EP1390262B1 - Verfahren zur herstellung einer verpackungs- und/oder transporteinheit für plattenförmige dämmstoffe aus mineralfasern, verpackungs- und/oder transporteinheit sowie dämmstoffplatte - Google Patents

Verfahren zur herstellung einer verpackungs- und/oder transporteinheit für plattenförmige dämmstoffe aus mineralfasern, verpackungs- und/oder transporteinheit sowie dämmstoffplatte Download PDF

Info

Publication number
EP1390262B1
EP1390262B1 EP02743015A EP02743015A EP1390262B1 EP 1390262 B1 EP1390262 B1 EP 1390262B1 EP 02743015 A EP02743015 A EP 02743015A EP 02743015 A EP02743015 A EP 02743015A EP 1390262 B1 EP1390262 B1 EP 1390262B1
Authority
EP
European Patent Office
Prior art keywords
stack
packaging
transport unit
insulating
insulating panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02743015A
Other languages
English (en)
French (fr)
Other versions
EP1390262A1 (de
Inventor
Gerd-Rüdiger Klose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Rockwool Mineralwoll GmbH and Co OHG
Original Assignee
Deutsche Rockwool Mineralwoll GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10146765A external-priority patent/DE10146765B4/de
Application filed by Deutsche Rockwool Mineralwoll GmbH and Co OHG filed Critical Deutsche Rockwool Mineralwoll GmbH and Co OHG
Publication of EP1390262A1 publication Critical patent/EP1390262A1/de
Application granted granted Critical
Publication of EP1390262B1 publication Critical patent/EP1390262B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D71/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans or pop bottles; Bales of material
    • B65D71/06Packaging elements holding or encircling completely or almost completely the bundle of articles, e.g. wrappers
    • B65D71/08Wrappers shrunk by heat or under tension, e.g. stretch films or films tensioned by compressed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B63/00Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged
    • B65B63/02Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged for compressing or compacting articles or materials prior to wrapping or insertion in containers or receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/54Cards, coupons, or other inserts or accessories
    • B65D75/56Handles or other suspension means
    • B65D75/566Hand holes or suspension apertures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/07Containers, packaging elements or packages, specially adapted for particular articles or materials for compressible or flexible articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2571/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
    • B65D2571/00006Palletisable loads, i.e. loads intended to be transported by means of a fork-lift truck
    • B65D2571/00067Local maintaining elements, e.g. partial packaging, shrink packaging, shrink small bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2571/00Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
    • B65D2571/00006Palletisable loads, i.e. loads intended to be transported by means of a fork-lift truck
    • B65D2571/00104Forms or jigs for use in making the load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2575/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes or webs of flexible sheet material, e.g. in folded wrappers
    • B65D2575/52Details
    • B65D2575/54Cards, coupons, or other inserts or accessories
    • B65D2575/56Handles or other suspension means
    • B65D2575/565Handles or other suspension means means explicitly used for suspending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/46Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for bricks, tiles or building blocks

