ainsi que de la place disponible, un réservoir capable de résister à la pression résultant du fluide.One of the objects of the present invention is in particular to choose the reinforcing means and their distribution to obtain, from a given form compatible with the manufacturing process of the composite outer casing and the liner as well as the available space, a tank capable of withstanding the pressure resulting from the fluid.

Pour cela, on procède par exemple aux étapes suivantes :

  • La forme extérieure de l'enveloppe formant le réservoir, la pression finale de fonctionnement du réservoir ou une valeur de pression limite P étant connues, on détermine les caractéristiques mécaniques (élasticité, anisotropie, type de renforcements, taux de renforcements,..) du ou des matériaux composites formant l'enveloppe extérieure du réservoir.
For this, one proceeds for example to the following steps:
  • The outer shape of the shell forming the reservoir, the final operating pressure of the reservoir or a limit pressure value P being known, the mechanical characteristics (elasticity, anisotropy, type of reinforcement, reinforcement rate, etc.) of the reservoir are determined. or composite materials forming the outer shell of the tank.

Les contraintes mécaniques sont désignées dans la suite de la description par :σ (contrainte de traction), T (contrainte de cisaillement), γ (déformation en cisaillement) et ε (déformation en un point donné de la structure).The mechanical stresses are designated in the following description by: σ (tensile stress), T (shear stress), γ (shear strain) and ε (deformation at a given point in the structure).

On se donne un intervalle [emin, emax] pour les valeurs d'épaisseurs e. Cet intervalle est par exemple choisi en fonction du matériau et des contraintes de l'utilisation finale (poids acceptable, contenance).We give ourselves an interval [emin, e max ] for the thickness values e. This interval is for example chosen according to the material and the constraints of the end use (acceptable weight, capacity).

Préalablement à la méthode, il est possible de construire une banque de données, précisant pour un type de moyens de renfort , son efficacité, c'est-à-dire, la façon dont il participe ou contribue à la tenue en pression. Le moyen de renforts peut être caractérisé par sa géométrie, sa dimension, ou encore sa nature.

