EP1407443B1 - Method for monitoring a plasma display panel with discharge between triad-mounted electrodes - Google Patents

Method for monitoring a plasma display panel with discharge between triad-mounted electrodes Download PDF

Info

Publication number
EP1407443B1
EP1407443B1 EP02747498A EP02747498A EP1407443B1 EP 1407443 B1 EP1407443 B1 EP 1407443B1 EP 02747498 A EP02747498 A EP 02747498A EP 02747498 A EP02747498 A EP 02747498A EP 1407443 B1 EP1407443 B1 EP 1407443B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
triad
electrode
central electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02747498A
Other languages
German (de)
French (fr)
Other versions
EP1407443A1 (en
Inventor
Laurent Tessier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Plasma SAS
Original Assignee
Thomson Plasma SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Plasma SAS filed Critical Thomson Plasma SAS
Publication of EP1407443A1 publication Critical patent/EP1407443A1/en
Application granted granted Critical
Publication of EP1407443B1 publication Critical patent/EP1407443B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/298Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels
    • G09G3/2983Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels using non-standard pixel electrode arrangements
    • G09G3/2986Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels using surface discharge panels using non-standard pixel electrode arrangements with more than 3 electrodes involved in the operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0228Increasing the driving margin in plasma displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2927Details of initialising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • G09G3/2942Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge with special waveforms to increase luminous efficiency

Definitions

  • the adjacent discharge zone walls are partially coated with phosphors emitting different colors when excited by ultraviolet radiation from the discharges; thus, the adjacent points corresponding to these zones of different colors are associated in pixels or elements of the image to be displayed.
  • the discharge zones are separated by barriers.
  • the memory effect mentioned above is obtained in a discharge zone 9 when charges are deposited on the surface of the dielectric 17 in this zone, in particular by application of a so-called pulse.
  • the dielectric layer is generally coated with a protective layer and secondary electron emission, for example based on MgO.
  • the central electrode 20 must be thin so as not to increase the electrostatic capacity of the holding electrodes of each triad.
  • the second maintenance cycle then continues as the first cycle and the movements of the charges are identical to that of the first cycle: from the end of this first main sustaining discharge of the second cycle ( figure 2C1 similar to 2H1 ), a secondary discharge of poor efficiency leads to self-erasure ( Figures 2B2 and 2C2 ), a very low main sustaining discharge ( Figures 2D1 and 2F1 ), finally another secondary discharge of poor performance ( Figures 2D2 and 2F2 ).
  • the central electrode alternately plays the role of anode and cathode.
  • the object of the invention is to propose a coplanar plasma panel structure and a method for controlling the pulses for maintaining this panel, bringing about a significant improvement in the luminous efficiency; the invention is particularly intended to avoid the aforementioned drawbacks.
  • the subject of the invention is a method for controlling a plasma display panel for viewing alternating-current images, co-planar maintenance discharges, and memory effects, according to claim 1.
  • the luminous efficiency of the panel is substantially improved; according to the invention, and contrary to the control methods described in the document FR 2790583 already mentioned, during the entire duration of the holding operations (or “maintenance phases"), the potential of the central electrode is always strictly greater than that of one or the other lateral electrode, so that this central electrode always plays the role of anode.
  • the central electrode has a width sufficiently high to promote the spreading of electrons and elongation of the pseudo-positive column of the plasma during sustaining discharges; ; preferably, the width of this central electrode is greater than 80 microns.
  • the width of this central electrode may especially be between 100 and 200 ⁇ m.
  • the width of the central electrode is then greater than the width of each of the lateral electrodes.
  • the invention also relates to the above method according to the invention also comprising, before or after each holding operation, a selective addressing or erasing operation applied only in each of said zones where the it is desired to maintain a light discharge during said series, by applying at least one voltage pulse between the electrode of said first network crossing said zone and at least one of the electrodes of the triad crossing said zone.
  • This method corresponds to a conventional control mode by selective addressing, which can be used in the processes where it is addressed successively lines or groups of lines of discharge zones before a maintenance phase (so-called “ADS” or “ADM” cases) or in processes where lines or groups of lines are addressed during maintenance other lines or groups of lines (so-called “AWD”).
  • This method corresponds to a conventional control mode by selective erasure.
  • the voltage selective pulse is applied between the electrode of said first network crossing said zone and the central electrode of the triad crossing said zone.
  • the lateral electrodes of series of adjacent discharge zones can be grouped together, to the point of even using common electrodes, for example as a lateral electrode. lower of a triad corresponding to a line n and as upper lateral electrode of the triad corresponding to the next adjacent line (n + 1); thus, the subject of the invention is also a method according to the invention in which all the areas served by the same triad forming a line of said panel, on any two adjacent lines traversed respectively by a first triad on the one hand and by a second triad on the other hand, the lateral electrode of the first triad is electrically connected to the same potential as the lateral electrode closest to the second triad.
  • said two electrically connected electrodes form an electrode common to two adjacent lines.
  • the invention also relates to a plasma panel that can be used for carrying out the method according to the invention according to claim 8.
  • the panel does not include a specific power supply for these electrodes or switches or "drivers" for their power supply.
  • the width of the central electrode is greater than 80 microns; other preferences concerning the geometry of the electrodes and / or cells of the panel have been mentioned above, especially the advantageous case where the width of the central electrode is greater than the width of each of the lateral electrodes.
  • the lateral electrode of the first triad is electrically connected to the same potential as the nearest lateral electrode of the second triad; preferably, said two electrically connected electrodes form an electrode common to two adjacent lines.
  • the plasma panel according to the invention is identical to that previously described ( figure 1 ) and the one described in the document FR 2790583 ( figure 4 ), with the difference, essential for optimizing the light output, that the central electrode 20 of each triad is sufficiently wide to promote the elongation of the positive pseudo-column of the plasma and the spreading of the electrons during a light discharge; in practice, the width of this central electrode is greater than the gap between the electrodes; thus, the width of this central electrode is greater than 50 microns, preferably greater than 80 microns; the width of the central electrode of each triad is generally between 100 and 200 microns approximately.
  • the second maintenance cycle then continues as the first cycle and the movements of the charges are identical to those of the first cycle: from the end of this first sustaining discharge of the second cycle ( figure 3C ), there is a second sustaining discharge of the second cycle ( 3D figures at 3F ) also having a very good light output.
  • the series of holding pulses only cause discharges of very good luminous efficiency; overall, the luminous efficiency of the plasma panel is therefore substantially improved and optimized, thanks to a control system where the central electrode always plays the role of anode and thanks to the width of the central electrode, greater than in the prior art.
  • the elongation of the discharge that is obtained allows, in each zone, to increase, within the plasma, the volume of the pseudo-positive column where there is a weak electric field and where the emission of Ultraviolet photons are generated with very good performance.
  • the invention makes it possible to use these two means while avoiding these limitations; the central electrode makes it possible to space the two opposite coplanar electrodes without modifying the ignition conditions of the discharges.
  • all the selective addressing or erasing operations are transferred to the central electrode; thanks to this improvement, one can group and electrically connect each lateral electrode of a triad to the side electrode closest to the adjacent triad on the slab.
  • These two connected electrodes may even only form a single electrode 21, so that the total number of electrodes of the triad network is reduced by one third; thus, the total number of electrodes of the second electrode array, or network of coplanar discharges, is identical, to an electrode, to the total number of electrodes of the coplanar networks of the prior art, which are networks of pairs electrodes; the manufacture of plasma panel slabs and that of the control means according to this variant are therefore not more expensive than that of plasma panels with only two coplanar electrodes of the prior art.
  • each pixel P comprises three adjacent discharge areas 9R, 9G, 9B, separated by barriers 16 extending from the dielectric layer 15 of the back panel carrying the first network of electrodes 5 to the dielectric layer 17 of the front plate carrying the electrode triads 13, 20, 14; the adjacent triads 13, 20, 14 on the one hand and 13 ', 20', 14 '(not shown) on the other hand are separated from each other by barriers 6 orthogonal to the barriers 16; the electrodes 5 of the first network are here shifted and positioned under the barriers 16, and are provided with branches 51 positioned at each discharge zone 9R, 9G, 9B, and extending towards the middle of this zone; preferably, the electrodes 5 of the first network are provided with means for promoting the formation of the maintenance discharges between each lateral electrode 13, 14 of a triad and the central electrode 20 of this same triad: thus, it is preferable to find two
  • the lower lateral electrode 14 of the first triad is connected to the same bus 22 'as the upper lateral electrode 13' of the second triad, adjacent to the first, corresponding here to the next line (n + 1) of the panel; as each triad lateral electrode is shared between two adjacent lines, if N is the total number of lines of the panel, there is only a total of only 2N + 1 electrodes in the coplanar network or second network, which simplifies the manufacture of the panel, each electrode being served by a central bus 20, 20 ', or by a lateral bus 22, 22'; the side buses 22, 22 'are opaque and positioned here at the top of the barriers 6, so as not to obscure the emission of visible light from the discharge areas 9R, 9G, 9B.
  • a lateral bus 22 'then forms, with the two lateral electrodes 14 and 13' to which it is connected, one and the same electrode 21; the whole of the second network of electrodes or network of lines, is formed of alternations of central electrodes 20, 20 'which serve for the selective operations of addressing or erasure, and electrodes 21, common to two lines adjacent discharge areas, which are not used for selective addressing or erasure operations.
  • the electrodes 13, 14, 13 ' are made of transparent conductive material, for example tin oxide (SnO) or mixed indium tin oxide (“ITO”), so as not to absorb visible light from the discharge areas 9R, 9G, 9B.
  • transparent conductive material for example tin oxide (SnO) or mixed indium tin oxide (“ITO"), so as not to absorb visible light from the discharge areas 9R, 9G, 9B.
  • the grid arrangement of opaque conductors of the central electrodes 20, 20 'and / or side 21 is more economical, because it avoids the expensive implementation of transparent conductive materials, as in the previous embodiment of the invention.
  • the conductors and branches forming the grids are of a sufficiently small width to limit the occultation of the cells or discharge zones but sufficiently large to obtain the electrical conductivity necessary for obtaining the discharges.
  • grids may be used, such as that of the electrode 13 of the figure 7 , comprising three parallel conductors 131, 132, 133 interconnected by transverse branches 134 disposed above the barriers 16 to limit the occultation of the cells.
  • the figure 8 represents a variant of the figure 6 (identical references of the components) with a central transparent electrode 20 whose width is greater than that of each of the side electrodes 13 or 14, and which is further provided with two opaque conductive buses 201, 203 which are disposed at the discharge initiation edges of this electrode; as the thickness of such conductive bus is generally greater than the thickness of the transparent portion of the electrode, generally based on ITO, the dielectric layer thickness covering these buses is less than the thickness of the dielectric layer covering the transparent part of the electrode; thus, the dielectric layer thickness being lower than the level of the initiation edges of the central electrode with respect to the thickness between outside of the priming edges, it is advantageous to lower the discharge initiation voltage, to to avoid a matrix start of the discharges, to favor the coplanar initiation in accordance with one of the aims pursued by the invention.
  • the figure 9 represents a variant of the figure 7 (identical references of the components) with a central electrode 20 whose width is advantageously greater than that of each of the lateral electrodes 13 or 14; the opaque transverse branches 202 of the central electrode 20 and those 134 of the lateral electrodes 13, 14 are here disposed on the barriers 16 delimiting the cells; they may overflow slightly along these barriers.
  • the present invention has been described with reference to a conventional reciprocating plasma panel and a driving mode where the sustaining discharges involve a charge reversal on the surface of the dielectric; it is obvious to those skilled in the art that it can be applied to other types of billboards and other modes of driving without departing from the scope of the claims below; the invention thus applies in particular to plasma panels with high frequency or radio frequency control, where the holding discharges are at least partially stabilized between the electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

