EP1385362A1 - Cyclotron muni de nouveaux moyens d'inflexion du faisceau de particules - Google Patents

Cyclotron muni de nouveaux moyens d'inflexion du faisceau de particules Download PDF

Info

Publication number
EP1385362A1
EP1385362A1 EP02447140A EP02447140A EP1385362A1 EP 1385362 A1 EP1385362 A1 EP 1385362A1 EP 02447140 A EP02447140 A EP 02447140A EP 02447140 A EP02447140 A EP 02447140A EP 1385362 A1 EP1385362 A1 EP 1385362A1
Authority
EP
European Patent Office
Prior art keywords
cyclotron
inflection
median plane
magnetic
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02447140A
Other languages
German (de)
English (en)
Inventor
Yves Jongen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Priority to EP02447140A priority Critical patent/EP1385362A1/fr
Priority to AT03739886T priority patent/ATE524954T1/de
Priority to US10/522,649 priority patent/US7456591B2/en
Priority to ES03739886T priority patent/ES2373548T3/es
Priority to EP03739886A priority patent/EP1527658B1/fr
Priority to PCT/BE2003/000124 priority patent/WO2004010748A1/fr
Priority to AU2003281602A priority patent/AU2003281602A1/en
Publication of EP1385362A1 publication Critical patent/EP1385362A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons

Definitions

  • the present invention aims to provide a cyclotron fitted with a new type of inflator used to "inflect" a beam of injected charged particles axially by an injection device or injector towards the median plane of the cyclotron.
  • Cyclotrons consist of several separate main assemblies, such as the electromagnet which guides the charged particles, the high frequency resonator which ensures acceleration said particles and finally the injection system of said particles in the cyclotron.
  • the combination of different means allows to accelerate charged particles which will describe in the median plane of the cyclotron (perpendicular to the magnetic field) a trajectory having roughly a spiral shape with a radius ascending around the central (vertical) axis of the cyclotron which is perpendicular to the median plane.
  • the poles of the electromagnet are divided into sectors alternately having a reduced air gap and a larger air gap.
  • the azimuthal variation of the field resulting magnetic effect ensures the vertical and horizontal focusing of the beam during acceleration.
  • the high frequency resonator is constituted by the accelerating electrodes, called frequently "dies" for historical reasons. We thus applies an alternating voltage of several tens of kilovolts at the frequency of rotation particles in the magnet.
  • These charged particles accelerated by a cyclotron can be positive particles, such as protons, or negative particles, such as H - ions.
  • These latter particles are extracted by converting the negative ions into positive ions by passing them through a sheet, for example of carbon, which has the function of stripping the negative ions of their electrons.
  • the main drawback is that that the negative ions are fragile and are therefore easily dissociated by residual gas molecules or by the strong magnetic fields crossed at high energy and present in the cyclotron.
  • the injection device and the source are, for these reasons, located outside the cyclotron. This avoids any pollution of the air gap of the cyclotron.
  • injection and source devices are arranged to the exterior of the cyclotron resides in the smallness of the space available within the cyclotron.
  • the injection devices and source are arranged directly above the central axis of the cyclotron so as to inject the generated particles in an essentially vertical direction towards the center of the cyclotron, where they will be inflected gradually in order to be directed in the median plane (horizontal) of the cyclotron where they will undergo the various acceleration.
  • cyclotrons are called cyclotrons with axial injector.
  • the particle beam will be injected so along the lines of the magnetic field and the particles will not be deflected if the said field is not disturbed magnetic.
  • the inflectors known are electrostatic inflectors which are basically consist of a negative electrode and of a positive electrode between which by a potential difference an electric field is created. This will gradually bend the beam of particles to position it correctly so tangential in the median plane of the cyclotron and therefore perpendicular to its direction of arrival.
  • the particle beam performs a spiral movement.
  • the charged particles acquire a velocity component in the horizontal plane, being subjected to the force of Lorentz.
  • the combination of the two components generates a spiral movement of the particle beam within the central part of the cyclotron.
  • a final problem stems from the fact that symmetry of revolution of the isochronous cyclotron which includes alternating hills and valleys.
  • the focusing is performed by alternating gradients and is particularly delicate in the center of the cyclotron because the effect of modulation of the field due to the hills and valleys disappears at center of the cyclotron.
  • the present invention aims to provide a solution to overcome the different disadvantages of the state of the art.
  • the present invention aims in particular to offer a cyclotron with a new type inflector which allows to gradually inflect the beam of charged particles from a device injection or external injector arranged axially by relation to the center of the cyclotron towards the median plane of said cyclotron in order to subject them to accelerations.