  1. 1) Dans une première phase, on établit un maillage du réservoir pour une épaisseur et sensiblement constante sur l'ensemble de la structure, par exemple égale à la valeur emin. A l'issue de cette étape 1) on a un ensemble de noeuds Ni. On peut utiliser la théorie des coques décrite par exemple dans l'ouvrage de S.Timoshenko et S.Woinowsky-Krieger, ayant pour titre " Théorie des Coques " aux éditions Dunod.
    Au cours de cette étape, on fait par exemple l'hypothèse que le matériau est isotrope ou quasi isotrope.
  2. 2) On soumet ce réservoir à une pression interne qui correspond par exemple à la pression de fonctionnement ou à une pression de test,
  3. 3) Pour chacun des noeuds Ni de la structure, on détermine un état de contrainte (σi, τi, γi, εi), en utilisant, par exemple, la méthode des éléments finis,
  4. 4) À partir de ces données (Ni, σi, Ti, γi εi) on établit une cartographie C1 des zones critiques, localisées aux noeuds Ni. Ces zones Zj sont repérées par rapport à des valeurs de contraintes acceptables σmax, τmax, γmax, εmax. Les valeurs acceptables sont par exemple déterminées en tenant compte du type de matériau considéré, ce dernier a pu être caractérisé au cours d'essais mécaniques spécifiques préalables,
  5. 5) On réalise les étapes 2) à 4) pour une deuxième valeur d'épaisseur e2, sensiblement homogène ou constante, avec les mêmes hypothèses et dans les mêmes conditions d'essai, la valeur de e2 pouvant être la valeur emax,
  6. 6) Avant d'effectuer l'étape 5), il est possible d'utiliser les résultats obtenus pour la cartographie C1 pour changer le maillage, par exemple en modifiant par exemple le pas de maillage dans les zones de surcontraintes repérées, dans ce cas, on reprend à partir de l'étape 1),
  7. 7) A l'issue de cette première phase de modélisation on possède deux cartographies, C1 et C2 qui donnent l'emplacement des zones Zj de contraintes ou de surcontraintes en fonction de l'épaisseur e1 et e2. Selon un mode de mise en oeuvre, on détermine un réservoir ayant une épaisseur variable. La distribution des valeurs d'épaisseur est déterminée par exemple à partir des cartographies précédemment obtenues. On choisira par exemple l'épaisseur minimale acceptable pour que la ou les contraintes soit la ou les plus faibles possibles,
  8. 8) Dans une deuxième phase, on équipe le réservoir ayant la plus petite épaisseur e1 ou le réservoir d'épaisseur variable, d'un ou de plusieurs moyens de renfort d'un premier type donné. On choisit par exemple le type de moyens de renfort, des tirants ou des nervures ou encore des surépaisseurs ou encore des inserts, en utilisant la banque de données préalablement établie,
  9. 9) On soumet le réservoir ainsi équipé à une pression interne identique à celle de l'étape 2) et on construit une cartographie Ci donnant les zones Zj de surcontraintes,
  10. 10) On vérifie, par exemple pour chacun des noeuds Ni situes dans les zones de contrainte ou de surcontrainte que la ou les valeurs des contraintes (σi, Ti, γi, εi) sont acceptables en les comparant aux valeurs maximales précitées,
  11. 11)Tant qu'il subsiste une valeur de contrainte dépassant une des valeurs maximales, on modifie au moins un des paramètres suivants : le type du moyen de renfort, sa dimension, son emplacement local,...et on réitère les étapes 9) et 10),
  12. 12) Après chacune de ces étapes, on vérifie par exemple que la forme du réservoir est compatible avec le procédé de fabrication,
Prior to the method, it is possible to build a database, specifying for a type of reinforcement means, its effectiveness, that is to say, the way it participates or contributes to the pressure resistance. The reinforcement means may be characterized by its geometry, its size, or its nature.
  1. 1) In a first phase, a mesh of the reservoir is established for a thickness and substantially constant over the entire structure, for example equal to the value e min . At the end of this step 1) we have a set of nodes Ni. The shell theory described for example in the book by S.Timoshenko and S.Woinowsky-Krieger, entitled "Theory of Shells" by Dunod Editions, can be used.
    During this step, it is for example assumed that the material is isotropic or almost isotropic.
  2. 2) This reservoir is subjected to an internal pressure which corresponds, for example, to the operating pressure or to a test pressure,
  3. 3) For each of the nodes Ni of the structure, one determines a state of stress (σi, τi, γi, εi), by using, for example, the method of the finite elements,
  4. 4) From these data (Ni, σi, Ti, γi εi) a map C1 is established of the critical zones, located at the nodes Ni. These zones Zj are identified with respect to acceptable stress values σmax, τmax, γmax, εmax. The acceptable values are for example determined taking into account the type of material considered, the latter could be characterized during specific mechanical tests beforehand,
  5. 5) Steps 2) to 4) are carried out for a second thickness value e2, which is substantially homogeneous or constant, with the same assumptions and under the same test conditions, the value of e2 possibly being the emax value,
  6. 6) Before proceeding with step 5), it is possible to use the results obtained for the mapping C1 to change the mesh, for example by modifying for example the mesh size in the zones of overloads identified, in this case , we resume from step 1),
  7. 7) At the end of this first modeling phase, there are two maps, C1 and C2, which give the location of the zones Zj of stresses or overtrains as a function of the thickness e1 and e2. According to one embodiment, a reservoir having a variable thickness is determined. The distribution of the thickness values is determined, for example, from the mappings previously obtained. For example, the minimum acceptable thickness will be chosen so that the stress or constraints is the lowest possible.
  8. 8) In a second phase, the tank with the smallest thickness e1 or the reservoir of variable thickness is equipped with one or more reinforcing means of a given first type. For example, the type of reinforcing means, tie rods or ribs, or thickenings or inserts, is chosen by using the previously established databank.
  9. 9) The reservoir thus equipped is subjected to an internal pressure identical to that of step 2) and a mapping Ci is constructed giving zones Zj of over-stressing,
  10. 10) We verify, for example for each of the nodes Ni located in the zones of stress or over-stressing that the or the values of the stresses (σi, Ti, γi, εi) are acceptable by comparing them with the maximum values mentioned above,
  11. 11) As long as there remains a value of stress exceeding one of the maximum values, one modifies at least one of the following parameters: the type of reinforcement means, its dimension, its local location, ... and one repeats the steps 9) and 10),
  12. 12) After each of these steps, it is verified for example that the shape of the tank is compatible with the manufacturing process,

À l'issue de ces étapes on dispose d'un réservoir pourvu de différents moyens de renforts choisis et répartis pour résister à la pression en fonction de la forme du réservoir.At the end of these steps there is a reservoir provided with different means of reinforcements chosen and distributed to resist pressure depending on the shape of the reservoir.

Selon une variante de réalisation, les étapes 1) à 6) sont remplacées par une étape dans laquelle on détermine les zones de surépaisseurs en utilisant un module ou logiciel d'optimisation qui permet,
à partir des résultats obtenus pour un réservoir d'épaisseur el, de l'intervalle de valeurs [emin, emax] et des caractéristiques du matériau d'obtenir un réservoir ayant une paroi d'épaisseur variable. Un tel réservoir correspond par exemple à la structure décrite à l'étape d'optimisation 7).
According to an alternative embodiment, the steps 1) to 6) are replaced by a step in which the zones of excess thickness are determined by using a module or optimization software that allows,
from the results obtained for a reservoir of thickness el, the range of values [emin, emax] and the characteristics of the material to obtain a reservoir having a wall of variable thickness. Such a reservoir corresponds for example to the structure described in the optimization step 7).

On réalise ensuite les étapes 8) à 12) de la méthode.Steps 8) to 12) of the method are then carried out.

Selon une autre variante de la méthodologie, on utilise dans l'étape 1) la méthode de coque et/ou la méthode volumique pour réaliser le maillage.According to another variant of the methodology, in step 1) the hull method and / or the volume method is used to produce the mesh.

La méthodologie s'applique notamment pour des réservoirs formés d'un matériau présentant des caractéristiques mécaniques variables ou non selon la direction, telles que la rigidité, la résistance.The methodology applies in particular for tanks formed of a material having variable or non-directional mechanical characteristics, such as stiffness, strength.

