EP1389331B1 - Selbstansaugende brandmeldeeinrichtung - Google Patents

Selbstansaugende brandmeldeeinrichtung Download PDF

Info

Publication number
EP1389331B1
EP1389331B1 EP02737792A EP02737792A EP1389331B1 EP 1389331 B1 EP1389331 B1 EP 1389331B1 EP 02737792 A EP02737792 A EP 02737792A EP 02737792 A EP02737792 A EP 02737792A EP 1389331 B1 EP1389331 B1 EP 1389331B1
Authority
EP
European Patent Office
Prior art keywords
fire
scattered
detectors
fire detection
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02737792A
Other languages
English (en)
French (fr)
Other versions
EP1389331A1 (de
Inventor
Michael Spohn
Hauke Dittmer
Kurt Lenkeit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minimax GmbH and Co KG
Original Assignee
Minimax GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minimax GmbH and Co KG filed Critical Minimax GmbH and Co KG
Publication of EP1389331A1 publication Critical patent/EP1389331A1/de
Application granted granted Critical
Publication of EP1389331B1 publication Critical patent/EP1389331B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a self-priming fire alarm device for Monitoring of technical installations, buildings and storage areas Emergence of fires according to the preamble of claim 1.
  • Self-priming fire alarm systems are intended to provide fire alarm systems be understood, which have one or more intake pipes whose Intake openings Air samples from the plant or system to be monitored Remove the room area and the fire detection detectors for measurement supply different fire characteristics.
  • Self-priming systems are advantageously used when only low thermal energy develops in a smoldering fire and smoke particles only very slowly reach the detection range of the fire detectors, which are often mounted at a greater distance. This is especially the case in larger rooms and storage areas. In air-conditioned and forced-ventilated rooms, where sometimes changing air currents and strong dilution effects occurred, self-priming systems of higher sensitivity can be used very advantageously for early detection.
  • the intake ports can be located within certain hazardous equipment areas, such as the housing of an electrical control cabinet or a computer system, so that the air samples are removed directly from the risk area of special equipment objects and can be detected together , Genesis fires in plant areas can be detected early and appropriate countermeasures taken. Depending on the value concentration, fire risk and overall fire protection concept, the early fire detection is of particular economic importance, For self-priming systems usually only highly sensitive detectors are used. Optical scattered light measuring systems as highly sensitive detectors, have proven to be well suited to be able to detect smoke particles products of thermal decomposition, soot or suspended particles) in the smallest amounts.
  • Such known systems are available in numerous variants and usually use an LED or a laser diode as a scattered light source.
  • the light rays emitted by the light source pass through a test section through a sample volume and are scattered on existing smoke particles.
  • the inhomogeneously distributed scattered light is then converted by one or more receiving elements (photoelectric detectors) into a measurable electrical signal.
  • the intensity of the scattering angle of the scattered light depends inter alia on the wavelength of light, size and shape, as well as the optical properties of the smoke particles present in the sample volume. From the analysis of the signals of the receiving elements arranged at different scattering angles, it is possible to draw conclusions about the number and the particles present in the air sample volume.
  • a disadvantage of highly sensitive systems is the danger False alarms due to the unexpected occurrence of non-relevant fire parameters (eg cigarette smoke) or the effect of noise or deception such as particulate matter or water vapor on the detectors.
  • non-relevant fire parameters eg cigarette smoke
  • noise or deception such as particulate matter or water vapor on the detectors.
  • DE4231088 A1 discloses a fire alarm system which comprises a smoke detector operating according to the scattered light principle, whose scattered light receivers can be positioned at different scattering angles.
  • the optical scattered light measuring system In order to obtain a more accurate picture of the particles in the sample volume, it is proposed to additionally equip the optical scattered light measuring system with a polarization filter and to determine the degree of polarization of the scattered light. From the clear correlation between the degree of polarization and scattering angle can then be concluded that a certain type of smoke.
  • Experimental tests with test fires have been used to store different patterns of smoke types with thresholds in databases, which are then compared to the results of scattered light and polarization measurements. From the comparison of both smoke patterns should then give indications of the fire type.
  • EP-A-1 006 5000 discloses a point-type smoke detector described, the smoke sensor and / or a gas sensor and a Contains suction device and a flow sensor.
  • the aim of this writing is a Solution for minimal or no air circulation in the immediate area (in Centimeter to meter range) of the punctiform fire detector.
  • These point detectors have a limited surveillance area, the in addition to the physical limits additionally by the corresponding national Standards / regulations.
  • This fire detector with an integrated intake differs significantly from the subject matter of the present invention, because it does not take as the self-priming fire alarm device described in this document via one or more intake pipes with suction air samples. Therefore, a variety of fire alarms for detection in different rooms / objects is necessary. In particular, it is not possible, as in the case of the self-priming fire detection device described in this document, to take air samples in the immediate vicinity of the potential source of the fire, which may be more than one hundred meters away from the fire detector.
  • the object of the present invention is derived to provide a fire detection device of the generic type which detected fires at different locations by a single device early with high sensitivity and still able to disturb the or to differentiate deception sizes from the fire characteristics relevant to the fire development and the course of the fire.
  • the fire alarm device according to the invention should be able to generate according to the development of fire various alarm levels, which allows the use of graded flexible fire fighting measures. In this case, a minimization of false alarm frequency while increasing the sensitivity of the system can be achieved.
  • the invention it is proposed to supplement a highly sensitive optical scattered light measuring system by additional arrangement of one or more gas sensors or a gas sensor array, and to link the measured variables of the individual detectors to a logical alarm level generation.
  • Both the optical scattered light measuring system, as well as the gas sensors are signal technically connected to a microcontroller system and / or a fire alarm panel.
  • the invention also relates to a method for operating this fire detection device which is characterized by the formation of a sum signal from the measured variables detected in different scattering angles of the optical scattered light measuring system and the measured variables detected by the additionally arranged gas sensors and / or the gas sensor array.
  • the receiving elements of the scattered light measuring system are arranged in the forward and backward scattering direction and their signal processing designed such that for the particles contained in a defined sample volume characteristic parameters such as particle color, size and concentration by the simultaneous detection of in forward and rinsestreuwinkel Anlagene detected signals can be determined.
  • Simultaneous detection and processing of light rays scattered at different angles is particularly important through the receiver-microcontroller system. Only by the simultaneous detection and processing of the received scattered light signals from the different scattered light angles a precise description of the particle distribution in the sample volume at a certain time is possible because it is not a static quantity in the sample volume, but its parameters as a function of the flow velocity of Constantly change the suction device.
  • fire detectors of various types such as temperature or lonisationsrauchmelder can be arranged in the self-priming fire alarm device according to the invention and connected to the microcontroller system and / or the fire alarm panel signal technology.
  • these detectors and the gas sensors directly in the intake of the suction and their arrangement in a bypass to the intake pipe is possible.
  • fire detectors in the sample volume measured quantities in the signal processing of Fire alarm device included and based on the in a database stored values are weighted accordingly by evaluation algorithms.
  • the arrangement according to the invention of a highly sensitive optical scattered light measuring system for detecting smoke particles of a fire in combination with gas sensors and / or a gas sensor array in a fire detection device for the detection of combustion gases and / or fire-load specific gases has numerous advantages over the known prior art.
  • a highly sensitive optical scattered light measuring system for detecting smoke particles of a fire in combination with gas sensors and / or a gas sensor array in a fire detection device for the detection of combustion gases and / or fire-load specific gases has numerous advantages over the known prior art.
  • complete combustion products such as CO2 and H2O
