EP1390695A1 - Verfahren zur kontaktlosen, linearen positionsmessung - Google Patents

Verfahren zur kontaktlosen, linearen positionsmessung

Info

Publication number
EP1390695A1
EP1390695A1 EP02726086A EP02726086A EP1390695A1 EP 1390695 A1 EP1390695 A1 EP 1390695A1 EP 02726086 A EP02726086 A EP 02726086A EP 02726086 A EP02726086 A EP 02726086A EP 1390695 A1 EP1390695 A1 EP 1390695A1
Authority
EP
European Patent Office
Prior art keywords
signal
sensor
magnetic field
permanent magnet
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02726086A
Other languages
English (en)
French (fr)
Inventor
Jens Hauch
Klaus Ludwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1390695A1 publication Critical patent/EP1390695A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination

Definitions

  • the invention relates to a method for contactless, linear position measurement between two components, with the use of a magnetic field sensor attached to a first component, above which there is a permanent magnet attached to a second component, the magnetic field sensor emitting a signal which signals a Maximum value, a minimum value and an intermediate half level.
  • Magnetic field measurement is used to obtain a distance signal for position measurement by means of relative movements between the permanent magnet and the magnetic field sensor.
  • An example of such an application can be found in WO 00/09972, in which a magnetic field sensor is used as a position sensor for an electromechanical actuator for gas exchange valves of an internal combustion engine.
  • the magnetic field sensors used for such contactless position measurements are available in particular in versions in which the signal emitted by the magnetic sensor runs approximately linearly between two end positions, whereby a high resolution of the measurement signal and a precise position determination is possible.
  • the permanent magnet is generally rod-shaped. It can be aligned in such a way that its magnetic axis is perpendicular to the direction of movement with which the permanent magnet is moved via the magnetic field sensor.
  • Magnetic sensor arrangements for position measurement have the advantage that only little construction is required, in particular the sensors and permanent magnets can be very small being held. In addition, they are very robust and particularly insensitive to contamination.
  • the output signal of the magnetic field sensor is normally converted, in particular if, as with a linear sensor, it is proportional to the measured field strength, by means of a fixed calibration curve within a predetermined working range, which essentially reflects the aforementioned * linear relationship.
  • EP 0 599 175 AI describes an interpolation device which extracts the measured quantity from orthogonal sine and cosine signals of two sensors of a measuring device, in particular two magnetic field sensors, by means of a multi-stage method.
  • the characteristic curve of a magnetic field sensor can be set as linear within certain limits of the longitudinal displacement of a magnet, and a parallel change in distance between the magnet and the sensor changes the slope of the characteristic curve.
  • This publication also proposes to line up a plurality of magnetic field sensors along an axis and to relate the signals from neighboring sensors in relation to the position of a magnet above them and to evaluate them using previously stored calibration data.
  • JP 08-50004 A deals with a similar arrangement of sensors along an axis.
  • the sensors can include Hall elements.
  • the object of the invention is to increase the measurement accuracy in a contactless position measurement of the type mentioned at the outset by means of magnetic field sensors and permanent magnets and to reduce the influence of errors mentioned with regard to temperature dependence and mechanical component tolerances.
  • This object is achieved in a method for contactless, linear position measurement between a first and a second component, using a magnetic sensor attached to the first component, above which there is a permanent magnet attached to the second component and which emits a signal which has a maximum value , has a minimum value and an intermediate half-level, the signal lift being determined as the difference between the maximum value and the minimum value, and calculating a normalized signal from the signal by dividing by the signal lift, which is achieved according to the invention by evaluating the standardized signal for contactless, linear position measurement is used by using the standardized signal directly as a position specification or by means of a characteristic curve into a linear distance value, the indicates the lateral distance between the magnetic field sensor and the permanent magnet.
  • the invention thus achieves extensive independence with regard to temperature or mechanical misalignment errors without resorting to external characteristic curves or further sensors. Surprisingly, it was found that normalization of the magnetic field sensor signal with the signal swing, but a relatively large working range, results in a straight characteristic curve which is virtually completely independent of the distance between the permanent magnet and the magnetic field sensor.
  • the method according to the invention can thus greatly reduce the effort required for the exact adjustment of the distance between the permanent magnet and the magnetic field sensor, as a result of which the area of application for such contactless position measuring systems is greatly increased.
  • the sensitivity to errors decreases on movements of the permanent magnet that are not parallel to the plane in which the magnetic field sensor is located.
  • the method according to the invention makes magnetic field measurements not only suitable for straight-line movements, but also for slightly curved or oblique movements.
  • the standardized signal which is largely linear within the working range, can be used directly as position information.
  • a special scaling which can be the case, for example, when using the contactless position measuring method in motor vehicle transmissions, it is expedient to convert the standardized signal into a linear distance value by means of a characteristic curve which indicates the lateral distance between the sensor and the permanent magnet.
  • the method according to the invention is suitable for all suitable magnetic field sensors which emit a corresponding signal which fluctuates between a maximum value and a minimum value with an intermediate half level when the permanent magnet is passed over the magnetic field sensor.
  • Linear Hall sensors gave particularly high measurement accuracies, which is why it is preferable to use a linear Hall sensor as a magnetic field sensor.