Selon une variante de mise en oeuvre de la méthodologie précitée on tient compte du matériau du liner et notamment de sa capacité à répartir les contraintes ou les efforts exercés sur sa structure. Dans ce cas l'étape de maillage tient compte des deux types de matériaux, celui du liner et celui de enveloppe externe.According to an alternative embodiment of the above-mentioned methodology, the material of the liner and in particular its capacity to distribute the stresses or the forces exerted are taken into account. on its structure. In this case the mesh step takes into account the two types of materials, that of the liner and that of the outer envelope.

La méthode décrite ci-dessus peut aussi comporter une étape qui consiste à optimiser la forme du réservoir final en tenant compte du logement dans lequel il devra s'intégrer, ou de façon plus générale de la place disponible du véhicule.The method described above may also include a step of optimizing the shape of the final tank taking into account the housing in which it will integrate, or more generally the available space of the vehicle.

Dans ce cas avant l'étape 1) mentionnée ci-dessus, on procéde à une étape où l'on tient compte de la place disponible ou de la géométrie du logement dans lequel est disposé le réservoir pour optimiser la forme du réservoir. On vérifie que cette forme n'engendre pas de surcontraintes et éventuellement on modifie la forme des zones critiques.In this case before step 1) mentioned above, a step is taken to take into account the available space or the geometry of the housing in which the reservoir is arranged to optimize the shape of the reservoir. It is verified that this form does not generate overconstraints and possibly modifies the shape of the critical zones.

L'enveloppe extérieure de la structure est par exemple formée d'un matériau composite. Le matériau composite est constitué d'une matrice, par exemple, en résine époxy ou polyester, etc......et d'un élément de renforcement pré mentionné. Les fibres peuvent être arrangées de différentes manières, par exemple sous la forme d'un tissu orienté (la majorité des fibres est orientée de manière prépondérante), ou non orienté. Les fibres peuvent être des fibres de verre ou de carbone. Le composite peut comporter plusieurs couches de fibres, l'orientation des couches entre elles étant choisie par rapport à la résistance à la pression souhaitée.The outer casing of the structure is for example formed of a composite material. The composite material consists of a matrix, for example, of epoxy resin or polyester, etc ...... and a reinforcing element mentioned above. The fibers can be arranged in different ways, for example in the form of an oriented fabric (the majority of the fibers is oriented predominantly), or non-oriented. The fibers may be glass or carbon fibers. The composite may comprise several layers of fibers, the orientation of the layers between them being chosen with respect to the desired pressure resistance.

Le liner du réservoir rempli au moins trois fonctions, notamment les suivantes :

  1. 1) il a un rôle d'étanchéité en jouant le rôle de barrière vis-à-vis du fluide contenu,
  2. 2) il peut servir comme support du matériau composite lors de la fabrication du réservoir,
  3. 3) il peut aussi permettre de répartir des efforts dus à la pression interne,
  4. 4) étant plus facilement déformable que le matériau composite, la structure ou réservoir final conserve un niveau d'étanchéité suffisant malgré un endommagement éventuel de l'enveloppe extérieure.
The tank liner performs at least three functions, including the following:
  1. 1) it has a role of sealing by acting as a barrier vis-à-vis the contained fluid,
  2. 2) it can serve as a support for the composite material during the manufacture of the tank,
  3. 3) it can also be used to distribute forces due to the internal pressure,
  4. 4) being more easily deformable than the composite material, the final structure or reservoir retains a sufficient sealing level despite possible damage to the outer casing.

Le liner est réalisé dans un matériau capable de remplir au moins la fonction d'étanchéité. Le niveau à'étanchéité est fixé par les réglementations en vigueur et/ou le cahier des charges des fabricants. Le matériau et son épaisseur sont imposés par ce niveau d'étanchéité.The liner is made of a material capable of filling at least the sealing function. The level of sealing is determined by the regulations in force and / or the specifications of the manufacturers. The material and its thickness are imposed by this level of sealing.

Il est typiquement en polymère thermoplastique choisi, par exemple, dans la liste suivante :It is typically a thermoplastic polymer chosen, for example, from the following list:

Les polyoléfines (polyéthylènes, polypropylènes), PE ou PP, les polyamides (PA11, PA12, PA6, 6-6,...), le polycétone aliphatique tel que le carilon (marque déposée par la société SHELL), le polyéthylène téréphtalate ou PET, le polybutylène téréphtalate ou PBT, les polyacétals par exemple le POM (polyoxyméthylène), l'EVOH, les polymères fluorés, PVDF, PTFE (polytétrafluoroéthylène ou Teflon), etc....Polyolefins (polyethylenes, polypropylenes), PE or PP, polyamides (PA11, PA12, PA6, 6-6, etc.), aliphatic polyketone such as carilon (trademark registered by SHELL), polyethylene terephthalate or PET, polybutylene terephthalate or PBT, polyacetals, for example POM (polyoxymethylene), EVOH, fluoropolymers, PVDF, PTFE (polytetrafluoroethylene or Teflon), etc.

Les matériaux précédemment mentionnés peuvent être traités pour renforcer l'effet barrière, par exemple, mais non exclusivement, selon la méthode de fluoration du polyéthylène haute densité, connue dans le domaine des réservoirs de carburants liquides classiques.The aforementioned materials can be treated to enhance the barrier effect, for example, but not exclusively, according to the fluorination method of high density polyethylene, known in the field of conventional liquid fuel tanks.