  • the present invention aims to offer a cyclotron with a new type inflectors which solves the problem of presence of a field “bump” in the center of said cyclotron in the case of an isochronous cyclotron.
  • the present invention relates to a cyclotron intended for the acceleration of a beam of charged particles having a so-called axial injector, that is to say arranged outside the cyclotron and perpendicular to the median plane and along the central axis of said cyclotron, which combined with means inflection which bend the particle beam gradually allows to position the beam in the midplane, where the particles will undergo so classic the necessary accelerations.
  • axial injector that is to say arranged outside the cyclotron and perpendicular to the median plane and along the central axis of said cyclotron, which combined with means inflection which bend the particle beam gradually allows to position the beam in the midplane, where the particles will undergo so classic the necessary accelerations.
  • These means inflection are arranged essentially at the intersection of the median plane and the axis of the cyclotron.
  • these means inflection are constituted by a magnetic inflator, that is to say one or more elements which make it possible to give a horizontal or radial component to the magnetic field, so as to guide the beam of charged particles gradually towards the median plane.
  • inflection elements ferro-magnetic arranged to create a field induction with a horizontal component or radial and which are integral with the poles of the cyclotron.
  • rings or washers made of blocks glued with a material that does not modify the magnetic field axial.
  • This material is preferably a magnet strong permanent made of an alloy such as an alloy Samarium-Cobalt or Neodymium-Iron-Boron.
  • Figure 1 shows a schematic view in perspective of an isochronous cyclotron in which a inflector according to the present invention may be used.
  • Figure 2 describes a sectional view of such cyclotron.
  • Figure 3a and 3b show a view detailed in plan and in perspective of a first form execution of an inflector according to the present invention.
  • Figure 4 shows a detailed view of a second embodiment of an inflector according to the present invention.
  • Figure 5 shows a Sm-Co ring used in a preferred embodiment of the invention described in Figure 4.
  • Figures 1 and 2 describe an example of a cyclotron which can use the inflectors according to the various embodiments described below.
  • Cyclotron 1 is a compact isochronous cyclotron such as cyclone 30 produced by the applicant intended for the acceleration of negative particles, such as H - .
  • the magnetic structure of cyclotron 1 shown in Fig. 1 vertically in the description that follows this magnetic structure is arranged so that the midplane is essentially horizontal. It consists of a number of elements made of ferro-magnetic material and coils 6 made of a conductive or superconductive material.
  • the coils 6 are essentially shaped circular and are located in the annular space left between sectors 3 and 3 'and flow returns 5.
  • An injection device 100 is arranged essentially axial way, that is to say at some distance outside the cyclotron from the plane median 10. Adequately, this injection device is located in the extension of the central axis of the cyclotron.
  • a central conduit 20 is then created in the cylinder head, for example upper, so that charged particles are injected at the center of the device.
  • the particle beam charged will be injected into said conduit and will then be directed with inflection elements until position in the median plane of said cyclotron.
  • an inflector 30 is arranged essentially in the air gap at the level of the duct central and will gradually inflect the beam of particles from the injection device 100 to the midplane 10.
  • the cyclotron has inflection means or an inflector magnetic.
  • the essential feature of this invention therefore lies in the fact that this kind Inflector does not generate an electric field in the center of the cyclotron.
  • the inflector according to the present invention is composed of magnetic materials, i.e. materials ferromagnetic or permanent magnets, which go disturb the axial magnetic field of the cyclotron, creating thus a horizontal or radial component of said field which will gradually bend the beam along the path wish.
  • such an inflector consists of parts forming the magnetic circuit in the central area of the cyclotron. These parts are integral with the poles and are made of a ferro-magnetic material allowing to introduce a radial component to the magnetic field.
  • the inflection means consist of a first element 31 cone-shaped and whose axis of symmetry coincides with axis 22 of the cyclotron and of a second element 33 essentially in the form of a ring, with the same axis of symmetry, and which essentially surrounds the cone 31, of so as to form an annular space 34 between the two elements 31 and 33.
  • These elements are necessarily made of a ferromagnetic material, such as low carbon or an iron-cobalt alloy.
  • the particle beam will tend to bend along a spiral or helical path as shown in FIG. 3b.
  • the beam is coming essentially by the upper part above inflection elements it should be slightly deflected relative to the central (and vertical) axis of the cyclotron during of its passage between said inflection means.
  • guide coils 28 or other devices adequate deflection must be present above inflection elements.