  • the mentioned work area can be selected depending on the resolution requirement.
  • a particularly good resolution is obtained in particular when using Hall sensors if the working range is selected so that it lies within the lateral distance of the positions of the permanent magnet at which the signal has the maximum or minimum value. In this area between the maximum and minimum values, the lamate of the standardized signal is particularly good.
  • the method according to the invention provides a linear relationship between the standardized signal and the position of the permanent magnet with respect to the magnetic field sensor in a certain working range.
  • several magnetic field sensors can be staggered to cover a larger measuring range.
  • a sensor line, in which a plurality of magnetic field sensors are spaced along a longitudinal axis and on which the permanent magnet is moving, can thus cover an almost arbitrarily large measuring range. The advantages of the measuring method according to the invention are thus also exploited over a large measuring distance which is larger than the working range of an individual magnetic field sensor.
  • the distance at which the magnetic field sensors are lined up can in principle be selected to vary in a further range.
  • a particularly large measuring range can be achieved if the distances are selected so that the working ranges of the individual magnetic field sensors are only overlap ring.
  • 1 is a schematic representation of a sensor line for contactless position measurement
  • Fig. 4 examples of the working areas of staggered magnetic field sensors in a sensor line
  • Fig. 5 examples of the overlap of work areas of staggered magnetic field sensors in a sensor line.
  • FIG. 1 shows a schematic illustration for contactless position measurement by means of magnetic field sensors which are fastened to a first component and a permanent magnet which is fastened to a second component which is movable relative to the first component.
  • the sensor line 1 shown there has several linear Hall sensors 2a, 2b and 2c, which in a sensor distance d are attached to each other on the sensor line.
  • the sensor line 1 is attached to a first component (not shown).
  • Permanent magnet 3 The permanent magnet 3 is fastened to a second component (not shown) which shifts in the longitudinal direction x relative to the first component. There is an air gap h between the permanent magnet 3 and the sensor line 1, the dimension of which is dependent on the component tolerance and temperature.
  • the permanent magnet 3 is aligned with its magnetization axis between the north pole N and south pole S parallel to the longitudinal direction x, but can also be different depending on the measurement task.
  • Each Hall sensor 2a to 2c measures the magnetic field of the permanent magnet 3.
  • a sensor row 1 shows a sensor row 1 with a plurality of Hall sensors 2a to 2c.
  • a single Hall sensor 2 can also be used if the measuring range over which a displacement between the permanent magnet 3 and Hall sensor 2 in the longitudinal direction x is to be detected is sufficiently small.
  • the sensor signal S emitted by each Hall sensor 2a to 2c is shown in a family of curves 4 in FIG. 2.
  • the signal S is plotted in FIG. 2 as a function of the longitudinal direction x and is obtained from a sensor which outputs a voltage between 0 and 5 volts.
  • the family of curves 4 contains various sensor signals S, the air gap h being the family of parameters.
  • each sensor signal S of the family of curves 4 has a maximum value 5 and a minimum value 6.
  • a half level 7 lies between maximum value 5 and minimum value 6. This half level 7 is assumed when the permanent magnet 3 lies exactly in the center above the Hall sensor 2.
  • the air gap h is a critical dimension for the installation adjustment of the permanent magnet 6 with respect to the sensor line 1.
  • the air gap h changes due to temperature influences.
  • the minimum value 6 is then determined.
  • the signal swing is determined by forming the difference between the maximum value 5 minus the minimum value 6. Now the sensor signal S is divided by the signal swing, whereby a normalized sensor signal NS is obtained.
  • a sensor line 1 with a plurality of Hall sensors 2a to 2c these can now be arranged in a staggered manner such that the respective working areas a overlap somewhat.
  • This si tuation is shown in Fig. 4, which shows the corresponding normalized sensor signals NS as a function of the longitudinal direction x.
  • Corresponding standardized sensor signals are obtained from the sensor signals S of the Hall sensors 2a to 2c, which are entered as curves 9a to 9c in FIG. 4.
  • a linear characteristic curve 10a to 10c results, which corresponds in each case to the characteristic curve 8 in FIG. 3.
  • the Hall sensors 2a to 2c are now spaced such that the working areas a of the characteristic curves 10a to 10c adjoin one another at least continuously, ideally even overlap somewhat. A large measuring range can thus be covered, which in the present example of FIG. 4 ranges from 0 to 28 length units.
  • the use of three Hall sensors 2a to 2c means that the entire measuring range is almost tripled compared to a single Hall sensor 2.
  • FIG. 5 shows an embodiment in which the working areas a of the individual characteristic curves 10a to 10c overlap somewhat.
  • This overlap is used for a hysteresis at the transition between the individual characteristic curves 10a, 10b and 10c, the curves 9a, 9b and 9c of the individual Hall sensors 2a, 2b and 2c.
  • This hysteresis leads to the fact that, in the case of a movement extending in the longitudinal direction x, a jump to the respectively subsequent characteristic curve 10b, 10c occurs only at the end of the working area a of each characteristic curve 10a, 10b.
  • jumps to the next characteristic curve only at the end of the working range of the respective characteristic curve 10a to 10c, so that the characteristic curves overlap
  • hysteresis is carried out. This hysteresis allows a clear assignment of the sensor signal and avoids ambiguous assignments at the jump point.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Die Erfindung sieht zur kontaktlosen linearen Positionsmessung zwischen zwei gegeneinander bewegten Bauteilen vor ein Verfahren mit Verwendung eines an dem ersten Bauteil befestigten Magnetsensors, oberhalb dessen ein sich am zweiten Bauteil befestigter Permanentmagnet befindet und der ein Signal abgibt, welches einen Maximalwert, einen Minimalwert und einen dazwischenliegenden Halbpegel aufweist, wobei der Signalhub als Differenz zwischen Maximalwert und Minimalwert bestimmt, und aus dem Signal mittels Division durch den Signalhub ein normiertes Signal berechnet, und dass normierte Signal zur kontaktlosen, linearen Positionsmessung ausgewertet wird.