Selon un mode de réalisation, le liner peut être lui-même un multi-couches, la couche en contact avec le fluide sous pression étant la moins perméable. Il est possible d'utiliser un film métallique , par exemple à base d'aluminium, ou un dépôt métallique déposé sur la surface interne du liner, c'est-à-dire la surface en contact avec le fluide. On utilisera un film mince afin d'augmenter le moins possible le poids du réservoir.According to one embodiment, the liner may itself be a multi-layer, the layer in contact with the fluid under pressure being the least permeable. It is possible to use a metal film, for example based on aluminum, or a metal deposit deposited on the inner surface of the liner, that is to say the surface in contact with the fluid. A thin film will be used to minimize the weight of the tank.

Le liner peut être formé d'un alliage ou un mélange de plusieurs polymères y compris des élastomères et comporter un ou plusieurs additifs tels que des agents antioxydants, des plastifiants, des ignifugeants, ou encore des charges minérales par exemple.The liner may be formed of an alloy or a mixture of several polymers including elastomers and comprise one or more additives such as antioxidants, plasticizers, flame retardants, or mineral fillers for example.

La méthode de fabrication du liner est choisie en fonction du matériau utilisé, du nombre de pièces à fabriquer ou à réaliser. De préférence, les procèdes de rotomoulage ou de moulage par extrusion-soufflage sont les plus utilisés dans ce domaine.The method of manufacturing the liner is chosen according to the material used, the number of parts to manufacture or to achieve. Preferably, the rotational molding processes or extrusion blow molding are the most used in this field.

Le matériau du liner, en plus de sa capacité à jouer le rôle de barrière d'étanchéité, peut être choisi pour supporter la mise en place des renforcements constituant le matériau composite, puis le moulage et la cuisson de composite.The liner material, in addition to its ability to act as a sealing barrier, may be chosen to support the placement of the reinforcements constituting the composite material, then the molding and baking of composite.

Il doit aussi présenter une bonne tenue mécanique, le réservoir en utilisation étant soumis à des chocs éventuels, aux chocs à faible température, ou des phénomènes de dilatation.It must also have good mechanical strength, the tank in use being subjected to shocks, shocks at low temperatures, or expansion phenomena.

Les figures 2A et 2B schématisent un premier exemple de moyens de renfort formé d'un tirant.FIGS. 2A and 2B show a first example of reinforcing means formed of a tie rod.

Dans cet exemple, l'enveloppe que constitue le liner 1 comporte un ou plusieurs puits 6. Le puits 6 est destiné à recevoir le tirant 7 dont la partie résistante ou élément de renforcement 11 peut être une tresse ou des renforts unidirectionnels ou encore tout autre moyen capable d'apporter une tenue en pression supplémentaire. Le renforcement 12 du matériau composite constituant la paroi du réservoir, vient vers l'intérieur du puits 6 et est de préférence recouvert par le renforcement du tirant.In this example, the envelope constituted by the liner 1 comprises one or more wells 6. The well 6 is intended to receive the tie rod 7 whose resistant part or reinforcing element 11 may be a braid or unidirectional reinforcements or any other means capable of providing additional pressure resistance. The reinforcement 12 of the composite material constituting the wall of the reservoir, comes towards the interior of the well 6 and is preferably covered by reinforcement of the tie rod.

Le renforcement du tirant est par exemple mis en place dans ce puits et maintenu à l'aide de cylindre 13 (plein ou creux, renforcé ou non) qui peut participer à la résistance du tirant.Reinforcement of the tie is for example set up in this well and maintained by means of cylinder 13 (full or hollow, reinforced or not) which can participate in the resistance of the tie rod.

Des pièces 14 de forme sensiblement conique pourront se placer éventuellement aux extrémités de ces cylindres 13 afin de maintenir en place les couches de renforcements venant de la paroi et du tirant.Parts 14 of substantially conical shape may possibly be placed at the ends of these cylinders 13 in order to keep in place the reinforcement layers coming from the wall and the tie rod.

Les tirants peuvent prendre des formes diverses schématisées à la figure 2C. Ils peuvent être de forme circulaire, elliptique ou être formé d'une combinaison d'arcs et de segments droits.The tie rods can take various forms schematically in Figure 2C. They can be circular, elliptical or be formed of a combination of arcs and straight segments.

Selon une variante de réalisation schématisée à la figure 3, une partie ou la totalité des renforts du tirant peut se prolonger au-delà des parois, voire même former un cerclage 15 comme l'illustre cette figure. Le cerclage concerne deux tirants adjacents ou non, ou encore un tirant et un bord du réservoir. Cette disposition peut être appliquée quelque soit la forme du tirant.
Cette variante de réalisation permet notamment d'augmenter la résistance locale par l'effet de surépaisseur ainsi généré et aussi par l'effet de cerclage. Un tel renfort peut être unidirectionnel ou non, par exemple il peut être formé d'un tissu. Ledit tirant relie deux faces sensiblement parallèles entre elles ou faisant entre elles un angle α de valeur déterminée.
According to an alternative embodiment shown diagrammatically in FIG. 3, some or all of the reinforcements of the tie rod may extend beyond the walls, or even form a strapping 15 as illustrated in this figure. The strapping concerns two adjacent tie rods or not, or a tie rod and an edge of the tank. This provision can be applied regardless of the shape of the tie rod.
This variant of embodiment makes it possible in particular to increase the local resistance by the effect of excess thickness thus generated and also by the strapping effect. Such a reinforcement may be unidirectional or not, for example it may be formed of a fabric. Said tie connects two faces substantially parallel to each other or between them an angle α of determined value.

