EP1407134B1 - Kraftstoffhochdruckvorrichtung - Google Patents

Kraftstoffhochdruckvorrichtung Download PDF

Info

Publication number
EP1407134B1
EP1407134B1 EP02727273A EP02727273A EP1407134B1 EP 1407134 B1 EP1407134 B1 EP 1407134B1 EP 02727273 A EP02727273 A EP 02727273A EP 02727273 A EP02727273 A EP 02727273A EP 1407134 B1 EP1407134 B1 EP 1407134B1
Authority
EP
European Patent Office
Prior art keywords
pressure
housing
wall part
sealing
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02727273A
Other languages
English (en)
French (fr)
Other versions
EP1407134A1 (de
Inventor
Sieghart Maier
Siegfried Ruthardt
Klaus Wuerth
Thomas Pauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1407134A1 publication Critical patent/EP1407134A1/de
Application granted granted Critical
Publication of EP1407134B1 publication Critical patent/EP1407134B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/16Sealing of fuel injection apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8076Fuel injection apparatus manufacture, repair or assembly involving threaded members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9015Elastomeric or plastic materials

Definitions

  • Such High-pressure fuel device is in the form of a fuel injection valve known from DE 198 27 267 A1 and includes a housing having a first as a valve holding body trained high-pressure body and a second as a valve body trained high-pressure body includes.
  • the two High-pressure bodies lie against each other in a contact surface. Through the contact surface enters a high-pressure chamber in the form of a High-pressure channel through, the fuel under high pressure leads.
  • the housing is in the area of the contact surface of a surrounded by a substantially cylindrical wall part, which is designed as a clamping nut and has a longitudinal axis. Between the housing and the clamping nut is a Leakage oil space is formed, which covers the housing on its entire Circumference surrounds.
  • the patent US 6,047,899 is also a High-pressure fuel device in the form of a fuel injection valve known, wherein the fuel injection valve more High-pressure body comprises.
  • the high pressure bodies are with a Clamping nut pressed together, being between the high pressure bodies and the clamping nut a room with a low Fuel pressure is present.
  • the clamping nut is with a Internal thread on a corresponding external thread on a high-pressure body screwed on while the clamping nut on another High pressure body rests against a shoulder.
  • a sealing ring provided in an annular groove on a high-pressure body is inserted.
  • the leakage oil space, formed between the housing and the wall part is sealed.
  • the fuel between the high pressure bodies passes through the contact surface remains so in the leakage oil chamber, and the high-pressure fuel device is sealed to the outside.
  • first sealing connection Between the wall part and the first high pressure body is formed a first sealing connection and between the wall part and the second high pressure body a second sealing connection. This will cause the leakage oil space sealed in a simple manner and sealing both Connections can be made independently.
  • the wall part is designed as a clamping nut, which is the high pressure body pressed together on the contact surface. In this way becomes the function of sealing to the outside and the function a clamping element for pressing together the high-pressure body united in only one component.
  • At least a sealing connection of the Wandungssteils is with the housing arranged by a between the housing and the wall part Formed sealing ring. This can be a good one Tightness can be achieved, and the sealing ring can be attached to different Be adapted to circumstances.
  • the invention is the leakage oil chamber with a in the housing trained low-pressure space, wherein in the low pressure space always maintained a low fuel pressure becomes. Over this connection the fuel can out drain the leakage oil space and it does not come with time a pressure accumulation in the leakage oil space, resulting in leaks of could cause sealing connections.
  • one of sealing connections of the clamping nut with the housing by the installation of a sealing surface on a housing formed on the Formed contact surface.
  • this embodiment can be applied by the clamping nut pressure force for one of the sealing connections can be used without additional sealing or clamping elements would be necessary.
  • sealing ring made of an elastic material, preferably a plastic or elastomer.
  • a sealing ring can by deforming the space between the wall part and adapt to the housing and thereby seal securely.
  • sealing ring Made of polytetrafluoroethylene (PTFE)
  • PTFE polytetrafluoroethylene
  • the high-pressure fuel device according to the invention when acting as a fuel injector is designed for internal combustion engine, since the occurring here Leakage problems due to measures on the contact surface can not be resolved finally. It revealed Here are some other advantages: The requirements for the Quality of the sealing surfaces of the two high-pressure body is clear reduces, as a certain amount of leakage to the outside in the leakage oil space is acceptable. In addition, results the advantage that the high-pressure body with less force must be pressed together, resulting in a reduction the mechanical tension in the fuel injector leads and thus to lower deformations, otherwise affect the function of the fuel injection valve can.