Description

Beschreibung
Verfahren zur kontaktlosen, linearen Positionsmessung
Die Erfindung bezieht sich auf ein Verfahren zur kontaktlosen, linearen Positionsmessung zwischen zwei Bauteilen, mit der Verwendung eines an einem ersten Bauteil befestigten Magnetfeldsensors, oberhalb dessen sich ein an einem zweiten Bauteil befestigter Permanentmagnet befindet, wobei der Mag- netfeldsensor ein Signal abgibt, welches einen Maximalwert, einen Minimalwert und einen dazwischenliegenden Halbpegel aufweist .
Solche Sensoranordnungen sind im Stand der Technik zur kon- taktlosen Positionsmessung bekannt. Dabei wird die Magnetfeldmessung eingesetzt, um durch Relativbewegungen zwischen Permanentmagnet und Magnetfeldsensor ein Abstandssignal zur Positionsmessung zu gewinnen. Ein Beispiel für eine solche Anwendung findet sich in der WO 00/09972, bei der ein Magnet- feldsensor als Positionssensor für einen elektromechanischen Stellantrieb für Gaswechselventile einer Brennkraftmaschine eingesetzt wird.
Die für solche kontaktlose Positionsmessungen verwendeten Magnetfeldsensoren sind insbesondere in Ausführungen verfügbar, bei denen einem Nahbereich zwischen zwei Endpositionen das vom Magnetsensor abgegebene Signal annähernd linear verläuft, wodurch eine hohe Auflösung des Messsignals und eine präzise Positionsbestimmung möglich ist. Bei derartigen line- aren Magnetfeldsensoren ist der Permanentmagnet in der Regel stabför ig ausgebildet. Er kann so ausgerichtet werden, dass seine Magnetachse senkrecht zur Bewegungsrichtung mit der der Permanentmagnet über den Magnetfeldsensor bewegt wird, liegt.
Magnetsensoranordnungen zur Positionsmessung haben den Vorteil, dass nur geringer baulicher Aufwand nötig ist, insbesondere können die Sensoren und Permanentmagneten sehr klein gehalten werden. Darüber hinaus sind sie sehr robust und insbesondere verschmutzungsunanfällig. Zur Auswertung wird normalerweise das Ausgangssignal des Magnetfeldsensors, insbesondere wenn es, wie bei einem linearen Sensor, proportional zur gemessenen Feldstärke ist, mittels einer festen Kalibra- tionskurve innerhalb eines vorgegebenen Arbeitsbereiches, der im wesentlichen den vorerwähnten * linearen Zusammenhang wiedergibt, umgesetzt.
Dieses Konzept hat jedoch den Nachteil, dass Signalschwankungen durch Einbautoleranzen hinsichtlich der Lage zwischen Permanentmagnet und Magnetfeldsensor so gering wie möglich gehalten werden müssen, da das Signal des Magnetfeldsensors stark vom Abstand des Permanentmagneten abhängt, mit dem die- ser über den Magnetfeldsensor geführt wird. Auch sind Magnetfeldmessungen bei Anwendungen, bei denen starke Temperaturunterschiede auftreten können, nicht besonders vorteilhaft, da Temperaturänderungen zum einen in der Regel eine Änderung des Abstandes zwischen Magnetfeldsensor und Permanentmagnet mit sich bringen und zum anderen die Koerzitivkraft der meisten Permanentmagneten stark von der Temperatur abhängt. Für Anwendungen, bei denen die dadurch bedingten Fehler nicht tolerierbar sind, bzw. bei denen deren Vermeidung zu unverhältnismäßig hohen Kosten führen würde, sind andere Sensoren be- kannt, beispielsweise mit optischen Sensorkonzepten. Diese sind jedoch in der Regel teurer und haben andere Nachteile, wie Verschmutzungsanfälligkeit. Auch ist es möglich, nach Temperaturmessungen eine Fehlerkorrektur vorzunehmen. Dies ist aber ebenfalls aufwendig.
Die EP 0 599 175 AI beschreibt eine Interpolationsvorrichtung, die aus orthogonalen Sinus- und Kosinus-Signalen zweier Sensoren einer Messeinrichtung, insbesondere zweier Magnetfeldsensoren mittels eines mehrstufigen Verfahrens die ge es- sene Größe extrahiert. Aus der DE 34 43 176 Cl ist es bekannt, dass die Kennlinie eines Magnetfeldsensors innerhalb bestimmter Grenzen der Längsverschiebung eines Magneten als linear anzusetzen ist, und eine parallele Abstandsveränderung zwischen Magnet und Sensor die Steigung der Kennlinie ändert. Diese Druckschrift schlägt weiter vor, mehrere Magnetfeldsensoren längs einer Achse aufzureihen und zur Bestimmung der Position eines darüber liegenden Magneten die Signale benachbarter Sensoren ins Verhältnis zu setzen und mittels zuvor gespeicherter Kalib- rierungsdaten auszuwerten.