  • the inflection means are constituted by rings or washers which also provide a horizontal component to the magnetic field.
  • said 40 rings are constructed from small elements 41 which are preferably Samarium-Cobalt magnets.
  • each ring is made from elements 41, which are all permanent magnets with individual orientations of the magnetic field which evolve gradually along the perimeter of the ring.
  • a uniform field 42 is made inside the ring 40. Thanks to the characteristics of the material used, a ring such as represented in FIG. 5, placed in the center of the cyclotron, will not disturb the essentially axial magnetic field (vertical) which is present in the air gap of the cyclotron, at with the exception of the space inside the ring. AT this place, an additional component of the field magnetic is created. By properly disposing of said rings, we can gradually bend the beam of particles until they are arranged in the median plane.
  • the solution will have the advantage of not requiring the presence deflection devices, such as coils guidance, upstream of the inflection elements.
  • An example of execution makes it possible to envisage the acceleration of particles H - in a cyclotron of 115 MeV for an injection energy of 80 kV.
  • the radius of the center of the cyclotron will be 5.12 cm and the connection radius will be between 6 and 7 cm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

La présente invention se rapporte à un cyclotron destiné à l'accélération d'un faisceau de particules chargées circulant dans le plan médian se présentant essentiellement sous la forme de deux pôles induisant un champ magnétique et possédant un injecteur dit axial, c'est-à-dire un injecteur disposé à l'extérieur du cyclotron essentiellement selon l'axe principal du cyclotron et donc perpendiculairement au plan médian de celui-ci et qui est combiné à des moyens d'inflexion qui permettent d'infléchir le faisceau de particules jusqu'à le positionner dans le plan médian, caractérisé en ce que les moyens d'inflexion sont constitués par un inflecteur magnétique. <IMAGE>

Description

Objet de l'invention
La présente invention vise à proposer un cyclotron muni d'un nouveau type d'inflecteur utilisé pour "infléchir" un faisceau de particules chargées injectées axialement par un dispositif d'injection ou injecteur vers le plan médian du cyclotron.
Etat de la technique
Les cyclotrons sont des accélérateurs de particules chargées utilisés en particulier pour la production d'isotopes radioactifs. Ces cyclotrons sont basés sur les principes élémentaires de la force de Lorenz : F = qv x B qui induit le fait qu'une particule chargée décrit essentiellement un arc de cercle dans un champ magnétique uniforme perpendiculaire au plan dans lequel la particule chargée se déplace.
Les cyclotrons se composent de plusieurs ensembles principaux distincts, tels que l'électro-aimant qui assure le guidage des particules chargées, le résonateur haute fréquence qui assure l'accélération desdites particules et enfin le système d'injection desdites particules dans le cyclotron.
La combinaison des différents moyens permet de réaliser une accélération des particules chargées qui vont décrire dans le plan médian du cyclotron (perpendiculaire au champ magnétique) une trajectoire présentant approximativement une forme de spirale de rayon croissant autour de l'axe central (vertical) du cyclotron qui est perpendiculaire au plan médian.
Dans les cyclotrons modernes de type isochrone, les pôles de l'électro-aimant sont divisés en secteurs présentant alternativement un entrefer réduit et un entrefer plus grand. La variation azimutale du champ magnétique qui en résulte a pour effet d'assurer la focalisation verticale et horizontale du faisceau au cours de l'accélération.
Parmi les cyclotrons isochrones, il convient de distinguer les cyclotrons de type compact, qui sont énergétisés par une paire de bobines circulaires principales et les cyclotrons dits à secteurs séparés, où la structure magnétique est divisée en unités séparées entièrement autonomes.
Le résonateur haute fréquence est quant à lui constitué par les électrodes accélératrices, appelées fréquemment "dées" pour des raisons historiques. On applique ainsi aux électrodes une tension alternative de plusieurs dizaines de kilovolts à la fréquence de rotation des particules dans l'aimant.
Ces particules chargées accélérées par un cyclotron peuvent être des particules positives, tels que des protons, ou des particules négatives, telles que des ions H-.
Ces dernières particules (les ions H- en l'occurrence) sont extraites en effectuant une conversion des ions négatifs en ions positifs en faisant passer ceux-ci à travers une feuille, par exemple de carbone, qui a pour fonction de dépouiller les ions négatifs de leurs électrons.
Néanmoins l'accélération de telles particules négatives présente des difficultés importantes.
Le principal inconvénient réside dans le fait que les ions négatifs sont fragiles et sont de ce fait facilement dissociés par des molécules de gaz résiduel ou par les champs magnétiques importants traversés à haute énergie et présents dans le cyclotron.