Les figures 4A, 4B, 4C et 4D schématisent des nervures jouant le rôle de moyens de renforts.FIGS. 4A, 4B, 4C and 4D schematize ribs acting as reinforcement means.

De manière générale, la géométrie des nervures est choisie par exemple en fonction du mode de fabrication du réservoir et notamment du liner.In general, the geometry of the ribs is chosen for example according to the manufacturing mode of the reservoir and in particular the liner.

Par exemple, le rayon de courbure d'une nervure est choisi pour que la poudre utilisée dans le procédé de rotomoulage reste en place durant les étapes de fabrication.For example, the radius of curvature of a rib is chosen so that the powder used in the rotational molding process remains in place during the manufacturing steps.

Les autres paramètres, tels que l'épaisseur et/ou la profondeur de la nervure, et/ou la largeur, sont par exemple choisis en fonction de la surcontrainte exercée à cet endroit de la structure, ou encore du procédé de fabrication.The other parameters, such as the thickness and / or the depth of the rib, and / or the width, are for example chosen as a function of the over-stress exerted at this point in the structure, or else the manufacturing process.

La direction de la nervure est donnée, par exemple, par la direction des contraintes principales que l'on souhaite diminuer ou par l'analyse des déformations de l'enveloppe.The direction of the rib is given, for example, by the direction of the main stresses that one wishes to reduce or by the analysis of the deformations of the envelope.

Les figures 4A et 4B montrent deux nervures renforcées. Le moyen de renfort comporte la nervure 16 formée dans le liner 1, les éléments de renforcements 12 du matériau composite et les éléments de renforcement 17 de la nervure. Les éléments de renforcement 17 de la nervure peuvent être disposés en dessus ou en dessous de l'élément de renforcement du matériau composite.Figures 4A and 4B show two reinforced ribs. The reinforcing means comprises the rib 16 formed in the liner 1, the reinforcing elements 12 of the composite material and the reinforcing elements 17 of the rib. The reinforcing elements 17 of the rib may be arranged above or below the reinforcing element of the composite material.

Le renforcement de la nervure est, par exemple, unidirectionnel ou non selon l'intensité et la direction des contraintes principales exercées sur les parois de la structure (niveau de contrainte, contrainte principale de traction,......)The strengthening of the rib is, for example, unidirectional or not depending on the intensity and the direction of the main stresses exerted on the walls of the structure (stress level, main tensile stress, ......)

Dans certains cas, illustrés aux figures 4C et 4D, la seule forme de la nervure procure l'augmentation de rigidité nécessaire.In some cases, illustrated in Figures 4C and 4D, the single shape of the rib provides the necessary increase in rigidity.

La figure 4C schématise une nervure interne et la figure 4D une nervure tournée vers l'extérieur.Figure 4C schematizes an internal rib and Figure 4D a rib facing outwards.

Les figures 5A et 5B schématisent deux exemples de moyens de renfort formés d'une surépaisseur.FIGS. 5A and 5B show two examples of reinforcing means formed of an excess thickness.

La surépaisseur 19 a pour fonction notamment de rigidifier une zone susceptible de trop se déformer. Cette surépaisseur peut être disposée à proximité d'un insert, par exemple l'insert 5 servant à maintenir la vanne 4 à la paroi du réservoir.The overthickness 19 serves in particular to stiffen an area likely to deform too much. This extra thickness may be disposed near an insert, for example the insert 5 serving to hold the valve 4 to the tank wall.

La surépaisseur est formée, par exemple, d'éléments de renforcement 20 qui sont placés dans ces deux exemples au-dessus d'un élément de renforcement 12 du composite.The extra thickness is formed, for example, of reinforcing elements 20 which are placed in these two examples above a reinforcing element 12 of the composite.

Les éléments de renforcements utilisés pour les nervures et les surépaisseurs sont par exemple identiques à ceux utilisés pour les tirants.The reinforcing elements used for the ribs and the extra thicknesses are for example identical to those used for the tie rods.

Les figures 6A et 6B schématisent des moyens de renforts formés d'une ou de plusieurs nervures " profondes " 21 dans le liner 1. Cette nervure profonde s'apparente à un tirant dont la forme de la section serait assez plate mais pourrait être directement liée aux parois externe du réservoir.FIGS. 6A and 6B schematize means of reinforcements formed of one or more "deep" ribs 21 in the liner 1. This deep rib is similar to a tie whose sectional shape would be fairly flat but could be directly linked at the outer walls of the tank.

La figure 7 représente une variante où le moyen de renfort est constitué du dispositif de maintien 22, correspondant à l'insert 5 de la figure 1, de la vanne.FIG. 7 represents a variant where the reinforcement means consists of the holding device 22, corresponding to the insert 5 of FIG. 1, of the valve.