Definitions

  • the invention relates to a method for producing a packaging and / or Transport unit for plate-shaped insulating materials made of mineral fibers, in particular made of stone and / or glass fibers, in which several insulation boards with their large Surface arranged next to each other and combined into a stack be, the surfaces of the insulation boards in the stack horizontally and / or are aligned vertically and the insulation boards of the stack with one Envelope surrounded and summarized compressed. Furthermore concerns the invention a packaging and / or transport unit for plate-shaped Insulation materials made of mineral fibers, in particular stone and / or glass fibers, which too are combined in a stack and surrounded by an envelope, whereby the large surfaces of the insulation boards in the stack are stacked in vertical and / or horizontal alignment are arranged.
  • the subject is the invention an insulation board in the form of a parallelepiped of mineral fibers, in particular of stone and / or glass fibers for use in a packaging and / or transport unit according to one of claims 23 to 37 and / or for use in a method according to any one of claims 1 to 22, the parallelepiped two spaced apart and parallel large surfaces aligned with each other and essentially this has narrow sides extending at right angles.
  • Mineral wool insulation consists of glassy solidified mineral fibers with small amounts of a binder, usually a thermosetting
  • plastics are connected to one another point by point.
  • the mineral fibers are obtained from a melt in a defibration unit is frayed.
  • the lower limit of the binder content is given by achieving the strength properties required for use and handling such as compressive and tensile strength.
  • impregnants are still used in quantities of approx. 0.1 -approx. 0.4 mass% added.
  • Glass wool fibers are made from silicate melts with a relatively high alkali content, optionally also produced boron oxides in such a way that the melt is passed through the fine wall openings of a rotating body. This creates relatively long and smooth mineral fibers with binders and impregnants fall onto an air-permeable conveyor belt.
  • the specific The output of such a defibration unit is a few hundred Kilograms of mineral fibers per hour low, so that several aggregates together
  • the associated chutes are arranged one behind the other over a production line become.
  • the hardening of the structure of the insulation material to be produced fixing binder takes place in a hardening furnace, in which hot air through the fiber web is passed through. Then the cured fiber web trimmed on the side and, for example, split in two in the middle, of which almost lossless insulation boards with a certain length, for example half the line width and any width can.
  • insulation felts are manufactured as a further essential form of delivery, which can be rolled up in winding stations. Insulating felts have low bulk densities between approx. 8 to approx. 27 kg / m 3 and possibly low binder proportions.
  • the mineral fibers are due to the procedure described above their shape and the applied pick-up technique flat on top of each other the mineral fibers are connected parallel to the large surfaces the mineral fiber web in principle much stronger than at right angles to it. Insulation materials with this structure therefore have a very low transverse tensile strength and can only transmit low shear forces, which for example the rolling up of such insulation felt facilitated. It is also very important that this Insulating felts without permanent damage to the structure with low forces can be compressed very high and naturally only low restoring forces develop.
  • Insulating felts made of glass fibers become up to 80% of their size during the winding process Starting material thickness compressed, the restoring forces are so low that for wrapping a wound insulation felt made of glass fiber polyethylene films with a very low material thickness of approx. 100 - 120 ⁇ m, for example can be used. Such films can be used when handling the wrapped Insulating felts withstand dynamic forces.
  • the restoring force of the compressed insulation felt is sufficiently large so that the insulation felt even after a few months of storage, its nominal thickness and thus its raw material thickness essentially reached again after removal of the covering.
  • the permissible limit deviation of the measured mean value of a sample from the specified nominal thickness is + 15 mm and - 5%, in addition there are also permissible deviations of the measured individual value of the sample from the mean value of ⁇ 10 mm.
  • the test specimen is also swaged on the two opposite side surfaces in order to achieve rapid relaxation. Furthermore, the thickness is only measured under a load of 0.05 kN / m 2 . A local falling below the nominal thickness due to the winding technology and within the wound insulation felt due to locally higher compression as well as creep and relaxation behavior that generally occurs during longer storage periods therefore have little technical effect and therefore do not constitute a serious sales obstacle.
  • the high compression of the insulation felt represents a very important one Advantage in the storage of the insulation felts in the manufacturing plant, at the trading companies and on the construction site. At the same time, this means significant cost reductions when transporting the light but voluminous in and of itself Insulating felts made from mineral fibers.
  • insulation felts are not possible or only to a limited extent.
  • manufacturers of insulating materials made from mineral fibers therefore also offer the insulating felts insulating boards, which are characterized by more exact dimensions and which can generally place higher demands on the dimensional stability.
  • the permissible tolerances for insulation boards made of mineral fibers of application type W according to DIN 18165-1 "Thermal insulation materials, not pressure-resistant, e.g. for walls, ceilings and roofs" are significantly narrower than for application type WL and are only + 5mm or + 6 for the mean value of the sample % or - 1 mm; plus single value deviations of ⁇ 5mm.
  • the load in the thickness measurements is 0.1 kN / m 2 and there is no upsetting of the plate to be tested for relaxation.
  • Insulation boards are grouped together in a large number, whereby the stack of insulation boards are provided with a covering and one Packaging and / or transport unit forms.
  • the insulation boards in the packaging and / or transport unit are also subject to compression, which is primarily caused by the wrapping.
  • the compression of the insulation boards is lower compared to insulation felts and usually reaches one Degree of compression of approx. 20 - 50% of the original material thickness. Insulation boards are made with a slight excess thickness to ensure that the subsequent compression and the storage time creep and relaxation effects to compensate. The degree decreases with increasing bulk density the possible non-destructive compression.
  • the insulation materials made from it have the Width of the production line and the height of the fiber web very narrow fluctuations in raw density on.
  • the bulk density of insulation felt made of stone fibers can be reduced to approx. 22 - 25 kg / m 3 , whereby it should be noted that the net fiber mass in these insulation materials is only approx. 70%, the remaining shares are the finest unbound non-fibrous components, which do not affect the mechanical properties.
  • a material-appropriate elasticization of fiber webs is described in DE 199 04 167 C1.
  • a device used for this consists of a Belt system, the repeated increasing compression and controlled decompression the fibrous web or the insulating felt. The insulation felt or Before it is rolled up, the fibrous web becomes even over the entire cross-section elasticized, so that no damage both when rolling up and unrolling occur.
  • Insulation boards made of stone fibers come with the usual dimensions of 1 or 1.2 m length x 0.6 or 0.625 m width in thicknesses of approx. 20 - approx. 240 mm. These insulation boards are combined into packaging units, which for handling reasons have a weight of max. 20 kg and at heights from approx. 40 to approx. 60 cm and with their large surfaces contiguous, one in relation to the large surfaces with vertical and / or horizontal orientation Insulation boards are first covered lengthways with a covering, for example in the form of a tensile film made of plastics, paper; composite films made of paper and plastics, metal, paper and / or plastics; Fleece from Natural or synthetic fibers or similar suitable materials encased. Become very common Films made of polyethylene, especially used in the form of shrink films.
  • the stack is now compressed so far that, taking into account the expansion or the play of the casing, the packaging unit ultimately has the desired degree of compression in height.
  • the deformations of the insulation panels that occur in the process decrease very greatly from the outside inwards.
  • the ends of the wrapping are now connected to one another in a force-locking manner, and welded to one another in the case of thermoplastic films.
  • the wrapping must now be placed around the compressed stack of insulation boards in a form-fitting manner in order to avoid a strong increase in the pre-compression and thus irreversible damage to the structure of the insulation boards.
  • the covering on the end faces must protrude, better still be led around the edges in order to protect the edges of the insulation boards.
  • the wrapping can be complete or at a suitable one Zones are shrunk using thermal energy.
  • the plates arranged outside in the stack are significantly compressed and deformed. Because the insulation panels arranged in the middle of the stack little or only deformed in the elastic range when compressing the stack under certain circumstances, these insulation boards, especially when a long storage period between the two outside insulation boards yourself and the wrapper. The result is irreversible changes in shape and regularly falling below the nominal thickness for all insulation boards of the stack, but especially the two outer plates. As a remedy can the insulation boards as well as the insulation felts with excessive thicknesses from the start getting produced. However, this reduces the economic efficiency of the manufacturing process without eliminating the disadvantages.
  • the object of the invention is to provide a method for producing a packaging and / or transport unit, such a packaging and / or transport unit and an insulation board, in which or in which the above-mentioned disadvantages are avoided and in particular a packaging and / or transport unit which is easy to handle and provided with sufficient stability is formed.
  • the solution to this problem provides in a method according to the invention that the individual insulation boards of a stack are compressed before being arranged in the stack and then decompressed in a guided manner, so that the tension built up by the wrapping in the stack is substantially uniform on all the insulation boards arranged and elasticized in the stack is distributed.
  • the insulation boards are elasticized by at least one compression acting on their large surfaces, so that a tension built up by the wrapping in the stack on all of the insulation boards arranged and elasticized in the stack acts substantially evenly.
  • the parallelepiped particularly in the area of its large area, in particular in the area of its large surface, is compressed and preferably additionally decompressed in such a way that there is an elasticity which, when a plurality of parallelepipeds are arranged, in one surrounded by an envelope Stack enables a uniform stress distribution of the compressive stress in the stack applied to the individual parallelepipeds.
  • the method according to the invention allows insulation boards, in particular from Stone fibers, without irreversible deformation in the packaging and / or transport unit compress evenly.
  • the insulation boards in their structure is one, but preferably repeated several times, for each further one Step possibly increasing compressions with each subsequently performed Decompression exposed over the entire volume of the insulation board and loosened evenly so that no serious internal breaks or Cracks occur in the insulation board, but essentially those for deformation required forces drop significantly over the height.
  • the conveying speed between an upper and a lower band or corresponding Rollers to act on the large surfaces differ his.
  • the resulting shift between the top and bottom large surface of an insulation board should be 1 m long Insulation board limited to approx. 5 - 50 mm depending on the thickness of the insulation board become.
  • the method according to the invention can be carried out with devices which are equipped with rollers. Due to the possibility of additional height
  • the insulation boards can be used with individually adjustable rollers their linear zones of weakness transverse to the roller axes, i.e. mostly in the longitudinal direction of the plate oriented and promoted by the facility at the same time Insulation boards of different material thicknesses and / or raw densities processed different degrees of elasticity are achieved. In this Direction of conveyance, the insulation boards have significantly higher tensile strengths Surface zones and corresponding tensile and bending tensile strengths. On the on the other hand is the resistance to longitudinal compression in this direction of conveyance significantly higher, so that the degree of compression here is narrowly limited or careful must be graded to avoid destruction.
  • the throughput of the device provided for the method according to the invention for the elasticization of the insulation panels corresponds to the production output the manufacturing plant for insulation boards intended for the production, so that the additional elasticization of the insulation boards does not increase significantly which results in manufacturing costs.
  • discontinuous device for a particularly gentle elasticization, especially on the upper one Limit of the possible density range of insulation boards discontinuous device is suitable, in which two or more Insulation panels moved onto a lifting table and between two pressure stamps subjected to one or more compression and decompression cycles become.
  • This device can for example with a frequency up to several Heart operated, so that is particularly suitable in regular Change to produce insulation boards with different degrees of elasticity.
  • thermosetting binder acts on the thermosetting binder and thus reduces the rigidity, in particular of the clod-like volume units rich in binder. This results in a more even and faster reaction of the structure to mechanical action.
  • Water vapor can, for example, be directly behind a hardening furnace warm insulation boards are pressed or vacuumed. Subsequently these plates are mechanically elasticized.
  • Treatment of the insulation boards in an autoclave is much more effective. An approximately fifteen-minute treatment of the insulation boards is sufficient here at 1 bar overpressure, corresponding to 121 ° C, to achieve the intended effect achieve.
  • the reaction times and conditions are not fixed, but can are naturally changed.
  • the insulation boards behind the hardening furnace are again not cooled, but stacked warm on pallets, for example.
  • the autoclaves will Usually operated in pairs to use each other's waste heat.