Der japanische Patent-Abstract zu JP 08-50004 A befasst sich mit einer ähnlichen Anordnung von Sensoren längs einer Achse. Die Sensoren können Hall-Elemente umfassen.
Der Erfindung liegt die Aufgabe zugrunde, bei einer kontaktlosen Positionsmessung der eingangs erwähnten Art mittels Magnetfeldsensoren und Permanentmagneten die Messgenauigkeit zu steigern und die erwähnten Fehlereinflüsse hinsichtlich Temperaturabhängigkeit und mechanischer Bauteiletoleranzen zu verringern.
Diese Aufgabe wird bei einem Verfahren zur kontaktlosen, linearen Positionsmessung zwischen einem ersten und einem zwei- ten Bauteil, mit Verwendung eines an dem ersten Bauteil befestigten Magnetsensors, oberhalb dessen ein sich am zweiten Bauteil befestigter Permanentmagnet befindet und der ein Signal abgibt, welches einen Maximalwert, einen Minimalwert und einen dazwischenliegenden Halbpegel aufweist, wobei der Sig- nalhub als Differenz zwischen Maximalwert und Minimalwert bestimmt, und aus dem Signal mittels Division durch den Signalhub ein normiertes Signal berechnet, dadurch erfindungsgemäß gelöst, dass das normierte Signal zur kontaktlosen, linearen Positionsmessung ausgewertet wird, indem das normierte Signal direkt als Positionsangabe verwendet oder mittels einer Kennlinie in einen linearen Abstandswert umgewandelt wird, der den seitlichen Abstand zwischen Magnetfeldsensor und Permanentmagnet angibt.
Die Erfindung erreicht also ohne Rückgriff auf externe Kenn- linien oder weitere Sensorik eine weitgehende Unabhängigkeit hinsichtlich Temperatur- oder mechanischer Dejustagefehler . Überraschenderweise zeigte sich, dass eine Normierung des Magnetfeldsensorsignals mit dem Signalhub aber einen relativ großen Arbeitsbereich eine gerade Kennlinie ergibt, die so gut wie vollständig unabhängig vom Abstand zwischen Permanentmagnet und Magnetfeldsensor ist.
Durch das erfindungsgemäße Verfahren kann somit der Aufwand, der zur genauen Justage des Abstandes zwischen Permanentmag- net und Magnetfeldsensor erforderlich ist, stark vermindert werden, wodurch der Anwendungsbereich für derartige kontaktlose Positionsmeßsysteme stark vergrößert wird. Darüber hinaus sinkt die Fehlerempfindlichkeit auf Bewegungen des Permanentmagneten, die nicht parallel zu der Ebene verlaufen, in der sich der Magnetfeldsensor befindet. Somit sind durch das erfindungsgemäße Verfahren Magnetfeldmessungen nun nicht nur für geradlinige Bewegungen, sondern auch für leicht bogenförmige oder schräg verlaufende Bewegungen tauglich.
Prinzipiell kann das innerhalb des Arbeitsbereiches weitgehend lineare, normierte Signal direkt als Positionsangabe verwendet werden. Ist jedoch eine spezielle Skalierung erforderlich, was beispielsweise bei Anwendung des kontaktlosen Positionsmessverfahrens in Kraftfahrzeuggetrieben der Fall sein kann, ist es zweckmäßig, das normierte Signal mittels einer Kennlinie in einen linearen Abstandswert umzuwandeln, der den seitlichen Abstand zwischen Sensor und Permanentmagnet angibt. Diese Weiterbildung ermöglicht eine exakte Anpassung des Abstandssignales an entsprechende Applikationsanfor- derungen. Prinzipiell ist das erfmdungsgemaße Verfahren für alle geeigneten Magnetfeldsensoren tauglich, die ein entsprechendes Signal abgeben, das zwischen einem Maximalwert und einem Minimalwert mit dazwischenliegendem Halbpegel schwankt, wenn der Permanentmagnet über den Magnetfeldsensor gefuhrt wird. Besonders hohe Messgenauigkeiten ergaben sich mit linearen Hallsensoren, weshalb es zu bevorzugen ist, einen linearen Hallsensor als Magnetfeldsensor zu verwenden.
Der erwähnte Arbeitsbereich kann je nach Auflosungsanforderung gewählt werden. Eine besonders gute Auflosung erhalt man insbesondere bei der Verwendung von Hallsensoren, wenn der Arbeitsbereich so gewählt wird, dass er innerhalb des seitlichen Abstandes der Positionen des Permanentmagneten liegt, an denen das Signal den Maximal- bzw. Minimalwert hat. In diesem Bereich zwischen den Maximal- und Minimalwerten ist die Lme- aπtat des normierten Signals besonders gut.