Selon une autre variante de réalisation, le moyen de renfort peut être constitué de la vanne ou d'un des éléments du système de remplissage-vidange mentionné précédemment.According to another alternative embodiment, the reinforcing means may consist of the valve or one of the elements of the filling-emptying system mentioned above.

Différents procédés de fabrication peuvent être mis en oeuvre aussi bien pour le liner que pour l'enveloppe composite.Different manufacturing processes can be used for both the liner and the composite envelope.

Une manière de procéder consiste à réaliser l'enveloppe interne ou liner en utilisant un procédé de rotomoulage.One way of proceeding is to make the inner envelope or liner using a rotational molding process.

On procède par exemple de la manière suivante :For example, the procedure is as follows:

La méthodologie de calcul a permis de définir une géométrie ou forme de l'enveloppe finale du réservoir et des emplacements des différents moyens de renfort. La forme de la paroi interne de cette enveloppe délimite la forme extérieure du liner.The calculation methodology made it possible to define a geometry or shape of the final envelope of the reservoir and the locations of the various reinforcement means. The shape of the inner wall of this envelope defines the outer shape of the liner.

On utilise un moule ayant une forme intérieure qui est sensiblement identique à la forme extérieure souhaitée pour le liner et aussi qui tient compte des emplacements des tirants et/ou des nervures et/ou des surépaisseurs et/ou des inscris.Using a mold having an inner shape which is substantially identical to the desired outer shape for the liner and also takes into account the locations of the tie rods and / or ribs and / or thicknesses and / or inscribed.

En procédant aux étapes habituellement mises en oeuvre pour le procédé de rotomoulage, en choisissant le matériau du liner et les conditions opératoires, on obtient un liner dont l'enveloppe est pourvue de puits adaptés à recevoir des renforts pour former les tirants ou encore des emplacements correspondant aux nervures et aux surépaisseurs souhaitées.By carrying out the steps usually carried out for the rotational molding process, by choosing the material of the liner and the operating conditions, a liner is obtained, the casing of which is provided with wells adapted to receive reinforcements for forming the tie rods or else locations. corresponding to the desired ribs and overthicknesses.

On dispose au niveau de ce liner les éléments de renforcement du matériau composite et les moyens de renforts. Ensuite on injecte la résine et on soumet l'ensemble à un traitement permettant d'obtenir la structure finale.This liner has the reinforcing elements of the composite material and the reinforcement means. Then the resin is injected and subjected to a treatment to obtain the final structure.

Sans sortir du cadre de l'invention le procédé de fabrication peut faire appel à un procédé d'extrusion-soufflage, dont les étapes de mise en oeuvre sont connus de l'homme du métier et ne seront donc pas détaillées.Without departing from the scope of the invention, the manufacturing process may use an extrusion-blowing process, the implementation steps of which are known to those skilled in the art and will therefore not be detailed.

La structure ou le réservoir selon l'invention peut être ainsi intégré dans la place disponible d'un véhicule. Par ailleurs, notamment dans le cas d'un réservoir de véhicule, il est actuellement nécessaire de prévoir un réservoir auxiliaire destiné à contenir un fluide de nature différente pour offrir une autonomie de secours. A cet effet et, comme représenté sur la figure 8, on prévoit de former dans le corps du réservoir GPLc un logement dans lequel est placé le réservoir auxiliaire 24 muni de tous les moyens habituels 25 de branchement et les organes fonctionnels tel qu'une pompe ce qui facilite notablement le montage de cet ensemble réservoir.The structure or the tank according to the invention can thus be integrated into the available space of a vehicle. Furthermore, particularly in the case of a vehicle tank, it is currently necessary to provide an auxiliary reservoir for containing a different kind of fluid to provide backup autonomy. For this purpose and, as shown in FIG. 8, provision is made to form in the body of the LPG reservoir a housing in which the auxiliary tank 24 is placed provided with all the usual means of connection and the functional organs such as a pump which significantly facilitates the assembly of this tank assembly.

Il va de soi que de nombreuses variantes peuvent être apportées, telles que définies par les revendications, notamment par substitution de moyens techniques équivalents, sans sortir pour cela du cadre de l'invention.It goes without saying that many variations can be made, as defined by the claims, in particular by substitution of equivalent technical means, without departing from the scope of the invention.

Claims (16)