  • soot particles and smoke aerosols The smoke particles of different size and distribution can be detected very accurately with the highly sensitive Streulichtmeßsystem.
  • the gas sensor not only allows the additional early detection of a fire formation characteristic but also the verification and weighting of the measurement results of the scattered light system by the measured variables of the gas sensors or the gas sensor array.
  • the additionally arranged gas sensors are, as is generally known, particularly well suited to reliably detect the combustion gases already produced at the beginning of a fire, such as CO.sub.2 H 2, CH.sub.4 and longer-chain saturated and unsaturated hydrocarbons and sulfur compounds.
  • An alarm is, however, only then and in various presettable levels, when the signal evaluation of the optical scattered light measuring system reaches or exceeds certain thresholds and at the same time also detect the gas sensors or the fire gases.
  • gas sensors or the fire gases By using a plurality of different types of gas detecting sensors or a sensor array is a broadband gas analysis of the sucked air samples possible. Further improvement of gas detection is possible by knowing the type of fire or carbonization gases expected from the monitoring area.
  • the most limited overheating can lead to smoldering fires in which material-specific, gaseous products (pyrolysis gases) such as HCL are released in different concentrations.
  • pyrolysis gases material-specific, gaseous products
  • the gas sensors to be provided for use in the fire detection device can then be selected depending on the gases to be detected from a plurality of different measuring cells (gas sensors) and allow the metrological detection of very low gas concentrations in the ppb range.
  • gas sensors gas sensors
  • the databases thus obtained are for example implemented in the memory area of the microcontroller system and are available to the currently determined measured variables as comparison data.
  • the comparison and the weighting of the measured variables determined by the various fire alarms of the fire alarm device according to the invention therefore permit an early and reliable fire detection. False alarms due to disturbance or deception can be excluded as far as possible.
  • a central monitoring unit preferably a fire alarm panel
  • Fig. 1 shows the fire detection device 2 according to the invention, which is connected via the intake pipe 1 with the plant or space area, which is to be monitored for a possible fire formation.
  • a plurality of intake pipes with a plurality of intake openings, or the intake pipes can be designed as flexible hoses whose openings also suck in air from system areas which are difficult to access.
  • the air samples are continuously sucked by means of suction fan 3 with an adjustable constant flow rate and the measuring chamber (sample volume) of the fire detection device 2 fed.
  • the intake roughing network can be designed, for example, for lengths of up to 200 m.
  • Light source 4, receiver elements 6, 8 and the focusing optics 5, 7 are each separated from the sample volume of the aspirated flue gas by plexiglass shields (not shown).
  • plexiglass shields for applications with higher air velocities, such as exhaust air and air conditioning ducts, the so-called bypass technique can also be used.
  • air samples are constantly removed from the channel to be monitored via a pipe system and passed through the measuring chamber of the scattered light where also the gas sensors 9 can be arranged.
  • the high sensitivity smoke particle measuring system 16 (Fig. 2) is arranged at right angles to the air flow and shielded by said Plexiglas panes. It consists of a high-energy narrow-band light source, preferably a laser diode 4 with collimating optics for generating scattered light intensities of smoke particles in the Kollimationsbrenn Vietnamese, to an opposite radiation trap that absorbs the laser beam, and each of a collection and focusing optics 5.7, which the scattered light of the associated Plan solid angle segment on the respective receiving elements 6,8 (optical detectors).
  • the detection volume is to be kept as small as possible for accurate analysis and is essentially determined by the intersection of the focal points of the lens systems with the diameter of the laser beam in its collimation focal point.
  • the receiving elements 6, 8 and the collecting and focusing optics 5, 7 are arranged such that the scattered light beams from the solid angle segments are detected from the forward direction and the rearward direction.
  • the forward and backward scattered light then generates in the Receiver elements of the received scattered light intensity proportional electrical signal which in the connected microcontroller system 13 and / or a fire panel 15 is processed and stored.
  • the measured values obtained by this measurement principle are related to the smoke particle concentration, but also to particle properties such as shape color and size.
  • the high-energy light source eg laser diode
  • a pulsed driver circuit which increases the service life of the light source many times over.
  • the modulated light pulses are only triggered by the control electronics 13, if a new scattered light measurement is to take place.
  • one or more gas sensors 9 or a gas sensor array consisting of several gas sensors are arranged in the intake stream or a bypass and connected via signal lines to the microcontroller system 13 and / or the fire panel 15.
  • Various gas detectors or a gas sensor array can be used here and detect different fire gases that characterize an early fire development phase. These include, in particular, the early formation of gases, such as CO, H2, CH4, as well as longer-chain saturated and unsaturated hydrocarbons and sulfur compounds, but also fire-load-specific gases (eg HCL), such as those arising from the thermal decomposition of PVC, can be achieved through the use of special gas sensors safely detect.
  • the logical processing and linking of the scattered light signals with the measured variables of the gas sensor allows the invention intilorente fire detection. According to the invention, it is also possible to use signal processing of the scattered light and the other detector signals and, depending on the analysis criteria used, one or more microprocessors as decentralized computing units.
  • the direction and intensity of the light scattered by a particle depend on its shape, color, and size as well as the wavelength of the light. If light wavelength, optical power and the scattering angles are known by appropriate arrangement of the receiving elements and the measured scattered light intensity is logically linked, conclusions can be drawn about the properties and distribution (concentration) of the smoke particles in the sample volume. Even more accurate statements are obtained by the scattered light intensity measurement of more than two scattering angles 17, 18, 19. According to the invention, the simultaneous measurement and evaluation of the light component 17 scattered in the forward direction with the light component 18 scattered in the backward direction brings about a statement that is well usable for determining the fire.
  • practical useful values for the scattering angle segments for the respective measuring channel in the forward direction have been found to be about 20 ° +/- 4 ° and in the backward direction 160 ° +/- 4 °.
  • Further scattered-light detectors are preferably arranged in the angle range between 5 ° and 45 ° which is affected by strong changes in intensity. Thereafter, one or more intensity measures from vector sums of the angle-dependent scattered light intensities can be determined and one or more particle property indices can be determined from the logarithmic ratios of the angle-dependent scattered light intensities.
  • the measured variables of an optional smoke sensor (ionization smoke detector or optical smoke detector) 25 and / or an optional temperature detector 26 can also be included in the evaluation.
  • the evaluation of the individual measured variables and the interdependence is carried out with the aid of algorithms and comparative analyzes, which use data from test fires in a database 28.
  • the further method then provides for the comparison of the sum signal obtained from method step 27 with pre-parameterized threshold values and leads, in the case of corresponding comparison results, to control and display associated alarm stages 29.
  • the optional individual display or individual control 30 of alarm levels of individual parameters can also be provided in comparison with the assigned individual threshold value. For example, CO alarm can be triggered when exceeding a maximum concentration irrelevant to other measures.
  • an optional single display or individual control of alarm levels can be provided.
  • the two highly sensitive measuring circuits 32 and 33 respectively process the stray signals supplied by the receiving elements 6, 8.
  • the laser diode as the light source is driven in a pulse-shaped manner by a laser driver circuit 34, the pulses being supplied by the microcontroller system 13.
  • the diode laser is operated only at the time of measurement, resulting in a multiplication of the laser life.
  • the gas sensor 35 and the optional temperature detector 37 are also connected via an A / D converter to the microcontroller system 13. Of particular importance are the sample and hold circuit 36, which allows the simultaneous detection of the scattered light measured values by the trigger pulses of the microcontroller system.
  • the microcontroller system 13 performs the analysis algorithms and evaluates gas and scattered light circuits, stores data and events, controls event-based displays and peripheral units, communicates with connectable peripherals 38, and compensates for environmentally induced aerosol background drift of the sensitive stray light circuits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire Alarms (AREA)