  • the insulation boards Due to the hydrothermal treatment, the insulation boards are initially damp, However, after a short period of storage they dry themselves or are sucked through with the help Air dried.
  • the elasticized insulation boards are stacked on top of each other according to the size of the desired packaging units.
  • the forces required for the compression have now been significantly reduced, the insulation materials do not behave like a continuum, ie the compression is different over the thickness of each individual insulation panel and thus to an increased extent over the height of the stack.
  • This effect is countered by combining differently elasticized insulation panels in one stack.
  • the insulation panels lying inside the stack are more elasticized than the insulation panels arranged further out, in particular than the two insulation panels arranged on the edge in the stack. This initially reduces the deformation forces required when compressing the packaging and / or transport unit and subsequently also the internal stresses in the packaging and / or transport unit. The pressure on the outer insulation boards is reduced and thus the degree of deformation of these insulation boards.
  • thermoplastic films are approx. 70 - 120 ⁇ m.
  • the wrapping usually takes place around the longitudinal axis of the stack. she should extend well beyond the edges of the stack to allow individual free expansion Avoid area, especially the ends of the insulation boards.
  • the Stackability and the visual appearance of the packaging and / or Transport unit are significantly improved if the wrapping around the front Ends of the insulation boards is led around.
  • the stack can have one or each one arranged on the outside, in itself stiff top layer made of cardboard or molded plastic parts, for example that lead around the longitudinal edges. These cover layers can be arranged lengthways Corner protection angles can be reduced.
  • the corner protection brackets are put on, glued on or put on.
  • the stack is now compressed together with the wrapping that is still open. Subsequently the ends of the sheathing are non-positively with each other connected. To compensate for the game of wrapping, the stack can be over the desired size can be compressed.
  • the insulation boards only have low restoring forces due to their elasticization can develop the ends of shrink film sheets together be welded.
  • the casing can then be replaced by a thermal treatment are shrunk, in particular the in In the longitudinal direction of the stack protruding ends of the wrapper treated become.
  • Thermoplastic films expand over time under tension.
  • the wrappings of the better recycling because of wrapping, shrink wrapping or more resistant tapes glued or covered with tear-resistant adhesive tapes.
  • the packaging and / or Transport units placed upright, if possible, for additional Loads e.g. to avoid in large containers. Since the sides of the Insulation panels are not elasticized, this results in a stable position individual packaging and / or transport unit.
  • the insulation panels or of the stack at least one tear-resistant broad band shrunk onto the wrapping or glued on.
  • Adhesive tapes are also suitable for this. With help this is arranged, for example, in the region of the partially open end faces The packaging and / or transport unit can hold belts in the area of the end faces be gripped without the risk of damaging the wrapping in this area exists.
  • the handles or carrying aids prevent the packaging and / or Transport unit, especially ground on construction sites are damaged, causing damage to the high-tension envelopes and in the event of external damage, e.g. even when touched of scaffolding parts and the stack falls apart. remedy creates the attachment of the carrying aids to the by the compression in favorably reduced narrow sides of the packaging and / or transport unit.
  • the carrying aids can be on both ends of the packaging and / or Transport units are attached.
  • An insulation board 1 shown in Figure 1 is designed as a parallelepiped and has two aligned and spaced apart large surfaces 2 that are perpendicular to the large surfaces 2 arranged long sides 3 and at right angles to the large surfaces 2 and to the long sides 3 arranged narrow sides 4 connected to each other are.
  • the narrow sides 4 determine the width of the insulation board 1 and run during the production process of such insulation boards 1 perpendicular to the conveying direction of the insulation boards 1, while the long sides 3 determine the length of the insulation board 1 and parallel to the conveying direction are aligned during the production process.
  • the insulation board 1 consists of mineral fibers in a known per se Process obtained from a silicate melt in a defibration unit and then with the addition of binders and impregnating agents placed on a conveyor. On this conveyor the mineral fibers form a primary fleece, which is used in further processing stations is suspended to a secondary fleece. From this secondary fleece that compressed in further processing stages and trimmed at the longitudinal edges can be produced, the insulation panels 1.
  • the arrangement of the individual fibers is clearly different within the secondary fleece.
  • the single fibers of the secondary nonwovens in question are essentially with relatively low bulk density in the production direction in flat Angles, occasionally semi-steep angles to the large surfaces 2 arranged.
  • FIG. 1 interfaces 5 of the layers of the original primary fleece can be seen.
  • the insulation board 1 shown in Figure 1 is from below be elasticized for explanatory reasons.
  • FIG Device 6 shown for the elasticization of the insulation board 1 is provided.
  • the device 6, through which an insulation board 1 is conveyed in the direction of arrow 7 points to the upper large surface 2 of the insulation board 1 acting roller set 8 with a plurality of rollers 9 and one on the lower one large surface 2 of the insulation board 1 acting roller set 10 with a Variety of roles 11 on.
  • Each set of rollers 8, 10 is in a compression zone and split a decompression zone.
  • the compression zone stands out through two sections 12 and 13, in section 12 the distance between the rollers 9, 11 of the roller sets 8, 10 decreases in the direction of the arrow and in section 13 the distance of these rollers 9, 11 is kept at a size that with the distance between the last two rollers 9, 11 of the section 12 substantially matches.
  • the insulation board 1 is thus from its original material thickness in the first Section 12 compressed to a reduced thickness.
  • the compression of the insulation board 1 is maintained.
  • To the second section 13 of the compression zone then closes the decompression zone with a section 14 in which the compressed insulation board 1 controlled and guided to their original material thickness is relaxed.
  • the rollers 9 and 11 are height adjustable in storage racks, not shown arranged so that insulation boards 1 of different material thickness can be processed or insulation boards 1 of the same material thickness different due to different compression and decompression can be elasticized.
  • the elasticization of the insulation panels 1 lies in it justifies that the linear zones of weakness of the insulation panels 1 across the Axes of the rollers 9 and 11 are aligned and thus mostly in the longitudinal direction the insulation boards 1 run.
  • the insulation boards point in this direction 1 a significantly higher tensile strength in the areas of large surfaces 2 and corresponding tensile and bending tensile strengths in their structure.
  • the resistance of the insulation panels 1 to longitudinal compression significantly higher in this direction, so that the degree of longitudinal compression is narrowly limited and must be graded carefully to avoid destruction. Due to the individual arrangement of the rollers 9 and 1 relative to the central axis of the Insulation board 1 can also loosen up the large surfaces 2 are carried out.
  • the device 6 described above enables continuous elasticization of insulation boards 1, so that such a device 6 lossless can be integrated into existing production facilities.
  • FIG. 3 An alternative embodiment of a device 6 for the elasticization of insulation boards 1 is shown in FIG. 3.
  • This device 6 is used for a particularly gentle elasticization of in particular at the upper limit of the bulk density range in question Insulation panels 1. It is a discontinuous one Device 6, in which at least one, but advantageously two or more Insulation panels 1 are arranged side by side on a lifting table 15 and then with a support 16 opposite the lifting table 15 subjected to one or more compression and guided decompression cycles will or will.
  • the lifting table 15 is in the area a conveyor belt 17 is arranged via a hydraulic or pneumatic cylinder 18 arranged vertically movable relative to the conveyor belt 17.
  • the support 16 via a further hydraulic or pneumatic cylinder 19 in their distance from the lifting table 15 can be changed, so that on the one hand it is ensured that the desired number of insulation boards 1 between the lifting table 15 and Edition 16 can be arranged and on the other hand via a pulsating movement the pneumatic cylinder 18 and 19 the necessary compression and decompression is transferable to the insulation panels 1.
  • the movement of the edition 16 and the lifting table 15 can, for example, with a frequency of up to several Hertz.
  • the device 6 according to FIG. 3 is particularly suitable for the insulation boards 1 alternating with different degrees of elasticity train.
  • Figure 4 shows an example of compression and decompression cycles, as shown in be advantageously exercised on insulation boards 1. To do this, see below Area of the diagram with the arrow K the compression cycles and in the upper one Area of the diagram with the letter D the decompression cycles shown.
  • the insulation boards 1 in a packaging and / or Transport unit can be arranged, which consists of a number of insulation boards 1 there are arranged in a stack 20; the insulation boards 1 with their large surfaces 2 arranged horizontally or vertically in the stack 20 could be. There is also the option of a combination of the horizontal and vertical arrangement of the insulation boards 1 to be provided in the stack 20.
  • This stack 20 is surrounded by an envelope 21, which consists of a Shrink wrap exists.
  • the envelope 22 is designed such that it is the shrinking process completely surrounds the insulation boards 1 in the stack 20 and pressurized at the same time.
  • the insulation boards 1 accordingly the above description elasticized, so the insulation boards 1 evenly compressed in the packaging and / or transport unit, so that damage and plastic deformation, especially on the outside Insulation panels 1 due to excessive compression and intransigence the inner insulation panels 1 can be avoided.
  • FIGS. 5 Corresponding packaging and / or transport units are shown in FIGS. 5 shown to 10.
  • Figures 5 and 6 show a packaging and / or Transport unit with a stack 20 of vertical with their large surfaces 2 aligned insulation boards 1.
  • the covering 21 lies on both large Surfaces 2 of the outer insulation panels 1 over the entire surface and extends also over the entirety of the long sides 3 of the ones arranged in the stack 20 Insulation boards 1.
  • two are the wrapping 21 forming film sections 22 and 23 welded together, so that on the one hand a shorter connecting strap 24 and on the other hand a longer connecting strap 25 trains.
  • the connecting tab 25 has a first immediately above the stack 20 Weld 26 and at its free end a second weld 27, wherein in the welds 26, 27 reinforcing elements, for example plastic or Cardboard strips can be inserted.
  • incision 28 Between the weld seams 26 and 27 there is an incision 28 in the middle on the one hand Cut handle opening. There are circular holes on both sides of the incision 28 29 arranged, which serve, for example, the packaging and / or To be able to hang the transport unit on the scaffold side. Furthermore, these are Holes 29 are provided to give the operator a possibility to specifically grasp the packaging and / or transport unit and, for example from a stack of several packaging and / or transport units pull down.
  • Additional reinforcing elements can be provided in the area of the cut 28 or the holes 29 be inserted between the two film sections 22 and 23.
  • FIGS. 7 to 9 show the manufacture of a packaging and / or transport unit represented schematically in three steps.
  • Figure 7 shows the stack 20 consisting of four insulation panels 1, with their large surfaces 2 are arranged adjacent to each other.
  • the stack 20 lies on a section 23 of the casing 1 and is on the upper side with a section 22 the covering 21 covered.
  • This process can be accompanied by a shrinking process of the casing 21. It is important that the previous elasticization of the Insulation panels 1 in the compression of the stack 20 not only the external ones Insulation panels 1, but also the interior insulation panels 1 of the stack 20 are compressed so that not only the outer insulation panels 1 may experience elastic deformation. Rather is provided that all insulation boards 1 are elastically deformed, so that after opening the casing 21 on the construction site, it retains its original material thickness take again.
  • Figures 10 and 11 show further embodiments of a packaging and / or Transport unit, which in turn is a stack 20 of several insulation boards 1 and an envelope 21, consisting of a thermoplastic film.
  • the insulation boards 1 are in accordance with the description above according to the arrangement in FIGS. 7 to 9 with its large surfaces 2 aligned with each other and surrounded with the envelope 21.
  • the exemplary embodiment according to FIG. 10 has a supplementary, tear-resistant tape 30 running in the longitudinal direction of the insulation boards 1, for example made of plastic, which the stack 20 and the wrapper 21st completely surrounds.
  • the tape 30 can be shrunk with the covering 21 or be glued.
  • the task of the tape 30 is to cover any expansion of the casing 21 to compensate for the tensile stress.
  • the stability of the packaging and / or transport unit is significantly improved, so that, for example, thinner foils are also used as wrapping 21 can be.
  • Figure 11 shows a packaging and / or transport unit according to Figure 10, at but the stack 20 and the wrapping 21 are surrounded by two bands, which run transversely to the longitudinal extent of the insulation panels 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Buffer Packaging (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Verpackungs- und/oder Transporteinheit für plattenförmige Dämmstoffe aus Mineralfasern, insbesondere aus Stein- und/oder Glasfasern, bei dem mehrere Dämmstoffplatten mit ihren großen Oberfläche aneinanderliegend angeordnet und zu einem Stapel zusammengefaßt werden, wobei die Oberflächen der Dämmstoffplatten im Stapel horizontal und/oder vertikal ausgerichtet sind und die Dämmstoffplatten des Stapels mit einer Umhüllung umgeben und komprimiert zusammengefasst werden. Ferner betrifft die Erfindung eine Verpackungs- und/oder Transporteinheit für plattenförmige Dämmstoffe aus Mineralfasern, insbesondere Stein- und/oder Glasfasern, die zu einem Stapel zusammengefasst und mit einer Umhüllung umgeben sind, wobei die großen Oberflächen der Dämmstoffplatten im Stapel aneinanderliegend in vertikaler und/oder horizontaler Ausrichtung angeordnet sind. Schließlich ist Gegenstand der Erfindung eine Dämmstoffplatte in Form eines Parallelepipeds aus Mineralfasern, insbesondere aus Stein- und/oder Glasfasern für die Verwendung in einer Vepackungs- und/oder Transporteinheit nach einem der Ansprüche 23 bis 37 und/oder zur Verwendung in einem Verfahren nach einem der Ansprüche 1 bis 22, wobei das Parallelepiped zwei im Abstand zueinander angeordnete und parallel zueinander ausgerichtete große Oberflächen und hierzu im wesentlichen sich rechtwinklig erstreckende Schmalseiten aufweist.