Par référence au document FR 2790583 (SAMSUNG), notamment à la figure 4 de ce document reproduite schématiquement ci après à la figure 1, l'invention concerne un procédé de pilotage d'un panneau à plasma de visualisation d'images à courant alternatif, à décharges d'entretien co-planaires, et à effet mémoire, du type comprenant :

  • une dalle avant et une dalle arrière parallèles ménageant entre elles un espace rempli de gaz de décharge,
  • l'une des dalles 12 comprenant au moins un premier réseau d'électrodes 5 et l'autre dalle 11 comprenant au moins un deuxième réseau de triades d'électrodes 13, 20, 14 dont la direction générale est approximativement orthogonale à celle des électrodes 5 du premier réseau,
  • les espaces situés aux croisements des électrodes 5 du premier réseau et des triades d'électrodes 13, 20, 14 du second réseau d'électrodes constituant une matrice de zones 9 de décharges lumineuses et de points de l'image à visualiser,
  • les électrodes des triades 13, 20, 14 étant revêtues d'une couche diélectrique 17 pour obtenir l'effet mémoire classique selon lequel une décharge peut être générée entre ces électrodes par application d'une tension inférieure à la tension d'amorçage.
With reference to the document FR 2790583 (SAMSUNG), in particular figure 4 of this document reproduced schematically hereafter at figure 1 the invention relates to a method for controlling a plasma display panel for displaying alternating current images, co-planar maintenance discharges, and memory effect, of the type comprising:
  • a front slab and a rear slab parallel between them a space filled with discharge gas,
  • one of the slabs 12 comprising at least one first electrode array 5 and the other slab 11 comprising at least one second array of electrode triads 13, 20, 14 whose general direction is approximately orthogonal to that of the electrodes 5 of the first network,
  • the spaces at the intersections of the electrodes 5 of the first array and the electrode triads 13, 20, 14 of the second array of electrodes constituting a matrix of zones 9 of light discharges and points of the image to be displayed,
  • the electrodes of the triads 13, 20, 14 being coated with a dielectric layer 17 to obtain the conventional memory effect according to which a discharge can be generated between these electrodes by applying a voltage lower than the starting voltage.

Généralement, les parois de zones de décharge adjacentes sont partiellement revêtues de luminophores émettant des couleurs différentes lorsqu'ils sont excités par le rayonnement ultraviolet des décharges ; ainsi, les points adjacents correspondant à ces zones de couleurs différentes sont associés en pixels ou éléments de l'image à visualiser.Generally, the adjacent discharge zone walls are partially coated with phosphors emitting different colors when excited by ultraviolet radiation from the discharges; thus, the adjacent points corresponding to these zones of different colors are associated in pixels or elements of the image to be displayed.

Généralement, les zones de décharges, au moins celles de différentes couleurs, sont séparées par des barrières.Generally, the discharge zones, at least those of different colors, are separated by barriers.

L'effet mémoire mentionné ci-dessus est obtenu dans une zone 9 de décharge dès lors que des charges sont déposées à la surface du diélectrique 17 dans cette zone, notamment par application d'une impulsion dite d'adressage entre l'électrode 5 et l'une au moins des électrodes opposées de la triade 14, 20, 13 qui se croisent dans cette zone ; la couche diélectrique est généralement revêtue d'une couche de protection et d'émission d'électrons secondaires, par exemple à base de MgO.The memory effect mentioned above is obtained in a discharge zone 9 when charges are deposited on the surface of the dielectric 17 in this zone, in particular by application of a so-called pulse. addressing between the electrode 5 and at least one of the opposite electrodes of the triad 14, 20, 13 which intersect in this area; the dielectric layer is generally coated with a protective layer and secondary electron emission, for example based on MgO.

Pour obtenir une succession de décharges de maintien dans les zones ainsi « adressées », le procédé de pilotage décrit dans ce document comprend :

  • classiquement, l'application d'au moins une série d'impulsions de tension de maintien entre les électrodes opposées 13, 14 de chaque triade de manière à générer des décharges de maintien dans chacune des zones de croisement 9 « adressées », c'est à dire celle dans lesquelles on souhaite maintenir une décharge ;
  • en outre, à un instant antérieur (revendication 3) ou égal (revendication 6) à celui de l'application d'une impulsion de maintien de cette série, application d'une impulsion sur l'électrode centrale 20 de ladite triade de manière à obtenir :
    • o soit (revendication 4) l'élévation du potentiel de l'électrode centrale 20 au niveau du potentiel le plus élevé [ central = anode ] des deux électrodes opposées 13, 14 au moment de ladite impulsion de maintien générant une décharge lumineuse de maintien, puis, lorsque ladite décharge décroît, abaissement du potentiel de cette électrode centrale 20 au niveau du potentiel le plus bas des deux électrodes opposées 13, 14 [ central = cathode ] .
    • o soit (revendication 5) l'abaissement du potentiel de l'électrode centrale 20 au niveau du potentiel le plus bas [ central = cathode ] des deux électrodes opposées 13, 14 au moment de ladite impulsion de maintien générant une décharge lumineuse de maintien, puis, lorsque ladite décharge décroît, élévation du potentiel de cette électrode centrale 20 au niveau du potentiel le plus élevé des deux électrodes opposées 13, 14 [ central = anode ].
To obtain a succession of holding discharges in the zones thus "addressed", the control method described in this document comprises:
  • conventionally, the application of at least one set of holding voltage pulses between the opposite electrodes 13, 14 of each triad so as to generate holding discharges in each of the "addressed" crossing zones 9 is to say the one in which one wishes to maintain a discharge;
  • in addition, at a previous time (claim 3) or equal (claim 6) to that of the application of a holding pulse of this series, application of a pulse on the central electrode 20 of said triad so as to get :
    • or (claim 4) raising the potential of the central electrode 20 to the level of the highest potential [central = anode] of the two opposite electrodes 13, 14 at the time of said holding pulse generating a holding light discharge, then, when said discharge decreases, lowering the potential of this central electrode 20 at the lowest potential of the two opposite electrodes 13, 14 [central = cathode].
    • o either (claim 5) the lowering of the potential of the central electrode 20 at the lowest potential [central = cathode] of the two opposite electrodes 13, 14 at the time of said holding pulse generating a holding light discharge, then, when said discharge decreases, raising the potential of this central electrode 20 at the highest potential of the two opposite electrodes 13, 14 [central = anode].

Les chronogrammes correspondant à l'échelonnement des impulsions et des décharges sont représentés d'une part aux figures 5 et 6 de ce document, d'autre part aux figures 8 et 9.The chronograms corresponding to the staggering of pulses and discharges are represented on the one hand by figures 5 and 6 of this document, on the other hand to figures 8 and 9 .

Toujours selon ce document FR 2790583 , l'électrode centrale 20 doit être mince de manière à ne pas augmenter la capacité électrostatique des électrodes de maintien de chaque triade.Still according to this document FR 2790583 , the central electrode 20 must be thin so as not to increase the electrostatic capacity of the holding electrodes of each triad.

Dans les panneaux à plasma à décharges d'entretien coplanaires, les décharges se produisent par transferts de charges, au travers de la zone 9, sur la surface interne de la couche diélectrique 17 de la dalle 11 portant les électrodes coplanaires, ici les triades 13, 20, 14 ; on va maintenant décrire les différentes étapes de transfert de charges qui donnent lieu, éventuellement, à des décharges lumineuses d'entretien dans le cas du pilotage du panneau tel que décrit dans le document FR 2790583 ; on se réfère aux figures jointes 2A à 2H1 où les zones remplies de signes - - - représentent des charges négatives ou électrons sur la surface du diélectrique 17, où les zones quadrillées correspondent à des charges positives ou ions sur la surface du diélectrique 17 :