  • Fig. 1 is an example of a Fuel high-pressure device in longitudinal section in his essential parts.
  • the here as fuel injector trained high-pressure fuel device comprises a housing 1 having a first high pressure body, which is designed as a valve holding body 3, and a second high-pressure body, the valve body as the fifth is formed comprises.
  • the valve holding body 3 is applied a contact surface 30 on the valve body 5 and is by means of designed as a wall part clamping nut 7 against pressed this.
  • a bore 8 is formed, which has a longitudinal axis 15, which also with the Longitudinal axis 15 of the clamping nut 7 coincides.
  • a piston-shaped valve needle 10 is longitudinally displaceable arranged in a combustion chamber facing away from the section is guided sealingly in the bore 8 and the the combustion chamber tapers to form a pressure shoulder 21.
  • the valve needle 10 goes in a substantially conical valve sealing surface 14 over, the formed with a combustion chamber end of the bore 8
  • Valve seat 16 cooperates, which is also substantially is conically shaped and the approximately the same opening angle as the valve sealing surface 14 has.
  • a plurality of injection openings 12 are formed, the valve seat 16 with the combustion chamber of the internal combustion engine connect.
  • a pressure chamber 18 is formed, the one about in the valve body 5 and the valve holding body 3 trained inlet channel 23 with fuel can be filled under high pressure.
  • the inlet channel 23 forms a high-pressure chamber and passes through the contact surface 30 of the two high-pressure body 3, 5 through.
  • the pressure chamber 18 sets to the valve seat 16 as a valve needle 10 surrounding Ring channel 19 continues, allowing fuel from the pressure chamber 18 can flow to the valve seat 16.
  • Valve sealing surface 14 on the valve seat 16 When plant the Valve sealing surface 14 on the valve seat 16 are the injection openings 12 closed, and there is no fuel from the annular channel 19 to the injection openings 12th Lift the valve sealing surface 14 by a longitudinal movement of the Valve needle 10 from the valve seat 16, so fuel flows from the annular channel 19 through the between the valve sealing surface 14 and the valve seat 16 formed gap to the injection openings 12, and fuel is in the combustion chamber of the Internal combustion engine injected.
  • the valve body 5 is in the area in which the valve needle 10 is guided, formed with a cylindrical outer surface, the the combustion chamber to about the height of the pressure chamber 18 tapers to form a contact surface 44, wherein the contact surface 44 in a radial plane to the bore. 8 lies.
  • the clamping nut 7 is substantially as a hollow cylinder formed and surrounds the valve body 5 and a part the valve holding body 3, in particular in the region of the contact surface 30. At its combustion chamber end facing the Clamping nut 7 a collar on which a sealing surface 42nd is formed, which comes to the contact surface 44 to the plant and a first sealing connection between the clamping nut 7 and the housing 1 forms.
  • the clamping nut 7 In the combustion chamber facing away end the clamping nut 7 has an internal thread 38, the in a on the outer circumferential surface of the valve holding body. 3 trained external thread 36 engages.
  • a leakage oil space 30 Between the clamping nut 7 and the valve holding body 3 respectively the valve body 5 is formed a leakage oil space 30, the at the combustion chamber end area through the plant the sealing surface 42 sealed to the contact surface 44 becomes.
  • the sealing is effected by a sealing ring 50, the between the clamping nut 7 and the valve holding body 3 is clamped is and thus forms a second sealing connection.
  • Fig. 2 shows for clarity an enlargement of II designated area of Fig. 1, where the sealing ring 50 in Cross section is shown.
  • the sealing ring 50 is made of an elastic Material manufactured, for example, from rubber or a plastic, so that it can deform accordingly and a sealing connection of the clamping nut 7 with the valve holding body 3 creates. Especially polytetrafluoroethylene This is advantageous because this plastic largely is chemically inert.
  • the leakage oil space 30 is thus sealed, and it can not get fuel out.
  • the bore 8 goes into a valve holding body 3 trained piston bore 26 via, at the transition has a slightly larger diameter than the bore 8.
  • a pressure piece 25 is arranged, the end face of the valve needle facing away from the combustion chamber 10 is present.
  • the pressure piece 25 is followed
  • Valve piston 27, which is also in the piston bore 26th is guided and arranged coaxially with the valve needle 10.
  • the valve piston 27 may have a closing force via the pressure piece 25 exert on the valve needle 10, so that with its valve sealing surface 14 pressed against the valve seat 16 becomes.
  • a Closing spring 28 is arranged, which faces away from the valve needle 10 supported on a ring shoulder 29 and with their other End on the pressure piece 25.