Ein solches Verfahren geht zum Beispiel aus dem Dokument US-A-4799350 als bekannt hervor.
Dämmstoffe aus Mineralwolle bestehen aus glasig erstarrten Mineralfasem, die mit geringen Mengen eines Bindemittels, zumeist eines duroplastisch aushärtenden Kunststoffs prinzipiell punktweise miteinander verbunden sind. Die Mineralfasern werden aus einer Schmelze gewonnen, die in einem Zerfaserungsaggregat zerfasert wird. Bei der Herstellung von derartigen Dämmstoffen sind hohe Anteile organischer Substanz zu minimieren, um nach Möglichkeit die Einstufung in die Baustoffklasse nichtbrennbar nach DIN 4101 Teil 1 zu erreichen. Andererseits soll ein elastisch-federndes Verhalten der einzelnen Mineralfasern innerhalb des Dämmstoffs erhalten bleiben. Die untere Grenze der Bindemittelgehalte wird durch die Erreichung der für den Gebrauch und die Handhabung erforderlichen Festigkeitseigenschaften wie beispielsweise Druck- und Zugfestigkeit charakterisiert. Um die Fasermasse zu hydrophobieren, werden noch Imprägniermittel in Mengen von ca. 0,1 -ca. 0,4 Masse-% hinzugefügt.
Handelsüblich werden Dämmstoffe aus Glas- und Steinwolle unterschieden.
Glaswolle-Fasern werden aus silikatischen Schmelzen mit relativ hohem Alkaligehalt, gegebenenfalls auch Boroxiden in der Weise hergestellt, dass die Schmelze durch die feinen Wandöffnungen eines rotierenden Körpers hindurchgeleitet wird. Dabei entstehen relativ lange und glatte Mineralfasern, die mit Binde- und mit Imprägniermitteln versehen auf ein luftdurchlässiges Transportband fallen. Die spezifische Leistung eines derartigen Zerfaserungsaggregates ist mit einigen hundert Kilogramm Mineralfasern pro Stunde gering, so dass mehrere Aggregate mitsamt den dazu gehörigen Fallschächten hintereinander über einer Produktionslinie angeordnet werden.
Eine aus den Zerfaserungsaggregaten abgezogene endlose Faserbahn wird entsprechend der gewünschten Dicke und Rohdichte mehr oder weniger schnell abtransportiert. Die Aushärtung des die Struktur des herzustellenden Dämmstoffs fixierenden Bindemittels erfolgt in einem Härteofen, in dem Heißluft durch die Faserbahn hindurchgeleitet wird. Anschließend wird die ausgehärtete Faserbahn seitlich beschnitten und beispielsweise in der Mitte in zwei Bahnen aufgetrennt, von denen nahezu verlustfrei Dämmstoffplatten mit einer bestimmten Länge, beispielsweise der halben Linienbreite und beliebigen Breiten abgetrennt werden können.
Neben Dämmstoffplatten werden als weitere wesentliche Lieferform Dämmfilze hergestellt, die in Wickelstationen aufrollbar sind. Dämmfilze weisen niedrige Rohdichten zwischen ca. 8 bis ca. 27 kg/m3 und gegebenenfalls geringe Bindemittelanteile auf.
Da die Mineralfasern bei der voranstehend beschriebenen Vorgehensweise aufgrund ihrer Gestalt und der angewendeten Aufsammeltechnik flach übereinander liegen, ist die Verbindung der Mineralfasern parallel zu den großen Oberflächen der Mineralfaserbahn prinzipiell wesentlich fester als im rechten Winkel dazu. Dämmstoffe mit dieser Struktur weisen demzufolge eine sehr geringe Querzugfestigkeit auf und können nur niedrige Scherkräfte übertragen, was beispielsweise das Aufrollen derartiger Dämmfilze erleichtert. Ganz wesentlich ist auch, dass diese Dämmfilze ohne bleibende Beschädigungen der Struktur mit geringen Kräften sehr hoch komprimiert werden können und dabei naturgemäß nur geringe Rückstellkräfte entwickeln.
Dämmfilze aus Glasfasern werden beim Wickelvorgang um bis ca. 80 % ihrer Ausgangsmaterialstärke komprimiert, wobei die Rückstellkräfte so gering sind, dass für eine Umhüllung eines aufgewickelten Dämmfilz aus Glasfasern Polyäthylen-Folien mit sehr geringer Materialstärke von beispielsweise ca. 100 - 120 µm verwendet werden kann. Derartige Folien können bei der Handhabung der umhüllten Dämmfilze auftretende dynamische Kräfte widerstehen. Die Rückstellkraft der komprimierten Dämmfilze ist andererseits ausreichend groß, so dass der Dämmfilz selbst nach einigen Monaten Lagerzeit seine Nenndicke und somit seine Ausgangsmaterialstärke im wesentlichen nach Entfernung der Umhüllung wieder erreicht.
Dämmfilze gemäß DIN 18165, Teil 1 "Klassifizierung als Anwendungstyp WL - Wärmedämmstoffe, nicht druckbelastbar, z.B. für Dämmungen zwischen Sparren und Balkenlagen" weisen allerdings recht große zulässige Toleranzen auf. Die zulässige Grenzabweichung des gemessenen Mittelwertes einer Stichprobe von der angegebenen Nenndicke beträgt hier + 15 mm und - 5%, hinzu kommen noch zulässige Abweichungen des gemessenen Einzelwertes der Stichprobe von dem Mittelwert von ± 10 mm. Bei der normgemäßen Prüfung der Dicke wird zudem der Probekörper jeweils auf den beiden gegenüberliegenden Seitenflächen aufgestaucht, um eine rasche Entspannung zu erreichen. Weiterhin erfolgt die Messung der Dicke nur unter einer Last von 0,05 kN/m2. Eine örtliche Unterschreitung der Nenndicke aufgrund der Wickeltechnik und innerhalb des aufgewickelten Dämmfilzes aufgrund lokal höherer Kompression sowie generell auftretendes Kriech- und Relaxationsverhalten bei längerer Lagerzeit wirken sich deshalb technisch kaum aus und bilden deshalb auch kein ernsthaftes Verkaufshemmnis.
Die hohe Kompression des Dämmfilzes stellt andererseits einen ganz wesentlichen Vorteil bei der Lagerung der Dämmfilze im Herstellerwerk, bei den Handelsunternehmen und auf der Baustelle dar. Gleichzeitig sind damit wesentliche Kostensenkungen beim Transport der an und für sich leichten, aber voluminösen Dämmfilze aus Mineralfasern verbunden.
Für viele Anwendungsfälle ist der Einsatz von Dämmfilzen nicht oder nur eingeschränkt möglich. Die Hersteller von Dämmstoffen aus Mineralfasem bieten daher naben den Dämmfilzen auch Dämmstoffplatten an, die sich durch exaktere Abmessungen auszeichnen und an die generell höhere Anforderungen an die Formstabilität gestellt werden können. Die zulässigen Toleranzen für Dämmstoffplatten aus Mineralfasern des Anwendungstyps W nach DIN 18165-1 "Wärmedämmstoffe, nicht druckbelastbar, z.B. für Wände, Decken und Dächer" sind deutlich enger als bei dem Anwendungstyp WL und betragen für den Mittelwert der Stichprobe nur + 5mm oder + 6 % bzw. - 1 mm; zzgl. Einzelwertabweichungen von ± 5mm. Weiterhin beträgt die Auflast bei der Dickenmessungen 0,1 kN/m2 und ein Aufstauchen der zu prüfenden Platte zwecks Entspannung erfolgt nicht.
Dämmstoffplatten werden in größerer Anzahl zu einem Stapel zusammengefasst, wobei der Stapel Dämmstoffplatten mit einer Umhüllung versehen wir und eine Verpackungs- und/oder Transporteinheit bildet. Die Dämmstoffplatten in der Verpackungs- und/oder Transporteinheit unterliegen ebenfalls einer Kompression, die in erster Linie durch die Umhüllung verursacht wird. Die Kompression der Dämmstoffplatten ist im Vergleich zu Dämmfilzen geringer und erreicht in der Regel einen Kompressionsgrad von ca. 20 - 50 % der ursprünglichen Materialstärke. Dämmstoffplatten werden mit einer leichten Überdicke hergestellt, um die durch die anschließende Kompression und die Lagerzeit auftretenden Kriech- und Relaxationseffekte zu kompensieren. Mit steigender Rohdichte reduziert sich der Grad der möglichen zerstörungsfreien Kompression.
Dämmstoffe aus Steinfasern, insbesondere Dämmstoffplatten aus Steinfasern lassen sich weniger leicht komprimieren, als Dämmstoffe aus Glasfasern, da sie deutlich unterschiedliche Strukturen aufweisen, die sich im wesentlichen in der in sich verwirbelten Form der kurzen Steinfasern zeigen, wobei die Steinfasern bereits auf dem Weg von der Zerfaserungsmaschine zu dem Transportband zu Flocken aggregieren. Aufgrund dieses Verhaltens werden trotz der gegenüber Dämmstoffen aus Glasfasern etwa 30 - 50 % geringerer Bindemittelmengen relativ hohe Druck- und Querzugwerte erreicht.
Da die sehr leistungsfähigen Zerfaserungsaggregate für die Zerfaserung einer Schmelze aus silikatischem Gestein einen hohen Materialdurchsatz erbringen, ist es erforderlich, die mit Bindemitteln und regelmäßig auch mit Imprägniermitteln versetzten Mineralfasern zwecks rascher Abkühlung sehr schnell in Form einer Faserbahn abzutransportieren. Das geschieht in Form eines möglichst dünnen sogenannten Primärvlieses, welches über eine Pendelvorrichtung in möglichst flacher Lagerung quer auf einer zweiten langsamer laufenden Transporteinrichtung abgelegt wird.
Durch das Aufpendeln des dünnen Primärvlieses werden Inhomogenitäten innerhalb des Primärvlieses und damit in der daraus aufgebauten endlosen Faserbahn ausgeglichen. Die daraus hergestellten Dämmstoffe weisen beispielweise über die Breite der Produktionslinie und die Höhe der Faserbahn sehr enge Rohdichteschwankungen auf.
Die Anordnung der einzelnen Mineralfasern innerhalb der Faserbahn ist aber deutlich unterschiedlich. Bei den hier in Frage kommenden Dämmstoffen mit rel. geringer Rohdichte sind die Mineralfasern in Produktionsrichtung in flachen Winkeln, gelegentlich halb steilen Winkeln zu den großen Oberflächen angeordnet. Ein Schnitt quer zu der Produktionsrichtung zeigt demgegenüber eine vermeintlich horizontale Lagerung. Weiterhin ist die Verbindung zwischen den ursprünglichen Lagen des Primärvlieses generell schwächer als zwischen den einzelnen Mineralfasem innerhalb derselben Lage. Als Ursachen hierfür sind die Verringerung der Klebefähigkeit des Bindemittels in den Oberflächen des Primärvlieses durch Trocknung, Bindemittelverluste an die Transporteinrichtungen und auch das Aufliegen schwach gebundener oder nahezu bindemittefreier flächiger Mineralfaseragglomerationen festzustellen.
Weitere Inhomogenitäten in der endlosen Faserbahn entstehen durch unterschiedliche Bindemittelverteilungen innerhalb der Lagen des Primärvlieses, so dass hier regelmäßig schollenartige Bereiche mit höherer Steifigkeit neben solchen mit geringer Steifigkeit vorliegen.
Insbesondere bei gering verdichteten Dämmstoffen zeichnen sich die Grenzflächen der ursprünglichen Lagen des Primärvlieses auf den beiden großen Oberflächen durch quer zur Produktionsrichtung verlaufende Furchen, Verfärbungen, Anreicherungen bindemittelfreier Mineralfasern usw. ab. Bei Belastungen der beiden großen Oberflächen durch lokalen Druck oder beim Biegen hieraus hergestellter Dämmstoffplatten reißen diese bevorzugt entlang der Grenzflächen zwischen den Primärvlieslagen auf. Die Zug- und Biegezugfestigkeit dieser Steinwolle-Dämmstoffplatten ist deshalb in Produktionsrichtung deutlich geringer als im rechten Winkel dazu.
Die auf den Dämmstoff einwirkenden Spannungen führen weiterhin zu Verformungen in relativ schmalen Bereichen zwischen den steiferen Schollen innerhalb des Dämmstoffs und bauen sich durch Brüche bzw. Risse zwischen diesen Bereichen ab.
Bei einem Aufrollen eines Dämmfilzes aus Steinfasem reißt der Dämmfilz auf oder ganz durch. Ähnliche Effekte treten insbesondere bei Dämmstoffplatten mit großer Materialstärke und/oder Rohdichte auf, wenn dort einzelne Oberflächenbereiche gestaucht werden.
Anstelle dieser gebräuchlichen Aufsammeltechnik über eine Pendel wird bei der Herstellung von Dämmstoffen aus Steinfasern auch das sogenannte direkte Aufsammeln der endlosen Faserbahn auf die für das Endprodukt erforderliche Dicke praktiziert. Hierbei ist die vorher beschriebene ausgeprägte Anisotropie der Eigenschaften der Dämmstoffe aus Steinfasern nicht zu beobachten. Anderseits weist diese Technik derart gravierende Nachteile auf, dass sie nur noch bei kleinen Anlagen und in Bereichen mit geringen Anforderungen an die Gleichmäßigkeit der Produkte betrieben werden.
Durch eine Verbesserung der Zerfaserungs- und Aufsammeltechnik läßt sich die Rohdichte Dämmfilzen aus Steinfasern auf ca. 22 - 25 kg/m3 reduzieren, wobei anzumerken ist, dass die Netto-Fasermasse in diesen Dämmstoffen nur bei ca. 70 % liegt, die restlichen Anteile sind feinste ungebundene nicht faserige Bestandteile, welche aber die mechanischen Eigenschaften nicht beeinträchtigen. Dämmstoffe aus Steinfasem im Rohdichtebereich von ca. 22 - ca. 50 kg/m3 erreichen Wärmeleitfähigkeitswerte von λR = 0,040 W/mK und können in die Wärmeleitfähigkeitsgruppe 040 nach DIN 4108 eingestuft werden. Ab Rohdichten von ca. 45 kg/m3, zumeist aber erst ab ca. 50 kg/m3 ist die niedrigere und auch wirtschaftlich interessantere Wärmeleitfähigkeitsgruppe 035 erreichbar. Die Grenzen sind fließend und werden laufend durch technische Entwicklungen verschoben.
Es ist bekannt, Faserbahnen aus Steinfasern mit ca. 1 - 2 Masse-% Bindemittelanteil mit Hilfe einer Walze zu komprimieren und die Faserbahn anschließend mit einem Kompressionsgrad von max. ca. 70 % der Ausgangsmaterialstärke aufzurollen. Die Faserbahnen werden dabei aber regelmäßig beschädigt, so dass Risse auftreten oder die Nenndicke nicht mehr erreicht wird.
Durch eine Reduktion der mittleren Faserdurchmesser und mit Hilfe verbesserter Aufsammeltechniken bei der Bildung des Primärvlieses gelingt es aber seit kurzer Zeit, auch Dämmfilze aus Steinfasern, insbesondere des Anwendungstyps WL und der Wärmeleitfähigkeitsgruppe 040 trotz auf ca. 2,5 - 3,5 Masse-% erhöhtem Bindemittelgehalt mit einem Kompressionsgrad von ca. 60 - 70 % der Ausgangsmaterialstärke aufzuwickeln. Dämmfilze der Wärmeleitfähigkeitsgruppe 035 können ohne Beschädigungen jedoch nur mit einem Kompressionsgrad von ca. 40 - 45 % der Ausgangsmaterialstärke aufgewickelt werden. Nach dem Entrollen haben von dieser Faserbahn abgetrennte Abschnitte zumeist noch die angestrebte Steifigkeit, so dass sie ohne weitere Unterstützung zwischen Sparren oder Deckenbalken eingeklemmt werden können. Wenn keine innere Steifigkeit gefordert wird, kann naturgemäß die Kompression soweit gesteigert werden, wie noch ein innerer Zusammenhang gewährleistet ist.
Das Aufrollen der Dämmfilze ist nur dadurch möglich, dass die Struktur durch ein einmaliges Überwalzen im Einflußbereich einer Walze durch Auflockerung der Bindung, teilweise Zerstörung des Verbands oder der Mineralfasern verändert wird. Die angetrieben Walze wirkt hierbei von oben auf den auf einem Band geförderten Dämmfilz ein. Da die Dämmfilze in der Regel eine größere Länge aufweisen als die nutzbare Breite der Herstellungsanlagen sind Förder- und Aufrolleinrichtung identisch. Die Einwirkung der häufig aus Platzgründen oder auch aus Unkenntnis der Zusammenhänge im Durchmesser unterdimensionierten Walze führt aber zumeist dazu, dass die Oberfläche des nach dem Passieren der Walze wieder expandierenden Dämmstoffs, natürlich bevorzugt an den vorhandenen Schwächezonen aufreißt.
Eine weitere deutliche, aber eigentlich nicht werkstoffgerechte und auch nur schwer steuerbare Elastifizierung erfolgt durch das komprimierende Aufrollen der Dämmfilze. Allerdings läuft der Vorgang wegen der Form der sich bildenden Rolle nicht gleichmäßig ab, so dass die inneren Lagen der Rolle wesentlich stärker deformiert werden als die äußeren. Die dabei ausgelösten Beschädigungen der Dämmfilze führen zu Mängeln bei der Verarbeitung.
Eine wesentlich werkstoffgerechte Elastifizierung von Faserbahnen wird in der DE 199 04 167 C1 beschrieben. Eine hierzu verwendet Vorrichtung besteht aus einem Bandsystem, das wiederholte steigende Kompressionen und kontrollierte Dekompressionen der Faserbahn bzw.des Dämmfilzesdurchführt. Der Dämmfilz bzw. die Faserbahn wird also vor dem Aufrollen gleichmäßig über den gesamten Querschnitt elastifiziert, so dass sowohl bei dem Auf- wie Entrollen keine Beschädigungen auftreten.