  • après une impulsion d'adressage classique appliquée à un croisement d'une électrode 5 du premier réseau et d'une triade d'électrodes 13, 20, 14 du second réseau d'électrodes, entre cette électrode 5 d'adressage et au moins une électrode de cette triade, on obtient la répartition de charges illustrée à la figure 2A, l'électrode 14 étant portée à + 300 V par rapport aux autres électrodes 20 (0 V) et 13 (0 V) ; des électrons sont donc accumulés sur une électrode latérale de la triade, et des ions sont accumulés principalement sur l'électrode centrale de la triade.
  • comme dans une séquence d'entretien classique, les potentiels des deux électrodes latérales sont inversés et l'électrode 13 est portée à + 200 V par rapport à l'électrode latérale opposée 14 (0 V) ; au moment de l'application de cette première impulsion de maintien, le potentiel de l'électrode centrale 20 est alors élevé au niveau du potentiel le plus élevé des deux électrodes opposées 13, 14, soit ici 200 V, et l'électrode centrale joue alors le rôle d'anode ; on aboutit à la configuration décrite à la figure 2B1 et une première décharge lumineuse principale de maintien surgit (voir flèche) qui entraîne l'inversion des charges représentée à la figure 2C1 ; lors de cette inversion de charges, les électrons s'étalent sur la largeur de l'électrode centrale 20 et sur celle de l'électrode latérale 13, ce qui donne lieu à un allongement important de la pseudo-colonne positive du plasma et donc à une décharge de bon rendement lumineux ;
  • puis, lorsque cette décharge décroît, le potentiel de l'électrode centrale 20 est abaissé au niveau du potentiel le plus bas des deux électrodes opposées 13, 14, ici 0 V, et l'électrode centrale joue alors le rôle de cathode, comme représenté à la figure 2B2 ; le mouvement des charges qui s'amorce alors (flèches) génère une première décharge lumineuse secondaire de maintien et aboutit à la distribution des charges représentée à la figure 2C2 ; cette décharge présente un mauvais rendement lumineux, car elle ne donne pas lieu à un étalement significatif et important d'électrons ;
  • on applique maintenant la deuxième impulsion de maintien en inversant à nouveau les potentiels des deux électrodes latérales ; l'électrode 14 est maintenant portée à + 200V par rapport à l'électrode latérale opposée 13 (0 V) ; au moment de l'application de cette deuxième impulsion de maintien, le potentiel de l'électrode centrale 20 est alors à nouveau élevé au niveau du potentiel le plus élevé des deux électrodes opposées 13, 14, soit ici 200 V, et l'électrode centrale joue alors le rôle d'anode ; on aboutit à la configuration décrite à la figure 2D1 ; la deuxième décharge lumineuse principale de maintien (voir flèche) qu'on attend n'a quasiment pas lieu, car la zone centrale de la surface du diélectrique est fortement déchargée et l'effet mémoire est en partie perdu ; la séquence précédente a donc conduit à un auto-effacement ; la configuration des charges à laquelle on aboutit est très peu modifiée (figure 2F1).
  • ensuite, le potentiel de l'électrode centrale 20 est à nouveau abaissé au niveau du potentiel le plus bas des deux électrodes opposées 13, 14, ici 0 V, et l'électrode centrale joue alors le rôle de cathode, comme représenté à la figure 2D2 ; le mouvement des charges qui s'amorce alors (flèches) génère une deuxième décharge lumineuse secondaire de maintien et aboutit à la distribution des charges représentée à la figure 2F2 ; cette décharge présente un mauvais rendement lumineux, car l'étalement auquel elle donne lieu concerne ici les ions ;
  • après ce premier cycle complet de maintien comprenant deux impulsions principales de maintien, on aborde alors un deuxième cycle ; on applique ainsi la première impulsion de maintien du deuxième cycle en inversant à nouveau les potentiels des deux électrodes latérales ; l'électrode 13 est maintenant portée à + 200V par rapport à l'électrode latérale opposée 14 (0V) ; au moment de l'application de cette impulsion de maintien, le potentiel de l'électrode centrale 20 est alors élevé au niveau du potentiel le plus élevé des deux électrodes opposées 13, 14, soit ici 200 V, et l'électrode centrale joue le rôle d'anode ; on aboutit à la configuration décrite à la figure 2G1 ; et une nouvelle décharge lumineuse principale de maintien surgit (voir flèche) qui entraîne l'inversion des charges représentée à la figure 2H1, identique à la figure 2C1 représentant la fin de la première décharge de maintien ; lors de cette inversion de charges, les électrons s'étalent sur la largeur de l'électrode centrale et sur celle de l'électrode latérale 13, ce qui donne lieu à un allongement important de la pseudo-colonne positive du plasma et donc à une décharge de bon rendement lumineux ;
In the coplanar maintenance discharge plasma panels, discharges occur by charge transfer through zone 9 onto the inner surface of the dielectric layer 17 of slab 11 carrying the coplanar electrodes, here the triads 13 , 2014 ; we will now describe the various steps of charge transfer which give rise, possibly, to maintenance light discharges in the case of controlling the panel as described in the document FR 2790583 ; 2A to 2H1, where the zones filled with signs - - - represent negative charges or electrons on the surface of the dielectric 17, where the gridded zones correspond to positive charges or ions on the surface of the dielectric 17:
  • after a conventional addressing pulse applied to a crossing of an electrode 5 of the first array and an electrode triad 13, 20, 14 of the second array of electrodes, between this addressing electrode 5 and at least one electrode of this triad, we obtain the load distribution illustrated in FIG. Figure 2A the electrode 14 being raised to +300 V relative to the other electrodes (0 V) and 13 (0 V); electrons are thus accumulated on a lateral electrode of the triad, and ions are accumulated mainly on the central electrode of the triad.
  • as in a conventional maintenance sequence, the potentials of the two side electrodes are reversed and the electrode 13 is raised to + 200 V relative to the opposite lateral electrode 14 (0 V); at the moment of application of this first holding pulse, the potential of the central electrode 20 is then raised at the highest potential of the two opposite electrodes 13, 14, here 200 V, and the central electrode plays then the role of anode; we arrive at the configuration described in Figure 2B1 and a first main luminous discharge of maintenance arises (see arrow) which causes the reversal of the charges represented in FIG. figure 2C1 ; during this inversion of charges, the electrons are spread over the width of the central electrode 20 and that of the lateral electrode 13, which gives rise to an elongation important of the positive pseudo-column of the plasma and thus to a discharge of good luminous yield;
  • then, when this discharge decreases, the potential of the central electrode 20 is lowered at the lowest potential of the two opposite electrodes 13, 14, here 0 V, and the central electrode then plays the role of cathode, as shown to the figure 2B2 ; the movement of the charges which then starts (arrows) generates a first secondary luminous discharge of maintenance and leads to the distribution of the charges represented in FIG. Figure 2C2 ; this discharge has a poor light output, because it does not give rise to a significant and significant spread of electrons;
  • the second holding pulse is now applied by reversing again the potentials of the two lateral electrodes; the electrode 14 is now raised to + 200V relative to the opposite lateral electrode 13 (0 V); at the moment of application of this second holding pulse, the potential of the central electrode 20 is then raised again at the highest potential of the two opposite electrodes 13, 14, here 200 V, and the electrode central then plays the role of anode; we arrive at the configuration described in figure 2D1 ; the second main maintenance light discharge (see arrow) that is expected is almost non-existent because the central area of the surface of the dielectric is heavily discharged and the memory effect is partly lost; the preceding sequence has therefore led to an auto-erasure; the resulting configuration of the loads is very little modified ( Figure 2F1 ).
  • then, the potential of the central electrode 20 is again lowered at the lowest potential of the two opposite electrodes 13, 14, here 0 V, and the central electrode then plays the role of cathode, as shown in FIG. figure 2D2 ; the movement of the charges which then begins (arrows) generates a second secondary luminous discharge of maintenance and leads to the distribution of the charges represented in FIG. Figure 2F2 ; this discharge has a poor light output, because the spreading to which it gives rise concerns here the ions;
  • after this first complete maintenance cycle comprising two main sustaining pulses, then a second cycle is approached; we apply thus the first pulse maintaining the second cycle by reversing again the potentials of the two lateral electrodes; the electrode 13 is now raised to + 200V relative to the opposite lateral electrode 14 (0V); at the moment of application of this holding pulse, the potential of the central electrode 20 is then raised at the highest potential of the two opposite electrodes 13, 14, here 200 V, and the central electrode plays the anode role; we arrive at the configuration described in Figure 2G1 ; and a new main luminous discharge of maintenance arises (see arrow) which causes the reversal of the loads represented in the figure 2H1 , identical to the figure 2C1 representing the end of the first sustainment discharge; during this inversion of charges, the electrons spread over the width of the central electrode and that of the lateral electrode 13, which gives rise to a significant elongation of the positive pseudo-column of the plasma and therefore to a discharge of good light output;

Le deuxième cycle de maintien se poursuit alors comme le premier cycle et les mouvements des charges sont identiques à celle du premier cycle : à partir de la fin de cette première décharge principale de maintien du deuxième cycle (figure 2C1 identique à 2H1), se succèdent une décharge secondaire de mauvais rendement conduisant à l'auto-effacement (figures 2B2 et 2C2), une très faible décharge principale de maintien (figures 2D1 et 2F1), enfin une autre décharge secondaire de mauvais rendement (figures 2D2 et 2F2).The second maintenance cycle then continues as the first cycle and the movements of the charges are identical to that of the first cycle: from the end of this first main sustaining discharge of the second cycle ( figure 2C1 similar to 2H1 ), a secondary discharge of poor efficiency leads to self-erasure ( Figures 2B2 and 2C2 ), a very low main sustaining discharge ( Figures 2D1 and 2F1 ), finally another secondary discharge of poor performance ( Figures 2D2 and 2F2 ).

Le cas échéant, d'autres cycles identiques de maintien se succèdent ensuite jusqu'à épuisement de la durée de maintien souhaitée, et les impulsions de tension appliquées aux électrodes forment une série d'impulsions de maintien.If necessary, other identical cycles of maintenance succeed each other until the desired holding time is exhausted, and the voltage pulses applied to the electrodes form a series of holding pulses.

On voit donc que sur un cycle complet comprenant deux impulsions principales et deux impulsions secondaires de maintien, une seule décharge présente un bon rendement lumineux ; globalement, le rendement lumineux du panneau à plasma n'est donc pas satisfaisant lorsqu'on utilise, pour l'entretien coplanaire, des réseaux de triades d'électrodes et la méthode de pilotage décrite dans le document FR 2790583 .It can therefore be seen that over a complete cycle comprising two main pulses and two secondary sustaining pulses, a single discharge has a good luminous efficiency; overall, the luminous efficiency of the plasma panel is therefore not satisfactory when using, for coplanar maintenance, triad arrays of electrodes and the control method described in the document. FR 2790583 .

On voit donc que, dans une série d'impulsions de maintien, l'électrode centrale joue alternativement le rôle d'anode et de cathode.It can thus be seen that, in a series of holding pulses, the central electrode alternately plays the role of anode and cathode.

Par ailleurs, la faible largeur de l'électrode centrale de ces triades, telle qu'elle est décrite et préconisée dans le document FR 2790583 , limite les possibilités d'étalement des électrons et d'allongement de la pseudo-colonne positive du plasma, ce qui n'apporte aucune amélioration de rendement lumineux par rapport aux configurations coplanaires classiques, l'amélioration du rendement lumineux n'étant d'ailleurs pas le but poursuivi par ce document.Moreover, the small width of the central electrode of these triads, as described and recommended in the document FR 2790583 limits the possibilities of electron spreading and elongation of the positive pseudo-column of the plasma, which brings about no improvement in light efficiency compared to conventional coplanar configurations, the improvement of the light output not being elsewhere not the purpose of this document.

L'invention a pour but de proposer une structure de panneau à plasma coplanaire et une méthode de pilotage des impulsions de maintien de ce panneau apportant une amélioration sensible du rendement lumineux; l'invention a en particulier pour but d'éviter les inconvénients précités.The object of the invention is to propose a coplanar plasma panel structure and a method for controlling the pulses for maintaining this panel, bringing about a significant improvement in the luminous efficiency; the invention is particularly intended to avoid the aforementioned drawbacks.

A cet effet, l'invention a pour objet un procédé de pilotage d'un panneau à plasma de visualisation d'images à courant alternatif, à décharges d'entretien co-planaires, et à effet mémoire, selon la revendication 1To this end, the subject of the invention is a method for controlling a plasma display panel for viewing alternating-current images, co-planar maintenance discharges, and memory effects, according to claim 1.

Grâce à cette disposition, on améliore sensiblement le rendement lumineux du panneau ; selon l'invention, et contrairement aux procédés de pilotage décrits dans le document FR 2790583 déjà cité, pendant toute la durée des opérations de maintien (ou « phases d'entretien »), le potentiel de l'électrode centrale est toujours strictement supérieur à celui de l'une ou de l'autre électrode latérale, de sorte que cette électrode centrale joue toujours le rôle d'anode.With this arrangement, the luminous efficiency of the panel is substantially improved; according to the invention, and contrary to the control methods described in the document FR 2790583 already mentioned, during the entire duration of the holding operations (or "maintenance phases"), the potential of the central electrode is always strictly greater than that of one or the other lateral electrode, so that this central electrode always plays the role of anode.

Un moyen avantageux pour faire jouer à l'électrode centrale le rôle d'anode pendant toute l'opération de maintien (ou toutes les phases d'entretien) consiste à rendre cette électrode flottante ; en effet, par principe du pont diviseur capacitif, dans une telle configuration, l'électrode centrale présente alors un potentiel compris entre le potentiel des deux électrodes latérales adjacentes de sorte que ce potentiel de l'électrode centrale est toujours strictement supérieur à celui de l'une ou de l'autre électrode latérale ; l'avantage économique d'une telle configuration est qu'elle ne nécessite pas d'alimentation spécifique de maintien pour les électrodes centrales du panneau ni de commutateurs ou « drivers » pour leur alimentation.An advantageous way to make the central electrode play the role of anode during the entire holding operation (or all the maintenance phases) is to make this electrode floating; indeed, in principle, the capacitive divider bridge, in such a configuration, the central electrode then has a potential between the potential of the two adjacent side electrodes so that the potential of the central electrode is always strictly greater than that of the central electrode. one or the other side electrode; the economic advantage of such a configuration is that it does not require a specific power supply for the central electrodes of the panel or switches or "drivers" for their power supply.

Pour obtenir une amélioration encore plus importante du rendement lumineux, il est préférable, contrairement aux enseignements du document FR 2790583 déjà cité, que l'électrode centrale présente une largeur suffisamment élevée pour favoriser l'étalement des électrons et d'allongement de la pseudo-colonne positive du plasma lors des décharges de maintien ; ; de préférence, la largeur de cette électrode centrale est supérieure à 80 µm.To obtain an even greater improvement in light output, it is preferable, contrary to the teachings of the document FR 2790583 already cited, that the central electrode has a width sufficiently high to promote the spreading of electrons and elongation of the pseudo-positive column of the plasma during sustaining discharges; ; preferably, the width of this central electrode is greater than 80 microns.

La largeur de cette électrode centrale peut être notamment comprise entre 100 et 200 µm.The width of this central electrode may especially be between 100 and 200 μm.