  • the closing spring 28 Since the closing spring 28 is pressure-biased is, it exerts a closing force on the valve needle 10 off, these - especially when not running internal combustion engine - Holds in its closed position.
  • the piston bore 26 is shown with a not shown in the drawing Leakage oil system connected so that the piston bore 26 a Low pressure space forms, in which always a lower Fuel pressure prevails. About the annular gap between the Valve needle 10 and the wall of the hole 8 can only very little Fuel from the pressure chamber 18 in the piston bore 26th arrive, which then immediately drained into the drain system becomes.
  • valve needle 10 in the bore 8 and thus the control of the timing and duration of the injection takes place in the way that the closing force on the valve needle 10 is controlled.
  • device By one in the drawing not shown device is facing away from the combustion chamber End of the valve piston 27 exerted a force which is controllable is.
  • high pressure fuel source passed under high pressure in the pressure chamber 18, wherein during of the entire operation a given high pressure in Pressure chamber 18 is maintained.
  • the fuel pressure in the pressure chamber 18 and thus also in the annular channel 19 results a hydraulic force on the pressure shoulder 21 and on parts of the valve sealing surface 14, the closing force of Counteract valve piston 27 and closing spring 28.
  • Fig. 3 shows an enlargement of Fig. 1 in III designated Detail of an embodiment of the invention.
  • the sealing ring 50 is not here at the end of the clamping nut. 7 arranged, but is located in an annular groove 52, the surrounds the valve holding body 3 on its entire circumference.
  • the annular groove 52 is arranged in the external thread 36, so that seen in the direction of the longitudinal axis 15 on both Side of the annular groove 52 is a part of the external thread 36.
  • the sealing ring 50 is before screwing the clamping nut 7 arranged in the annular groove 52, so that the Clamping nut 7 with the internal thread 38 when mounting over the sealing ring 50 moves.
  • Fig. 4 shows a further embodiment of the invention Fuel injection valve in a cutout in the region of the contact surface 30.
  • the connecting channel 34 is not here as a groove in an end face of the valve holding body 3 formed, but as a bore in the valve holding body 3, with the longitudinal axis 15 an angle of, for example 45 °.
  • the connecting channel 34 can in this case of emanating from any point of the leakage oil space, so that the remaining functional elements are not affected.
  • a leakage oil space In addition to the arrangement of a leakage oil space according to the invention It can also be provided to a fuel injection valve be a wall part on every other high-pressure fuel device to use in which a high pressure room with Fuel under high pressure through the contact surface of two High pressure body passes.
  • the leakage oil space can also be in In this case, connected to a corresponding leakage oil system become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der Technik
Die Erfindung geht von einer Kraftstoffhochdruckvorrichtung nach der Gattung des Patentanspruchs 1 aus. Eine solche Kraftstoffhochdruckvorrichtung ist in Form eines Kraftstoffeinspritzventils aus der DE 198 27 267 A1 bekannt und umfasst ein Gehäuse, das einen ersten als Ventilhaltekörper ausgebildeten Hochdruckkörper und einen zweiten als Ventilkörper ausgebildeten Hochdruckkörper beinhaltet. Die beiden Hochdruckkörper liegen in einer Anlagefläche aneinander an. Durch die Anlagefläche tritt ein Hochdruckraum in Form eines Hochdruckkanals hindurch, der Kraftstoff unter hohem Druck führt. Das Gehäuse wird im Bereich der Anlagefläche von einem im wesentlichen zylinderförmigen Wandungsteil umgeben, das als Spannmutter ausgebildet ist und eine Längsachse aufweist. Zwischen dem Gehäuse und der Spannmutter ist ein Leckölraum ausgebildet, der das Gehäuse auf seinem gesamten Umfang umgibt.
Aus der Patentschrift US 6 047 899 ist darüber hinaus eine Kraftstoffhochdruckvorrichtung in Form eines Kraftstoffeinspritzventils bekannt, wobei das Kraftstoffeinspritzventil mehrere Hochdruckkörper umfasst. Die Hochdruckkörper werden mit einer Spannmutter aneinander gepresst, wobei zwischen den Hochdruckkörpern und der Spannmutter ein Raum mit einem niedrigen Kraftstoffdruck vorhanden ist. Die Spannmutter ist mit einem Innengewinde auf ein entsprechendes Außengewinde an einem Hochdruckkörper aufgeschraubt, während die Spannmutter an einem anderen Hochdruckkörper an einer Schulter anliegt. Zur Abdichtung des Raums ist außerhalb des Gewindes und abgewandt zur Schulter ein Dichtring vorgesehen, der in eine Ringnut an einem Hochdruckkörper eingelegt ist.
Bei der bekannten Kraftstoffhochdruckvorrichtung tritt der Nachteil auf, dass es zu Undichtigkeiten im Bereich der Anlagefläche kommen kann. Der Hochdruckraum wird an seinem Durchtritt durch die Anlagefläche nur durch die Flächenpressung der Körper abgedichtet, die in der Anlagefläche aneinander anliegen und den Durchtritt des Hochdruckraums umgeben. Da im Hochdruckraum zum Teil sehr hohe Drücke von 120 MPa und darüber herrschen können, ist diese Abdichtung nicht vollständig, so dass es zu einem Austritt von Kraftstoff in der Anlagefläche kommen kann, der in den Leckölraum zwischen der Spannmutter und dem Gehäuse gelangt, von wo er bei längerem Betrieb der Kraftstoffhochdruckvorrichtung schließlich austritt. Dies kann beim Einsatz in einer Brennkraftmaschine zu erheblichen Schäden führen, insbesondere wenn dieser Kraftstoff in den Motorraum gelangt und dort durch heiße Bauteile in Brand gesetzt wird.