Dämmstoffplatten aus Steinfasem werden mit üblichen Abmessungen von 1 oder 1,2 m Länge x 0,6 Oder 0,625 m Breite in Dicken von ca. 20 - ca. 240 mm hergestellt. Diese Dämmstoffplatten werden zu Verpackungseinheiten zusammengefasst, die aus Handhabungsgründen im Gewicht auf max. 20 kg und auf Höhen von ca. 40 bis ca. 60 cm begrenzt werden Die zu einem Stapel zusammengefassten und mit ihren großen Oberflächen aneinanderliegenden, eine in Bezug auf die großen Oberflächen vertikale und/oder horizontale Ausrichtung aufweisenden Dämmstoffplatten werden zunächst in Längsrichtung mit einer Umhüllung, beispielsweise in Form einer zugfesten Folie aus Kunststoffen, Papier; Verbundfolien aus Papier und Kunststoffen, Metall, Papier und/oder Kunststoffen; Vliesen aus Natur- oder Kunstfasern o.a. geeigneten Materialien ummantelt. Sehr häufig werden Folien aus Polyäthylen, insbesondere in Form von Schrumpffolien verwendet.
Der Stapel wird nun so weit gestaucht, dass unter Berücksichtigung der Dehnung bzw. des Spiels der Ummantelung letztlich die Verpackungseinheit den gewünschten Komprimierungsgrad in der Höhe aufweist. Die dabei auftretenden Verformungen der Dämmstoffplatten nehmen von außen nach innen sehr stark ab.
Um den Einsatz von Verpackungsmaterialien zu minimieren, werden erst jetzt die Enden der Umhüllung kraftschlüssig miteinander verbunden, bei thermoplastischen Folien miteinander verschweißt. Die Umhüllung muß nun möglichst formschlüssig um den gestauchten Stapel Dämmstoffplatten gelegt werden, um eine starke Überhöhung der Vorstauchung und damit eine irreversible Schädigung der Struktur Dämmstoffplatten zu vermeiden. Gleichzeitig muß die Umhüllung an den Stirnseiten überstehen, besser noch um die Kanten herumgeführt werden, um die Kanten der Dämmstoffplatten zu schützen.
Um den gewünschten Komprimierungsgrad der Verpackungseinheit zu sichern, zumal sich Folien unter Zug dehnen, kann die Umhüllung vollständig oder an geeigneten Zonen mittels Wärmeenergie nachgeschrumpft werden.
Hierbei werden die im Stapel außen angeordneten Platten deutlich gestaucht und verformt. Da die im mittleren Bereich des Stapels angeordneten Dämmstoffplatten bei der Kompression des Stapels kaum oder nur im elastischen Bereich verformt werden, zwängen diese Dämmstoffplatten unter Umständen, insbesondere bei einer langen Lagerzeit die beiden außen angeordneten Dämmstoffplatten zwischen sich und der Umhüllung ein. Die Folge sind irreversible Formveränderungen und regelmäßige Unterschreitungen der Nenndicken bei allen Dämmstoffplatten des Stapels, insbesondere jedoch der beiden äußeren Platten. Als Abhilfe können die Dämmstoffplatten ebenso wie die Dämmfilze von vornherein mit Überdicken hergestellt werden. Hierdurch sinkt jedoch die Wirtschaftlichkeit des Herstellungsprozesses ohne die Nachteile sicher zu beseitigen.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung einer Verpackungs- und/oder Transporteinheit, eine solche Verpackungs- und/oder Transporteinheit und eine Dämmstoffplatte anzugeben, bei dem bzw. bei der die voranstehend genannten Nachteile vermieden werden und insbesondere eine gut handhabbare und mit ausreichender Stabilität versehene Verpackungs- und/oder Transporteinheit ausgebildet wird.
Die Lösung dieser Aufgabenstellung sieht bei einem erfindungsgemäßen Verfahren vor, dass die einzelnen Dämmstoffplatten eines Stapels vor der Anordnung im Stapel komprimiert und anschließend geführt dekomprimiert werden, so dass die von der Umhüllung aufgebaute Spannung im Stapel auf alle im Stapel angeordnete und elastifizierte Dämmstoffplatten im wesentlichen gleichmässig verteilt wird. Hinsichtlich der erfindungsgemäßen Verpackungs- und/oder Transporteinheit ist zur Lösung der Aufgabenstellung vorgesehen, dass die Dämmstoffplatten durch zumindest eine auf ihre großen Oberflächen wirkende Kompression elastifiziert sind, so dass eine von der Umhüllung aufgebaute Spannung im Stapel auf alle im Stapel angeordnete und elastifizierte Dämmstoffplatten im wesentlichen gleichmässig wirkt. Schließlich ist zur Lösung der Aufgabenstellung bei einer erfindungsgemäßen Dämmstoffplatte vorgesehen, dass das Parallelepiped insbesondere im Bereich seiner großen sondere im Bereich seiner großen Oberfläche derart komprimiert und vorzugsweise ergänzend dekomprimiert ist, dass eine Elastizität besteht, die bei Anordnung mehrerer Parallelepipede in einem mit einer Umhüllung umgebenen Stapel eine gleichmässige Spannungsverteilung der durch die Umhüllung aufgebrachten Druckspannung im Stapel auf die einzelnen Parallelepipede ermöglicht.
Bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens, der erfindungsgemäßen Verpackungs- und/oder Transporteinheit sowie der erfindungsgemäßen Dämmstoffplatte sind in den Unteransprüche angegeben und werden nachfolgend beschrieben.
Das erfindungsgemäße Verfahren erlaubt Dämmstoffplatten, insbesondere aus Steinfasern, ohne irreversible Verformungen in der Verpackungs- und/oder Transporteinheit gleichmässig zu komprimieren. Hierzu werden die Dämmstoffplatten in ihrer Struktur einer, vorzugsweise jedoch mehrfach wiederholten, bei jedem weiteren Schritt eventuell steigenden Kompressionen mit jeweils anschließend geführter Dekompression über das gesamte Volumen der Dämmstoffplatte ausgesetzt und gleichmäßig so aufgelockert, dass keine gravierenden inneren Brüche oder Risse in der Dämmstoffplatte auftreten, im wesentlichen jedoch die zur Verformung über die Höhe benötigten Kräfte deutlich sinken.
Durch eine zusätzliche Längsstauchung der Dämmstoffplatte im Bereich der Dekompressionszone kann die Elastifizierung wirkungsvoll unterstützt werden.
Um eine zusätzlich Elastifizierung durch Scherung der Dämmstoffplatten, insbesondere in der schubweicheren Herstellungsrichtung zu bewirken, kann die Fördergeschwindigkeit zwischen einem oberen und einem unteren Band bzw. entsprechenden Walzen zur Einwirkung auf die großen Oberflächen unterschiedlich sein. Die dadurch ausgelöste Verschiebung zwischen der oberen und der unteren großen Oberfläche einer Dämmstoffplatte sollte in Bezug auf 1 m Länge der Dämmstoffplatte je nach Dicke der Dämmstoffplatte auf ca. 5 - 50 mm begrenzt werden.
Das erfindungsgemäße Verfahren kann mit Vorrichtungen durchgeführt werden, die mit Walzen bestückt sind. Durch die Möglichkeit hierbei zusätzlich in der Höhe individuell verstellbare Walzen zu verwenden, können die Dämmstoffplatten mit ihren linearen Schwächezonen quer zu den Walzenachsen, also zumeist in Plattenlängsrichtung orientiert durch die Anlage gefördert werden und gleichzeitig Dämmstoffplatten unterschiedlicher Materialstärken und/oder Rohdichten bearbeitet werden bzw. unterschiedliche Elastifizierungsgrade erzielt werden. In dieser Förderrichtung weisen die Dämmstoffplatten deutlich höhere Zugfestigkeiten der Oberflächenzonen und entsprechende Zug- und Biegezugfestigkeiten auf. Auf der anderen Seite ist der Widerstand gegenüber der Längsstauchung in dieser Förderrichtung deutlich höher, so dass hier der Stauchungsgrad eng begrenzt oder sorgfältig abgestuft werden muß, um Zerstörungen zu vermeiden.
Die individuelle Positionierung der Walzen rel. zu der Mittelachse ermöglicht ein zusätzliches vorsichtiges Auflockern der Oberflächenbereiche.
Der Durchsatz der für das erfindungsgemäße Verfahren vorgesehenen Vorrichtung zur Elastifizierung der Dämmstoffplatten entspricht der Produktionsleistung der für die Herstellung vorgesehenen Herstellungsanlage für Dämmstoffplatten, so dass die zusätzliche Elastifizierung der Dämmstoffplatten keine wesentliche Erhöhung der Herstellkosten zur Folge hat.
Für eine besonders schonende Elastifizierung von insbesondere an der oberen Grenze des in Frage kommenden Rohdichtebereichs liegenden Dämmstoffplatten eignet sich diskontinuierlich arbeitende Vorrichtung, bei der zwei oder mehrere Dämmstoffplatten auf einen Hubtisch gefahren und zwischen zwei Druckstempeln einem oder mehreren Kompressions- und Dekompressionszyklen unterworfen werden. Diese Vorrichtung kann beispielsweise mit einer Frequenz bis zu mehreren Herz betrieben werden, so dass insbesondere dazu geeignet ist, im regelmäßigen Wechsel Dämmstoffplatten unterschiedlicher Elastifizierungsgrade herzustellen.
Eine mechanische Elastifizierung kann naturgemäß nicht selektiv auf die unterschiedlich steifen Volumeneinheiten innerhalb der zu elastifizierenden Dämmstoffplatte wirken. Um unbeabsichtigte Zerstörungen der Struktur zu vermeiden, wird die Einwirkung nach Möglichkeit stufenweise verstärkt und relativ häufig wiederholt.
Vor allem bei Dämmstoffplatten mit mittlerer bis höherer Rohdichte hat sich daher eine ergänzende hydrothermische Vorbehandlung als vorteilhaft erwiesen. Hierbei wirkt prinzipiell erwärmtes Wasser, insbesondere in Form von Wasserdampf auf das duroplastische Bindemittel ein und reduziert damit die Steifigkeit insbesondere der bindemittelreicheren schollenartigen Volumeneinheiten. Dadurch wird eine gleichmäßigere und schnellere Reaktion der Struktur auf eine mechanische Einwirkung erreicht.
Wasserdampf kann beispielsweise unmittelbar hinter einem Härteofen durch die noch warmen Dämmstoffplatten gedrückt oder gesaugt werden. Anschließend werden diese Platten mechanisch elastifiziert.
Wesentlich wirksamer ist eine Behandlung der Dämmstoffplatten in einem Autoklaven. Hier genügt eine ca. fünfzehnminütige Behandlung der Dämmstoffplatten bei 1 bar Überdruck, entsprechend 121°C, um die beabsichtigte Wirkung zu erzielen. Die Reaktionszeiten und Bedingungen sind nicht fixiert, sondern können naturgemäß verändert werden.
Um den Energieaufwand für diese Behandlung im Autoklaven möglichst niedrig zu halten, werden die Dämmstoffplatten hinter dem Härteofen wiederum nicht abgekühlt, sondern warm beispielsweise auf Paletten gestapelt. Die Autoklaven werden üblicherweise paarweise betrieben, um jeweils die Abwärme des anderen zu nutzen.
Durch die hydrothermale Behandlung sind die Dämmstoffplatten zunächst feucht, trocknen jedoch nach kurzer Lagerzeit von selbst ab oder werden mit Hilfe hindurchgesaugter Luft getrocknet.
Die elastifizierten Dämmstoffplatten werden entsprechend der Größe der angestrebten Verpackungseinheiten übereinander gestapelt. Obwohl nun die für die Stauchung erforderlichen Kräfte deutlich gesenkt worden sind, verhalten sich die Dämmstoffe dennoch nicht wie ein Kontinuum, d.h. die Stauchung ist über die Dicke jeder einzelnen Dämmstoffplatte und damit im verstärkten Maß über die Höhe des Stapels unterschiedlich. Diesem Effekt wird dadurch begegnet, dass unterschiedlich hoch elastifizierte Dämmstoffptatten in einem Stapel vereint werden.
Praktischerweise werden die in dem Stapel innen liegenden Dämmstoffplatten stärker elastifiziert als die weiter außen angeordneten Dämmstoffplatten, insbesondere als die beiden im Stapel randseitig angeordneten Dämmstoffplatten. Damit verringern sich zunächst die bei der Komprimierung der Verpackungsund/oder Transporteinheit erforderlichen Verformungskräfte und in der Folge auch die inneren Spannungen in der Verpackungs- und/oder Transporteinheit. Der Druck auf die äußeren Dämmstoffplatten wird geringer und damit auch der Verformungsgrad dieser Dämmstoffplatten.
Um in schwierigen Fällen den Gesamtnutzen der komprimierten Verpackungsund/oder Transporteinheiten zu erhalten, insbesondere den Wechsel von Logistiksystemen zu vermeiden, können die außen liegenden Dämmstoffplatten mit einer höheren Rohdichte ausgebildet sein.
Der Stapel wird anschließend mit Folien aus Kunststoffen wie beispielsweise Polyäthylen, Polypropylen, Polyvinylchlorid, PA, Papier, Papier-Verbundfolien mit Metall oder Kunststoffen, diffusionsoffenen Vliesen aus thermoplastischen Mineralfasern ummantelt. Die Dicken der thermoplastischen Folien betragen ca. 70 - 120 µm. Die Umhüllung erfolgt zumeist um die Längsachse des Stapels. Sie sollte deutlich über die Kanten des Stapels hinausreichen, um eine freie Expansion einzelner Bereich, insbesondere der Enden der Dämmstoffplatten zu vermeiden. Der Stapelfähigkeit und das optische Erscheinungsbild der Verpackungs- und/oder Transporteinheit werden deutlich verbessert, wenn die Umhüllung um die stirnseitigen Enden der Dämmstoffplatten herum geführt wird.
Der Stapel kann mit einer oder jeweils einer außenseitig angeordneten, in sich steifen Decklage aus beispielsweise Pappe oder Kunststoff-Formteilen versehen werden, die um die Längskanten führen. Diese Decklagen können auf längs angeordnete Eckschutzwinkel reduziert werden. Die Eckschutzwinkel werden aufgelegt, aufgeklebt oder aufgesteckt.
Der Stapel wird nun mitsamt der noch offenen Umhüllung komprimiert. Anschließend werden die Enden der ummantelnden Umhüllung kraftschlüssig miteinander verbunden. Um das Spiel der Umhüllung zu kompensieren kann der Stapel über das gewünschte Maß hinaus komprimiert werden.
Wenn die Dämmstoffplatten infolge ihrer Elasifizierung nur noch geringe Rückstellkräfte entwickeln können, können die Enden von Schrumpffolien-Bahnen miteinander verschweißt werden. Die Umhüllung kann anschließend durch eine thermische Behandlung angeschrumpft werden, wobei insbesondere die in Längsrichtung des Stapels überstehenden Enden der Umhüllung mit behandelt werden.
Bei weniger elastifizierten Dämmstoffplatten werden die durch die Verschweißung im mikrostrukturellen Bereich entlang der Schweißnähte geschädigten Folien leicht aufreißen. Hier müssen geeignete Folien mit ausreichender Überlappung verklebt werden. Alternativ werden die mehr oder weniger komprimierten Stapel in Schlauchfolien eingeschoben, die naturgemäß keine Schweiß- oder Klebnähte aufweisen.
Thermoplastische Folien dehnen sich unter Zug im Laufe der Zeit aus. Um den Komprimierungsrad der Verpackungs- und/oder Transporteinheit sicher zu stellen und gleichzeitig dünne Folien verwenden zu können, werden die Umhüllungen des besseren Recycelns wegen mit reißfesteren Bändern umhüllt, umschrumpft oder verklebt oder mit reißfesten Klebebändern ummantelt.
Beim Transport und der Lagerung werden die Verpackungs- und/oder Transporteinheiten nach Möglichkeit hochkant gestellt, um zusätzliche Belastungen z.B. in Großgebinden zu vermeiden. Da die Seiten der Dämmstoffplatten nicht elastifiziert sind, ergibt sich somit eine stabile Position der einzelnen Verpackungs- und/oder Transporteinheit.
Um die Verpackungs- und/oder Transporteinheiten in einfacher Weise manuell zu bewegen weisen die ca. 6 - ca. 20 kg, vorzugsweise ca. 8 - 13 kg schweren Verpackungs- und/oder Transporteinheiten Handgriffe auf. Hierdurch wird vermieden, dass die Verpackungs- und/oder Transporteinheiten bei unsachgemäßem Eingriff in die teilweise offenen Stirnflächen beschädigt werden, so dass die beim Handel ausliegenden Verpackungs- und/oder Transporteinheiten einen unschönen Anblick bieten, der selbst dann ein Verkaufshemmnis ist, wenn die technischen Eigenschaften der Dämmstoffplatten nicht beeinträchtigt sind.
Als eine preisgünstige Lösung wird in Längsrichtung der Dämmstoffplatten bzw. des Stapels mindestens ein reißfestes breites Band auf die Umhüllung aufgeschrumpft oder aufgeklebt. Es sind hierzu auch Klebebänder geeignet. Mit Hilfe dieser beispielsweise im Bereich der teilweise offenen Stirnseiten angeordneten Bänder kann die Verpackungs- und/oder Transporteinheit im Bereich der Stirnseiten gegriffen werden, ohne dass die Gefahr einer Beschädigung der Umhüllung in diesem Bereich besteht.
Durch die Handgriffe bzw. Traghilfen wird vermieden, dass die Verpackungsund/oder Transporteinheit insbesondere auf den Baustellen über den Boden geschliffen werden, wodurch die stark unter Spannung stehenden Umhüllungen beschädigt werden und bei äußeren Beschädigungen, so z.B. auch bei der Berührung von Gerüstteilen schnell aufreist und der Stapel auseinander fällt. Abhilfe schafft hierbei das Anbringen der Traghilfen auf den durch die Kompression in günstiger Weise verringerten Schmalseiten der Verpackungs- und/oder Transporteinheit.