Wie erwähnt, liefert das erfindungsgemaße Verfahren m einem gewissen Arbeitsbereich einen linearen Zusammenhang zwischen normiertem Signal und Position des Permanentmagneten bezuglich des Magnetfeldsensors. Zur Vergrößerung des Arbeitsbereiches können mehrere Magnetfeldsensoren gestaffelt werden, um einen größeren Messbereich abzudecken. Somit kann durch eine Sensorzeile, m der mehrere Magnetfeldsensoren entlang einer Langsachse beabstandet aufgereiht sind, auf der sich der Permanentmagnet bewegt, ein nahezu beliebig großer Messbereich abgedeckt werden. Damit werden die Vorteile des er- fmdungsgemaßen Messverfahrens auch über eine große Messstre- cke, d e großer als der Arbeitsbereich eines einzelnen Magnetfeldsensors ist, ausgenutzt.
Der Abstand, mit dem die Magnetfeldsensoren voneinander aufgereiht werden, kann prinzipiell m einem weiteren Bereich variierend gewählt werden. Einen besonders großen Messbereich erreicht man, wenn die Abstände so gewählt werden, dass sich die Arbeitsbereiche der einzelnen Magnetfeldsensoren nur ge- ring überlappen. Dabei ist es auch denkbar, die örtliche Auflösung einer solchen Sensorzeile ortsabhängig zu variieren, indem Magnetfeldsensoren unterschiedlicher Ortsauflösung eingesetzt werden. Magnetfeldsensoren hoher Auflösung, die einen geringen Arbeitsbereich haben, wären dann geringerer beabstandet als Magnetfeldsensoren mit geringerer Ortsauflösung, die einen größeren Arbeitsbereich haben, so dass insgesamt die jeweiligen Arbeitsbereiche, in denen die Kennlinien der unterschiedlichen Magnetfeldsensoren dann mit unter- schiedlicher Steigung verlaufen, jeweils aneinander anschließen.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung beispielhalber noch näher erläutert. In der Zeich- nung zeigt:
Fig. 1 eine schematische Darstellung einer Sensorzeile zur kontaktlosen Positionsmessung,
Fig. 2 eine Kurvenschar eines Magnetfeldsensors über den in verschiedenen Abständen ein Permanentmagnet geführt wird,
Fig. 3 einen Arbeitsbereich eines normierten Sensorsignals,
Fig. 4 Beispiele für die Arbeitsbereiche gestaffelter Magnetfeldsensoren in einer Sensorzeile und
Fig. 5 Beispiele für die Überlappung von Arbeitsbereichen gestaffelter Magnetfeldsensoren in einer Sensorzeile.
Eine schematische Darstellung zur kontaktlosen Positionsmessung mittels Magnetfeldsensoren, die an einem ersten Bauteil befestigt sind, und einem Permanentmagneten, der an einem re- lativ zum ersten Bauteil beweglichen zweiten Bauteil befestigt ist, zeigt Fig. 1. Die dort dargestellte Sensorzeile 1 weist mehrere lineare Hallsensoren 2a, 2b und 2c auf, die in einem Sensorabstand d zueinander auf der Sensorzeile befestigt sind. Die Sensorzeile 1 ist an einem (nicht dargestellten) ersten Bauteil angebracht.
Über der Sensorzeile 1 bewegt sich in Längsrichtung x ein
Permanentmagnet 3. Der Permanentmagnet 3 ist an einem (nicht dargestellten) zweiten Bauteil befestigt, das sich gegenüber dem ersten Bauteil in Längsrichtung x verschiebt. Zwischen Permanentmagnet 3 und der Sensorzeile 1 befindet sich ein Luftspalt h, dessen Abmessung bauteiletoleranz- und temperaturabhängig ist. Der Permanentmagnet 3 ist mit seiner Magnetisierungsachse zwischen Nordpol N und Südpol S parallel zur Längsrichtung x ausgerichtet, kann aber je nach Messaufgabe auch anders liegen. Jeder Hallsensor 2a bis 2c misst das Mag- netfeld des Permanentmagneten 3.
In Fig. 1 ist eine Sensorzeile 1 mit mehreren Hallsensoren 2a bis 2c dargestellt. Optional kann auch ein einziger Hallsensor 2 verwendet werden, falls der Messbereich, über den eine Verschiebung zwischen Permanentmagnet 3 und Hallsensor 2 in Längsrichtung x erfasst werden soll, ausreichend gering ist.
Das von jedem Hallsensor 2a bis 2c abgegebene Sensorsignal S ist in Fig. 2 in einer Kurvenschar 4 dargestellt. Das Signal S ist in Fig. 2 als Funktion der Längsrichtung x aufgetragen und von einem Sensor gewonnen, der eine Spannung zwischen 0 und 5 Volt abgibt .
Die Kurvenschar 4 enthält verschiedene Sensorsignale S, wobei der Luftspalt h der Scharparamenter ist.