Description

Die Erfindung betrifft eine selbstansaugende Brandmeldeeinrichtung zur Überwachung von technischen Anlagen, Gebäuden und Lagerbereichen auf Entstehung von Bränden gemäß dem Oberbegriff von Anspruch 1.
Unter selbstansaugenden Brandmeldeeinrichtungen sollen Brandmeldesysteme verstanden werden, welche über ein oder mehrere Ansaugrohre verfügen deren Ansaugöffnungen Luftproben aus den zu überwachenden Anlagen- oder Raumbereich entnehmen und den Branderkennungsdetektoren zur Messung verschiedener Brandkenngrößen zuführen.
Als Ansaugmittel zur Erzeugung eines kontinuierlichen Luftstroms aus dem Überwachungsbereich werden oft Lüfter oder Ventilatoren eingesetzt, verschiedentlich kommen aber auch Kolben- oder Membranpumpen zum Einsatz.
Selbstansaugende Systeme kommen dann vorteilhaft zum Einsatz, wenn sich bei einem Schwelbrand nur geringe Thermik entwickelt und Rauchpartikel nur sehr langsam den Detektionsbereich der oft in größerer Entfernung angebrachten Branddetektoren erreichen.
Das ist besonders in größeren Räumen und Lagerbereichen der Fall. In klimatisierten und zwangsbelüfteten Räumen wo z.T. wechselnde Luftströmungen und starke Verdünnungseffekte auftraten, lassen sich selbstansaugende Systeme höherer Empfindlichkeit sehr vorteilhaft für die Frühdetektion einsetzen.
Bei herkömmlichen Systemen, ohne Selbstansaugung, würde eine Alarmmeldung zu einem recht späten Zeitpunkt ausgelöst und die anschließenden Brandbekämpfungsmaßnahmen verzögert, was in Folge zu erheblich höheren Sach- und Personenschäden führen kann, als das bei einer frühzeitigeren Alarmauslösung der Fall wäre.
Bei klimatisierten und zwangsbelüfteten Anlagen wo sich durch sich ändernde Luftströmungsverhältnisse die thermische Konvektion in der Entstehungsphase eines Brandes kaum entwickeln kann, ist mit Systemen ohne Ansaugung eine Früherkennung kaum zu realisieren.
Ein weiterer Vorteil von selbstansaugenden Systemen besteht darin, dass sich die Ansaugöffnungen innerhalb bestimmter gefährdeter Anlagen bereiche, wie dem Gehäuse eines elektrischen Schaltschrankes oder einer EDV-Anlage befinden können, so das die Luftproben unmittelbar aus dem Gefährdungsbereich spezieller Anlagenobjekte entnommen werden und zusammen erfaßt werden können.
Entstehungsbrände in Anlagenbereichen lassen sich dadurch frühzeitig detektieren und geeignete Gegenmaßnahmen ergreifen.
In Abhängigkeit von Wertkonzentration, Brandrisiko und Gesamt-Brandschutzkonzept kommen bei besonderer wirtschaftlicher Bedeutung einer Brandfrüherkennung,
für selbstansaugende Systeme in der Regel nur hochsensible Detektoren zum Einsatz.
Optische Streulichtmeßsysteme als hochsensible Detektoren, haben sich dabei als gut geeignet erwiesen, Rauchpartikel Produkte der thermischen Zersetzung, Ruß- oder Schwebeteilchen) auch in geringsten Mengen nachweisen zu können.
Solche bekannten Systeme sind in zahlreichen Varianten verfügbar und verwenden meist eine LED oder eine Laserdiode als Streulichtquelle.
Die von der Lichtquelle emittierten Lichtstrahlen durchlaufen dabei eine Meßstrecke durch ein Probenvolumen und werden an vorhandenen Rauchpartikeln gestreut.
Das inhomogen verteilte Streulicht wird dann von einem oder mehreren Empfangselementen (photoelektrische Detektoren) in eine meßbare elektrische Signale umgewandelt.
Dabei ist Intensität des Streuwinkels des gestreuten Lichts u. a. abhängig von der Lichtwellenlänge,Größe und Form, sowie den optischen Eigenschaften der im Probenvolumen vorhandenen Rauchpartikel.
Aus der Analyse der Signalen der in verschiedenen Streuwinkeln angeordneten Empfangselementen lassen sich Rückschlüsse auf die Anzahl und der im Luftprobenvolumen vorhandenen Partikel ziehen.
Neuere Entwicklungen zur Detektion auch kleinster Mengen von Rauchaerosolen in einem angesaugten Probevolumen setzen zunehmend auf hochempfindliche und genauere lasergestützte Meßsysteme.
Hochenergetische Laserstrahlung hat den Vorteil beim Auftreffen auf Rauchpartikel höhere und damit besser detektierbare Streulichtintensitäten zu liefem. Durch die spektrale Schmalbandigkeit des Lasers ist die Eindeutigkeit resultierender Meßwerte in Bezug auf die zugrundeliegende Streulichttheorie gegeben.
Dabei wird ein oft erheblicher konstruktive Aufwand zur optimalen Kopplung des Laser-Meßsystems mit der Luftprobenkammer und der Gaszuführung betrieben.
Nachteilig bei hochempfindlichen Systemen ist die Gefahr
von Fehlalarmen durch das unerwartete Auftreten nichtrelevante Brandkenngrößen (z. B. Zigarettenrauch)
oder die Einwirkung von Stör- oder Täuschungsgrößen wie Feinststaub oder Wasserdampf auf die Detektoren.
Grundsätzlich ist es für die Detektorsysteme oft schwierig bestimmte Störgrößen oder zur Branderkennung nichtrelevante Partikel im Meßvolumen von zu detektierenden Rauchpartikeln zu unterscheiden.
Daher werden in der Brandschutztechnik zahlreiche
Anstrengungen unternommen, Brandkenngrößen von Stör- oder Täuschungsgrößen zu unterscheiden, um Fehlalarme möglichst auszuschließen.
Optische Streulichtmeßsysteme können ohne zusätzliche Maßnahmen besonders dort vorteilhaft eingesetzt werden, wo nur in geringem Umfang mit Stör- oder Täuschungsgrößen zu rechnen ist.
Das sind insbesondere klimatisierte- und Reinraumbereiche, EDV-Anlagen, Produktionseinrichtungen der Halbleiter- und Biotechnologie sowie Telefon- und Kommunikationseinrichtungen.
Aus dem Gesagten wird deutlich, dass die Forderung nach immer empfindlicheren Detektorsystemen zur Früherkennung von Bränden im Widerspruch zu den dann wachsenden Einfluß von Stör- und Täuschungsgrößen steht.
In der DE19605637 C1 wird ein Verfahren zur Luftstromüberwachung und eine Vorrichtung zum Erkennen von Bränden nach dem Prinzip der Luftprobenansaugung beschrieben.
Ober zwei Ansaugrohrsysteme werden repräsentative Teilmengen aus der Raumluft oder Kühlluft eines zu überwachenden gefährdeten Bereichs entnommen und einem Detektor zum Erkennen einer Brandkenngröße zugeführt.
Als wichtige Voraussetzung zur Früherkennung von Bränden wird die Erkennung von unerwünschten Störungen im Ansaugsystem, beispielsweise
durch Verstopfungen der Ansaugöffnungen oder Brüche im Ansaugrohrsystem gewertet.
Dabei spielt die kontinuierliche Zuführung eines definierten Luftvotumens zur Melderkammer eine wichtige Rolle.
Zur Lösung dieser Aufgabe wird die Verwendung von jeweils einem Luftstromsensor für jede der beiden Ansaugleitungen vorgeschlagen, deren Ausgangssignale abgeglichen und zur Überwachung des Luftstroms verwendet werden.
Als weitere Maßnahme zur sicheren Detektion einer Brandkenngroße wird die mögliche Anordnung eines zweiten Detektors in einer zweiten Melderkammer des Brandmelders vorgeschlagen.
Nähere Angaben zu deren Art oder Verwendung
werden jedoch nicht gemacht.
Die meisten der bisher bekannt gewordenen Entwicklungen zu selbstansaugendenBrandmeldeeinrichtungen haben es sich zu Ziel gesetzt, eine sichere Früherkennung von Bränden schon in der Entstehungsphase zu erreichen.
Dazu wurden zahlreiche Verbesserungen in den Ansaugsystemen oder
in der Empfindlichkeit (Ansprechschwelle) der verwendeten (optischen) Detektoren vorgeschlagen.
Um eine Verbesserung der Empfindlichkeit von Detektorsystemen zu erreichen, und den Einfluß von Stör- oder Täuschungsgrößen trotzdem gering zu halten wurden verschiedene Vorschläge gemacht.
So ist aus der DE4231088 A1 Feueralarmsystem bekannt, welches einen nach dem Streulichtprinziep arbeitenden Rauchdetektor umfaßt, dessen Streulichtempfänger in unterschiedlichen Streuwinkeln positioniert sein können.
Um ein genaueres Bild der im Probevolumen befindlichen Partikel zu erhalten, wird vorgeschlagen, das optischen Streulichtmeßsystem zusätzlich mit einem Polarisationsfilter auszustatten und den Polarisationsgrad des gestreuten Lichts zu bestimmen.
Aus der eindeutigen Korrelation zwischen Polarisationsgrad und Streuwinkel läßt sich dann auf einen bestimmten Rauchtyp schließen.