Diese Traghilfen werden in vorteilhafter Weise durch eine Verlängerung der umhüllenden Verpackungsstoffe hergestellt. Bei einer möglichen einfachen Ausführung ist vorgesehen, dass die Enden der Umhüllung auf ca. 5 - ca. 20 cm verlängert werden. Die hierdurch gebildeten Streifen oder Laschen werden durch mehrere Schweiß- oder Klebenähte verstärkt. In die Laschen werden Fingerlöcher zum Herunterziehen der Verpackungs- und/oder Transporteinheit von einem Stapel und ein Schlitz zum Eingreifen mit der Hand durch Stanzen oder mittels Laserlicht geschnitten.
Jede Lasche kann durch lose eingelegte, aber auch voll- oder teilflächig auf oder eingeklebte Pappstreifen oder dickere Folien vorzugsweise im Bereich des mittleren Eingriffloches oder Schlitzes verstärkt werden. Gleichermaßen können eine oder beide Decklagen um eine der beiden Seitenflächen herum bis in diese Laschen verlängert werden.
Die Traghilfen können auf beiden Stirnseiten der Verpackungs- und/oder Transporteinheiten angebracht werden.
Vor allem bei noch relativ großvolumigen, insbesondere dicken Verpackungsund/oder Transporteinheiten wird das Tragen vereinfacht, wenn die Lasche aussermittig, beispielsweise in der Nähe einer der großen Oberflächen der Verpackungs- und/oder Transporteinheit angeordnet ist. Bei der Ausführung mit Traghilfen auf beiden Stirnseiten können diese auch gegeneinander versetzt angeordnet werden.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der bevorzugte Ausgestaltungen der Erfindung dargestellt sind. In der Zeichnung zeigen:
Fig. 1
eine Dämmstoffplatte in perspektivischer Ansicht;
Fig. 2
eine erste Ausführungsform einer Elastifizierungseinrichtung für eine Dämmstoffplatte gemäß Figur 1 in Seitenansicht;
Fig. 3
eine zweite Ausführungsform einer Vorrichtung zur Elastifizierung einer Dämmstoffplatte gemäß Figur 1;
Fig. 4
ein Diagramm mit Kompressions- und Dekompressionszyklen zur Elastifizierung einer Dämmstoffplatte gemäß Figur 1;
Fig. 5
eine Verpackungs- und/oder Transporteinheit für Dämmstoffplatten gemäß Figur 1 in einer Ansicht;
Fig. 6
die Verpackungs- und/oder Transporteinheit gemäß Figur 5 in geschnitten dargestellter Seitenansicht;
Fig. 7
die Verpackungs- und/oder Transporteinheit gemäß den Figuren 5 und 6 in einer ersten Position während ihrer Herstellung;
Fig. 8
die Verpackungs- und/oder Transporteinheit gemäß Fig. 7 in einer zweiten Position während ihrer Herstellung;
Fig. 9
die Verpackungs- und/oder Transporteinheit gemäß den Figuren 7 und 8 in einer dritten Position während ihrer Herstellung;
Fig. 10
eine alternative Ausführungsform einer Verpackungs- und/oder Transporteinheit gemäß den Figuren 5 bis 9 in perspektivischer Ansicht und
Fig. 11
eine weitere alternative Ausführungsform einer Verpackungs- und/oder Transporteinheit gemäß den Figuren 5 bis 9 in perspektivischer Ansicht.
Eine in Figur 1 dargestellte Dämmstoffplatte 1 ist als Parallelepiped ausgebildet und weist zwei parallel zueinander ausgerichtete und im Abstand zueinander angeordnete große Oberflächen 2 auf, die über rechtwinklig zu den großen Oberflächen 2 angeordnete Längsseiten 3 sowie rechtwinklig zu den großen Oberflächen 2 und zu den Längsseiten 3 angeordnete Schmalseiten 4 miteinander verbunden sind. Die Schmalseiten 4 bestimmen hierbei die Breite der Dämmstoffplatte 1 und verlaufen während des Produktionsprozesses derartiger Dämmstoffplatten 1 rechtwinklig zur Förderrichtung der Dämmstoffplatten 1, während die Längsseiten 3 die Länge der Dämmstoffplatte 1 bestimmen und parallel zur Förderrichtung während des Produktionsprozesses ausgerichtet sind.
Die Dämmstoffplatte 1 besteht aus Mineralfasern, die in einem an sich bekannten Verfahren aus einer silikatischen Schmelze in einem Zerfaserungsaggregat gewonnen und anschließend unter Beifügung von Bindemitteln und Imprägniermitteln auf einer Fördereinrichtung abgelegt werden. Auf dieser Fördereinrichtung bilden die Mineralfasern ein Primärvlies, welches in weiteren Verarbeitungsstationen zu einem Sekundärvlies aufgependelt wird. Aus diesem Sekundärvlies, dass in weiteren Verarbeitungsstufen komprimiert und an den Längsrändern beschnitten werden kann, werden die Dämmstoffplatten 1 hergestellt.
Die Anordnung der Einzelfasern ist innerhalb des Sekundärvlieses deutlich unterschiedlich. Im wesentlichen sind die Einzeifasern bei hier in Rede stehenden Sekundärvliesen mit relativ geringer Rohdichte in Produktionsrichtung in flachen Winkeln, gelegentlich halb steilen Winkeln zu den großen Oberflächen 2 angeordnet. Quer zur Produktionsrichtung zeigt sich eine Anordnung der Einzelfasern in horizontaler Lagerung.
In Figur 1 sind Grenzflächen 5 der Lagen des ursprünglichen Primärvlieses zu erkennen. Die in Figur 1 dargestellte Dämmstoffplatte 1 soll aus nachfolgend noch zu erläuternden Gründen elastifiziert werden. Zu diesem Zweck ist eine in Figur 2 dargestellte Vorrichtung 6 zur Elastifizierung der Dämmstoffplatte 1 vorgesehen.
Die Vorrichtung 6, durch die eine Dämmstoffplatte 1 in Richtung des Pfeils 7 gefördert wird, weist einen auf die obere große Oberfläche 2 der Dämmstoffplatte 1 einwirkenden Rollensatz 8 mit einer Vielzahl von Rollen 9 und einen auf die untere große Oberfläche 2 der Dämmstoffplatte 1 einwirkenden Rollensatz 10 mit einer Vielzahl von Rollen 11 auf. Jeder Rollensatz 8, 10 ist in eine Kompressionszone und eine Dekompressionszone aufgeteilt. Die Kompressionszone zeichnet sich durch zwei Abschnitte 12 und 13 aus, wobei im Abschnitt 12 der Abstand zwischen den Rollen 9, 11 der Rollensätze 8, 10 in Richtung des Pfeils abnimmt und im Abschnitt 13 der Abstand dieser Rollen 9, 11 auf einer Größe gehalten wird, die mit dem Abstand der letzten beiden Rollen 9, 11 des Abschnitts 12 im wesentlichen übereinstimmt.
Die Dämmstoffplatte 1 wird somit von ihrer ursprünglichen Materialstärke im ersten Abschnitt 12 auf eine verringerte Materialstärke komprimiert. Im zweiten Abschnitt 13 wird die Kompression der Dämmstoffplatte 1 aufrecht erhalten. An den zweiten Abschnitt 13 der Kompressionszone schließt sich dann die Dekompressionszone mit einem Abschnitt 14 an, in dem die komprimierte Dämmstoffplatte 1 kontrolliert und geführt auf ihre ursprüngliche Materialstärke entspannt wird. Durch eine gegenüber der Drehgeschwindigkeit der Rollen 9 und 11 in den Rollensätzen 8 und 10 der Abschnitte 12 und 13 reduzierte Drehgeschwindigkeit der Rollen 9 und 11 im Abschnitt 14 wird darüber hinaus eine Längsstauchung der Dämmstoffplatte 1 durchgeführt. Durch die voranstehend beschriebene Vorrichtung 6 wird die Dämmstoffplatte 1 elastifiziert.
Die Rollen 9 und 11 sind hierbei höhenverstellbar in nicht näher dargestellten Lagergestellen angeordnet, so dass Dämmstoffplatten 1 unterschiedlicher Materialstärke bearbeitet werden können bzw. Dämmstoffplatten 1 gleicher Materialstärke durch unterschiedliche Kompressionen und Dekompressionen unterschiedlich elastifiziert werden können. Die Elastifzierung der Dämmstoffplatten 1 liegt darin begründet, dass die linearen Schwächezonen der Dämmstoffplatten 1 quer zu den Achsen der Rollen 9 bzw. 11 ausgerichtet sind und somit zumeist in Längsrichtung der Dämmstoffplatten 1 verlaufen. In dieser Richtung weisen die Dämmstoffplatten 1 eine deutlich höhere Zugfestigkeit in den Bereichen der großen Oberflächen 2 und entsprechende Zug- und Biegezugfestigkeiten in ihrer Struktur auf. Andererseits ist der Widerstand der Dämmstoffplatten 1 gegenüber einer Längsstauchung in dieser Richtung deutlich höher, so dass der Grad der Längsstauchung eng begrenzt und sorgfältig abgestuft werden muss, um Zerstörungen zu vermeiden. Durch die individuelle Anordnung der Rollen 9 und 1 relativ zur Mittelachse der Dämmstoffplatte 1 kann darüber hinaus eine Auflockerung der großen Oberflächen 2 durchgeführt werden.
Die voranstehend beschriebene Vorrichtung 6 ermöglicht eine kontinuierliche Elastifizierung von Dämmstoffplatten 1, so dass eine derartige Vorrichtung 6 verlustfrei in bestehende Produktionsanlagen integriert werden kann.
Eine alternative Ausgestaltung einer Vorrichtung 6 zur Elastifizierung von Dämmstoffplatten 1 ist in Figur 3 dargestellt.
Diese Vorrichtung 6 dient einer besonders schonenden Elastifizierung von insbesondere an der oberen Grenze des in Frage kommenden Rohdichtebereichs liegenden Dämmstoffplatten 1. Es handelt sich um eine diskontinuierlich arbeitende Vorrichtung 6, bei der zumindest eine, vorteilhafterweise aber zwei oder mehr Dämmstoffplatten 1 auf einem Hubtisch 15 nebeneinander angeordnet werden und anschließend mit einer dem Hubtisch 15 gegenüberliegenden Auflage 16 einem oder mehreren Kompressions- und geführten Dekompressionszyklen unterworfen wird bzw. werden. Zu diesem Zweck ist der Hubtisch 15, der im Bereich eines Förderbandes 17 angeordnet ist, über einen Hydraulik- oder Pneumatikzylinder 18 relativ zum Förderband 17 höhenbeweglich angeordnet. In gleicher Weise ist die Auflage 16 über einen weiteren Hydraulik- oder Pneumatikzylinder 19 in ihrem Abstand zum Hubtisch 15 veränderbar, so dass einerseits gewährleistet ist, dass die gewünschte Anzahl von Dämmstoffplatten 1 zwischen Hubtisch 15 und Auflage 16 angeordnet werden kann und andererseits über eine pulsierende Bewegung der Pneumatikzylinder 18 und 19 die notwendige Kompression und Dekompression auf die Dämmstoffplatten 1 übertragbar ist. Die Bewegung der Auflage 16 und des Hubtisches 15 kann beispielsweise mit einer Frequenz bis zu mehreren Hertz erfolgen.
Die Vorrichtung 6 gemäß Figur 3 ist insbesondere dazu geeignet, die Dämmstoffplatten 1 im regelmäßigen Wechsel mit unterschiedlichem Elastifizierungsgrad auszubilden.
Figur 4 zeigt ein Beispiel für Kompressions- und Dekompressionszyklen, wie sie in vorteilhafter Weise auf Dämmstoffplatten 1 ausgeübt werden. Hierzu sind im unteren Bereich des Diagramms mit dem Pfeil K die Kompressionszyklen und im oberen Bereich des Diagramms mit dem Buchstaben D die Dekompressionszyklen dargestellt.
Der Zweck der voranstehend beschriebenen Elastifizierung der Dämmstoffplatten 1 besteht darin, dass die Dämmstoffplatten 1 in einer Verpackungs- und/oder Transporteinheit angeordnet werden, die aus einer Anzahl von Dämmstoffplatten 1 besteht, die zu einem Stapel 20 angeordnet sind; wobei die Dämmstoffplatten 1 mit ihren großen Oberflächen 2 horizontal oder vertikal im Stapel 20 angeordnet sein können. Es besteht auch die Möglichkeit, eine Kombination der horizontalen und vertikalen Anordnung der Dämmstoffplatten 1 im Stapel 20 vorzusehen.
Dieser Stapel 20 ist mit einer Umhüllung 21 umgeben, welche aus einer Schrumpffolie besteht. Die Umhüllung 22 ist derart ausgebildet, dass sie durch den Schrumpfprozess die Dämmstoffplatten 1 im Stapel 20 vollständig umgibt und gleichzeitig mit einem Druck beaufschlagt. Sind die Dämmstoffplatten 1 entsprechend der voranstehenden Beschreibung elastifiziert, so werden die Dämmstoffplatten 1 in der Verpackungs- und/oder Transporteinheit gleichmäßig komprimiert, so dass Beschädigungen und plastische Verformungen insbesondere an den außenliegenden Dämmstoffplatten 1 aufgrund zu starker Kompression und Unnachgiebigkeit der innenliegenden Dämmstoffplatten 1 vermieden werden.
Entsprechende Verpackungs- und/oder Transporteinheiten sind in den Figuren 5 bis 10 dargestellt. Die Figuren 5 und 6 zeigen hierbei eine Verpackungs- und/oder Transporteinheit mit einem Stapel 20 von mit ihren großen Oberflächen 2 vertikal ausgerichteten Dämmstoffplatten 1. Die Umhüllung 21 liegt auf beiden großen Oberflächen 2 der außenliegenden Dämmstoffplatten 1 vollflächig an und erstreckt sich auch über die Gesamtheit der Längsseiten 3 der im Stapel 20 angeordneten Dämmstoffplatten 1. Im Mittelbereich des Stapels 20 sind zwei die Umhüllung 21 bildenden Folienabschnitte 22 und 23 miteinander verschweißt, so dass sich einerseits eine kürzere Verbindungslasche 24 und andererseits eine längere Verbindungslasche 25 ausbildet.
Die Verbindungslasche 25 weist unmittelbar oberhalb des Stapels 20 eine erste Schweißnaht 26 und an ihrem freien Ende eine zweite Schweißnaht 27 auf, wobei in die Schweißnähte 26, 27 Verstärkungselemente, beispielsweise Kunststoff- oder Pappstreifen eingelegt werden können.
Zwischen den Schweißnähten 26 und 27 ist mittig einerseits ein Einschnitt 28 als Grifföffnung eingeschnitten. Beidseitig des Einschnitts 28 sind kreisrunde Löcher 29 angeordnet, die beispielsweise dazu dienen, die Verpackungs- und/oder Transporteinheit gerüstseitig aufhängen zu können. Darüber hinaus sind diese Löcher 29 dazu vorgesehen, der handhabenden Person eine Möglichkeit zu geben, die Verpackungs- und/oder Transporteinheit gezielt zu ergreifen und beispielsweise von einem Stapel mehrerer Verpackungs- und/oder Transporteinheiten herunterzuziehen.
Im Bereich des Einschnitts 28 bzw. der Löcher 29 können ergänzende Verstärkungselemente zwischen den beiden Folienabschnitten 22 bzw. 23 eingelegt sein.
In den Figuren 7 bis 9 ist die Herstellung einer Verpackungs- und/oder Transporteinheit schematisch in drei Schritten dargestellt.
Figur 7 zeigt den Stapel 20 bestehend aus vier Dämmstoffplatten 1, die mit ihren großen Oberflächen 2 aneinanderliegend angeordnet sind. Der Stapel 20 liegt auf einem Abschnitt 23 der Umhüllung 1 auf und ist oberseitig mit einem Abschnitt 22 der Umhüllung 21 abgedeckt.
Im nachfolgenden Verpackungsschritt wird der Stapel 20 zusammen mit der Umhüllung 21 durch Druck auf die großen Oberflächen 2 der außenliegenden Dämmstoffplatten 1 komprimiert, bis die Abschnitte 22 und 23 der Umhüllung 21 gemäß Figur 9 im Bereich ihrer in Längsrichtung der Dämmstoffplatten 1 überlappenden Enden miteinander zu den Verbindungslaschen 24 und 25 verschweißt werden können. Dieser Vorgang kann mit einem Schrumpfprozess der Umhüllung 21 einhergehen. Von Bedeutung ist, dass durch die vorhergehende Elastifizierung der Dämmstoffplatten 1 bei der Kompression des Stapels 20 nicht nur die außenliegenden Dämmstoffplatten 1, sondern auch die innenliegenden Dämmstoffplatten 1 des Stapels 20 komprimiert werden, so dass nicht nur die außenliegenden Dämmstoffplatten 1 eine gegebenenfalls elastische Verformung erfahren. Vielmehr ist vorgesehen, dass sämtliche Dämmstoffplatten 1 elastisch verformt werden, so dass sie nach baustellenseitiger Öffnung der Umhüllung 21 ihre ursprüngliche Materialstärke wieder einnehmen.
Die Figuren 10 und 11 zeigen weitere Ausführungsformen einer Verpackungsund/oder Transporteinheit, die wiederum einen Stapel 20 mehrerer Dämmstoffplatten 1 und eine Umhüllung 21, bestehend aus einer thermoplastischen Folie aufweisen. Die Dämmstoffplatten 1 sind entsprechend der voranstehenden Beschreibung gemäß der Anordnung in den Figuren 7 bis 9 mit ihren großen Oberflächen 2 aufeinanderliegend ausgerichtet und mit der Umhüllung 21 umgeben. Ergänzend zu den Ausführungsformen der Verpackungs- und/oder Transporteinheiten gemäß den Figuren 5 bis 9 weist das Ausführungsbeispiel gemäß Figur 10 ein ergänzendes, in Längsrichtung der Dämmstoffplatten 1 verlaufendes reißfestes Band 30, beispielsweise aus Kunststoff auf, welches den Stapel 20 und die Umhüllung 21 vollständig umgibt. Das Band 30 kann mit der Umhüllung 21 umschrumpft oder verklebt sein. Aufgabe des Bandes 30 ist es, eventuelle Ausdehnungen der Umhüllung 21 aufgrund der Zugbeanspruchung zu kompensieren. Durch das Band 30 wird die Stabilität der Verpackungs- und/oder Transporteinheit wesentlich verbessert, so dass beispielsweise auch dünnere Folien als Umhüllung 21 verwendet werden können.
Figur 11 zeigt eine Verpackungs- und/oder Transporteinheit gemäß Figur 10, bei der aber der Stapel 20 und die Umhüllung 21 durch zwei Bänder umgeben ist, welche quer zur Längserstreckung der Dämmstoffplatten 1 verlaufen.