Wie man sieht, weist jedes Sensorsignal S der Kurvenschar 4 einen Maximalwert 5 sowie einen Minimalwert 6 auf. Zwischen Maximalwert 5 und Minimalwert 6 liegt ein Halbpegel 7. Dieser Halbpegel 7 wird dann eingenommen, wenn der Permanentmagnet 3 genau mittig über dem Hallsensor 2 liegt. Die Amplitude zwischen Maximalwert 5 und Minimalwert 6 hängt von der Größe des Luftspaltes h ab. Sie nimmt von einem Luftspalt h = 10 mm, dem flachsten Sensorsignal S der Kurvenschar 4, bis h = 3 mm, den am steilsten verlaufenden Sensorsignal S der Kurvenschar 4, zu. Alle Kurvenscharen haben jedoch den Maximalwert 5 und den Minimalwert 6 sowie den Halbpegel 7 in Längsrichtung x am selben Ort.
Der Luftspalt h ist für die Einbaujustierung des Permanentmagneten 6 bezüglich der Sensorzeile 1 ein kritisches Maß. Durch Temperatureinflüsse ändert sich jedoch der Luftspalt h. Darüber hinaus ergibt sich eine weitere Abhängigkeit des Sensorsignals S von der Koerzitivkraft des Permanentmagneten 3, welche in der Regel ebenfalls temperaturabhängig ist. Deshalb wird zur Auswertung des Sensorsignals S zuerst der Maximal- wert 5 bestimmt. Anschließend wird der Minimalwert 6 ermittelt. Durch Differenzbildung des Maximalwertes 5 minus des Minimalwertes 6 wird der Signalhub bestimmt. Nun wird das Sensorsignal S durch den Signalhub dividiert, wodurch ein normiertes Sensorsignal NS erhalten wird.
Der Verlauf dieses normierten Sensorsignals NS als Funktion der Längsrichtung x ist in Fig. 3 dargestellt. Innerhalb eines Arbeitsbereiches 8 fällt jede Kennlinie 8 des normierten Signals NS der Kurvenschar 4 zusammen. Darüber hinaus ver- lauft die damit gewonnene einheitliche Kennlinie 8 innerhalb des Arbeitsbereiches a, der etwas kleiner ist, als der Abstand zwischen den Maximalwerten 5 und den Minimalwerten 6, weitgehend linear.
Mit dem normierten Sensorsignal NS ist eine Größe gewonnen, die eine Auswertung des Signals des Hallsensors 2 erlaubt, welche weitestgehend unabhängig vom Luftspalt h und von etwaigen Temperatureinflüssen ist.
Bei einer Sensorzeile 1 mit mehreren Hallsensoren 2a bis 2c können diese nun so gestaffelt angeordnet werden, dass sich die jeweiligen Arbeitsbereiche a etwas überlappen. Diese Si- tuation ist in Fig. 4 dargestellt, die die entsprechenden normierten Sensorsignale NS als Funktion der Längsrichtung x zeigt. Dabei werden aus den Sensorsignalen S der Hallsensoren 2a bis 2c entsprechende normierte Sensorsignale gewonnen, die als Kurven 9a bis 9c in Fig. 4 eingetragen sind. Für jede Kurve 9a bis 9c ergibt sich eine lineare Kennlinie 10a bis 10c, die jeweils der Kennlinie 8 der Fig. 3 entspricht.
Die Hallsensoren 2a bis 2c werden nun so beabstandet, dass die Arbeitsbereiche a der Kennlinien 10a bis 10c mindestens kontinuierlich aneinander anschließend, idealerweise sogar etwas überlappen. Somit kann ein großer Messbereich abgedeckt werden, der im vorliegenden Beispiel der Fig. 4 von 0 bis 28 Längeneinheiten reicht. Der gesamte Messbereich ist damit durch die Verwendung dreier Hallsensoren 2a bis 2c gegenüber einem einzelnen Hallsensor 2 nahezu verdreifacht.
Fig. 5 zeigt eine Ausführungsform, bei der sich die Arbeitsbereiche a der einzelnen Kennlinien 10a bis 10c etwas über- läppen. Diese Überlappung wird in für eine Hysterese beim Ü- bergang zwischen den einzelnen Kennlinien 10a, 10b und 10c, der Kurven 9a, 9b und 9c der einzelnen Hallsensoren 2a, 2b und 2c ausgenutzt. Diese Hysterese führt dazu, dass bei in zunehmender Längsrichtung x verlaufender Bewegung erst am En- de des Arbeitsbereiches a einer jeden Kennlinie 10a, 10b auf die jeweils anschließende Kennlinie 10b, 10c gesprungen wird. Bei einer gegenläufigen Bewegung in abnehmender Längsrichtung x wird wiederum erst am Ende des Arbeitsbereiches der jeweiligen Kennlinie 10a bis 10c auf die nächste Kennlinie ge- Sprüngen, so dass im Bereich des Überlappens der Kennlinien
10a, 10b, 10c eine Hysterese ausgeführt wird. Diese Hysterese erlaubt eine eindeutige Zuordnung des Sensorsignals und vermeidet uneindeutige Zuweisungen am Sprungpunkt.