  1. Polymorphous container structure, intended for a pressurized liquid, to be fitted in a housing (L) of predetermined shape, comprising a casing delimiting at least one enclosure intended to receive the pressurized liquid, the casing comprising an inner casing (1), an outer casing (2) in at least one composite material and one or more truss means (7,8,9,16,19,21), the composite material consisting of reinforcement elements (11,12,15,17,20) locked in a matrix, characterized in that the inner casing (1) is a layer of moulded thermoplastic polymer material whose shape corresponds to the predetermined shape of the housing (L) and having its own mechanical resistance so that it can be used as support for forming the layer of composite material, and as support for positioning the reinforcement elements (11,12,15,17,20) of the composite material and/or the truss means.
  2. Container structure as in claim 1, characterized in that the one or more truss means (7,8,9,16,19,21) are arranged in the zones of maximum stress.
  3. Container structure as in claim 2, the container structure having at least two opposite faces, characterized in that the truss means comprise a tie-rod connecting two opposite faces of the container structure.
  4. Container structure as in claim 3, characterized in that the said opposite faces connected by a tie-rod (7) are substantially parallel or together form a predetermined angle.
  5. Container structure as in any of claims 1 to 4, characterized in that the truss means comprise a thickness allowance (9,19) in a predetermined zone of the casing, this allowance comprising reinforcement elements (20).
  6. Container structure as in any of claims 1 to 5 characterized in that the truss means comprise a rib (8,16) arranged on the inner casing (1) or outer casing (2), said rib (16) comprising reinforcement elements (17).
  7. Container structure as in any of claims 1 to 6, characterized in that the truss means are made of the same composite material as the outer casing (2).
  8. Container structure as in any of claims 1 to 6, characterized in that the truss means consist of a different composite material to the one forming the outer casing (2), the arrangement or orientation of the reinforcement elements being different.
  9. Container structure as in any of claims 1 to 8, characterized in that it comprises a filling-emptying system (4, 5).
  10. Container structure as in any of claims 1 to 9, characterized in that it comprises means (10) allowing the passing of a pressurized fluid between the different low levels of said container structure.
  11. Container structure as in any of claims 1 to 10, characterized in that it is intended to contain a liquefied petroleum gas (LPG) or dimethylether.
  12. Method for producing a container structure, the container structure conforming to any of claims 1 to 11, characterized in that it comprises a production phase having the following steps:
    g/ an inner casing (1) is made in a thermoplastic polymer material, by moulding, whose shape is adapted to the inner shape of the housing (L), and is provided with locations intended to receive the truss means (7, 8, 9, 16, 19, 21).
    h/ on the moulded inner casing (1) the truss means (7,8,9,16,19,21) and/or the reinforcement elements (11,12,15,17,21) are placed in position, and
    i/ the layer of composite material is formed and shaped.
  13. Method for producing a container structure as in claim 12, characterized in that it comprises a design phase preceding the production phase, this design phase comprising the steps of:
    a)/ on the basis of the shape of the housing, the shape of the container structure to be manufactured is determined, and meshing of said structure is established for at least one thickness value e of the casing,
    b/ the structure is subjected to a pressure value P chosen in relation to end-use stress,
    c/ the distribution of the overstress zones is determined over all or at least the major part of the structure,
    d/ a first type of truss means (7,8,9,16,19,21) is arranged with respect to the previously determined zones of overstress,
    e/ it is verified that the stress values obtained by applying a given pressure are acceptable with respect to at least the mechanical characteristics of the material,
    f/ the shape and/or type and/or distribution of the truss means (7,8,9,16,19,21) are optimised, and step e/ is repeated if at least one of said stress values is greater than the acceptable values.
  14. Method for producing a container structure as in claim 13, characterized in that step a/ is performed for two thickness values e1 and e2 chosen over a range (emin, emax) in relation to the material and to end-use stresses.
  15. Method for producing a container structure as in claim 13, characterized in that step a/ is performed for a casing of variable thickness over at least part of its surface area, these variations being distributed with respect to the zones of overstress obtained in step c/ for thickness value e.
  16. Method for producing a container structure as in any of claims 12 to 15, characterized in that step g/ is performed by rotor moulding or extrusion blow moulding.
EP00967995A 1999-10-11 2000-10-10 Pressurized liquid container and method for the production thereof Expired - Lifetime EP1409917B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9912615 1999-10-11
FR9912615A FR2799526B1 (en) 1999-10-11 1999-10-11 CONTAINER FOR PRESSURIZED FLUID AND MANUFACTURING METHOD THEREOF
PCT/FR2000/002813 WO2001027520A1 (en) 1999-10-11 2000-10-10 Pressurized liquid container and method for the production thereof

Publications (2)

Publication Number Publication Date
EP1409917A1 EP1409917A1 (en) 2004-04-21
EP1409917B1 true EP1409917B1 (en) 2006-06-07

Family

ID=9550755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967995A Expired - Lifetime EP1409917B1 (en) 1999-10-11 2000-10-10 Pressurized liquid container and method for the production thereof

Country Status (6)

Country Link
EP (1) EP1409917B1 (en)
AT (1) ATE329200T1 (en)
AU (1) AU7797200A (en)
DE (1) DE60028625T2 (en)
FR (1) FR2799526B1 (en)
WO (1) WO2001027520A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703481B2 (en) 2017-08-29 2020-07-07 Goodrich Corporation Conformable tank with sandwich structure walls
US10816138B2 (en) 2017-09-15 2020-10-27 Goodrich Corporation Manufacture of a conformable pressure vessel
US11091266B2 (en) 2017-08-29 2021-08-17 Goodrich Corporation Conformable tank fabricated using additive manufacturing
US11939105B2 (en) 2017-08-29 2024-03-26 Goodrich Corporation 3D woven conformable tank