Durch experimentelle Versuche mit Testbränden wurden unterschiedliche Muster von Rauchtypen mit Schwellwerten in Datenbanken gespeichert, die dann mit den Ergebnissen der Streulicht- und Polarisationsmessung verglichen werden.
Aus dem Vergleich beider Rauchmuster sollen sich dann Hinweise auf den Feuertyp ergeben.
In der EP-A-1 006 5000 wird ein punktförmiger (point-type) Rauchmelder beschrieben, der einen Rauchsensor und/oder einen Gassensor sowie eine Ansaugvorrichtung und einen Strömungssensor enthält. Ziel dieser Schrift ist eine Lösung für minimale oder fehlende Luftzirkulation in der unmittelbaren Umgebung (im Zentimeter bis Meter-Bereich) des punktförmigen Brandmelders. Diese punktförmigen Melder haben einen eingeschränkten Überwachungsbereich, der neben den physikalischen Grenzen zusätzlich durch die entsprechenden nationalen Normen/Vorschriften vorgegeben wird. Somit ist zur Überwachung mehrerer Räume oder von mehreren Objekten eine bestimmte Anzahl von Brandmeldem notwendig, die alle eine entsprechende aufwendige Stromversorgung und ein Kommunikationsmedium zur zentralen Kontrolleinheit benötigen.
Dieser Brandmelder mit einer integrierten Ansaugvorrichtung unterscheidet sich wesentlich vom Gegenstand der vorliegenden Erfindung, denn sie entnimmt nicht wie die in dieser Schrift beschriebene selbstansaugende Brandmeldeeinrichtung über ein oder mehrere Ansaugrohre mit Ansaugöffnungen Luftproben.
Deshalb ist eine Vielzahl von Brandmeldem zur Detektion in verschiedenen Räumen/Objekten notwendig. Insbesondere können nicht wie im Fall der in dieser Schrift beschriebenen selbstansaugenden Brandmeldeeinrichtung Luftproben in unmittelbare Nähe des potentiellen Brandherdes entnommen werden, der bis über einhundert Meter vom Brandmelder entfernt sein kann.
Aus US-A 5 280 272 ist nicht zu entnehmen, daß die Streulicht-Messwerte von mindestens 2 Streuwinkeln gleichzeitig gemessen bzw. parallel erhalten werden. Nur die Verbindungslinien der Abbildungen lassen einen solchen Schluß nicht zu. Stand der Technik ist, daß über einen Multiplexer die einzelnen Messkanäle seriell erfaßt werden und damit eine Mikro - bis Millisekunden Zeitversetzung der Erfassung der einzelnen Meßwerte besteht.
In der vorliegenden Patentanmeldung ist an mehreren Stellen auf die Bedeutung der erfindungsgemäßen Gleichzeitigkeit der Messung hingewiesen worden. Im Gegensatz hierzu wird in der Patentschrift US-A-5 280 272 auch explizit, das nacheinander Messen der Streulichtsignale durch eine Drehvorrichtung des Empfängers in Betracht gezogen.
Auch bei dieser bekannten Brandmeldeeinrichtung sind keine Angaben zur sicheren Unterscheidung zwischen immer vorhandenen Stör- und Täuschungsgrößen und den als Brandkenngröße in Erscheinung tretenden Rauchpartikel zu finden.
Aus den bekannten Nachteilen des Standes der Technik leitet sich daher die Aufgabe der vorliegenden Erfindung ab, eine Brandmeldeeinrichtung der gattungsgemäßen Art zu schaffen, welche Entstehungsbrände an unterschiedlichen Orten durch eine einziges Gerät frühzeitig mit hoher Empfindlichkeit detektiert und trotzdem in der Lage ist, die Stör- oder Täuschungsgrößen von den für die Brandentstehung und den Brandverlauf relevanten Brandkenngrößen sicher zu unterscheiden.
Weiterhin soll die erfindungsgemäße Brandmeldeeinrichtung in der Lage sein, entsprechend der Brandentwicklung verschiedene Alarmstufen zu generieren, welche die Anwendung abgestufter flexibler Brandbekämpfungsmaßnahmen erlaubt. Dabei soll eine Minimierung der Fehlalarmhäufigkeit bei gleichzeitiger Erhöhung der Sensibilität des Systems erzielt werden.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des ersten Anspruchs gelöst.
In den Unteransprüchen sind weitere vorteilhafte Ausgestaltungen der Erfindung angegeben.
Erfindungsgemäß wird vorgeschlagen ein hochempfindliches optisches Streulichtmeßsystem durch zusätzliche Anordnung von einem oder mehreren Gassensoren oder einem Gassensorarray zu ergänzen,
und die Meßgrößen der einzelnen Detektoren zu einer logischen Alarmstufengenerierung zu verknüpfen.
Dabei sind sowohl das optische Streulichtmeßsystem, wie auch die Gassensoren signaltechnisch mit einem Mikrocontroller-System und/oder einer Brandmeldezentrale verbunden.
Die Erfindung betrifft auch ein Verfahren zum Betrieb dieser Brandmeldeeinrichtung welches durch die Bildung eines Summensignals aus den in verschiedenen Streuwinkeln des optischen Streulichtmeßsystems angeordneten Empfangselementen detektierten Meßgrößen und den von den zusätzlich angeordneten Gassensoren und/oder dem Gassensorarray detektierten Meßgrößen gekennzeichnet ist.
In einer besonders vorteilhaften Ausbildung der Erfindung sind die Empfangselemente des Streulichtmeßsystems in Vorwärts- und Rückwärtsstreurichtung angeordnet und deren Signalverarbeitung derart ausgebildet, dass für die in einem definierten Probenvolumen befindlichen Partikeln charakteristischen Parameter, wie Partikelfarbe, Größe und Konzentration durch die gleichzeitige Erfassung der in Vorwärts- und Rückwärtsstreuwinkelbereichen detektierten Signalen bestimmbar sind.
Die gleichzeitige Erfassung und Verarbeitung der unter den verschiedenen Winkeln gestreuten Lichtstrahlen ist durch das Meßsystem Empfänger-Mikrocontroller-System besonders wichtig.
Nur durch die gleichzeitige Erfassung und Verarbeitung der empfangenen Streulichtsignale aus den unterschiedlichen Streulichtwinkeln ist eine genaue Beschreibung der Partikelverteilung im Probenvolumen zu einem bestimmten Zeitpunkt möglich, da es sich bei dem Probenvolumen um keine statische Größe handelt, sondern sich dessen Parameter in Abhängigkeit von der Strömungsgeschwindigkeit der Ansaugeinrichtung ständig verändern.
In einer weiteren vorteilhaften Ausbildung der Erfindung können auch Branddetektoren verschiedener Bauart, wie Temperaturmelder oder lonisationsrauchmelder in der erfindungsgemäßen selbstansaugenden Brandmeldeeinrichtung angeordnet und mit dem Mikrocontroller-System und/oder der Brandmeldezentrale signaltechnisch verbunden werden.
Dabei ist neben der bevorzugten Anordnung dieser Detektoren sowie auch der Gassensoren direkt im Ansaugstrom der Ansaugeinrichtung auch deren Anordnung in einem Bypass zum Ansaugrohr möglich.
Erfindungsgemäß werden auch die von den letztgenannten Branddetektoren im Probenvolumen ermittelten Meßgrößen in die Signalverarbeitung der Brandmeldeeinrichtung einbezogen und anhand der in einer Datenbank gespeicherten Werte durch Bewertungsalgorithmen entsprechend gewichtet.
Die erfindungsgemäße Anordnung eines hochempfindlichen optischen Streulichtmeßsystems zur Detektion von Rauchpartikeln eines Brandes in Kombination mit Gassensoren und/oder eines Gassensorarrays in einer Brandmeldeeinrichtung zur Detektion von Brandgasen oder/und brandlastspezifischen Gasen weist gegenüber dem bekannten Stand der Technik zahlreiche Vorteile auf.
In einer fortgeschrittenen Brandphase bei zunehmender Temperatur erhöhte Emissionen von Produkten der vollständigen Verbrennung, wie CO2 und H2O, sowie Rußpartikel und Rauchaerosole auf Die Rauchpartikel unterschiedlicher Größe und Verteilung lassen sich mit dem hochempfindlichen Streulichtmeßsystem sehr genau nachweisen.
Demgegenüber ermöglicht die Gassensorik nicht nur die zusätzliche frühzeitige Detektion einer Brandentstehungskenngröße sondern auch die Überprüfung und Wichtung der Meßergebnisse des Streulichtsystems durch die Meßgrößen der Gassensoren oder des Gassensorarrays.
Die zusätzlich angeordneten Gassensoren sind, wie allgemein bekannt, besonders gut geeignet die schon, zu Beginn eines Brandes entstehenden Brandgase, wie z.B. CO H2, CH4sowie längerkettige gesättigte und ungesättigte Kohlenwasserstoffe und Schwefelverbindungen zuverlässig zu detektieren. Durch die Verknüpfung und logische Verarbeitung der jeweiligen Brandkenngrößen ist eine sichere Alarmierung früher als bei den bisher bekannten selbstansaugenden Systemen möglich.