Claims

Patentansprüche
1. Verfahren zur kontaktlosen, linearen Positionsmessung zwischen einem ersten und einem zweiten Bauteil, mit
5 - Verwendung eines an dem ersten Bauteil befestigten Magnetfeldsensors, oberhalb dessen ein sich am zweiten Bauteil befestigter Permanentmagnet befindet und der ein Signal abgibt, welches einen Maximalwert, einen Minimalwert und einen dazwischenliegenden Halbpegel aufweist, wobei "10 - der Signalhub als Differenz zwischen Maximalwert und Minimalwert bestimmt und
- aus dem Signal mittels Division durch den Signalhub ein normiertes Signal berechnet wird, d a d u r c h g e k e n n z e i c h n e t, dass
15 - das normierte Signal zur kontaktlosen, linearen Positionsmessung ausgewertet wird, indem das normierte Signal direkt als Positionsangabe verwendet oder mittels einer Kennlinie in einen linearen Abstandswert umgewandelt wird, der den seitlichen Abstand zwischen Magnetfeldsensor und Permanentmagnet
20 angibt.
2. Verfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass ein linearer Halbsensor als Magnetfeldsensor verwendet wird.
25
3. Verfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass mehrere Magnetfeldsensoren entlang einer Längsachse beabstandet aufreiht werden, entlang der sich der Permanentmagnet bewegt.
30
4. Verfahren nach einem der obigen Ansprüche, dadurch gekennzeichnet, dass ein Arbeitsbereich ausgewählt wird, innerhalb dessen das normierte Signal ausgewertet wird, wobei der Arbeitsbereich durch die Positionen des Permanentmagneten be- 35 grenzt ist, an denen das Signal den Maximalwert bzw. den Minimalwert hat .
EP02726086A 2001-05-21 2002-05-06 Verfahren zur kontaktlosen, linearen positionsmessung Withdrawn EP1390695A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10124760 2001-05-21
DE2001124760 DE10124760A1 (de) 2001-05-21 2001-05-21 Verfahren zur kontaktlosen, linearen Positionsmessung
PCT/DE2002/001625 WO2002095333A1 (de) 2001-05-21 2002-05-06 Verfahren zur kontaktlosen, linearen positionsmessung

Publications (1)

Publication Number Publication Date
EP1390695A1 true EP1390695A1 (de) 2004-02-25

Family

ID=7685609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02726086A Withdrawn EP1390695A1 (de) 2001-05-21 2002-05-06 Verfahren zur kontaktlosen, linearen positionsmessung

Country Status (3)