Avantageusement, l'électrode centrale peut même être plus large que 200 µm; notamment dans ce cas, on risque alors un allumage matriciel des décharges, c'est à dire un amorçage de ces décharges, non pas entre les électrodes de la triade (cas d'allumage coplanaire), mais entre une électrode du premier réseau appartenant à une dalle et une électrode d'une triade appartenant à l'autre dalle ; on cherche à éviter les allumages matriciels parce que, contrairement aux allumages coplanaires, ils fluctuent largement d'une cellule à l'autre du panneau en fonction des caractéristiques électriques des matériaux des parois de ces cellules, notamment des luminophores, qui diffèrent d'une cellule à l'autre ; ces caractéristiques électriques comprennent la permittivité, la charge statique, l'épaisseur diélectrique, l'émission secondaire électronique ; afin d'éviter ou de limiter cet allumage matriciel, de préférence :

  • les gaps séparant et isolant les électrodes adjacentes d'une même triade sont inférieurs à 80 µm, et
  • l'espacement entre les dalles ménageant l'espace rempli de gaz de décharge est supérieur à 130 µm.
Advantageously, the central electrode may even be wider than 200 microns; especially in this case, there is a risk then of a matrix ignition of the discharges, ie a priming of these discharges, not between the electrodes of the triad (coplanar ignition case), but between an electrode of the first network belonging to a slab and an electrode of a triad belonging to the other slab; we try to avoid matrix ignitions because, unlike coplanar ignitions, they fluctuate widely from one cell to another panel depending on the electrical characteristics of the wall materials of these cells, including phosphors, which differ from one another. cell to another; these electrical characteristics include the permittivity, the static charge, the dielectric thickness, the electronic secondary emission; in order to avoid or limit this matrix ignition, preferably:
  • the gaps separating and isolating the adjacent electrodes of the same triad are less than 80 μm, and
  • the spacing between the slabs leaving the space filled with discharge gas is greater than 130 microns.

Avantageusement, la largeur de l'électrode centrale est alors supérieure à la largeur de chacune des électrodes latérales .Advantageously, the width of the central electrode is then greater than the width of each of the lateral electrodes.

Entre chaque série d'impulsions de maintien, on procède généralement à des opérations d'adressage sélectif ou d'effacement sélectif; avant un adressage sélectif, on procède généralement à une opération de préparation (ou « priming » en langue anglaise) et à une opération d'effacement, toutes deux semi-sélectives ou non sélectives. A cet effet, l'invention a également pour objet le procédé ci-dessus selon l'invention comprenant également, avant ou après chaque opération de maintien, une opération sélective d'adressage ou d'effacement appliquée uniquement dans chacune desdites zones où l'on souhaite maintenir une décharge lumineuse au cours de ladite série, par application d'au moins une impulsion de tension entre l'électrode dudit premier réseau croisant ladite zone et l'une au moins des électrodes de la triade croisant ladite zone.Between each series of holding pulses, selective addressing or selective erasure operations are generally carried out; prior to selective addressing, an English preparation operation (or "priming") and an erasure operation, both semi-selective and non-selective, are generally carried out. For this purpose, the invention also relates to the above method according to the invention also comprising, before or after each holding operation, a selective addressing or erasing operation applied only in each of said zones where the it is desired to maintain a light discharge during said series, by applying at least one voltage pulse between the electrode of said first network crossing said zone and at least one of the electrodes of the triad crossing said zone.

Dans le cas d'une opération d'adressage, celle-ci a lieu avant chaque opération de maintien et l'impulsion correspondante d'adressage est adaptée d'une manière connue en elle-même pour générer des charges électriques sur la couche diélectrique dans ladite zone et obtenir ainsi l'effet mémoire bien connu des panneaux à plasma.In the case of an addressing operation, this is done before each holding operation and the corresponding addressing pulse is adapted in a manner known per se to generate electric charges on the dielectric layer in said zone and thus obtain the well-known memory effect of the plasma panels.

Ce procédé correspond à un mode de pilotage classique par adressage sélectif, qui peut être utilisé dans les procédés où l'on adresse successivement des lignes ou des groupes de lignes de zones de décharges avant une phase d'entretien (cas dits « ADS » ou « ADM ») ou dans les procédés où l'on adresse des lignes ou des groupes de lignes pendant l'entretien d'autres lignes ou groupes de lignes (cas dit « AWD »).This method corresponds to a conventional control mode by selective addressing, which can be used in the processes where it is addressed successively lines or groups of lines of discharge zones before a maintenance phase (so-called "ADS" or "ADM" cases) or in processes where lines or groups of lines are addressed during maintenance other lines or groups of lines (so-called "AWD").

Dans le cas d'une opération d'effacement, celle-ci a lieu après chaque opération de maintien et l'impulsion correspondante d'effacement est adaptée d'une manière connue en elle-même pour supprimer les charges électriques sur la couche diélectrique dans ladite zone et mettre fin à l'effet mémoire.In the case of an erase operation, this occurs after each holding operation and the corresponding erasure pulse is adapted in a manner known per se to suppress the electrical charges on the dielectric layer in said area and terminate the memory effect.

Ce procédé correspond à un mode de pilotage classique par effacement sélectif.This method corresponds to a conventional control mode by selective erasure.

De préférence, l'impulsion sélective de tension est appliquée entre l'électrode dudit premier réseau croisant ladite zone et l'électrode centrale de la triade croisant ladite zone.Preferably, the voltage selective pulse is applied between the electrode of said first network crossing said zone and the central electrode of the triad crossing said zone.

En transférant ainsi l'ensemble des opérations sélectives d'adressage ou d'effacement sur les électrodes centrales, on peut regrouper les électrodes latérales de séries de zones de décharge adjacentes, au point même d'utiliser des électrodes communes, par exemple comme électrode latérale inférieure d'une triade correspondant à une ligne n et comme électrode latérale supérieure de la triade correspondant à la ligne suivante adjacente (n + 1) ; ainsi, l'invention a également pour objet un procédé selon l'invention dans lequel, l'ensemble des zones desservies par une même triade formant une ligne dudit panneau, sur deux lignes quelconques adjacentes traversées respectivement par une première triade d'une part et par une seconde triade d'autre part, l'électrode latérale de la première triade est reliée électriquement au même potentiel que l'électrode latérale la plus proche de la deuxième triade.By transferring all the selective addressing or erasing operations to the central electrodes, the lateral electrodes of series of adjacent discharge zones can be grouped together, to the point of even using common electrodes, for example as a lateral electrode. lower of a triad corresponding to a line n and as upper lateral electrode of the triad corresponding to the next adjacent line (n + 1); thus, the subject of the invention is also a method according to the invention in which all the areas served by the same triad forming a line of said panel, on any two adjacent lines traversed respectively by a first triad on the one hand and by a second triad on the other hand, the lateral electrode of the first triad is electrically connected to the same potential as the lateral electrode closest to the second triad.

De préférence, lesdites deux électrodes reliées électriquement forment une électrode commune à deux lignes adjacentes.Preferably, said two electrically connected electrodes form an electrode common to two adjacent lines.

L'invention a également pour objet un panneau à plasma susceptible d'être utilisé pour la mise en oeuvre du procédé selon l'invention selon la revendication 8. .The invention also relates to a plasma panel that can be used for carrying out the method according to the invention according to claim 8.

Dans le cas précédemment cité où les électrodes centrales sont flottantes et sans connexions externes, le panneau ne comprend pas d'alimentation spécifique de maintien pour ces électrodes ni de commutateurs ou « drivers » pour leur alimentation.In the case cited above where the central electrodes are floating and without external connections, the panel does not include a specific power supply for these electrodes or switches or "drivers" for their power supply.

De préférence, la largeur de l'électrode centrale est supérieure à 80 µm ; d'autres préférences concernant la géométrie des électrodes et/ou des cellules du panneau ont été précédemment citées, notamment le cas avantageux où la largeur de l'électrode centrale est supérieure à la largeur de chacune des électrodes latérales.Preferably, the width of the central electrode is greater than 80 microns; other preferences concerning the geometry of the electrodes and / or cells of the panel have been mentioned above, especially the advantageous case where the width of the central electrode is greater than the width of each of the lateral electrodes.

De préférence, l'ensemble des zones desservies par une même triade formant une ligne du panneau, sur deux lignes quelconques adjacentes traversées respectivement par une première triade d'une part et par une seconde triade d'autre part, l'électrode latérale de la première triade est reliée électriquement au même potentiel que l'électrode latérale la plus proche de la deuxième triade ; de préférence, lesdites deux électrodes reliées électriquement forment une électrode commune à deux lignes adjacentes.Preferably, all the areas served by the same triad forming a line of the panel, on any two adjacent lines traversed respectively by a first triad on the one hand and by a second triad on the other hand, the lateral electrode of the first triad is electrically connected to the same potential as the nearest lateral electrode of the second triad; preferably, said two electrically connected electrodes form an electrode common to two adjacent lines.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, et en référence aux figures annexées sur lesquelles :

  • la figure 1, déjà décrite, est une vue schématique en coupe d'une cellule à trois électrodes coplanaires d'un panneau à plasma de l'art antérieur, avec les mêmes références que la figure 4 du document FR 2790583 ;
  • les figures 2A à 2H1 (pas de figure 2E), déjà décrites, illustrent l'évolution des charges électriques et le surgissement des décharges lumineuses dans une cellule de la figure 1, lorsqu'elle est pilotée selon l'art antérieur comme décrit dans le document FR 2790583 ;
  • les figures 3A à 3F illustrent l'évolution des charges électriques et le surgissement des décharges lumineuses dans une cellule analogue à celle de la figure 1 mais avec une électrode centrale plus large selon l'invention, lorsqu'elle est pilotée selon un mode de réalisation de l'invention ;
  • la figure 4 illustre schématiquement, par quatre chronogrammes référencés 20, 13, 14 et 5, l'évolution, au cours du temps, du potentiel appliqué aux électrodes d'une triade coplanaire (électrodes latérales 13, 14 et électrode centrale 20) et aux électrodes d'adressage 5 selon un mode de réalisation de l'invention ;
  • les figures 5A à 5C illustrent l'étalement des décharges dans une cellule à deux électrodes coplanaires d'un panneau à plasma de l'art antérieur, en fonction de la largeur des électrodes coplanaire et du gap séparant ces électrodes ;
  • la figure 6 représente une vue de dessus et deux vues en coupe latérale d'un groupe de trois cellules adjacentes de différentes couleurs d'un panneau à plasma selon un mode particulier de réalisation de l'invention, où chaque électrode latérale d'une triade est commune à deux lignes adjacentes du panneau et est réalisée en matériau conducteur transparent ;
  • la figure 7 représente une vue de dessus analogue à celle de la figure 6, à la différence près que les électrodes latérales sont formées de grilles de conducteurs opaques ;
  • la figure 8 représente une variante de la figure 6 avec une électrode centrale de grande largeur dotée de bus disposés au niveau des bords d'amorçage de décharge de cette électrode ;
  • la figure 9 représente une variante de la figure 7 avec une électrode centrale de grande largeur ;
The invention will be better understood on reading the description which follows, given by way of nonlimiting example, and with reference to the appended figures in which:
  • the figure 1 , already described, is a schematic sectional view of a cell with three coplanar electrodes of a plasma panel of the prior art, with the same references as the figure 4 of the document FR 2790583 ;
  • the Figures 2A to 2H1 (no figure 2E), already described, illustrate the evolution of electric charges and the emergence of light discharges in a cell of the figure 1 when it is driven according to the prior art as described in the document FR 2790583 ;
  • the Figures 3A to 3F illustrate the evolution of electric charges and the emergence of light discharges in a cell similar to that of the figure 1 but with a wider central electrode according to the invention, when it is controlled according to an embodiment of the invention;
  • the figure 4 illustrates diagrammatically, by four chronograms referenced 20, 13, 14 and 5, the evolution, over time, of the potential applied to the electrodes of a coplanar triad (lateral electrodes 13, 14 and central electrode 20) and to the electrodes of addressing 5 according to one embodiment of the invention;
  • the FIGS. 5A to 5C illustrate the spreading of the discharges in a coplanar two-electrode cell of a plasma panel of the prior art, as a function of the width of the coplanar electrodes and the gap separating these electrodes;
  • the figure 6 represents a top view and two side sectional views of a group of three adjacent cells of different colors of a plasma panel according to a particular embodiment of the invention, wherein each lateral electrode of a triad is common to two adjacent lines of the panel and is made of transparent conductive material;
  • the figure 7 represents a view from above similar to that of the figure 6 with the difference that the side electrodes are formed of opaque conductor grids;
  • the figure 8 represents a variant of the figure 6 with a wide-width central electrode provided with buses arranged at the discharge initiation edges of this electrode;
  • the figure 9 represents a variant of the figure 7 with a central electrode of great width;

Afin de simplifier la description et de faire apparaître les différences et avantages que présente l'invention par rapport à l'état antérieur de la technique, on utilise des références identiques pour les éléments qui assurent les mêmes fonctions.In order to simplify the description and to show the differences and advantages that the invention presents with respect to the prior art, identical references are used for the elements that provide the same functions.