Eine Alarmierung erfolgt jedoch nur dann und in verschiedenen voreinstellbaren Stufen, wenn die Signalauswertung des optischen Streulichtmeßsystems bestimmte Schwellwerte erreicht oder übersteigt und gleichzeitig auch der oder die Gassensoren Brandgase detektieren.
Durch Verwendung mehrerer unterschiedliche Gasarten detektierende Sensoren oder eines Sensorarrays ist eine breitbandige Gasanalyse der angesaugten Luftproben möglich.
Eine weitere Verbesserung der Gasdetektion ist durch die Kenntnis der Art der aus dem Überwachungsbereich zu erwartenden Brand- oder Schwelgase möglich.
So sind die häufigste Ursache für Entstehungsbrände in Kabelschächten oder anderen Hohl- und Zwischenräumen von Geräten und Anlagen, die darin verlaufenden elektrischen Kabel, Anschlüsse und Verbindungen.
Die meist engbegrenzten Überhitzungen können zu Schwelbränden führen, bei denen materialspezifische, gasförmige Produkte (Pyrolysegase) wie HCL in unterschiedlichen Konzentrationen freigesetzt werden.
Die zur Verwendung in der Brandmeldeeinrichtung vorzusehenden Gassensoren können dann in Abhängigkeit von den nachzuweisenden Gasen aus einer Vielzahl unterschiedlicher Meßzellen (Gassensoren) ausgewählt werden und erlauben den meßtechnischen Nachweis schon von sehr geringen Gaskonzentrationen im ppb-Bereich.
Wie auch bei der Rauchpartikeldetektion durch das optische Streulichtmeßsystem, werden in der Gassensorik entsprechende Brandmuster ermittelt (Testbrände) und elektronisch gespeichert.
Die derart erhaltenen Datenbanken werden beispielsweise in den Speicherbereich des Mikrocontroler-Systems implementiert und stehen den aktuell ermittelten Meßgrößen als Vergleichsdaten zur Verfügung.
Der Vergleich und die Wichtung der von den verschiedenen Brandmeldem der erfindungsgemäßen Brandmeldeeinrichtung ermittelten Meßgrößen erlaubt daher eine frühzeitige und sichere Branderkennung.
Fehlalarme durch Stör- oder Täuschungsgrößen können weitestgehend ausgeschlossen werden.
Werden die Daten der Branderkennungseinrichtung oder mehrerer solcher Einrichtungen durch eine zentrale Monitoreinheit, vorzugsweise eine Brandmeldezentrale verarbeitet, ist es durch zyklische Abfragen der einzelnen Branddetektoren auch möglich den Brandverlauf zeitlich genauer zu charakterisieren und eine Brandverlaufsanalyse zu erstellen.
Diese kann dann sehr nützlich zur Einleitung von Gegenmaßnahmen verwendet werden und zur Bestimmung entsprechend des Gefährdungsgrades abgestuften Vorwarnzeiten dienen.
Es liegt auch in dem Bereich der Erfindung die beschriebene Brandmeldeeinrichtung ohne Selbstansaugung zu betreiben.
So ist es durchaus möglich die erfindungsgemäße Brandmeldeeinrichtung in einen Lüftungsschacht oder Ähnlichen anzuordnen in welchem ein Luftstrom mit einer bestimmten Geschwindigkeit fließt.
Die Probennahme kann dann z. B. durch entsprechend dimensionierte Öffnungen im Gehäuse der Brandmeldeeinrichtung erfolgen.
Weitere Einzelheiten der Erfindung sollen nun Anhand von Zeichnungen und eines Ausführungsbeispiels erläutert werden.
Es zeigen :
Fig. 1
die erfindungsgemäße Brandmeldeeinrichtung mit einem Ansaugrohr,
Fig. 2
einen Flußplan zur Signalverarbeitung des Streulichtmeßsystems und der zusätzlich angeordneten Detektoren,
Fig. 3
ein Blockschaltbild der einzelnen Systemkomponenten der Brandmeldeeinrichtung
Fig. 1 zeigt die erfindungsgemäße Brandmeldeeinrichtung 2, welche über das Ansaugrohr 1 mit dem Anlagen- oder Raumbereich, der auf eine mögliche Brandentstehung überwacht werden soll, verbunden ist.
In einer weiteren Ausführungsform können auch mehrere Ansaugrohre mit mehreren Ansaugöffnungen angeordnet sein, oder die Ansaugrohre können als flexible Schläuche, deren Öffnungen Luft auch aus schwer zugänglichen Anlagenbereichen ansaugen, ausgebildet sein.
Die Luftproben werden kontinuierlich mittels Ansauglüfter 3 mit einer einstellbaren konstanten Strömungsgeschwindigkeit angesaugt und der Meßkammer (Probenvolumen) der Brandmeldeeinrichtung 2 zugeführt.
Unter Berücksichtigung zulässiger maximaler ransportzeiten, kann das Ansaugrohmetz beispielsweise auf Längen von bis zu 200 m ausgelegt sein.
Mit dem Luftstromsensor 10 wird die Strömungsgeschwindigkeit der angesaugten Luft gemessen und mit dem eingestelltem Sollwert verglichen.
Bei unzulässigen Abweichungen wird eine Störungsmeldung ausgelöst.
Lichtquelle 4, Empfängerelemente 6,8 und die Fokussieroptiken 5,7 werden dabei jeweils durch Plexiglasabschirmungen (nicht eingezeichnet) vom Probenvolumen des angesaugten Rauchgases getrennt.
Für Einsatzbereiche mit höheren Luftgeschwindigkeiten, wie bei Abluft- und Klimakanälen, kann auch die sogenannte Bypass-Technik verwendet werden.
Dabei werden über ein Rohrsystem ständig Luftproben aus dem zu überwachenden Kanal entnommen und durch die Meßkammer des Streulichtmeßsystems geleitet wo auch die Gassensoren 9 angeordnet sein können.
In dem in Fig. 1 dargestelltem Standard-Meßaufbau ist das hochempfindliche Rauchpartikel Meßsystem 16 (Fig. 2) im rechten Winkel zum Luftstrom angeordnet und durch die genannten Plexiglasscheiben abgeschirmt.
Es besteht aus einer hochenergetischen schmalbandigen Lichtquelle, vorzugsweise einer Laserdiode 4 mit Kollimationsoptik zur Erzeugung von Streulichtintensitäten an Rauchpartikeln im Kollimationsbrennpunkt, dazu einer gegenüberliegenden Strahlenfalle, die den Laserstrahl absorbiert, sowie jeweils einer Sammel- und Fokussieroptik 5,7,welche das gestreute Licht des zugeordneten Raumwinkelsegments auf die jeweiligen Empfangselemente 6,8 (optische Detektoren) abbilden.
Das Detektionsvolumen ist für die genaue Analyse so klein wie möglich zu halten und wird im wesentlichen bestimmt durch das Schnittvolumen der Brennpunkte der Linsensysteme mit dem Durchmesser des Laserstrahls in dessen Kollimations-Brennpunkt.
Dabei sind die Empfangselemente 6,8 und die Sammel- und Fokussieroptiken 5,7 derart angeordnet, dass die gestreuten Lichtstrahlen aus den Raumwinkelsegmenten von Vorwärtsrichtung und Rückwärtsrichtung detektiert werden.
Das vorwärts- und rückwärtsgestreute Licht erzeugt dann in den Empfängerelementen ein der empfangenen Streulichtintensität proportionales elektrisches Signal welches in dem angeschlossenem Mikrocontroller-System 13 und/oder einer Brandmeldezentrale 15 verarbeitet und gespeichert wird.
Die nach diesem Meßprinzip gewonnenen Meßwerte stehen im Verhältnis zur Rauchpartikelkonzentration, aber auch zu Partikeleigenschaften wie Form Farbe und Größe.
In einer vorteilhaften Ausführungsform des Branderkennungssystems wird die hochenergetische Lichtquelle (z. B. Laserdiode) mit einer gepulsten Treiberschaltung angesteuert, was die Lebensdauer der Lichtquelle um ein Vielfaches erhöht.
Die modulierten Lichtimpulse sind nur dann von der Steuerelektronik 13 auszulösen, wenn eine erneute Streulichtmessung erfolgen soll.
Erfindungsgemäß werden ein- oder mehrere Gassensoren 9 oder ein aus mehreren Gassensoren bestehendes Gassensorarray im Ansaugstrom oder einem Bypass angeordnet und über Signalleitungen mit dem Mikrocontroller-System 13 und/oder der Brandmeldezentrale 15 verbunden.
Dabei können verschiedene Gasmelder oder ein Gassensorarray zum Einsatz kommen und unterschiedliche, eine frühe Brandentstehungsphase kennzeichnende Brandgase detektieren.
Das sind insbesondere die frühzeitig entstehenden Gase, wie CO, H2, CH4, sowie längerkettige gesättigte und ungesättigte Kohlenwasserstoffe und Schwefelverbindungen, aber auch brandlastspezifische Gase (z.B. HCL), wie sie bei der thermischen Zersetzung von PVC entstehen, lassen sich durch die Verwendung spezieller Gassensoren sicher detektieren.
Die logische Verarbeitung und Verknüpfung der Streulichtsignale mit den Meßgrößen der Gassensorik erlaubt die erfindungsgemäße inteiligente Branderkennung.