Country Link
EP (1) EP1390695A1 (de)
DE (1) DE10124760A1 (de)
WO (1) WO2002095333A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974832A (zh) * 2019-04-03 2019-07-05 浙江华章科技有限公司 一种高速摇振***振幅的算法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10338265B3 (de) * 2003-08-18 2005-04-07 Balluff Gmbh Positionsmeßsystem
DE102004043402A1 (de) * 2004-09-08 2006-03-09 Volkswagen Ag Verfahren zum Positionieren eines linear beweglichen Gegenstandes und Positioniervorrichtung
DE102007054434B3 (de) * 2007-11-13 2009-02-19 Getrag Ford Transmissions Gmbh Verfahren zur Auswertung eines Sensorsystems zur Bestimmung der Position einer Schaltgabel in einem Schaltgetriebe
DE102008004916A1 (de) * 2008-01-18 2009-07-23 Conti Temic Microelectronic Gmbh Verfahren zur Kalibrierung der Position eines Magnetfeldsensors
DE102008048506B4 (de) * 2008-09-23 2018-12-27 Volkswagen Ag Verfahren und Vorrichtung zum Kalibrieren eines Sensors, Verfahren und System zum Bestimmen einer Einstellposition einer Schaltwelle eines Getriebes und Sensor zum Erfassen einer Einstellposition einer Schaltwelle eines Getriebes
DE102012205902A1 (de) * 2012-04-11 2013-10-17 Tyco Electronics Amp Gmbh Weggeber zum berührungslosen Messen einer Position mittels einer Vielzahl von in Reihe angeordneten Magnetfeldsensoren
DE102012112216A1 (de) * 2012-12-13 2014-06-18 Conti Temic Microelectronic Gmbh Ermittlung einer Position auf einem Verfahrweg
DE102022102104A1 (de) 2022-01-31 2023-08-03 Schaeffler Technologies AG & Co. KG Positionsmessvorrichtung und Lenkungsaktuator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731579A (en) * 1982-10-12 1988-03-15 Polaroid Corporation Magnetic position indicator and actuator using same
DE3443176C1 (de) * 1984-11-27 1990-11-15 Angewandte Digital Elektronik Gmbh, 2051 Brunstorf Verfahren zur Kalibrierung eines elektronischen Positionsgebers
US5006806A (en) * 1989-03-15 1991-04-09 Schonstedt Instrument Company Methods and apparatus employing permanent magnets for marking, locating, tracing and identifying hidden objects such as burried fiber optic cables
US5015998A (en) * 1989-08-09 1991-05-14 Kollmorgen Corporation Null seeking position sensor
JPH0433564A (ja) * 1990-05-30 1992-02-04 Hitachi Metals Ltd 3相駆動方式リニアブラシレス直流モータ
EP0590222A1 (de) * 1992-09-30 1994-04-06 STMicroelectronics S.r.l. Magnetischer Lagegeber
JPH06167354A (ja) * 1992-11-27 1994-06-14 Sony Magnescale Inc スケールの内挿処理装置
JP3477837B2 (ja) * 1994-08-05 2003-12-10 住友電気工業株式会社 磁石位置測定方法
EP1105698B1 (de) * 1998-08-12 2006-05-24 Siemens Aktiengesellschaft Verfahren zum bestimmen einer position abhängig von dem messsignal eines positionssensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02095333A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974832A (zh) * 2019-04-03 2019-07-05 浙江华章科技有限公司 一种高速摇振***振幅的算法

Also Published As

Publication number Publication date
WO2002095333A1 (de) 2002-11-28
DE10124760A1 (de) 2003-02-20

Similar Documents

Publication Publication Date Title
EP2182330B1 (de) Positions-/Wegmesssystem mit kodiertem Masskörper
EP0726448B1 (de) Magnetische Positionssensoreinrichtung
DE19818799C2 (de) Verfahren und Vorrichtung zum Messen von Winkeln
EP0997706B1 (de) Anordnung zur Messung einer relativen linearen Position
DE19855358A1 (de) Vorrichtung und Verfahren zur Ermittlung einer Wegstrecke
EP1158276A1 (de) Induktiver Positionssensor
DE102017222674A1 (de) Wegsensor
DE102006010780A1 (de) Positionsmeßsystem für Hydraulikzylinder
EP1797399A2 (de) Magnetischer absolutpositionssensor mit variierender länge der einzelnen kodierungssegmente
EP2159546A2 (de) Messverfahren zur berührungslosen Erfassung linearer Relativbewegungen zwischen einer Sensorenanordnung und einem Permanentmagneten
EP0555507A1 (de) Wegmesseinrichtung
EP1390695A1 (de) Verfahren zur kontaktlosen, linearen positionsmessung
DE112018003016T5 (de) Positionssensor
EP1312889A2 (de) Induktiver Winkelsensor, insbesondere für ein Kraftfahrzeug
EP1321743B1 (de) Absolutlängenmesssystem, bei dem ein Massstab relativ zur Position von beabstandeten Längesensoren bewegt wird
DE10124761B4 (de) Sensorzeile und Verfahren zur kontaktlosen, linearen Positionsmessung
EP3583388B1 (de) Sensoreinrichtung
DE19729312A1 (de) Absolutes magnetisches Längenmeßsystem
EP1651928B1 (de) Messvorrichtung und verfahren zur erfassung der position eines elektrisch leitfähigen messobjekts
DE102012000939A1 (de) Sensoreinheit und Verfahren zur Bestimmung einer Wegstrecke
DE10161541A1 (de) Sensoranordnung und Funktionseinheit mit Sensoranordnung
DE10135541B4 (de) Elektromotor mit Positions-Meßsystem
DE102006042580A1 (de) Baugruppe zur Erfassung einer Ventilstellung
DE10204314A1 (de) Verfahren zur Linearisierung und Normierung
DE102011121413A1 (de) Sensoreinheit und Verfahren zur Bestimmung einer Wegstrecke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090709