Vorteile der Erfindung
Die erfindungsgemäße Kraftstoffhochdruckvorrichtung mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass auch bei Undichtigkeiten an der Anlagefläche der beiden Hochdruckkörper kein Kraftstoff nach außen gelangen kann. Zu diesem Zweck wird der Leckölraum, der zwischen dem Gehäuse und dem Wandungsteil gebildet ist, abgedichtet. Der Kraftstoff, der zwischen den Hochdruckkörpern hindurch an der Anlagefläche austritt, verbleibt so im Leckölraum, und die Kraftstoffhochdruckvorrichtung ist nach außen abgedichtet.
Zwischen dem Wandungsteil und dem ersten Hochdruckkörper ist eine erste dichtende Verbindung ausgebildet und zwischen dem Wandungsteil und dem zweiten Hochdruckkörper eine zweite dichtende Verbindung. Dadurch wird der Leckölraum in einfacher Weise abgedichtet und beide dichtenden Verbindungen können unabhängig voneinander gestaltet werden.
Das Wandungsteil ist als Spannmutter ausgebildet, die die Hochdruckkörper an der Anlagefläche aneinander presst. Auf diese Weise wird die Funktion der Abdichtung nach außen und die Funktion eines Spannelements zum Aneinanderpressen der Hochdruckkörper in nur einem Bauteil vereint.
Wenigstens eine dichtende Verbindung des Wandungsteils ist mit dem Gehäuse durch einen zwischen dem Gehäuse und dem Wandungsteil angeordneten Dichtring ausgebildet. Dadurch kann eine gute Dichtheit erreicht werden, und der Dichtring kann an verschiedene Gegebenheiten angepasst werden.
In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist der Leckölraum mit einem im Gehäuse ausgebildeten Niederdruckraum verbunden, wobei im Niederdruckraum stets ein niedriger Kraftstoffdruck aufrecht erhalten wird. Über diese Verbindung kann der Kraftstoff aus dem Leckölraum abfließen und es kommt nicht mit der Zeit zu einem Druckstau im Leckölraum, was zu Undichtigkeiten der dichtenden Verbindungen führen könnte.
In einer weiteren vorteilhaften Ausgestaltung ist eine der dichtenden Verbindungen der Spannmutter mit dem Gehäuse durch die Anlage einer Dichtfläche an einer am Gehäuse ausgebildeten Anlagefläche gebildet. In dieser Ausgestaltung kann die durch die Spannmutter ausgeübte Anpresskraft für eine der dichtenden Verbindungen genutzt werden, ohne dass weitere Dicht- oder Spannelemente nötig wären.
In einer weiteren vorteilhaften Ausgestaltung ist der Dichtring aus einem elastischen Material gefertigt, vorzugsweise einem Kunststoff oder Elastomer. Ein solcher Dichtring kann sich durch Verformen dem Raum zwischen dem Wandungsteil und dem Gehäuse anpassen und dadurch sicher abdichten.
In einer weiteren vorteilhaften Ausgestaltung ist der Dichtring aus Polytetrafluorethylen (PTFE) gefertigt, was neben der guten Dichtheit den Vorteil bietet, dass der Dichtring chemisch äußerst beständig ist und durch den Kraftstoff nicht angegriffen wird. Außerdem ist PTFE gut hitzebeständig und eignet sich somit besonders für den Einsatz in Kraftstoffeinspritzventilen, die hohen Temperaturen ausgesetzt sind.
Besonders vorteilhaft ist die erfindungsgemäße Kraftstoffhochdruckvorrichtung, wenn sie als Kraftstoffeinspritzventil für Brennkraftmaschine ausgebildet ist, da die hier auftretenden Dichtigkeitsprobleme durch Maßnahmen an der Anlagefläche nicht abschließend gelöst werden können. Es ergeben sich hier noch weitere Vorteile: Die Anforderungen an die Güte der Dichtflächen der beiden Hochdruckkörper ist deutlich reduziert, da eine bestimmte Leckagemenge nach außen in den Leckölraum akzeptabel ist. Darüber hinaus ergibt sich der Vorteil, dass die Hochdruckkörper mit geringerer Kraft aneinander gepresst werden müssen, was zu einer Reduzierung der mechanischen Verspannungen im Kraftstoffeinspritzventil führt und damit zu geringeren Verformungen, die ansonsten die Funktion des Kraftstoffeinspritzventils beeinträchtigen können.
Weitere Vorteile und vorteilhaften Ausgestaltungen der Erfindung sind der Beschreibung und der Zeichnung entnehmbar.
Zeichnung
In der Zeichnung ist ein Beispiel einer Kraftstoffhochdruckvorrichtung dargestellt. Es zeigt
  • Figur 1 eine nicht erfindungsgemäße Kraftstoffhochdruckvorrichtung in Form eines Kraftstoffeinspritzventils im Längsschnitt.
  • Figur 2 zeigt eine Vergrößerung des mit II bezeichneten Ausschnitts von Fig. 1. Figur 3 zeigt ein erfindungsgemäßes Ausführungsbeispiel des mit III bezeichneten Ausschnitt der Fig. 1 und Figur 4 eine Vergrößerung im Bereich der Anlagefläche eines weiteren erfindungsgemäßen Ausführungsbeispiels.
  • Beschreibung der Ausführungsbeispiele