De ce fait, il est impératif que le vide présent dans le cyclotron soit très poussé.
De même, le dispositif d'injection et la source sont, pour ces raisons, situés à l'extérieur du cyclotron. Ceci permet d'éviter toute pollution de l'entrefer du cyclotron.
Une autre raison pour laquelle les dispositifs d'injection et source sont disposés à l'extérieur du cyclotron réside dans l'exiguïté de l'espace disponible au sein même du cyclotron.
Habituellement, les dispositif d'injection et source sont disposés directement au-dessus de l'axe central du cyclotron de manière à injecter les particules générées selon une direction essentiellement verticale vers le centre du cyclotron, où elles seront infléchies progressivement afin d'être dirigées dans le plan médian (horizontal) du cyclotron où elles subiront les diverses accélérations.
C'est pour cette raison que les cyclotrons sont appelés des cyclotrons à injecteur axial.
Il convient de noter que le dessin naturel du champ magnétique régnant dans le cyclotron étant lui-même vertical, l'injection du faisceau de particules se fera donc selon les lignes du champ magnétique et les particules ne seront pas défléchies si on ne perturbe pas ledit champ magnétique.
Selon l'état de la technique, pour diriger le faisceau de particules de manière adéquate dans le plan médian, c'est-à-dire perpendiculairement à la direction d'injection, on propose de disposer dans le cyclotron des inflecteurs, qui infléchissent progressivement le faisceau.
Selon l'état de la technique, les inflecteurs connus sont des inflecteurs électrostatiques qui sont essentiellement constitués d'une électrode négative et d'une électrode positive entre lesquelles par une différence de potentiel un champ électrique est créé. Celui-ci va progressivement infléchir le faisceau de particules jusqu'à le positionner correctement de manière tangentielle dans le plan médian du cyclotron et donc perpendiculairement par rapport à sa direction d'arrivée.
En réalité, le faisceau de particules effectue un mouvement en spirale.
En effet, dès que sous l'effet du champ électrique essentiellement axial, régnant entre les électrodes à l'entrée de l'inflecteur électrostatique, les particules chargées acquièrent une composante de vitesse dans le plan horizontal, en étant soumises à la force de Lorentz.
La combinaison des deux composantes génère un mouvement en spirale du faisceau de particules au sein de la partie centrale du cyclotron.
Des exemples de tels dispositifs sont décrits abondamment dans la littérature. En particulier, le document NL - A - 9302257 décrit ce type d'inflecteur.
La présence d'un tel inflecteur destiné à permettre l'introduction du faisceau de particules par l'axe central (vertical) génère la présence d'un trou dans l'entrefer et perturbe de ce fait le champ magnétique vertical.
Les autres inconvénients résident dans le fait que ces électrodes doivent être soumises à une différence de potentiel d'autant plus importante que l'intensité du faisceau de particules sera importante.
Or la tendance actuelle est de vouloir augmenter l'intensité des faisceaux qui est pour l'instant comprise entre 300 et 500 µA jusqu'à des valeurs qui peuvent atteindre quelques mA.
Un autre problème important réside dans le fait que pour augmenter l'intensité du faisceau de particules, on augmente la charge d'espace, c'est-à-dire la densité de charge électrique provoquant ainsi la répulsion électrostatique des charges et par là un élargissement du faisceau (charges électriques provoquées par la présence de nombreuses particules chargées qui se repoussent mutuellement dans un espace, causant ainsi une augmentation de la taille du faisceau). Cette charge d'espace dépend bien entendu de l'intensité de la vitesse du faisceau. Pour diminuer la charge d'espace, il est donc nécessaire d'augmenter la vitesse des particules chargées à partir du dispositif d'injection et donc la tension d'injection.
Ceci signifie qu'il serait également nécessaire d'augmenter les tensions des électrodes de l'inflecteur qui sont de l'ordre de 5 kV pour l'instant, à des valeurs proches de 15 kV, voire plus, par exemple quelques dizaines de kilovolts.
Ceci, bien entendu, serait la cause de toute une série de problèmes inhérents aux électrodes, comme particulièrement des problèmes d'isolation insuffisante ou de claquage desdites électrodes.
Un dernier problème provient du fait de la symétrie de révolution du cyclotron isochrone qui comprend une alternance de collines et de vallées.