Erfindungsgemäß ist es auch möglich zur Signalverarbeitung der Streulicht- und der anderen Detektor Signale und in Abhängigkeit der verwendeten Analysekriterien einoder mehrere Mikroprozessoren als dezentrale Recheneinheiten zu verwenden.
In Fig. 2 sind die einzelnen Verfahrensschritte zur Signalverarbeitung der Branderkennungseinrichtung dargestellt.
Gemäß der auf das Streulichtmeßsystem anzuwendenden Mie-Streulicht-Theorie hängen Richtung und Intensität des an einem Partikel gestreuten Lichtes von dessen Form, Farbe, und Größe sowie der Lichtwellenlänge ab.
Sind Lichtwellenlänge, optische Leistung und die Streuwinkel durch entsprechende Anordnung der Empfangselemente bekannt und werden die gemessenen Streulichtintensität logisch verknüpft, lassen sich Rückschlüsse auf die Eigenschaften und Verteilung (Konzentration) der Rauchpartikel im Probenvolumen ziehen.
Noch genauere Aussagen erhält man durch die Streulicht-Intensitätsmessung von mehr als zwei Streuwinkeln 17, 18, 19.
Erfindungsgemäß bringt die zeitgleiche Messung und Auswertung des in Vorwätsrichtung gestreuten Lichtanteils 17 mit dem in Rückwätsrichtung gestreuten Lichtanteils 18 eine zur Brandbestimmung gut verwertbare Aussage.
In der angegebenen Ausführung haben sich als praktische brauchbare Werte für die Streuwinkelsegmente für den jeweiligen Meßkanal in Vorwärtsrichtung etwa 20 ° +/- 4° und in Rückwärtsrichtung 160° +/- 4° erwiesen.
Weitere Streulichtdetektoren (Empfangselemente) werden vorzugsweise in den von starken Intesitätsänderungen betroffenen Winkelbereich zwischen 5° und 45° angeordnet.
Danach läßt sich eine oder mehrere Intensitätskennzahlen aus Vektorsummen der winkelabhängigen Streulichtintensitäten ermitteln und eine oder mehrere Partikeleigenschaftskennzahlen aus den logarithmierten Verhältnissen der winkelabhängigen Streulichtintensitätenbestimmen.
Nach der Erfassung der Werte einzelner Streulichtintensitäten aus den verschiedenen Raumwinkeln 17, 18, 19, werden diese im nächsten Verfahrensschritt 20 zu einem Eigenschaftsvektor normiert (Klassifizierung z. B. nach Größe, Farbe und Brechungsindex). In der Rauchaerosol-Datenbank 21 sind Vergleichsdaten zulässiger ermittelter Raucheigenschaften abgespeichert.
Der aus 20 erhaltene Eigenschaftsvektor und die in 21 abgelegten Vergleichsdaten werden dann zur Rauch-Identitätskennzahl verknüpft 22.
Die Rauch-Streulichtintensität des hochempfindlichen Meßkreises 23 wird dann im Verfahrensschritt 27 mit den vom Gassensor 24 ermittelten Meßgrößen bewertet.
Zusätzlich können auch die Meßgrößen eines optionalen Rauchsensors (lonisationsrauchmelder oder optischer Rauchmelder) 25 und/oder eines optionalen Temperaturmelders 26 in die Bewertung einbezogen werden.
Die Bewertung der einzelnen Meßgrößen und der gegenseitigen Abhängigkeit erfolgt mit Hilfe von Algorithmen und Vergleichsanalysen, die auf Daten von Testbränden in einer Datenbank 28 zurückgreifen.
Das weitere Verfahren sieht dann den Vergleich des aus Verfahrensschritt 27 erhaltenen Summensignals mit vorparametrierten Schwellenwerten vor und führt bei entsprechenden Vergleichsergebnissen zur Ansteuerung und Anzeige zugeordneter Alarmstufen 29.
Zusätzlich kann auch die optionale Einzelanzeige oder Einzelansteuerung 30 von Alarmstufen individueller Kenngrößen im Vergleich mit dem zugeordneten individuellen Schwellenwert vorgesehen werden.
Beispielsweise kann CO-Alarm ausgelöst werden bei Überschreitung einer Höchstkonzentration unbeachtlich weiterer Meßgrößen.
Auch für das Streulichtmeßsystem 16 kann eine optionale Einzelanzeige oder Einzelansteuerung von Alarmstufen vorgesehen werden.
Fig. 3 zeigt das Blockschaltbild der Systemkomponenten der erfindungsgemäßen Branderkennungseinrichtung.
Die beiden hochempfindlichen Meßkreise 32 und 33 verarbeiten jeweils die von den Empfangselementen 6,8 gelieferten Streusignale.
Die Laserdiode als Lichtquelle wird von einer Lasertreiberschaltung 34 impulsförmig angesteuert, wobei die Impulse durch das Mikrocontroller-System 13 geliefert werden.
Vorteilhafterweise wird der Diodenlaser nur zum Meßzeitpunkt betrieben, was zu einer Vervielfachung der Laserlebensdauer führt.
Die Gassensorik 35 und der optionale Temperaturmelder 37 sind ebenfalls über einen A/D-Wandler mit dem Mikrocontroller-System 13, verbunden.
Von besonderer Bedeutung sind die Abtast-Halte Schaltung 36, welche durch die Triggerimpulse des Mikrocontroler-Systems die zeitgleiche Erfassung der Streulicht-Meßwerte ermöglicht.
Dadurch lassen sich erfindungsgemäß genauere Angaben über die Konzentration und Eigenschaften der im Probenvolumen enthaltenen Rauchaerosole erzielen, insbesondere statistische Aussagen zum Auftrittsverhalten von bestimmten Partikeleigenschaftskennzahlen lassen eine gute Selektion für die Weiterverarbeitung möglich werden.
Das Mikrocontroller-System 13 führt die Analysealgorithmen durch und bewertet Gas- und Streulichtmeßkreise , speichert Daten und Ereignisse, steuert ereignisbedingt Anzeigen und periphere Einheiten, führt die Kommunikation mit anschließbarer Peripherie 38 sowie die Kompensation umweltbedingter Aerosothintergrunddrift der empfindlichen Streulichtkreise durch.
Bezugszeichenliste
1
Ansaugeinrichtung mit Ansaugrohr
2
Brandmeldeeinrichtung
3
Ansauglüfter
4
Hochenergetische schmalbandige Lichtquelle (z. B. Laserdiode)
5
Sammel- und Fokussieroptik für den ersten Streulichtmeßkreis
6
Empfangselement (Detektor) für den ersten Streuwinkel
7
Sammel- und Fokussieroptik für den zweiten Streulischtmeßkreis
8
Empfangselement (Detektor) für den zweiten Streuwinkel
9
Gassensor oder Sensorarray
10
Luftstromsensor
11
Temperaturmelder oder Wärmesensor
12
lonisationsrauchmelder oder optischer Rauchmelder
13
Mikrocontroller-System (zur Meßsteuerung, Datenanalyse und Speicherung)
14
Anzeige- und Steuermodule (Relais, LCD, LEDs)
15
Brandmeldezentrale (Gebäudeleittechnik, Leitstellen-PC)
Bezugszeichenerklärung zum Flußbild Signalverarbeitung der der Branderkennungseinrichtung
16
Hochempfindliches Rauchpartikel-Streulicht-Meßsystem
17
Streulichtintensität aus Streuwinkel α1
18
Streulichtintensität aus Streuwinkel α2
19
Streulichtintensität aus Streuwinkel an
20
Normierung der Werte zum Eigenschaftsvektor
21
Rauchpartikel-Datenbank (Vergleichsdaten zulässiger ermittelter Raucheigenschaften)
22
Verarbeitung des Eigenschaftsvektors durch 21 und zeitliches Auftrittsverhalten zu Rauchintensitätskennzahl
23
Rauch-Streulichtintensität des hochempfindlichen Meßkreises 16
24
Gassensor (Brandgassensor) oder Sensorarray (z. B. CO-Sensor)
25
Optionaler Rauchdetektor (lonisationsrauchdetektor, optischer Rauchdetektor)
26
Optionaler Temperaturmelder (Temperatursensor)
27
Bewertung der intensitäten von Streulicht- und Gassensoren zum Summensignal mittels 29 und zeitlicher Korrelation, optional gehen auch die Meßgrößen des Temperaturmelders (26) und des Rauchdetektors (25) ein.
28
Bewertungsalgorithmen aus Datenbank ermittelter Testbrände
29
Vergleich des Summensignals mit vorparametrierten Schwellwerten, Ansteuerung und Anzeige zugeordneter Alarmstufen
30
Optionale Einzelanzeige bzw. Ansteuerung von Alarmstufen individueller Kenngrößen aus dem Vergleich mit dem individuellem Schwellwert
31
Optionale Einzelanzeige bzw. Ansteuerung von Alarmstufen des hochempfindlichen Streulichtmeßsystems zur Frühwamung
Bezugszeichenerklärung zum Blockschaltbild Fig. 3 Systemkomponenten
32
Hochempfindlicher Meßkreis Vorwärtsstreuwinketbereich
33
Hochempfindlicher Meßkreis Rückwärtsstreuwinkelbereich
34
Lasertreiberschaltung, durch µP-Puls nur zur Meßzeit betrieben
35
Meßkreis der Gassensorik
36
Abtast-Halte Schaltungen
37
Optionaler Temperatur- und/oder Rauchsensor-Meßkreis
38
Periphere Konfigurations und Steuereinheiten (Konfigurations- und Monitoring-PC, Brandmelde- und Löschsteuerzentralen)