    In der Fig. 1 ist ein Beispiel einer Kraftstoffhochdruckvorrichtung im Längsschnitt in seinen wesentlichen Teilen dargestellt. Die hier als Kraftstoffeinspritzventil ausgebildete Kraftstoffhochdruckvorrichtung weist ein Gehäuse 1 auf, das einen ersten Hochdruckkörper, der als Ventilhaltekörper 3 ausgebildet ist, und einen zweiten Hochdruckkörper, der als Ventilkörper 5 ausgebildet ist, umfasst. Der Ventilhaltekörper 3 liegt an einer Anlagefläche 30 am Ventilkörper 5 an und wird mittels einer als Wandungsteil ausgebildeten Spannmutter 7 gegen diesen gepresst. Im Ventilkörper 5 ist eine Bohrung 8 ausgebildet, die eine Längsachse 15 aufweist, die auch mit der Längsachse 15 der Spannmutter 7 zusammenfällt. In der Bohrung 8 ist eine kolbenförmige Ventilnadel 10 längsverschiebbar angeordnet, die in einem dem Brennraum abgewandten Abschnitt in der Bohrung 8 dichtend geführt wird und die sich dem Brennraum zu unter Bildung einer Druckschulter 21 verjüngt. Am brennraumseitigen Ende geht die Ventilnadel 10 in eine im wesentlichen konische Ventildichtfläche 14 über, die mit einem am brennraumseitigen Ende der Bohrung 8 ausgebildeten Ventilsitz 16 zusammenwirkt, der ebenfalls im wesentlichen konisch geformt ist und der in etwa denselben Öffnungswinkel wie die Ventildichtfläche 14 aufweist. Im Ventilsitz 16 sind mehrere Einspritzöffnungen 12 ausgebildet, die den Ventilsitz 16 mit dem Brennraum der Brennkraftmaschine verbinden. Auf Höhe der Druckschulter 21 ist durch eine radiale Erweiterung der Bohrung 3 ein Druckraum 18 ausgebildet, der über einen im Ventilkörper 5 und dem Ventilhaltekörper 3 ausgebildeten Zulaufkanal 23 mit Kraftstoff unter hohem Druck befüllbar ist. Der Zulaufkanal 23 bildet einen Hochdruckraum und tritt durch die Anlagefläche 30 der beiden Hochdruckkörper 3;5 hindurch. Der Druckraum 18 setzt sich dem Ventilsitz 16 zu als ein die Ventilnadel 10 umgebender Ringkanal 19 fort, so dass Kraftstoff aus dem Druckraum 18 bis zum Ventilsitz 16 strömen kann. Bei Anlage der Ventildichtfläche 14 am Ventilsitz 16 werden die Einspritzöffnungen 12 verschlossen, und es gelangt kein Kraftstoff aus dem Ringkanal 19 zu den Einspritzöffnungen 12. Hebt die Ventildichtfläche 14 durch eine Längsbewegung der Ventilnadel 10 vom Ventilsitz 16 ab, so fließt Kraftstoff aus dem Ringkanal 19 durch den zwischen der Ventildichtfläche 14 und dem Ventilsitz 16 gebildeten Spalt zu den Einspritzöffnungen 12, und Kraftstoff wird in den Brennraum der Brennkraftmaschine eingespritzt.
    Der Ventilkörper 5 ist in dem Bereich, in dem die Ventilnadel 10 geführt ist, mit einer zylindrisch Außenfläche ausgebildet, die sich dem Brennraum zu etwa auf Höhe des Druckraums 18 unter Bildung einer Anlagefläche 44 verjüngt, wobei die Anlagefläche 44 in einer Radialebene zur Bohrung 8 liegt. Die Spannmutter 7 ist im wesentlichen als Hohlzylinder ausgebildet und umgibt den Ventilkörper 5 und einen Teil des ventilhaltekörpers 3, insbesondere im Bereich der Anlagefläche 30. An ihrem brennraumzugewandten Ende weist die Spannmutter 7 einen Kragen auf, an dem eine Dichtfläche 42 ausgebildet ist, die an der Anlagefläche 44 zur Anlage kommt und eine erste dichtende Verbindung zwischen der Spannmutter 7 und dem Gehäuse 1 bildet. Im brennraumabgewandten Endbereich weist die Spannmutter 7 ein Innengewinde 38 auf, das in ein an der Außenmantelfläche des Ventilhaltekörpers 3 ausgebildetes Außengewinde 36 eingreift. Durch Drehung der Spannmutter 7 wird diese mit dem Ventilhaltekörper 3 verschraubt und verschiebt sich dadurch in Längsrichtung, so dass die Dichtfläche 42 gegen die Anlagefläche 44 gepresst wird und der Ventilkörper 5 in der Anlagefläche 30 gegen den Ventilhaltekörper 3.
    Zwischen der Spannmutter 7 und dem Ventilhaltekörper 3 beziehungsweise dem Ventilkörper 5 ist ein Leckölraum 30 ausgebildet, der am brennraumseitigen Endbereich durch die Anlage der Dichtfläche 42 an der Anlagefläche 44 abgedichtet wird. Im brennraumabgewandten Endbereich der Spannmutter 7 wird die Abdichtung durch einen Dichtring 50 bewirkt, der zwischen der Spannmutter 7 und dem Ventilhaltekörper 3 eingeklemmt ist und so eine zweite dichtende Verbindung bildet. Fig. 2 zeigt zur Verdeutlichung eine Vergrößerung des mit II bezeichneten Bereichs der Fig. 1, wo der Dichtring 50 im Querschnitt gezeigt ist. Der Dichtring 50 ist aus einem elastischen Material gefertigt, beispielsweise aus Gummi oder einem Kunststoff, so dass er sich ensprechend verformen kann und eine dichtende Verbindung der Spannmutter 7 mit dem Ventilhaltekörper 3 schafft. Besonders Polytetrafluorethylen ist hierbei von Vorteil, da dieser Kunststoff weitgehend chemisch inert ist. Der Leckölraum 30 ist somit abgedichtet, und es kann kein Kraftstoff nach außen gelangen.
    Brennraumabgewandt geht die Bohrung 8 in eine im Ventilhaltekörper 3 ausgebildete Kolbenbohrung 26 über, die am Übergang einen etwas größeren Durchmesser aufweist als die Bohrung 8. In der Kolbenbohrung 26 ist ein Druckstück 25 angeordnet, das an der brennraumabgewandten Stirnfläche der Ventilnadel 10 anliegt. An das Druckstück 25 schließt sich ein Ventilkolben 27 an, der ebenfalls in der Kolbenbohrung 26 geführt ist und koaxial zur Ventilnadel 10 angeordnet ist. Der Ventilkolben 27 kann eine Schließkraft über das Druckstück 25 auf die Ventilnadel 10 ausüben, so dass diese mit ihrer Ventildichtfläche 14 gegen den Ventilsitz 16 gepresst wird. In der Kolbenbohrung 26 ist darüber hinaus eine Schließfeder 28 angeordnet, die sich der Ventilnadel 10 abgewandt an einem Ringabsatz 29 abstützt und mit ihrem anderen Ende am Druckstück 25. Da die Schließfeder 28 druckvorgespannt ist, übt sie eine Schließkraft auf die Ventilnadel 10 aus, die diese - insbesondere bei nicht laufender Brennkraftmaschine - in ihrer Schließstellung hält. Die Kolbenbohrung 26 ist mit einem in der Zeichnung nicht dargestellten Leckölsystem verbunden, so dass die Kolbenbohrung 26 einen Niederdruckraum bildet, in dem stets ein niedriger Kraftstoffdruck herrscht. Über den Ringspalt zwischen der Ventilnadel 10 und der Wand der Bohrung 8 kann nur sehr wenig Kraftstoff aus dem Druckraum 18 in die Kolbenbohrung 26 gelangen, der dann sofort in das Leckölsystem abgeleitet wird.