Claims (40)

  1. Verfahren zur Herstellung einer Verpackungs- und/oder Transporteinheit für plattenförmige Dämmstoffe aus Mineralfasern, insbesondere aus Steinund/oder Glasfasern, bei dem mehrere Dämmstoffplatten mit ihren großen Oberfläche aneinanderliegend angeordnet und zu einem Stapel zusammengefaßt werden, wobei die Oberflächen der Dämmstoffplatten im Stapel horizontal und/oder vertikal ausgerichtet sind und die Dämmstoffplatten des Stapels mit einer Umhüllung umgeben und komprimiert zusammengefasst werden,
    dadurch gekennzeichnet, dass die einzelnen Dämmstoffplatten eines Stapels vor der Anordnung im Stapel komprimiert und anschließend geführt dekomprimiert werden, so dass die von der Umhüllung aufgebaute Spannung im Stapel auf alle im Stapel angeordnete und elastifizierte Dämmstoffplatten im wesentlichen gleichmässig verteilt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Dämmstoffplatten in mehreren Schritten komprimiert und dekomprimiert werden.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass zwischen jeweils zwei Kompressionsschritten ein Dekompressionsschritt durchgeführt wird.
  4. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass die Kompressionsschritte mit zunehmendem Kompressionsgrad durchgeführt werden.
  5. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, dass die Dämmstoffplatte vorzugsweise im Dekompressionsschritt zumindest einer Stauchung in Längsrichtung ausgesetzt wird.
  6. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass die Dämmstoffplatte vorzugsweise in ihrer Längserstreckung einer Scherbeanspruchung ausgesetzt wird, wobei die Scherbeanspruchung entlang einer neutralen Zone parallel zu den großen Oberflächen durchgeführt wird.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet, dass die durch die Scherbeanspruchung ausgelöste Verschiebung der Mineralfasern in der Dämmstoffplatte in Bezug auf einer Länge von einem Meter in Abhängigkeit der Dicke der Dämmstoffplatte auf 5 bis 50 mm beschränkt wird.
  8. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Oberflächen der Dämmstoffplatte ergänzend zur Kommpressionsbehandlung der Dämmstoffplatte aufgelockert wird.
  9. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Dämmstoffplatte neben einer mechanischen Elastifizierung einer hydrothermische Vorbehandlung unterzogen wird, bei der auf ein in der Dämmstoffplatte enthaltenden duroplastischen Bindemittel insbesondere dampfförmiges Wasser einwirkt.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet, dass die hydrothermische Vorbehandlung der Dämmstoffplatte unmittelbar im Anschluss des Verlassens eines Härteofens erfolgt, wobei der Wasserdampf durch die noch warme Dämmstoffplatte gedrückt und/oder gesaugt wird.
  11. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet, dass die hydrothermische Vorbehandlung vor der mechanischen Elastifizierung erfolgt.
  12. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Dämmstoffplatte vor der mechanischen Elastifizierung einem Autoklaven zugeführt wird, in dem die Dämmstoffplatte mit einem Überdruck behandelt wird.
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet, dass die Dämmstoffplatte unmittelbar nach Verlassen eines Härteofens dem Autoklaven zugeführt wird.
  14. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass die Dämmstoffplatte vor ihrer Einfügung in den Stapel durch Warmluft getrocknet wird.
  15. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass in dem Stapel Dämmstoffplatten unterschiedlichen Elastifizierungsgrades zusammengefasst werden.
  16. Verfahren nach Anspruch 15,
    dadurch gekennzeichnet, dass im Stapel außenliegende Dämmstoffplatten mit einem geringeren und im Stapel innenliegende Dämmstoffplatten mit einem höheren Elastifizierungsgrad angeordnet werden.
  17. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die im Stapel aussenliegenden Dämmstoffplatten eine gegenüber den in dem Stapel innenliegenden Dämmstoffplatten höhere Rohdichte aufweisen.
  18. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass der Stapel Dämmstoffplatten mit einer Umhüllung aus einer Kunststofffolie, beispielsweise aus Polyäthylen, Polypropylen, Polyvinylchlorid, PA und/oder Papier, Papier-Verbundfolien mit Kunststoff und/oder Metall, diffusionsoffenen Vliesen, insbesondere aus thermoplastischen Mineralfasern ummantelt wird.
  19. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass oberhalb der obersten Dämmstoffplatte des Stapels und/oder unterhalb der untersten Dämmstoffplatte des Stapels eine Schutzelement, beispielsweise in Form einer Decklage aus Pappe oder Kunststoff angeordnet wird.
  20. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass der Stapel Dämmstoffplatten bei geöffneter Umhüllung komprimiert und anschließend die Umhüllung bei komprimiertem Stapel geschlossen wird.
  21. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass der Stapel Dämmstoffplatten komprimiert und in komprimierter Stellung in eine schlauchförmige Umhüllung eingeschoben wird.
  22. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die in der Umhüllung angeordneten Dämmstoffplatten mit reisfesten Bändern umwickelt werden.
  23. Verpackungs- und/oder Transporteinheit für plattenförmige Dämmstoffe aus Mineralfasern, insbesondere Stein- und/oder Glasfasern, die zu einem Stapel zusammengefasst und mit einer Umhüllung umgeben sind, wobei die großen Oberflächen der Dämmstoffplatten im Stapel aneinanderliegend in vertikaler und/oder horizontaler Ausrichtung angeordnet sind,
    dadurch gekennzeichnet, dass die Dämmstoffplatten (1) durch zumindest eine auf ihre großen Oberflächen (2) wirkende Kompression elastifiziert sind, so dass eine von der Umhüllung (21) aufgebaute Spannung im Stapel (20) auf alle im Stapel (20) angeordnete und elastifizierte Dämmstoffplatten (1) im wesentlichen gleichmässig wirkt.
  24. Verpackungs- und/oder Transporteinheit nach Anspruch 23,
    dadurch gekennzeichnet, dass die Umhüllung (21) aus einer Kunststofffolie, beispielsweise aus Polyäthylen, Polypropylen, Polyvinylchlorid, PA und/oder Papier, Papier-Verbundfolien mit Kunststoff und/oder Metall, diffusionsoffenen Vliesen, insbesondere aus thermoplastischen Mineralfasern besteht.
  25. Verpackungs- und/oder Transporteinheit nach Anspruch 23,
    dadurch gekennzeichnet, dass die Dämmstoffplatten (1) im Stapel (20) einen unterschiedlichen Kompressionsgrad und damit eine unterschiedliche Elastifizierung und/oder eine unterschiedliche Rohdichte aufweisen.
  26. Verpackungs- und/oder Transporteinheit nach Anspruch 23,
    dadurch gekennzeichnet, dass im Stapel (20) außenliegende Dämmstoffplatten (1) eine geringere und im Stapel (20) innenliegende Dämmstoffplatten (1) eine höhere Elastifizierung aufweisen.
  27. Verpackungs- und/oder Transporteinheit nach Anspruch 23,
    dadurch gekennzeichnet, dass im Stapel (20) außenliegende Dämmstoffplatten (1) höhere und im Stapel (20) innenliegende Dämmstoffplatten (1) eine geringere Rohdichte aufweisen.
  28. Verpackungs- und/oder Transporteinheit nach Anspruch 23,
    dadurch gekennzeichnet, dass oberhalb der obersten Dämmstoffplatte (1) des Stapels (20) und/oder unterhalb der untersten Dämmstoffplatte (1) des Stapels (20) ein Schutzelement angeordnet ist bzw. sind.
  29. Verpackungs- und/oder Transporteinheit nach Anspruch 28,
    dadurch gekennzeichnet, dass das Schutzelement als Decklage ausgebildet ist, deren Größe im wesentlichen mit der Größe einer großen Oberfläche (2) einer Dämmstoffplatte (1) entspricht.
  30. Verpackungs- und/oder Transporteinheit nach Anspruch 28,
    dadurch gekennzeichnet, dass das Schutzelement als zumindest eine Kante der Dämmstoffplatte (1) abdeckender Winkel ausgebildet ist.
  31. Verpackungs- und/oder Transporteinheit nach Anspruch 28,
    dadurch gekennzeichnet, dass das Schutzelement lösbar mit der Dämmstoffplatte (1) verbunden, insbesondere aufgeklebt oder aufgesteckt ist.
  32. Verpackungs- und/oder Transporteinheit nach Anspruch 28,
    dadurch gekennzeichnet, dass das Schutzelement aus Pappe und/oder Kunststoff besteht.
  33. Verpackungs- und/oder Transporteinheit nach Anspruch 23,
    dadurch gekennzeichnet, dass die Umhüllung (21) mit zumindest einem reisfesten Band (30) umgeben ist, welches rechtwinklig zur Längsachse des Stapels (20) angeordnet ist.
  34. Verpackungs- und/oder Transporteinheit nach Anspruch 33,
    dadurch gekennzeichnet, dass das Band (30) aus Kunststoff ausgebildet ist und auf die Umhüllung (21) aufgeschrumpft und/oder mit der Umhüllung (21) verklebt ist.
  35. Verpackungs- und/oder Transporteinheit nach Anspruch 23,
    dadurch gekennzeichnet, dass die Umhüllung (21) einen Ansatz mit einem Handgriff aufweist.
  36. Verpackungs- und/oder Transporteinheit nach Anspruch 35,
    dadurch gekennzeichnet, dass der Ansatz mit der Umhüllung (21) verklebt und/oder auf die Umhüllung (21) aufgeschrumpft ist.
  37. Verpackungs- und/oder Transporteinheit nach Anspruch 35,
    dadurch gekennzeichnet, dass der Ansatz bandförmig ausgebildet ist.
  38. Dämmstoffplatte in Form eines Parallelepipeds aus Mineralfasern, insbesondere aus Stein- und/oder Glasfasern für die Verwendung in einer Vepackungs- und/oder Transporteinheit nach einem der Ansprüche 23 bis 37 und/oder zur Verwendung in einem Verfahren nach einem der Ansprüche 1 bis 22, wobei das Parallelepiped zwei im Abstand zueinander angeordnete und parallel zueinander ausgerichtete große Oberflächen und hierzu im wesentlichen sich rechtwinklig erstreckende Schmalseiten aufweist,
    dadurch gekennzeichnet, dass das Parallelepiped insbesondere im Bereich seiner großen Oberfläche (2) derart komprimiert und vorzugsweise ergänzend dekomprimiert ist, dass eine Elastizität besteht, die bei Anordnung mehrerer Parallelepipede in einem mit einer Umhüllung (21) umgebenen Stapel (20) eine gleichmässige Spannungsverteilung der durch die Umhüllung (21) aufgebrachten Druckspannung im Stapel (20) auf die einzelnen Parallelepipede ermöglicht.
  39. Dämmstoffplatte nach Anspruch 38,
    dadurch gekennzeichnet, dass die großen Oberflächen (2) mechanisch aufgelockert sind.
  40. Dämmstoffplatte nach Anspruch 38,
    dadurch gekennzeichnet, dass das Parallelepiped aus einem aufgependelten Mineralfaser-Primärvlies besteht.
EP02743015A 2001-05-26 2002-05-15 Verfahren zur herstellung einer verpackungs- und/oder transporteinheit für plattenförmige dämmstoffe aus mineralfasern, verpackungs- und/oder transporteinheit sowie dämmstoffplatte Expired - Lifetime EP1390262B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10125806 2001-05-26
DE10125806 2001-05-26
DE10146765 2001-09-22
DE10146765A DE10146765B4 (de) 2001-05-26 2001-09-22 Verfahren zur Herstellung einer Verpackungs- oder Transporteinheit für plattenförmige Dämmstoffe aus Mineralfasern, Verpackungs- oder Transporteinheit sowie Dämmstoffplatte
PCT/EP2002/005345 WO2002096756A1 (de) 2001-05-26 2002-05-15 Verfahren zur herstellung einer verpackungs- und/oder transporteinheit für plattenförmige dämmstoffe aus mineralfasern, verpackungs- und/oder transporteinheit sowie dämmstoffplatte