Claims (7)

  1. Selbstansaugende Brandmeldeeinrichtung zur Überwachung von brandund/oder explosionsgefährdeten Anlagen und Gebäuden, umfassend ein oder mehrere Ansaugrohre (1) zur regelbaren Ansaugung von Umgebungsluft aus dem Überwachungsbereich oder aus den Überwachungsbereichen, ein hochempfindliches optisches Streulichtmeßsystem (2, 16) mit einer hochenergetischen Lichtquelle (4) und Empfangselemente (6, 8) zur Detektion, wobei die Empfangselemente 6, 8) des Streulichtmeßsystems mit einem Mikrocontrollersystem (13) und/oder einer Brandmeldezentrale (15) zur Datenanalyse und Speicherung verbunden sind und zusätzlich ein oder mehrere Gassensoren (9), oder ein Gassensorarray, welche mindestens eine Gasart detektieren, dadurch gekennzeichnet, daß das optische Meßsystem und der oder die Gassensoren oder des Gassensorarray, im Luftstrom eines gemeinsamen Ansaugrohrs oder in einem gemeinsamem Bypassrohr in einem Ansaugrohr angeordnet sind,
    wobei mindestens zwei Empfangselemente (6, 8) des Streulichtmeßsystems (2) derart zum Meßvolumen des Probenstroms aus dem Ansaugrohr (1) angeordnet sind, daß die an den Rauchpartikeln gestreute optische Strahlung in einem Vorwärtsstreuwinkelbereich und einem Rückwärtsstreuwinkelbereich mittels einer Abtast-Halte-Schaltung (36) gleichzeitig detektiert werden und die parallel erhaltenen Meßwerte im Mikrocontroller-System (13) oder einer Brandmeldezentrale (15) zu einer die Aerosole im Meßvolumen charakterisierenden Meßgröße verarbeitbar sind,
    und die Auswahl der anzusteuernden Alarmstufen abhängig von der oder den Meßgrößen erfolgt und in Abhängigkeit der örtlichen Gegebenheiten des Überwachungsbereiches oder dem spezifischen Einsatzzweck einstellbar ist.
  2. Brandmeldeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der oder die Gassensoren (9) als elektrochemischer Gassensor, Halbleitergassensor, lonenmobilitätsspektrometer oder Wärmetönungssensor zur Detektion von Brandgasen wie CO, H2, CH4 sowie längerkettigen gesättigten und ungesättigten Kohlenwasserstoff und Schwefelverbindungen oder brandlastspezifischen Gasen wie HCL ausgebildet sind, wobei sie unterschiedliche Messbereiche für verschiedene und/oder gleiche Gasarten aufweisen.
  3. Brandmeldeeinrichtung nach Anspruch 2, dadurch gekennzeichnet, dass weitere, nach unterschiedlichen Messprinzipien arbeitende Branddetektoren (11, 12) angeordnet sind, wie beispielsweise lonisationsrauchmelder (12) oder optische Rauchmelder (vorzugsweise andere Wellenlängen, Empfindlichkeitsbereiche oder Messprinzipien als das empfindliche Streulichtsystem) (12) und/oder Temperaturmelder (11), welche ebenfalls signaltechnisch mit dem Mikrocontroller-Systems (13) und/oder der Brandmeldezentrale (15) zur Auswertung der im Probevolumen ermittelten Messsignale verbunden sind.
  4. Verfahren zum Betrieb einer Brandmeldeeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die durch die einzelnen an den Streulichtempfängem (17, 18, 19) des Streulichtmesssystems (16) generierten Streulichtsignale an das Mikrocontroller-System (13) übertragen werden und eine gleichzeitige gemeinsame Verarbeitung der von dem einen oder mehreren zusätzlichen Gassensoren (9) oder von dem Sensorarray gelieferten und ebenfalls an den Mikrocontroller (13) übertragenen Messwerte zu einem Summensignal (27) stattfindet, und anschließend ein Vergleich des derart erzeugten Summensignals mit vorparametrierten abgespeicherten Schwellwerten (29) erfolgt und wobei die Ergebnisse des Vergleichs die Entscheidungsgrundlage zur Auslösung von Alarmsignalen oder/und von Alarmstufen bilden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass auch die von den zusätzlich angeordneten Brandmeldern (11, 12), wie dem Ionisationsrauchmelder (12) und/oder dem Temperaturmelder (11) generierten Messgrößen in die Bewertung des Summensignals (27) einbezogen sind.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Auswertung der Messgrößen der einzelnen Detektoren zu einer Brandverlaufsanalyse verknüpft und deren Ergebnisse, z. B. an (15, 38), angezeigt werden.
  7. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Auswahl der anzusteuernden Alarmstufen von der oder den Messgrößen der einzelnen Brandmelder (11, 12, 24, 25, 26), dem Summensignal des Streulichtmesssystems (13) und dem Gesamtsummensignal (27) erfolgt und in Abhängigkeit der örtlichen Gegebenheiten des Überwachungsbereiches oder dem spezifischen Einsatzzweck einstellbar ist.
EP02737792A 2001-05-23 2002-04-15 Selbstansaugende brandmeldeeinrichtung Expired - Lifetime EP1389331B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10124280A DE10124280A1 (de) 2001-05-23 2001-05-23 Selbstansaugende Brandmeldeeinrichtung
DE10124280 2001-05-23
PCT/DE2002/001385 WO2002095705A1 (de) 2001-05-23 2002-04-15 Selbstansaugende brandmeldeeinrichtung

Publications (2)

Publication Number Publication Date
EP1389331A1 EP1389331A1 (de) 2004-02-18
EP1389331B1 true EP1389331B1 (de) 2005-03-30

Family

ID=7685294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02737792A Expired - Lifetime EP1389331B1 (de) 2001-05-23 2002-04-15 Selbstansaugende brandmeldeeinrichtung

Country Status (6)

Country Link
EP (1) EP1389331B1 (de)
CN (1) CN1462418A (de)
AT (1) ATE292316T1 (de)
DE (2) DE10124280A1 (de)
ES (1) ES2239232T3 (de)
WO (1) WO2002095705A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059959A1 (de) 2012-10-15 2014-04-24 Telesystems Thorwarth Gmbh Anordnung zur überwachung und brandfrühsterkennung für mehrere brand- und/oder explosionsgefährdete gefässe und/oder gehäuse
EP2839448B1 (de) 2012-09-07 2015-07-22 Amrona AG Vorrichtung und verfahren zum detektieren von streulichtsignalen
US20220050039A1 (en) * 2020-08-17 2022-02-17 Carrier Corporation Photoelectric smoke sensor tube