    Die Bewegung der Ventilnadel 10 in der Bohrung 8 und damit die Steuerung von Zeitpunkt und Dauer der Einspritzung erfolgt in der Weise, dass die Schließkraft auf die Ventilnadel 10 gesteuert wird. Durch eine in der Zeichnung nicht dargestellte Vorrichtung wird auf das brennraumabgewandte Ende des Ventilkolbens 27 eine Kraft ausgeübt, die steuerbar ist. Über den Zulaufkanal 23 wird durch eine in der Zeichnung ebenfalls nicht dargestellte Hochdruckquelle Kraftstoff unter hohem Druck in den Druckraum 18 geleitet, wobei während des gesamten Betriebs ein vorgegebener hoher Druck im Druckraum 18 aufrecht erhalten wird. Durch den Kraftstoffdruck im Druckraum 18 und damit auch im Ringkanal 19 ergibt sich eine hydraulische Kraft auf die Druckschulter 21 und auf Teile der Ventildichtfläche 14, die der Schließkraft von Ventilkolben 27 und Schließfeder 28 entgegenwirken. Reduziert man die Schließkraft auf die Ventilnadel 10, so überwiegt die hydraulische Öffnungskraft, und die Ventilnadel 10 hebt mit der Ventildichtfläche 14 vom Ventilsitz 16 ab, so dass Kraftstoff zu den Einspritzöffnungen 12 fließen kann. Wird die Schließkraft wieder soweit erhöht, dass sie größer als die Öffnungskraft ist, verschiebt sich die Ventilnadel 10 erneut in Richtung auf den Ventilsitz 16 und die Einspritzöffnungen 12 werden verschlossen.
    Durch den ständig im Zulaufkanal 23 herrschenden hohen Kraftstoffdruck werden an die Dichtheit an der Anlagefläche der beiden Hochdruckkörper 3; 5 sehr hohe Anforderungen gestellt, damit aus dem Zulaufkanal 23 kein Kraftstoff zwischen dem Ventilkörper 5 und dem Ventilhaltekörper 3 austritt. Der Teil des Kraftstoffs, der nach innen in die Kolbenbohrung 26 gelangt, wird von dort in das Leckölsystem abgeleitet und stört den Betrieb des Kraftstoffeinspritzventils nicht. Nach außen in den Leckölraum 32 fließender Kraftstoff wird dort gehalten, so dass das Kraftstoffeinspritzventil nach außen dicht ist. Fließt jedoch mehr Kraftstoff in den Leckölraum 32, so kann sich dort ein Druckpolster aufbauen, was früher oder später zu einer Undichtigkeit entweder am Dichtring 50 oder an der Dichtfläche 42 führen wird. Um dies zu verhindern ist an der dem Ventilkörper 5 zugewandten Stirnseite des Ventilhaltekörpers 7 ein Verbindungskanal 34 in Form einer Nut ausgebildet, der den Leckölraum 32 mit der Kolbenbohrung 26 verbindet. Der Kraftstoff im Leckölraum 32 kann somit abfließen und der Leckölraum 32 bleibt drucklos.
    Fig. 3 zeigt eine Vergrößerung der Fig. 1 im mit III bezeichneten Ausschnitt eines erfindungsgemäßen Ausführungsbeispiels. Der Dichtring 50 ist hier nicht am Ende der Spannmutter 7 angeordnet, sondern befindet sich in einer Ringnut 52, die den Ventilhaltekörper 3 auf seinem gesamten Umfang umgibt. Die Ringnut 52 ist dabei im Außengewinde 36 angeordnet, so dass sich in Richtung der Längsachse 15 gesehen auf beiden Seiten der Ringnut 52 ein Teil des Außengewindes 36 befindet. Der Dichtring 50 wird vor dem Einschrauben der Spannmutter 7 in der Ringnut 52 angeordnet, so dass sich die Spannmutter 7 mit dem Innengewinde 38 bei der Montage über den Dichtring 50 verschiebt. Da der Dichtring 50 aus einem elastischen und gut verformbaren Material besteht, verformt die Spannmutter den Dichtring 50 und schneidet sich mit dem Innengewinde 38 in den Dichtring 50 ein. Dadurch wird eine sehr dichte Verbindung zwischen Spannmutter 7 und Dichtring 50 erreicht.
    Fig. 4 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils in einem Ausschnitt im Bereich der Anlagefläche 30. Der Verbindungskanal 34 ist hier nicht als Nut in einer Stirnseite des Ventilhaltekörpers 3 ausgebildet, sondern als Bohrung im Ventilhaltekörper 3, die mit der Längsachse 15 einen Winkel von beispielsweise 45° einschließt. Der Verbindungskanal 34 kann hierbei von irgendeinem Punkt des Leckölraums ausgehen, so dass die restlichen Funktionselemente nicht beeinträchtigt werden.
    In der Zeichnung sind nur zwei Hochdruckkörper vorhanden, nämlich der Ventilhaltekörper 3 und der Ventilkörper 5. Es kann aber auch vorgesehen sein, dass zwischen diesen beiden Körpern weitere Hochdruckkörper angeordnet sind, beispielsweise in Form von Zwischenscheiben. So können mehrere Anlageflächen ausgebildet sein, die alle von der Spannmutter 7 umgeben sind, so dass der aus den Anlageflächen austretende Kraftstoff abgeführt wird, ohne aus dem Kraftstoffeinspritzventil nach außen zu gelangen.
    Neben der Anordnung eines erfindungsgemäßen Leckölraums an einem Kraftstoffeinspritzventil kann es auch vorgesehen sein, ein Wandungsteil an jeder anderen Kraftstoffhochdruckvorrichtung zu verwenden, bei der ein Hochdruckraum mit Kraftstoff unter hohem Druck durch die Anlagefläche zweier Hochdruckkörper hindurchtritt. Der Leckölraum kann auch in diesem Fall mit einem entsprechenden Leckölsystem verbunden werden.