Le panneau à plasma selon l'invention est identique à celui précédemment décrit (figure 1) et à celui décrit dans le document FR 2790583 (figure 4), à la différence près, essentielle pour l'optimisation du rendement lumineux, que l'électrode centrale 20 de chaque triade est suffisamment large pour favoriser l'allongement de la pseudo-colonne positive du plasma et l'étalement des électrons lors d'une décharge lumineuse ; en pratique, la largeur de cette électrode centrale est supérieure au gap qui sépare les électrodes entre elles ; ainsi, la largeur de cette électrode centrale est supérieure à 50 µm, de préférence supérieure à 80 µm ; la largeur de l'électrode centrale de chaque triade est généralement comprise entre 100 et 200 µm environ.The plasma panel according to the invention is identical to that previously described ( figure 1 ) and the one described in the document FR 2790583 ( figure 4 ), with the difference, essential for optimizing the light output, that the central electrode 20 of each triad is sufficiently wide to promote the elongation of the positive pseudo-column of the plasma and the spreading of the electrons during a light discharge; in practice, the width of this central electrode is greater than the gap between the electrodes; thus, the width of this central electrode is greater than 50 microns, preferably greater than 80 microns; the width of the central electrode of each triad is generally between 100 and 200 microns approximately.

On va maintenant décrire le procédé de pilotage du panneau à plasma selon l'invention, notamment dans une phase de maintien selon l'invention, en se référant aux figures 3A à 3F qui représentent l'évolution des charges à la surface de la couche diélectrique 17, avec les mêmes conventions de représentation que pour les figures 2A à 2H1 :

  • pendant une impulsion d'adressage classique appliquée à un croisement d'une électrode 5 du premier réseau et d'une triade d'électrodes 13, 20, 14 du second réseau d'électrodes, entre cette électrode 5 d'adressage et au moins une électrode de cette triade, on obtient, après la décharge d'adressage, la répartition de charges illustrée à la figure 3A, l'électrode latérale 14 étant portée à + 300 V par rapport aux autres électrodes latérale 13 (0 V) ou centrale 20 (0 V) ; des électrons sont donc accumulés sur une électrode latérale de la triade, et des ions sont accumulés principalement sur l'électrode centrale de la triade, qui est plus large que dans l'art antérieur.
  • comme dans une séquence d'entretien classique, les potentiels des deux électrodes latérales sont inversés et l'électrode 13 est portée à + 200V par rapport à l'électrode latérale opposée 14 (0 V) ; au moment de l'application de cette première impulsion de maintien, le potentiel de l'électrode centrale 20 est alors élevé au niveau du potentiel le plus élevé des deux électrodes opposées 13, 14, soit ici 200 V et est maintenu à cette valeur jusqu'à la fin de la première impulsion de maintien contrairement à l'art antérieur ; l'électrode centrale joue alors le rôle d'anode ; on aboutit à la configuration décrite à la figure 3B et, comme dans l'art antérieur, une première décharge lumineuse principale de maintien surgit (voir flèche) qui entraîne l'inversion des charges représentée à la figure 3C ; lors de cette inversion de charges, les électrons s'étalent sur l'électrode centrale 20 qui est beaucoup plus large que dans l'art antérieur et sur l'électrode latérale 13, ce qui donne lieu à un allongement plus important que dans l'art antérieur de la pseudo-colonne positive du plasma et donc à une décharge de meilleur rendement lumineux ;
  • on applique ensuite directement la deuxième impulsion de maintien en inversant à nouveau les potentiels des deux électrodes latérales ; l'électrode 14 est maintenant portée à + 200 V par rapport à l'électrode latérale opposée 13 (0 V) ; au moment de l'application de cette deuxième impulsion de maintien, le potentiel de l'électrode centrale 20 est toujours maintenu au niveau du potentiel le plus élevé des deux électrodes opposées 13, 14, soit ici 200 V ; l'électrode centrale joue toujours le rôle d'anode ; on aboutit à la configuration décrite à la figure 3D et une deuxième décharge lumineuse principale de maintien (voir flèche) se déclenche qui entraîne l'inversion des charges représentée à la figure 3F avec un état transitoire représenté à la figure 3E ; lors de cette inversion de charges, les électrons s'étalent à nouveau sur l'électrode centrale 20 qui est beaucoup plus large que dans l'art antérieur et sur l'électrode latérale 14, ce qui donne lieu à un allongement plus important de la pseudo-colonne positive du plasma et donc à une décharge de rendement lumineux plus élevé ;
  • après ce premier cycle complet de maintien comprenant uniquement deux impulsions principales de maintien, on aborde alors un deuxième cycle ; on applique alors une première impulsion principale de maintien du deuxième cycle en inversant à nouveau les potentiels des deux électrodes latérales mais toujours sans changer le potentiel de l'électrode centrale 20 ; l'électrode 13 est maintenant portée à + 200V par rapport à l'électrode latérale opposée 14 (0 V) et l'électrode centrale 20 joue toujours le rôle d'anode ; cette configuration entraîne l'inversion des charges déjà représentée à la figure 3C, représentant la fin de la première décharge de maintien du deuxième cycle, et la décharge obtenue présente un très bon rendement lumineux comme pour le premier cycle.
The control method of the plasma panel according to the invention will now be described, in particular in a holding phase according to the invention, with reference to the Figures 3A to 3F which represent the evolution of the charges on the surface of the dielectric layer 17, with the same conventions of representation as for the Figures 2A to 2H1 :
  • during a conventional addressing pulse applied to a crossing of an electrode 5 of the first array and an electrode triad 13, 20, 14 of the second array of electrodes, between this addressing electrode 5 and at least one electrode of this triad, we obtain, after the discharge of addressing, the distribution of charges illustrated in FIG. figure 3A , the lateral electrode 14 being brought to +300 V relative to the other lateral electrodes 13 (0 V) or central 20 (0 V); electrons are thus accumulated on a lateral electrode of the triad, and ions are accumulated mainly on the central electrode of the triad, which is wider than in the prior art.
  • as in a conventional maintenance sequence, the potentials of the two side electrodes are reversed and the electrode 13 is brought to + 200V relative to the opposite lateral electrode 14 (0 V); at the time of application of this first holding pulse, the potential of the central electrode 20 is then raised at the highest potential of the two opposite electrodes 13, 14, here 200 V and is maintained at this value until at the end of the first sustain pulse contrary to the prior art; the central electrode then plays the role of anode; we arrive at the configuration described in figure 3B and, as in the prior art, a first main sustaining light discharge arises (see arrow) which causes the charge reversal shown in FIG. figure 3C ; during this inversion of charges, the electrons are spread over the central electrode 20 which is much wider than in the prior art and on the lateral electrode 13, which gives rise to a longer elongation than in the prior art of the pseudo-positive column of the plasma and therefore to a discharge of better light output;
  • the second holding pulse is then applied directly by reversing the potentials of the two lateral electrodes again; the electrode 14 is now raised to + 200 V with respect to the opposite lateral electrode 13 (0 V); at the time of application of this second holding pulse, the potential of the central electrode 20 is always maintained at the highest potential of the two opposite electrodes 13, 14, here 200 V; the central electrode always plays the role of anode; we arrive at the configuration described in 3D figure and a second main luminous discharge of maintenance (see arrow) is triggered which causes the reversal of the charges represented in FIG. figure 3F with a transitional state represented at figure 3E ; during this inversion of charges, the electrons are spread again on the central electrode 20 which is much wider than in the prior art and on the lateral electrode 14, which gives rise to a longer elongation of the pseudo-positive column of the plasma and therefore to a discharge of higher light output;
  • after this first complete maintenance cycle comprising only two main sustaining pulses, then a second cycle is approached; we then apply a first main impulse to maintain the second cycle by reversing the potentials of the two side electrodes again but still without changing the potential of the central electrode 20; the electrode 13 is now raised to + 200V relative to the opposite lateral electrode 14 (0 V) and the central electrode 20 still acts as anode; this configuration leads to the reversal of the charges already represented in the figure 3C , representing the end of the first sustaining discharge of the second cycle, and the discharge obtained has a very good light output as for the first cycle.

Le deuxième cycle de maintien se poursuit alors comme le premier cycle et les mouvements des charges sont identiques à ceux du premier cycle : à partir de la fin de cette première décharge de maintien du deuxième cycle (figure 3C), se produit une deuxième décharge de maintien du deuxième cycle (figures 3D à 3F) présentant également un très bon rendement lumineux.The second maintenance cycle then continues as the first cycle and the movements of the charges are identical to those of the first cycle: from the end of this first sustaining discharge of the second cycle ( figure 3C ), there is a second sustaining discharge of the second cycle ( 3D figures at 3F ) also having a very good light output.

Le cas échéant, d'autres cycles identiques de maintien se succèdent ensuite jusqu'à épuisement de la durée de maintien souhaitée, et les impulsions de tension appliquées aux électrodes forment une série d'impulsions de maintien.If necessary, other identical cycles of maintenance succeed each other until the desired holding time is exhausted, and the voltage pulses applied to the electrodes form a series of holding pulses.

On voit donc que les séries d'impulsions de maintien ne provoquent que des décharges de très bons rendements lumineux ; globalement, le rendement lumineux du panneau à plasma est donc sensiblement amélioré et optimisé, grâce à un système de pilotage où l'électrode centrale joue toujours le rôle d'anode et grâce à la largeur de l'électrode centrale, plus importante que dans l'art antérieur.It can thus be seen that the series of holding pulses only cause discharges of very good luminous efficiency; overall, the luminous efficiency of the plasma panel is therefore substantially improved and optimized, thanks to a control system where the central electrode always plays the role of anode and thanks to the width of the central electrode, greater than in the prior art.

Selon l'invention, l'allongement de la décharge que l'on obtient permet, dans chaque zone, d'augmenter, au sein du plasma, le volume de la pseudo colonne positive où règne un champ électrique faible et où l'émission de photons ultraviolets est générée avec un très bon rendement.According to the invention, the elongation of the discharge that is obtained allows, in each zone, to increase, within the plasma, the volume of the pseudo-positive column where there is a weak electric field and where the emission of Ultraviolet photons are generated with very good performance.