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPS056002A0 (en) * 2002-02-15 2002-03-07 Vision Products Pty Ltd Improved smoke detector unit
DE10300848B4 (de) * 2003-01-10 2005-02-17 Hekatron Vertriebs Gmbh Brandschalter für Lüftungsanlagen
DE10344188B3 (de) * 2003-09-22 2005-05-25 Minimax Gmbh & Co. Kg Vorrichtung zur Brand-, Rauch- und Funktionsüberwachung von Rotorblättern in Windenergieanlagen und Windenergieanlage
DE10347030A1 (de) * 2003-10-09 2005-05-04 Ind Elektronik Gmbh Verfahren und Einrichtung zum Betrieb haustechnischer Anlagen unter Einbeziehung von Sicherheits- und Überwachungsfunktionen
DE102006011565B4 (de) * 2006-03-10 2008-01-31 Eads Deutschland Gmbh Gassensorsystem
AU2008226316A1 (en) * 2007-03-09 2008-09-18 Garrett Thermal Systems Limited Method and system for particle detection
DE102009011846B4 (de) 2009-03-05 2015-07-30 MaxDeTec AG Analyseverfahren und -geräte für Fluide
DE102010039230B3 (de) * 2010-08-11 2012-01-26 Siemens Aktiengesellschaft Auswerten von Streulichtsignalen bei einem optischen Gefahrenmelder sowie Ausgeben einer Staub-/Dampf-Warnung oder eines Brandalarms
GB2513854A (en) 2013-05-04 2014-11-12 Protec Fire Detection Plc Improvements in and relating to aspirating smoke detectors
CN103956023A (zh) * 2014-05-22 2014-07-30 深圳市康凯斯信息技术有限公司 基于蓝牙的家庭安防***
US9990842B2 (en) 2014-06-03 2018-06-05 Carrier Corporation Learning alarms for nuisance and false alarm reduction
US9841400B2 (en) * 2015-09-17 2017-12-12 Fike Corporation System and method for detecting smoldering in processes with continuous air flow
EP3539104B1 (de) * 2016-11-11 2022-06-08 Carrier Corporation Auf hochempfindlicher faseroptik basierende detektion
US11783688B2 (en) 2018-03-13 2023-10-10 Carrier Corporation Aspirating detector system
EP3584774A1 (de) * 2018-06-19 2019-12-25 Wagner Group GmbH Streulichtdetektor und ansaugbranderkennungssystem mit einem streulichtdetektor
CN109030295A (zh) * 2018-08-30 2018-12-18 安徽乐锦记食品有限公司 一种面包加工异常报警装置用烟雾抽取检测装置
CN109283108A (zh) * 2018-08-30 2019-01-29 安徽乐锦记食品有限公司 一种面包加工异常报警装置
DE102019117703A1 (de) * 2019-07-01 2021-01-07 Kristina Döring Vorrichtung und Verfahren zur Detektion eines Brandes in einer Lager- und/oder Förderanlage
CN110624198A (zh) * 2019-10-18 2019-12-31 国网河南省电力公司濮阳供电公司 城市开闭所消防灭火***
DE102020127219A1 (de) 2020-10-15 2022-04-21 Fagus-Grecon Greten Gmbh Und Co Kg Vorrichtung und Verfahren zur messtechnischen Erfassung feuerartiger Erscheinungen, sowie System zur Beseitigung eines durch eine feuerartige Erscheinung erzeugten Gefahrenzustands
CN113804517B (zh) * 2021-09-28 2022-05-03 浙江富春江环保科技研究有限公司 一种基于边界报警的二噁英在线检测***
CN114419830A (zh) * 2022-01-26 2022-04-29 江苏南工科技集团有限公司 一种基于权值算法技术的热解粒子火灾探测早期预警方法
CN115938062B (zh) * 2022-11-18 2024-01-23 江苏荣夏安全科技有限公司 一种电气设备自动灭火***及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0527258B1 (de) * 1991-08-14 1995-10-25 Siemens Aktiengesellschaft Gassensor-Array zur Detektion einzelner Gaskomponenten in einem Gasgemisch
GB2259763B (en) * 1991-09-20 1995-05-31 Hochiki Co Fire alarm system
US5726633A (en) * 1995-09-29 1998-03-10 Pittway Corporation Apparatus and method for discrimination of fire types
CA2291203A1 (en) * 1998-12-04 2000-06-04 George A. Schoenfelder Aspirated detector with flow sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2839448B1 (de) 2012-09-07 2015-07-22 Amrona AG Vorrichtung und verfahren zum detektieren von streulichtsignalen
WO2014059959A1 (de) 2012-10-15 2014-04-24 Telesystems Thorwarth Gmbh Anordnung zur überwachung und brandfrühsterkennung für mehrere brand- und/oder explosionsgefährdete gefässe und/oder gehäuse
DE102012020127A1 (de) 2012-10-15 2014-04-30 Telesystems Thorwarth Gmbh Anordnung zur Überwachung und Brandfrühsterkennung für mehrere brand- und/oder explosionsgefährdete Gefäße und/oder Gehäuse
US20220050039A1 (en) * 2020-08-17 2022-02-17 Carrier Corporation Photoelectric smoke sensor tube

Also Published As

Publication number Publication date
DE50202632D1 (de) 2005-05-04
WO2002095705B1 (de) 2003-03-20
ES2239232T3 (es) 2005-09-16
EP1389331A1 (de) 2004-02-18
DE10124280A1 (de) 2002-12-12
ATE292316T1 (de) 2005-04-15
CN1462418A (zh) 2003-12-17
WO2002095705A1 (de) 2002-11-28

Similar Documents

Publication Publication Date Title
EP1389331B1 (de) Selbstansaugende brandmeldeeinrichtung
DE102004004098B3 (de) Verfahren zur Auswertung eines Streulichtsignals und Streulichtdetektor zur Durchführung des Verfahrens
EP1103937B1 (de) Brandmelder
EP2839448B1 (de) Vorrichtung und verfahren zum detektieren von streulichtsignalen
DE19781742B4 (de) Nachweis von Schmutzstoffen in der Luft
DE69821671T2 (de) Brandmeldeanlagen
DE19781749B4 (de) System zur Überwachung der Funktionsfähigkeit eines Filters
CN108074368A (zh) 针对电子部件处的温度和/或烟雾状况的基于光纤的监测
DE2133080C3 (de) System zur optischen Kontrolle von Luftverunreinigungen in einem Großraum
EP1887536A1 (de) Streulicht-Rauchmelder
EP1022700A2 (de) Streulichtbrandmelder
EP1062647A1 (de) Brandmelder
EP0338218A1 (de) Verfahren zur Brandfrüherkennung
CN108074369A (zh) 针对飞行器的基于光纤的烟雾和/或过热检测和监测
WO2017202718A1 (de) Verfahren und gefahrenmelder zur erkennung von rauch
DE102012201703A1 (de) Automatischer Brandmelder zur Detektion von Bränden
CH711170A1 (de) Verfahren und Vorrichtung zur Detektion von Aerosolpartikeln.
EP3096130B1 (de) Vorrichtung zur identifikation von aerosolen
DE102011082069A1 (de) Verfahren zur Kalibrierung eines Streulichtphotometers
DE4023649A1 (de) Verfahren und vorrichtung zum erkennen von gefahrenzustaenden in einem raum
EP0421100A1 (de) Verfahren und Vorrichtung zum Erkennen von Gefahrenzuständen in einem Raum
DE2310127A1 (de) Integriertes gefahrenmeldesystem
EP1300816A1 (de) Verfahren und System zur Erkennung von Bränden in Räumen
DE102021124628A1 (de) Vorrichtung zum Messen von Raman-Streuung und Vorrichtung und Verfahren zum Bestimmen eines echten Feuers unter Verwendung der Vorrichtung
DE3123279A1 (de) Verfahren zur frueherkennung eines brandes sowie brandmelder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040311

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MINIMAX GMBH & CO KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050415

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

REF Corresponds to:

Ref document number: 50202632

Country of ref document: DE

Date of ref document: 20050504

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050630

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050908

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2239232

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060102

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50202632

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190418

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190520

Year of fee payment: 18

Ref country code: IT

Payment date: 20190419

Year of fee payment: 18

Ref country code: DE

Payment date: 20190418

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190418

Year of fee payment: 18

Ref country code: FR

Payment date: 20190423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190424

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190416

Year of fee payment: 18

Ref country code: GB

Payment date: 20190424

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50202632

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 292316

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200415

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200416