    Claims (6)

    1. Kraftstoffhochdruckvorrichtung mit einem Gehäuse (1), das einen ersten Hochdruckkörper (3) und einen zweiten Hochdruckkörper (5) umfasst, welche an einer Anlagefläche (30) aneinander anliegen und durch welche Anlagefläche (30) ein im Gehäuse (1) ausgebildeter Hochdruckraum (23) hindurchtritt, in dem zumindest zeitweise ein hoher Kraftstoffdruck vorhanden ist, und mit einem eine Längsachse (15) aufweisenden hülsenförmigen Wandungsteil (7), welches das Gehäuse (1) zumindest im Bereich der Anlagefläche (30) an der Außenmantelfläche umgibt, so dass zwischen dem Wandungsteil (7) und dem Gehäuse (1) ein Leckölraum (32) ausgebildet ist, wobei der Leckölraum (32) nach außen abgedichtet ist und
      zwei dichtende Verbindungen zwischen dem Wandungsteil (7) und dem Gehäuse (1) ausgebildet sind, wobei eine dichtende Verbindung zwischen dem Wandungsteil (7) und dem ersten Hochdruckkörper (3) ausgebildet ist und die zweite dichtende Verbindung zwischen dem Wandungsteil (7) und dem zweiten Hochdruckkörper (5), wobei
      das Wandungsteil eine Spannmutter (7) ist, die in ein am Gehäuse (1) ausgebildetes Außengewinde (36) eingreift und so die beiden Hochdruckkörper (3; 5) aneinander presst,
      dadurch gekennzeichnet, dass wenigstens eine dichtende Verbindungen des Wandungsteils (7) mit dem Gehäuse (1) durch einen zwischen dem Gehäuse (1) und dem Wandungsteil (7) angeordneten Dichtring (50) gebildet ist, der in einer im Außengewinde (36) ausgebildeten Ringnut (52) angeordnet ist.
    2. Kraftstoffhochdruckvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass im Gehäuse (1) ein Niederdruckraum ausgebildet ist, in dem ein deutlich niedrigerer Druck als im Hochdruckraum (23) herrscht und der mit dem Leckölraum (32) verbunden ist.
    3. Kraftstoffhochdruckvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine der dichtenden Verbindungen des Wandungsteils (7) mit dem Gehäuse (1) durch die Anlage einer am Wandungsteil (7) ausgebildeten Dichtfläche (42) an einer am Gehäuse (1) ausgebildeten Anlagefläche (44) gebildet ist.
    4. Kraftstoffhochdruckvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Dichtring (50) aus einem elastisch verformbaren Material besteht, vorzugsweise einem Kunststoff oder einem Elastomer.
    5. Kraftstoffhochdruckvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Dichtring (50) aus Polytetrafluorethylen oder einem Polytetrafluorethylen-haltigen Kunststoff besteht.
    6. Kraftstoffhochdruckvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Kraftstoffhochdruckvorrichtung als Kraftstoffeinspritzventil für Brennkraftmaschinen ausgebildet ist.
    EP02727273A 2001-07-07 2002-03-27 Kraftstoffhochdruckvorrichtung Expired - Lifetime EP1407134B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10133167 2001-07-07
    DE10133167A DE10133167A1 (de) 2001-07-07 2001-07-07 Kraftstoffhochdruckvorrichtung
    PCT/DE2002/001111 WO2003004866A1 (de) 2001-07-07 2002-03-27 Kraftstoffhochdruckvorrichtung