Dans l'art antérieur des panneaux à plasma dotés de paires d'électrodes coplanaires 3, 4 de maintien telle que schématisée à la figure 5A, on connaît au moins deux moyens d'améliorer le rendement lumineux :

  • par augmentation de la largeur des électrodes de chaque paire, de manière à obtenir un allongement de la décharge comme représenté à la figure 5B ; mais les risques d'interférences entre différentes zones de décharge (« crosstalk » en langue anglaise) imposent une limite supérieure à cette largeur, et donc à l'amélioration du rendement lumineux ;
  • par augmentation du gap qui sépare les électrodes coplanaires d'une paire, afin de limiter le champ électrique dans les zones de décharge ; on obtient alors un allongement du chemin de décharge dans la profondeur de chaque zone comme représenté à la figure 5C, parce que les lignes de champ prennent alors approximativement la forme de demi-cercles (contrairement à la figure 5B où le gap est trop petit) ; mais cette augmentation du gap modifie défavorablement les conditions d'allumage des décharges (loi de Paschen), nécessite des tensions d'allumage élevées, et entraîne des surcoûts prohibitifs au niveau des composants électroniques ; la nécessité de pouvoir piloter le panneau avec des impulsions de tension suffisamment faible limite donc considérablement l'augmentation du gap.
In the prior art, plasma panels with pairs of coplanar electrodes 3, 4 for holding as shown schematically in FIG. Figure 5A at least two means of improving the light output are known:
  • by increasing the width of the electrodes of each pair, so as to obtain an elongation of the discharge as shown in FIG. figure 5B ; but the risk of interference between different discharge zones ("crosstalk" in English) imposes an upper limit to this width, and therefore to the improvement of the light output;
  • by increasing the gap separating the coplanar electrodes of a pair, in order to limit the electric field in the discharge zones; we then obtain an extension of the discharge path in the depth of each zone as represented in FIG. Figure 5C because the field lines then take approximately the form of semicircles (unlike the Figure 5B where the gap is too small); but this increase in the gap adversely modifies the ignition conditions of the discharges (Paschen's law), requires high ignition voltages, and leads to prohibitive additional costs for the electronic components; the need to be able to drive the panel with sufficiently low voltage pulses therefore considerably limits the increase in the gap.

L'invention permet d'utiliser ces deux moyens en évitant ces limitations ; l'électrode centrale permet d'espacer les deux électrodes coplanaires opposées sans modifier les conditions d'allumage des décharges.The invention makes it possible to use these two means while avoiding these limitations; the central electrode makes it possible to space the two opposite coplanar electrodes without modifying the ignition conditions of the discharges.

L'invention présente en outre les avantages suivants :

  • comme l'électrode centrale est maintenue au même potentiel pendant toute la phase de maintien, le système de pilotage du panneau est donc très simple à mettre en oeuvre, donc très économique ;
  • comme l'électrode centrale est plus large que dans l'art antérieur, cette électrode est facile à réaliser à moindre coût.
The invention furthermore has the following advantages:
  • since the central electrode is maintained at the same potential throughout the holding phase, the control system of the panel is therefore very simple to implement, therefore very economical;
  • since the central electrode is wider than in the prior art, this electrode is easy to produce at a lower cost.

En se référant à la figure 4, on va maintenant décrire un exemple complet de type « ADS » de schéma d'un cycle complet d'adressage et de maintien des zones de décharge d'un panneau à plasma selon l'invention :

  • dans une première phase I non sélective dite de préparation ou de « priming » en langue anglaise, on applique à l'électrode centrale 20 du deuxième réseau coplanaire une tension uniformément croissante, supérieure à celle de l'électrode d'adressage 5 du premier réseau, de manière à générer une décharge dite « à résistance positive » entre l'électrode centrale 20 et une électrode latérale et à produire ainsi les charges électriques dites « primaires » nécessaires à la phase d'adressage, tout en générant un minimum d'émission lumineuse pour conserver un bon contraste d'image ;
  • dans une deuxième phase II toujours non sélective dite d'effacement, sans modifier la tension de l'électrode d'adressage 5, on applique à l'électrode centrale 20 une tension uniformément décroissante et à l'une 14 seulement des électrodes latérales une tension constante adaptée pour être en permanence supérieure à celle de l'électrode centrale 20, de manière à produire une décharge de faible émission lumineuse pour effacer les charges électriques stockées à la surface de la couche diélectrique 17 lors de l'opération précédente de préparation ;
  • dans une troisième phase III cette fois sélective dite d'adressage, tout en maintenant la tension de l'électrode latérale 14 au même potentiel que dans la phase précédente et en appliquant à l'autre électrode latérale 13 une tension identique à celle la plus basse de l'électrode d'adressage 5, tout en maintenant, en dehors des impulsions d'adressage, la tension de l'électrode centrale 20 entre celle des deux électrodes latérales 13, 14, on applique des impulsions d'adressage d'une part simultanément aux différentes électrodes 5 du premier réseau et d'autre part successivement aux différentes électrodes centrales 20 du deuxième réseau, de manière à obtenir un dépôt de charges électriques à la surface du diélectrique 17 dans les zones où l'on souhaite maintenir des décharges électriques dans la phase suivante de maintien ;
  • dans une dernière phase IV non sélective de maintien, après avoir appliqué approximativement la même tension positive Ve aux trois électrodes coplanaires 13, 20, 14 tout en maintenant les électrodes d'adressage 5 du premier réseau à une tension nulle, on applique alternativement une tension nulle à chaque électrode latérale 13, 14 sans modifier la tension de l'électrode centrale 20 ; ainsi, cette électrode centrale 20 joue le rôle d'anode pendant toute la phase de maintien ; la tension Ve est adaptée d'une manière connue en elle-même pour obtenir des décharges dans les zones précédemment adressées sans en obtenir dans les zones non adressées.
Referring to the figure 4 , a complete example of the "ADS" type of diagram of a complete cycle of addressing and maintaining the discharge zones of a plasma panel according to the invention will now be described:
  • in a first non-selective phase I called preparation or "priming" in English, is applied to the central electrode 20 of the second coplanar network a uniformly increasing voltage, greater than that of the addressing electrode 5 of the first network , so as to generate a so-called "positive resistance" discharge between the central electrode 20 and a lateral electrode and thus to produce the so-called "primary" electrical charges necessary for the addressing phase, while generating a minimum of light emission to maintain a good image contrast;
  • in a second phase II still non-selective said erasing, without changing the voltage of the addressing electrode 5, is applied to the central electrode 20 a uniformly decreasing voltage and only one 14 of the lateral electrodes a voltage constant adapted to be permanently higher than that of the central electrode 20, so as to produce a discharge of low light emission to erase the electric charges stored on the surface of the dielectric layer 17 during the previous preparation operation;
  • in a third phase III this time selective so-called addressing, while maintaining the voltage of the lateral electrode 14 at the same potential as in the previous phase and applying to the other lateral electrode 13 a voltage identical to the lowest one of the addressing electrode 5, while maintaining, apart from the addressing pulses, the voltage of the central electrode 20 between that of the two lateral electrodes 13, 14, addressing pulses are applied on the one hand simultaneously to the different electrodes 5 of the first network and secondly successively to the different central electrodes 20 of the second network, so as to obtain a deposit of electrical charges on the surface of the dielectric 17 in the areas where it is desired to maintain electrical discharges in the next phase of maintenance;
  • in a last non-selective holding phase IV, after having applied approximately the same positive voltage Ve to the three coplanar electrodes 13, 20, 14 while maintaining the addressing electrodes 5 of the first network at a zero voltage, alternately applying a voltage zero at each lateral electrode 13, 14 without changing the voltage of the central electrode 20; thus, this central electrode 20 acts as anode during the entire holding phase; the voltage Ve is adapted in a manner known per se to obtain discharges in the previously addressed areas without obtaining them in the unaddressed areas.

Après cette dernière phase de maintien, un nouveau cycle d'adressage et de maintien peut reprendre d'une manière connue en elle-même pour la visualisation d'images sur panneau à plasma alternatif à effet mémoire.After this last maintenance phase, a new addressing and holding cycle can resume in a manner known per se for viewing images on an alternating plasma memory effect panel.

Ainsi, selon une variante avantageuse de l'invention, on transfère l'ensemble des opérations sélectives d'adressage ou d'effacement sur l'électrode centrale ; grâce à ce perfectionnement, on peut regrouper et relier électriquement chaque électrode latérale d'une triade à l'électrode latérale la plus proche de la triade adjacente sur la dalle.Thus, according to an advantageous variant of the invention, all the selective addressing or erasing operations are transferred to the central electrode; thanks to this improvement, one can group and electrically connect each lateral electrode of a triad to the side electrode closest to the adjacent triad on the slab.

Ces deux électrodes reliées peuvent même ne plus former qu'une seule électrode 21, de sorte que le nombre total d'électrodes du réseau de triades est réduit d'un tiers ; ainsi, le nombre total d'électrodes du deuxième réseau d'électrodes, ou réseau de décharges coplanaires, est identique, à une électrode près, au nombre total d'électrodes des réseaux coplanaires de l'art antérieur, qui sont des réseaux de paires d'électrodes ; la fabrication des dalles de panneaux à plasma et celle des moyens de pilotage selon cette variante ne sont donc pas plus onéreux que celle de panneaux à plasma à seulement deux électrodes coplanaires de l'art antérieur.These two connected electrodes may even only form a single electrode 21, so that the total number of electrodes of the triad network is reduced by one third; thus, the total number of electrodes of the second electrode array, or network of coplanar discharges, is identical, to an electrode, to the total number of electrodes of the coplanar networks of the prior art, which are networks of pairs electrodes; the manufacture of plasma panel slabs and that of the control means according to this variant are therefore not more expensive than that of plasma panels with only two coplanar electrodes of the prior art.

On va maintenant décrire un mode de réalisation d'un panneau à plasma selon cette variante avantageuse, en se référant aux figures 5 et 6 qui représentent des zones de décharges de panneaux à plasma, où chaque pixel P comprend trois zones de décharges adjacentes 9R, 9G, 9B, séparées par des barrières 16 s'étendant de la couche diélectrique 15 de la dalle arrière portant le premier réseau d'électrodes 5 jusqu'à la couche diélectrique 17 de la dalle avant portant les triades d'électrode 13, 20, 14 ; les triades adjacentes 13, 20, 14 d'une part et 13', 20', 14' (non représentée) d'autre part sont séparées les unes des autres par des barrières 6 orthogonales aux barrières 16 ; les électrodes 5 du premier réseau sont ici décalées et positionnées sous les barrières 16, et sont dotées de dérivations 51 positionnées au niveau de chaque zone de décharge 9R, 9G, 9B, et s'étendant vers le milieu de cette zone ; de préférence, les électrodes 5 du premier réseau sont dotées de moyens pour favoriser la formation des décharges d'entretien entre chaque électrode latérale 13, 14 d'une triade et l'électrode centrale 20 de cette même triade : ainsi, on trouve de préférence deux dérivations 51 par zone de décharge, positionnées de part et d'autre de l'électrode centrale 20 ; les barrières 6, 16 délimitent avec les couches diélectriques 15, 17 des cellules de décharges ; les parois des cellules de décharges 9R, 9G, 9B, sauf celle de la dalle avant, sont revêtues de luminophores de couleurs différentes, respectivement rouge, vert et bleu, adaptés pour émettre des rayonnements de ces couleurs lorsqu'ils sont excités par les rayonnement ultraviolet provenant des décharges ; dans les zones surmontant les électrodes, les couches diélectriques sont généralement revêtues d'une couche mince de protection et d'émission d'électrons secondaires, généralement à base de MgO.An embodiment of a plasma panel according to this advantageous variant will now be described, with reference to FIGS. figures 5 and 6 which represent plasma panel discharge areas, where each pixel P comprises three adjacent discharge areas 9R, 9G, 9B, separated by barriers 16 extending from the dielectric layer 15 of the back panel carrying the first network of electrodes 5 to the dielectric layer 17 of the front plate carrying the electrode triads 13, 20, 14; the adjacent triads 13, 20, 14 on the one hand and 13 ', 20', 14 '(not shown) on the other hand are separated from each other by barriers 6 orthogonal to the barriers 16; the electrodes 5 of the first network are here shifted and positioned under the barriers 16, and are provided with branches 51 positioned at each discharge zone 9R, 9G, 9B, and extending towards the middle of this zone; preferably, the electrodes 5 of the first network are provided with means for promoting the formation of the maintenance discharges between each lateral electrode 13, 14 of a triad and the central electrode 20 of this same triad: thus, it is preferable to find two branches 51 per discharge zone, positioned on either side of the central electrode 20; the barriers 6, 16 delimit with the dielectric layers 15, 17 of the discharge cells; the walls of the discharge cells 9R, 9G, 9B, except that of the front slab, are coated with phosphors of different colors, respectively red, green and blue, adapted to emit radiation of these colors when they are excited by the ultraviolet radiation from the discharges; in areas overlying the electrodes, the dielectric layers are generally coated with a thin layer of protection and secondary electron emission, generally based on MgO.