Publications (2)

Publication Number Publication Date
EP1390262A1 EP1390262A1 (de) 2004-02-25
EP1390262B1 true EP1390262B1 (de) 2004-09-29

Family

ID=26009412

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02743015A Expired - Lifetime EP1390262B1 (de) 2001-05-26 2002-05-15 Verfahren zur herstellung einer verpackungs- und/oder transporteinheit für plattenförmige dämmstoffe aus mineralfasern, verpackungs- und/oder transporteinheit sowie dämmstoffplatte

Country Status (3)

Country Link
EP (1) EP1390262B1 (de)
AT (1) ATE277818T1 (de)
WO (1) WO2002096756A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60222691T3 (de) 2001-11-14 2020-10-01 Rockwool International A/S Mineralfaservliese
RU2751229C2 (ru) * 2016-12-20 2021-07-12 Эссити Хайджин Энд Хелт Актиеболаг Способ сжатия пачек бумаги тиссью
CN111936703B (zh) * 2018-04-04 2022-05-10 洛科威国际有限公司 可用液体填充的矿棉制成的安全屏障

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3499261A (en) * 1968-04-26 1970-03-10 Owens Corning Fiberglass Corp Method and apparatus for handling and packaging material
US3908539A (en) * 1974-09-13 1975-09-30 Patco Packing Ltd Apparatus for automatically stacking and compressing batts of compressible material
FR2510515B1 (fr) * 1981-07-31 1985-12-06 Saint Gobain Isover Procede pour le conditionnement de panneaux d'un materiau compressible et conditionnements realises par ce procede
NL8401630A (nl) * 1984-05-22 1985-12-16 Boral Ind En Handelsondernemin Werkwijze voor het verpakken van uit samendrukbaar materiaal bestaande matten.
ATE159690T1 (de) * 1993-03-30 1997-11-15 Procter & Gamble Kompakte verpackung bestehend aus einem in einer umhüllung angeordneten stapel von flexiblen gegenständen

Also Published As

Publication number Publication date
ATE277818T1 (de) 2004-10-15
WO2002096756A1 (de) 2002-12-05
EP1390262A1 (de) 2004-02-25

Similar Documents

Publication Publication Date Title
DE3701592C2 (de)
EP1182177B2 (de) Dämmstoffelement sowie Verfahren und Vorrichtung zur Herstellung eines Dämmstoffelements, insbesondere einer roll- und/oder wickelbaren Dämmstoffbahn aus Mineralfasern
EP1390262B1 (de) Verfahren zur herstellung einer verpackungs- und/oder transporteinheit für plattenförmige dämmstoffe aus mineralfasern, verpackungs- und/oder transporteinheit sowie dämmstoffplatte
DE10146765B4 (de) Verfahren zur Herstellung einer Verpackungs- oder Transporteinheit für plattenförmige Dämmstoffe aus Mineralfasern, Verpackungs- oder Transporteinheit sowie Dämmstoffplatte
DE3444897A1 (de) Mineralwollegebinde und verfahren zu dessen herstellung
EP1708876B1 (de) Verfahren zur herstellung einer dämmstoffbahn aus mineralfasern sowie dämmstoffbahn
EP1893825B1 (de) Verfahren und vorrichtung zur herstellung von dämmstoffelementen aus mineralfasern
EP1559845B1 (de) Verfahren zur Herstellung eines Dämmstoffelementes und Dämmstoffelement
DE102006028841B4 (de) Dämmanordnung und Verfahren zur Herstellung eines Dämmstoffstreifens
EP1561847A1 (de) Verfahren und Vorrichtung zur Herstellung von bahnen- oder plattenförmigen Dämmstoffen aus Mineralfasern
EP1048887A2 (de) Verfahren und Vorrichtung zur Herstellung von Dämmstoffen aus Mineralfasern sowie Dämmstoffelement aus Mineralfasern
DE10152385B4 (de) Großgebinde aus mehreren jeweils zu einer Rolle gewickelten, folienverpackten Dämmstoffbahnen aus Mineralwolle, insbesondere Glaswolle
EP1026302B1 (de) Vorrichtung zum Aufwickeln eines Faservlieses
DE102005002649A1 (de) Verfahren und Vorrichtung zur Herstellung von bahnen-oder plattenförmigen Dämmstoffen aus Mineralfasern
DE102004049063B4 (de) Verfahren zur Herstellung eines Dämmstoffprodukts und Dämmstoffprodukt
DE19923352C2 (de) Vorrichtung zum Aufwickeln eines Faservlieses
EP1029995A2 (de) Dämmstoffelement und Vorrichtung zur Herstellung eines Dämmstoffelementes
EP2054306A1 (de) Verfahren und vorrichtung zur herstellung eines gebindes aus einer mehrzahl von einzelpaketen sowie derartiges gebinde
EP1446080A1 (de) Flächiges produkt
DE102006028842A1 (de) Dämmstoffelement
DE29516472U1 (de) Filz aus biegsamem Fasermaterial mit regelloser Ausrichtung
WO2006040054A1 (de) Verfahren und vorrichtung zur herstellung eines dämmstoffelementes
EP1645532A1 (de) Verfahren und Vorrichtung zur Herstellung eines Wickels aus einem Faservlies
DE102005047851A1 (de) Verfahren und Vorrichtung zur Herstellung eines Wickels aus einem Faservlies
WO2003018933A1 (de) Verfahren zur bereitstellung eines absorber-elementes aus mineralwolle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040929

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201175

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050209

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040929

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050515

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050630

EN Fr: translation not filed
BERE Be: lapsed

Owner name: DEUTSCHE ROCKWOOL MINERALWOLL G.M.B.H. & CO. OHG

Effective date: 20050531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060515

BERE Be: lapsed

Owner name: DEUTSCHE *ROCKWOOL MINERALWOLL G.M.B.H. & CO. OHG

Effective date: 20050531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50201175

Country of ref document: DE

Representative=s name: STENGER WATZKE RING INTELLECTUAL PROPERTY, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50201175

Country of ref document: DE

Owner name: ROCKWOOL INTERNATIONAL A/S, DK

Free format text: FORMER OWNER: DEUTSCHE ROCKWOOL MINERALWOLL GMBH + CO OHG, 45966 GLADBECK, DE

Effective date: 20140801

Ref country code: DE

Ref legal event code: R082

Ref document number: 50201175

Country of ref document: DE

Representative=s name: STENGER WATZKE RING INTELLECTUAL PROPERTY, DE

Effective date: 20140801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150512

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150427

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50201175

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 277818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201