    Publications (2)

    Publication Number Publication Date
    EP1407134A1 EP1407134A1 (de) 2004-04-14
    EP1407134B1 true EP1407134B1 (de) 2005-01-26

    Family

    ID=7691085

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02727273A Expired - Lifetime EP1407134B1 (de) 2001-07-07 2002-03-27 Kraftstoffhochdruckvorrichtung

    Country Status (6)

    Country Link
    US (1) US7014130B2 (de)
    EP (1) EP1407134B1 (de)
    JP (1) JP4164026B2 (de)
    BR (1) BR0205720B1 (de)
    DE (2) DE10133167A1 (de)
    WO (1) WO2003004866A1 (de)

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10155413A1 (de) * 2001-11-10 2003-05-22 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
    JP2006207480A (ja) * 2005-01-28 2006-08-10 Bosch Corp 燃料噴射弁
    JP2006233821A (ja) * 2005-02-23 2006-09-07 Bosch Corp 燃料噴射弁
    DE102005015735A1 (de) * 2005-04-06 2006-10-12 Robert Bosch Gmbh Brennstoffeinspritzventil
    DE102005040366A1 (de) 2005-08-26 2007-03-01 Robert Bosch Gmbh Kraftstoffhochdruckvorrichtung
    DE102006050065A1 (de) * 2006-10-24 2008-04-30 Siemens Ag Fluiddosiervorrichtung
    US8427638B2 (en) * 2010-01-27 2013-04-23 Halliburton Energy Services, Inc. Optical measurement device including a multi-component sealing assembly
    JP5304861B2 (ja) * 2010-12-17 2013-10-02 株式会社デンソー 燃料噴射装置
    DE102011076957A1 (de) * 2011-06-06 2012-12-06 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
    EP3516202A4 (de) * 2016-10-31 2020-06-10 Cummins Inc. Injektorhülsenanordnung und verfahren zur reparatur vor ort

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4200231A (en) * 1978-06-19 1980-04-29 General Motors Corporation Fuel injector nozzle
    DE3120060A1 (de) * 1981-05-20 1982-12-09 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoff-einspritzduese fuer brennkraftmaschinen
    US4485969A (en) * 1982-02-19 1984-12-04 General Motors Corporation Electromagnetic unit fuel injector with cartridge type solenoid actuated valve
    IT1166995B (it) * 1982-11-25 1987-05-06 Lucas Ind Plc Ugello di iniezione di combustibile
    JPH01244144A (ja) * 1988-03-25 1989-09-28 Yamaha Motor Co Ltd エンジンの高圧燃料噴射装置
    US5443209A (en) * 1994-08-02 1995-08-22 Diesel Technology Company High pressure diesel fuel injector for internal combustion engines
    US5862995A (en) * 1996-04-01 1999-01-26 Diesel Technology Company High pressure fluid passage sealing for internal combustion engine fuel injectors and method of making same
    DE19739905A1 (de) * 1997-09-11 1999-03-18 Bosch Gmbh Robert Kraftstoffeinspritzventil
    US6047899A (en) * 1998-02-13 2000-04-11 Caterpillar Inc. Hydraulically-actuated fuel injector with abrupt end to injection features

    Also Published As

    Publication number Publication date
    BR0205720B1 (pt) 2011-05-17
    DE50202128D1 (de) 2005-03-03
    WO2003004866A1 (de) 2003-01-16
    US7014130B2 (en) 2006-03-21
    BR0205720A (pt) 2003-07-29
    EP1407134A1 (de) 2004-04-14
    US20040069279A1 (en) 2004-04-15
    DE10133167A1 (de) 2003-01-23
    JP2004521265A (ja) 2004-07-15
    JP4164026B2 (ja) 2008-10-08

    Similar Documents

    Publication Publication Date Title
    DE19547423B4 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
    DE19706591A1 (de) Druckventil
    EP1963662A1 (de) Kraftstoffinjektor
    EP1407134B1 (de) Kraftstoffhochdruckvorrichtung
    DE4225350C2 (de) Kraftstoffeinspritzpumpe für Brennkraftmaschinen
    DE69107405T2 (de) Hochdruck-Dichtungssystem für das Steuerventil eines elektromagnetischen Brennstoffeinspritzventils für Verbrennungsmotoren.
    EP1373715A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
    CH686845A5 (de) Steueranordnung fuer ein Einspritzventil fuer Verbrennungskraftmaschinen.
    DE102008008435B4 (de) Federbelastetes Ventil und Verfahren zur Einstellung einer Ventilbaugruppe eines federbelasteten Ventils
    DE19936669A1 (de) Common-Rail-Injektor
    EP1288486A2 (de) Leckagekanal in einem Kraftstoffhochdrucksystem
    DE19536330A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
    WO2010031628A1 (de) Brennstoffeinspritzventil
    EP0688396B1 (de) Hochdruck-leitungsverbindung
    DE10102192B4 (de) Vorrichtung zur Halterung von Einspritzelementen im Zylinderkopf einer Brennkraftmaschine
    EP1319128B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
    DE102005020833A1 (de) Kraftstoffeinspritzmodul
    EP1880100B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
    DE19626663A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
    DE10050599B4 (de) Einspritzventil mit einem Pumpkolben
    DE10048597A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
    DE19843346B4 (de) Kraftstoffeinspritzventileinrichtung für Brennkraftmaschinen
    DE10249142A1 (de) Kraftstoffzuleitungsvorrichtung für Kraftstoffeinspritzventile
    EP1148234A2 (de) Einspritzventil mit optimierten Dichtflächen
    DE10237593A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20040209

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20040507

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50202128

    Country of ref document: DE

    Date of ref document: 20050303

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050614

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20051027

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20210322

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20210324

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20210331

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20210521

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50202128

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20220326

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20220326