Selon la variante avantageuse de l'invention qui vient d'être décrite, l'électrode latérale inférieure 14 de la première triade, correspondant à une ligne n du panneau, est reliée au même bus 22' que l'électrode latérale supérieure 13' de la deuxième triade, adjacente à la première, correspondant ici à la ligne suivante (n + 1) du panneau ; comme chaque électrode latérale de triade est partagée entre deux lignes adjacentes, si N est le nombre total de lignes du panneau, on a au total seulement 2N+1 électrodes dans le réseau coplanaire ou deuxième réseau, ce qui simplifie la fabrication du panneau, chaque électrode étant desservie par un bus central 20, 20', ou par un bus latéral 22, 22' ; les bus latéraux 22, 22' sont opaques et positionnés ici au niveau du sommet des barrières 6, pour ne pas occulter l'émission de lumière visible provenant des zones de décharges 9R, 9G, 9B.According to the advantageous variant of the invention which has just been described, the lower lateral electrode 14 of the first triad, corresponding to a line n of the panel, is connected to the same bus 22 'as the upper lateral electrode 13' of the second triad, adjacent to the first, corresponding here to the next line (n + 1) of the panel; as each triad lateral electrode is shared between two adjacent lines, if N is the total number of lines of the panel, there is only a total of only 2N + 1 electrodes in the coplanar network or second network, which simplifies the manufacture of the panel, each electrode being served by a central bus 20, 20 ', or by a lateral bus 22, 22'; the side buses 22, 22 'are opaque and positioned here at the top of the barriers 6, so as not to obscure the emission of visible light from the discharge areas 9R, 9G, 9B.

Un bus latéral 22' forme alors, avec les deux électrodes latérales 14 et 13' auxquelles il est connecté, une seule et même électrode 21 ; l'ensemble du deuxième réseau d'électrodes ou réseau de lignes, est formé d'alternances d'électrodes centrales 20, 20' qui servent aux opérations sélectives d'adressage ou d'effacement, et d'électrodes 21, communes à deux lignes de zones adjacentes de décharge, qui ne servent pas aux opérations sélectives d'adressage ou d'effacement.A lateral bus 22 'then forms, with the two lateral electrodes 14 and 13' to which it is connected, one and the same electrode 21; the whole of the second network of electrodes or network of lines, is formed of alternations of central electrodes 20, 20 'which serve for the selective operations of addressing or erasure, and electrodes 21, common to two lines adjacent discharge areas, which are not used for selective addressing or erasure operations.

Selon le mode de réalisation décrit à la figure 6, les électrodes 13, 14, 13' sont réalisées en matériau conducteur transparent, par exemple en oxyde d'étain (SnO) ou en oxyde mixte d'étain et d'indium (« ITO »), pour ne pas absorber la lumière visible provenant des zones de décharge 9R, 9G, 9B.According to the embodiment described in figure 6 the electrodes 13, 14, 13 'are made of transparent conductive material, for example tin oxide (SnO) or mixed indium tin oxide ("ITO"), so as not to absorb visible light from the discharge areas 9R, 9G, 9B.

Selon une variante de réalisation du même type de panneau à plasma représentée à la figure 7, les électrodes centrales 20, 20' ou latérales 21 sont formées d'un sous-réseau de conducteurs opaques disposés en grille ; par exemple :

  • l'électrode centrale 20, 20' comprend deux conducteurs parallèles opaques 201, 203 présentant chacun un front délimitant l'un des gaps et reliés électriquement entre eux par des dérivations transversales opaques 202 disposées au centre de chaque cellule 9R, 9G, 9B ;
  • l'électrode 14 alimentant les cellules 9R, 9G, 9B et l'électrode 13' alimentant les cellules 9'R, 9'G, 9'B de la ligne voisine, toutes deux reliées au même bus 22' pour former l'électrode 21 commune à deux lignes successives, comprennent chacune un conducteur latéral opaque 140 présentant un front délimitant un gap et, disposé parallèlement aux conducteurs 201, 203 de l'électrode centrale 20 ; chaque conducteur latéral 140 est relié électriquement au bus 22' par l'intermédiaire de dérivations opaques en forme de Y, disposées au centre de chaque cellule 9R, 9G, 9B, 9'R, 9'G, 9'B ; chaque dérivation en forme de Y comprend un conducteur principal 141 pour le « pied » du Y, et deux conducteurs secondaires 142, 143 formant les « branches » du Y ; ces dérivations sont reliées au bus 22' par l'intermédiaire des « branches » 142, 143, alors qu'elles sont reliées à l'autre extrémité au conducteur latéral 140 par l'intermédiaire des « pieds » 141 ; une telle disposition en forme de Y des dérivations est avantageuse pour l'évolution de la longueur de décharge en cours de décharge, et, en conséquence, pour le rendement lumineux du panneau.
According to an alternative embodiment of the same type of plasma panel shown in FIG. figure 7 the central electrodes 20, 20 'or lateral electrodes 21 are formed of a sub-network of opaque conductors arranged in a grid; for example :
  • the central electrode 20, 20 'comprises two opaque parallel conductors 201, 203 each having an edge delimiting one of the gaps and electrically connected to each other by opaque transverse branches 202 arranged in the center of each cell 9R, 9G, 9B;
  • the electrode 14 supplying the cells 9R, 9G, 9B and the electrode 13 'feeding the 9'R, 9'G, 9'B cells of the neighboring line, both connected to the same bus 22' to form the electrode 21 common to two successive lines, each comprise an opaque lateral conductor 140 having a front defining a gap and disposed parallel to the conductors 201, 203 of the central electrode 20; each lateral conductor 140 is electrically connected to the bus 22 'via Y-shaped opaque shunts, arranged at the center of each cell 9R, 9G, 9B, 9'R, 9'G, 9'B; each Y-shaped branch comprises a main conductor 141 for the "foot" of the Y, and two secondary conductors 142, 143 forming the "branches" of the Y; these branches are connected to the bus 22 'via the "branches" 142, 143, while they are connected at the other end to the lateral conductor 140 via the "feet"141; such an Y-shaped arrangement of the taps is advantageous for the evolution of the discharge length during discharge, and, consequently, for the luminous efficiency of the panel.

La disposition en grille de conducteurs opaques des électrodes centrales 20, 20' et/ou latérales 21 est plus économique, parce qu'elle évite la mise en oeuvre onéreuse des matériaux conducteurs transparents, comme dans le mode de réalisation précédent de la figure 6 ; les conducteurs et les dérivations qui forment les grilles sont d'une largeur suffisamment faible pour limiter l'occultation des cellules ou zones de décharge mais suffisamment importante pour obtenir la conductivité électrique nécessaire à l'obtention des décharges.The grid arrangement of opaque conductors of the central electrodes 20, 20 'and / or side 21 is more economical, because it avoids the expensive implementation of transparent conductive materials, as in the previous embodiment of the invention. figure 6 ; the conductors and branches forming the grids are of a sufficiently small width to limit the occultation of the cells or discharge zones but sufficiently large to obtain the electrical conductivity necessary for obtaining the discharges.

D'autres formes de grilles peuvent être utilisées, comme celle de l'électrode 13 de la figure 7, comprenant trois conducteurs parallèles 131, 132, 133 reliés entre eux par des dérivations transversales 134 disposées au-dessus des barrières 16 pour limiter l'occultation des cellules.Other forms of grids may be used, such as that of the electrode 13 of the figure 7 , comprising three parallel conductors 131, 132, 133 interconnected by transverse branches 134 disposed above the barriers 16 to limit the occultation of the cells.

La figure 8 représente une variante de la figure 6 (références identiques des composants) avec une électrode transparente centrale 20 dont la largeur est supérieure à celle de chacune des électrodes latérales 13 ou 14, et qui est en outre dotée de deux bus conducteurs opaques 201, 203 qui sont disposés au niveau des bords d'amorçage de décharge de cette électrode ; comme l'épaisseur de tels bus conducteurs est généralement supérieure à l'épaisseur de la partie transparente de l'électrode, généralement à base d'ITO, l'épaisseur de couche diélectrique recouvrant ces bus est inférieure à l'épaisseur de couche diélectrique recouvrant la partie transparente de l'électrode ; ainsi, l'épaisseur de couche diélectrique étant inférieure au niveau des bords d'amorçage de l'électrode centrale par rapport à l'épaisseur entre dehors des bords d'amorçage, on parvient à abaisser avantageusement la tension d'amorçage de décharge, à éviter un démarrage matriciel des décharges, à favoriser l'amorçage coplanaire conformément à un des buts poursuivi par l'invention.The figure 8 represents a variant of the figure 6 (identical references of the components) with a central transparent electrode 20 whose width is greater than that of each of the side electrodes 13 or 14, and which is further provided with two opaque conductive buses 201, 203 which are disposed at the discharge initiation edges of this electrode; as the thickness of such conductive bus is generally greater than the thickness of the transparent portion of the electrode, generally based on ITO, the dielectric layer thickness covering these buses is less than the thickness of the dielectric layer covering the transparent part of the electrode; thus, the dielectric layer thickness being lower than the level of the initiation edges of the central electrode with respect to the thickness between outside of the priming edges, it is advantageous to lower the discharge initiation voltage, to to avoid a matrix start of the discharges, to favor the coplanar initiation in accordance with one of the aims pursued by the invention.

La figure 9 représente une variante de la figure 7 (références identiques des composants) avec une électrode centrale 20 dont la largeur est avantageusement supérieure à celle de chacune des électrodes latérales 13 ou 14 ; les dérivations transversales opaques 202 de l'électrode centrale 20 et celles 134 des électrodes latérales 13, 14 sont ici disposées sur les barrières 16 délimitant les cellules ; elles peuvent déborder légèrement le long de ces barrières.The figure 9 represents a variant of the figure 7 (identical references of the components) with a central electrode 20 whose width is advantageously greater than that of each of the lateral electrodes 13 or 14; the opaque transverse branches 202 of the central electrode 20 and those 134 of the lateral electrodes 13, 14 are here disposed on the barriers 16 delimiting the cells; they may overflow slightly along these barriers.

La présente invention a été décrite en se référant à un panneau à plasma alternatif classique et à un mode de pilotage où les décharges de maintien impliquent une inversion de charges sur la surface du diélectrique ; il est évident pour l'homme de l'art qu'elle peut s'appliquer à d'autres types de panneaux d'affichage et à d'autres modes de pilotage sans sortir du cadre des revendications ci-après ; l'invention s'applique ainsi notamment aux panneaux à plasma à pilotage haute fréquence ou radio-fréquence, où les décharges de maintien sont, au moins partiellement, stabilisées entre les électrodes.The present invention has been described with reference to a conventional reciprocating plasma panel and a driving mode where the sustaining discharges involve a charge reversal on the surface of the dielectric; it is obvious to those skilled in the art that it can be applied to other types of billboards and other modes of driving without departing from the scope of the claims below; the invention thus applies in particular to plasma panels with high frequency or radio frequency control, where the holding discharges are at least partially stabilized between the electrodes.