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119115A1 (en) * 2001-04-19 2002-10-31 Messer Griesheim Gmbh pressure vessel
EP1850058A1 (en) 2006-04-25 2007-10-31 Inergy Automotive Systems Research (SA) Storage tank
DE102012019334A1 (en) * 2012-10-02 2014-04-03 Kautex Textron Gmbh & Co. Kg Container made of thermoplastic material
EP3006348B1 (en) * 2014-10-10 2017-03-01 Illinois Tool Works Inc. Enhanced fuel tank for mobile ground power unit
JP7359978B2 (en) * 2020-06-17 2023-10-11 プラスチック・オムニウム・ニュー・エナジーズ・フランス Composite pressure vessel with reinforcing elements
DE102021116426A1 (en) 2021-06-25 2022-12-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Pressure tank for storing hydrogen
FR3134163A1 (en) * 2022-04-01 2023-10-06 Design Tech Centre Cryogenic tank of complex shape and high gravimetric index and corresponding manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951554C2 (en) * 1979-12-21 1982-10-14 Westerwälder Eisenwerk Gerhard GmbH, 5241 Weitefeld Pressure-resistant, double or multi-shell container for liquids, gases or bulk goods
SE514327C2 (en) * 1991-12-23 2001-02-12 Ingemar Falk Press container
US5462193A (en) * 1993-10-06 1995-10-31 Schoo; Raul A. I. Composite pressure vessel
US5837170A (en) * 1996-12-20 1998-11-17 Pepsico, Inc. Process for obtaining blow molded plastic containers
FR2764671B1 (en) * 1997-06-13 1999-07-23 Djp Organisation CONTAINER OF COMPOSITE MATERIAL, IN PARTICULAR FOR A TANK OF PRESSURIZED LIQUEFIED GAS, AND ITS MANUFACTURING METHOD
DE19749950C2 (en) * 1997-11-03 1999-11-25 Mannesmann Ag Container for storing compressed gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703481B2 (en) 2017-08-29 2020-07-07 Goodrich Corporation Conformable tank with sandwich structure walls
US11091266B2 (en) 2017-08-29 2021-08-17 Goodrich Corporation Conformable tank fabricated using additive manufacturing
US11939105B2 (en) 2017-08-29 2024-03-26 Goodrich Corporation 3D woven conformable tank
US10816138B2 (en) 2017-09-15 2020-10-27 Goodrich Corporation Manufacture of a conformable pressure vessel
US11725779B2 (en) 2017-09-15 2023-08-15 Goodrich Corporation Manufacture of a conformable pressure vessel

Also Published As

Publication number Publication date
FR2799526A1 (en) 2001-04-13
FR2799526B1 (en) 2002-02-01
DE60028625D1 (en) 2006-07-20
EP1409917A1 (en) 2004-04-21
DE60028625T2 (en) 2007-05-10
AU7797200A (en) 2001-04-23
ATE329200T1 (en) 2006-06-15
WO2001027520A1 (en) 2001-04-19

Similar Documents

Publication Publication Date Title
EP1409917B1 (en) Pressurized liquid container and method for the production thereof
EP0487374B1 (en) Reservoir of feeble unitary weight particularly useful in the storage of fluids under pressure and method for its manufacture
FR2838177A1 (en) RESERVOIR FOR PRESSURIZED FLUID, IN PARTICULAR RESERVOIR FOR COMPRESSED GAS FOR A MOTOR VEHICLE
EP0458666B1 (en) Method of making a hollow structure for use in the storage of fluids under pressure
EP0629809A1 (en) Pressurised hydrocarbons storage container
FR2937396A1 (en) PIPING SYSTEM FOR FLUID TRANSFER PIPING OF AERIAL OR SPACE VEHICLE, METHOD OF MANUFACTURE AND AERONAUTICAL STRUCTURE INCORPORATING IT
EP1034395B1 (en) Container, in particular for pressurised liquefied gas, and method for making same
EP2949449B1 (en) Tank for storing liquid or gaseous media under pressure and method for manufacturing same
CA2060454A1 (en) Process for manufacturing a light structure by expanding a metallic tank within a wired corrugated tube
EP1067300B1 (en) Tank made of composite material for storing pressurized liquified gas
EP1907750B1 (en) Composite material reservoir for storing natural gas for vehicle
CA2149830C (en) Pa12-carbon lightweight structure for storing pressurized fluids
WO2024046951A1 (en) High-pressure hydrogen tank
FR3137433A1 (en) Braided shell composite tanks and corresponding manufacturing processes
WO2024002903A1 (en) Fastener forming a reinforcement for a tank, and corresponding manufacturing and shaping methods
WO2023247449A1 (en) Method for producing polymorphic tanks
EP3230108B1 (en) System for a motor vehicle
EP4056885B1 (en) Device for storing a pressurised gas, in particular hydrogen
FR3053936B1 (en) MULTI-CARBON FUEL TANK AND METHOD OF MANUFACTURE
EP1240004B1 (en) Method for producing a hollow composite structure and structure obtained according to this method
FR3106185A1 (en) Nipple for a pressurized fluid reservoir
FR2765633A1 (en) High-pressure gas fuel tank and its manufacturing procedure e.g. for LPG for motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060607

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60028625

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061107

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060607

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20061031

Owner name: ROXER

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60028625

Country of ref document: DE

Owner name: ROXER, FR

Free format text: FORMER OWNER: ROXER, INSTITUT FRANCAIS DU PETROLE, , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 60028625

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: ROXER, INSTITUT FRANCAIS DU PETROLE, , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 60028625

Country of ref document: DE

Owner name: ROXER, FR

Free format text: FORMER OWNERS: ROXER, COURBEVOIE, FR; INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 60028625

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNERS: ROXER, COURBEVOIE, FR; INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121025

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121022

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121031

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60028625

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161021

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031