Claims (15)

  1. Method for driving an AC image-display plasma panel with coplanar sustain discharges, and with memory effect, the said panel comprising:
    - a front tile and a rear tile, which are parallel and provide between them a space filled with a discharge gas;
    - one (12) of the tiles comprising at least a first array of electrodes (5) and the other tile (11) comprising at least a second array of triads of electrodes (13, 20, 14), the general direction of which is approximately orthogonal to that of the electrodes (5) of the first array;
    - each triad comprising two opposed lateral electrodes (13, 14) and one central electrode (20);
    - the spaces located at the intersections of the electrodes (5) of the first array with the triads of electrodes (13, 20, 14) of the second electrode array forming a matrix of light-discharge regions (9) and of dots of the image to be displayed;
    - the electrodes (13, 20, 14) of the triads being coated with a dielectric layer (17);
    the said method comprising at least one sustain operation by applying a series of sustain voltage pulses between the electrodes of each triad so as to generate sustain discharges in each of the intersection regions (9) in which it is desired to sustain a light discharge;
    characterized in that,
    during the said sustain operation, the voltage of the central electrode (20) of each triad is always superior or equal to the one of one or the other lateral electrode (13, 14);.
    the width of the said central electrode (20) of each triad of said panel is greater than the gaps separating and isolating the adjacent electrodes of the same triad.
  2. Method according to Claim 1, characterized in that the width of the said central electrode (20) is greater than 80 µm.
  3. Method according to Claim 2, characterized in that the width of the said central electrode (20) is between 100 and 200 µm.
  4. Method according to claim 2, characterized in that the width of said central electrode (20) is superior to the width of each of said lateral electrodes (13, 14).
  5. Method according to any one of the preceding claims, characterized in that it also comprises, before or after each sustain operation, a selective addressing or erasing operation applied only in each of the said regions in which it is desired to sustain a light discharge during the said series, by applying at least one voltage pulse between the electrode of the said first array crossing the said region and at least one of the electrodes of the triad crossing the said region.
  6. Method according to Claim 5, characterized in that the said selective voltage pulse is applied between the electrode of the said first array crossing the said region and the central electrode of the triad crossing the said region.
  7. Method according to Claim 6, characterized in that, all of the regions (9R, 9G, 9B, etc) supplied via the same triad (13, 20, 14; 13', 20', 14') forming one row of the said panel, on any two adjacent rows through which a first triad (13, 20, 14) on the one hand and a second triad (13', 20', 14') on the other hand pass respectively, the lateral electrode (14) of the first triad is electrically connected to the same potential as the closest lateral electrode (13') of the second triad.
  8. Plasma panel capable of being used for implementing the method according to any one of the preceding claims, comprising:
    - a front tile and a rear tile, which are parallel and provide between them a space filled with a discharge gas;
    - one (12) of the tiles comprising at least a first array of electrodes (5) and the other tile (11) comprising at least a second array of triads of electrodes (13, 20, 14), the general direction of which is approximately orthogonal to that of the electrodes (5) of the first array;
    - each triad comprising two opposed lateral electrodes (13, 14) and one central electrode (20);
    - the spaces located at the intersections of the electrodes (5) of the first array with the triads of electrodes (13, 20, 14) of the second electrode array forming a matrix of light-discharge regions (9) and of dots of the image to be displayed;
    - the electrodes (13, 20, 14) of the triads being coated with a dielectric layer (17);
    - means for controlling the discharges in each of the said intersection regions (9), especially by means of sustain operations;
    characterized in that
    the said control means are designed so that, during the sustain operations, the voltage of the central electrode (20) of each triad is always superior or equal to the one of one or the other lateral electrodes (13, 14).
    the width of the said central electrode (20) is greater than the gaps separating and isolating the adjacent electrodes of the same triad.
  9. Plasma panel according to Claim 8, characterized in that the width of the said central electrode (20) is greater than 80 µm.
  10. Plasma panel according to Claim 9, characterized in that the width of the said central electrode (20) is between 100 and 200 µm.
  11. Plasma panel according to Claim 10, characterized in that the gaps separating and isolating the adjacent electrodes of the same triad are less than 80 µm and in that the spacing between the tiles providing the said discharge-gas-filled space is greater than 130 µm.
  12. Plasma panel according to Claim 11, characterized in that the width of the said central electrode (20) is greater than 200 µm.
  13. Plasma panel according to anyone of claims 9 to 12, charaterized in that the width of said central electrode (20) is superior to the width of each lateral electrodes (13, 14).
  14. Plasma panel according to any one of Claims 9 to 13, characterized in that all of the regions (9R, 9G, 9B, etc) supplied via the same triad (13, 20, 14; 13', 20', 14') forming one row of the said panel, on any two adjacent rows through which a first triad (13, 20, 14) on the one hand and a second triad (13', 20', 14') on the other hand pass respectively, the lateral electrode (14) of the first triad is electrically connected to the same potential as the closest lateral electrode (13') of the second triad.
  15. Plasma panel according to Claim 14, characterized in that the said two electrically connected electrodes (14, 13') form an electrode (21) common to two adjacent rows.
EP02747498A 2001-06-13 2002-06-04 Method for monitoring a plasma display panel with discharge between triad-mounted electrodes Expired - Lifetime EP1407443B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0107707 2001-06-13
FR0107707A FR2826166B1 (en) 2001-06-13 2001-06-13 METHOD FOR CONTROLLING A PLASMA PANEL WITH CO-PLANAR MAINTENANCE DISCHARGES BETWEEN TRIADED ELECTRODES
PCT/FR2002/001870 WO2002101703A1 (en) 2001-06-13 2002-06-04 Method for monitoring a plasma display panel with discharge between triad-mounted electrodes

Publications (2)

Publication Number Publication Date
EP1407443A1 EP1407443A1 (en) 2004-04-14
EP1407443B1 true EP1407443B1 (en) 2008-09-17

Family

ID=8864246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02747498A Expired - Lifetime EP1407443B1 (en) 2001-06-13 2002-06-04 Method for monitoring a plasma display panel with discharge between triad-mounted electrodes

Country Status (9)

Country Link
US (1) US7167144B2 (en)
EP (1) EP1407443B1 (en)
JP (1) JP4184949B2 (en)
KR (1) KR100854045B1 (en)
CN (1) CN1272760C (en)
DE (1) DE60228965D1 (en)
FR (1) FR2826166B1 (en)
TW (1) TW588301B (en)
WO (1) WO2002101703A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010762A (en) * 2003-05-28 2005-01-13 Pioneer Plasma Display Corp Plasma display apparatus and driving method of plasma display panel
KR100529114B1 (en) * 2003-11-28 2005-11-15 삼성에스디아이 주식회사 A plasma display device and a driving method of the same
KR100560474B1 (en) * 2003-11-29 2006-03-13 삼성에스디아이 주식회사 Driving method of plasma display panel and plasma display device
KR100551618B1 (en) * 2003-11-29 2006-02-13 삼성에스디아이 주식회사 Driving method of plasma display panel
KR100589316B1 (en) * 2004-02-10 2006-06-14 삼성에스디아이 주식회사 A plasma display device and a driving method of the same
JP2006194948A (en) * 2005-01-11 2006-07-27 Fujitsu Hitachi Plasma Display Ltd Driving method for plasma display panel and plasma display apparatus
JP2006194951A (en) * 2005-01-11 2006-07-27 Fujitsu Hitachi Plasma Display Ltd Driving method for plasma display panel and plasma display apparatus
JP2007286192A (en) * 2006-04-13 2007-11-01 Fujitsu Hitachi Plasma Display Ltd Method of driving plasma display panel
JP4919912B2 (en) * 2007-09-21 2012-04-18 株式会社日立製作所 Plasma display panel and image display device including the same
CN101615548A (en) * 2008-06-23 2009-12-30 四川虹欧显示器件有限公司 Plasma panel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373452B1 (en) * 1995-08-03 2002-04-16 Fujiitsu Limited Plasma display panel, method of driving same and plasma display apparatus
JP3767644B2 (en) * 1997-01-21 2006-04-19 株式会社日立プラズマパテントライセンシング Plasma display apparatus and driving method thereof
KR100286764B1 (en) * 1997-12-24 2001-04-16 박종섭 Plasma display panel
KR100319095B1 (en) * 1999-03-02 2002-01-04 김순택 A plasma display panel having subsidiary electrodes and a driving method therefor
JP2000331619A (en) * 1999-05-19 2000-11-30 Hitachi Ltd Discharge tube for indication

Also Published As

Publication number Publication date
JP4184949B2 (en) 2008-11-19
DE60228965D1 (en) 2008-10-30
CN1514991A (en) 2004-07-21
TW588301B (en) 2004-05-21
KR100854045B1 (en) 2008-08-26
US7167144B2 (en) 2007-01-23
US20040160390A1 (en) 2004-08-19
FR2826166B1 (en) 2003-08-29
FR2826166A1 (en) 2002-12-20
KR20040010698A (en) 2004-01-31
EP1407443A1 (en) 2004-04-14
WO2002101703A1 (en) 2002-12-19
CN1272760C (en) 2006-08-30
JP2005505788A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
EP0356313B1 (en) Method for the very fast control of an ac plasma panel with a coplanar support by semi-selective addressing and selective addressing
US5967872A (en) Method for fabrication of a plasma display panel
FR2812449A1 (en) Personal computer/television information terminal plasma display screen having forward/rear substrate and columns/row rib sections forming pixel cells with nearby electrode supports/sweep electrodes.
EP1407443B1 (en) Method for monitoring a plasma display panel with discharge between triad-mounted electrodes
FR2708380A1 (en) Image display device and associated control circuit
FR2749702A1 (en) Alternating current plasma display panel with surface discharge
FR2787909A1 (en) Memory type alternating current plasma display system having parallel line discharge/sweep/lower electrodes and second unit parallel column electrodes with outer luminous element and intermediate discharge space.
EP0968512B1 (en) Bi-substrate plasma panel
EP1390940B1 (en) Display method for a coplanar plasma display panel using a pulse train with sufficiently high frequency to stabilise the discharges
FR2786021A1 (en) Flat screen television plasma display construction/command having discharge electrodes with parallel placed slot electrode pairs/bus and second plane information electrodes
JP2003516605A (en) Plasma display panel
FR2629245A1 (en) METHOD FOR POINT-BY-POINT CONTROL OF A PLASMA PANEL
EP1543536B1 (en) Plasma display panel having coplanar electrodes with constant width
FR2839198A1 (en) PLASMA VISUALIZATION PANEL WITH MICROWAVE RADIATION DISCHARGE EXCITATION
EP1627408B1 (en) Plasma display panel comprising a reduced-section discharge expansion zone
FR2656716A1 (en) Method of balancing the colours of a visual display screen, and multicoloured visual display screen implementing this method
FR2790861A1 (en) Drive unit of field emission type display array, has array format individual electron emitters subjected to higher strike voltage followed by lower sustain voltage with prescribed inter-pulse quiescent gaps
WO2003032357A1 (en) Plasma display panel with coplanar electrodes having inclined discharge edges
JP2003123653A (en) Plasma display panel
JP2003123652A (en) Plasma display panel
FR2794283A1 (en) PLASMA DISPLAY PANEL
JPH09179105A (en) Plasma address type display element and driving device therefor
WO2001075927A1 (en) Ac matrix plasma panel
FR2654244A1 (en) High-speed addressing method and device, for independent holding and addressing of plasma display panels
EP0376829A1 (en) Low resolution plasma panel display

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TESSIER, LAURENT

17Q First examination report despatched

Effective date: 20070518

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60228965

Country of ref document: DE

Date of ref document: 20081030

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140626

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140618

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60228965

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150604

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150604

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630