Pour ce type de cyclotrons, la focalisation s'effectue par gradients alternés et est particulièrement délicate au centre du cyclotron du fait que l'effet de modulation du champ dû aux collines et vallées disparaít au centre du cyclotron. Pour remédier à ce manque de focalisation, on souhaite placer une bosse de champ à cet endroit. La présence du trou axial requis par l'injection du faisceau s'oppose à la création d'une telle bosse de champ.
Buts de l'invention
La présente invention vise à proposer une solution qui permette de surmonter les différents inconvénients de l'état de la technique.
La présente invention vise en particulier à proposer un cyclotron présentant un nouveau type d'inflecteur qui permet d'infléchir progressivement le faisceau de particules chargées provenant d'un dispositif d'injection ou injecteur extérieur disposé axialement par rapport au centre du cyclotron vers le plan médian dudit cyclotron en vue de les soumettre aux accélérations.
Plus précisément, la présente invention vise à proposer un cyclotron muni d'un nouveau type d'inflecteurs qui permet de résoudre le problème de la présence d'une « bosse » de champ au centre dudit cyclotron dans le cas d'un cyclotron isochrone.
Principaux éléments caractéristiques
La présente invention se rapporte à un cyclotron destiné à l'accélération d'un faisceau de particules chargées présentant un injecteur dit axial, c'est-à-dire disposé à l'extérieur du cyclotron et perpendiculairement par rapport au plan médian et selon l'axe central dudit cyclotron, qui combiné à des moyens d'inflexion qui infléchissent le faisceau de particules progressivement permet de le positionner le faisceau dans le plan médian, où les particules subiront de manière classique les accélérations nécessaires. Ces moyens d'inflexion sont disposés essentiellement à l'intersection du plan médian et de l'axe du cyclotron.
Selon la présente invention, ces moyens d'inflexion sont constitués par un inflecteur magnétique, c'est-à-dire un ou des éléments qui permettent de donner une composante horizontale ou radiale au champ magnétique, de manière à guider le faisceau de particules chargées progressivement vers le plan médian.
Selon une première forme d'exécution, on choisit simplement comme moyens d'inflexion des éléments ferro-magnétiques disposés de manière à créer un champ d'induction présentant une composante horizontale ou radiale et qui sont solidaires des pôles du cyclotron.
Selon une autre forme d'exécution préférée, on utilise des anneaux ou rondelles constitués de blocs collés d'un matériau ne modifiant pas le champ magnétique axial.
Ce matériau est de préférence un aimant permanent fort réalisé dans un alliage tel un alliage Samarium-Cobalt ou Néodyme-Fer-Bore.
En disposant correctement ces anneaux ou rondelles, on prévoit de donner une composante horizontale ou radiale au champ magnétique en permettant ainsi de guider le faisceau de particules chargées, de manière à ce qu'il s'infléchisse progressivement vers le plan médian.
Brève description des figures
La figure 1 représente une vue schématique en perspective d'un cyclotron isochrone dans lequel un inflecteur selon la présente invention pourra être utilisé.
La figure 2 décrit une vue en coupe d'un tel cyclotron.
La figure 3a et 3b représentent une vue détaillée en plan et en perspective d'une première forme d'exécution d'un inflecteur selon la présente invention.
La figure 4 représente une vue détaillée d'une seconde forme d'exécution d'un inflecteur selon la présente invention.
La figure 5 montre un anneau en Sm-Co utilisée selon une forme d'exécution préférée de l'invention décrite à la figure 4.
Description détaillée de plusieurs formes d'exécution de l'invention
Les figures 1 et 2 décrivent un exemple d'un cyclotron qui peut utiliser les inflecteurs selon les diverses formes d'exécution décrites ci-dessous.
Le cyclotron 1, tel que représenté, est un cyclotron isochrone compact tel le cyclone 30 produit par la demanderesse destiné à l'accélération de particules négatives, tels que des H-.
La structure magnétique du cyclotron 1 représentée à la Fig. 1 de manière verticale dans la description qui suit cette structure magnétique est disposée de manière que le plan médian soit essentiellement horizontal. Elle se compose d'un certain nombre d'éléments réalisés en un matériau ferro-magnétique et de bobines 6 réalisées dans un matériau conducteur ou supra-conducteur.
La structure ferro-magnétique comprend de manière classique :
  • deux plaques de base appelées culasses 2 et 2',
  • au moins trois secteurs 3 supérieurs appelés collines et un même nombre de secteurs inférieurs 3' situés symétriquement par rapport à un plan de symétrie 10, appelé plan médian aux secteurs supérieurs 3, et qui sont séparés par un faible entrefer 8, et définissant entre deux collines consécutives un espace où l'entrefer est de dimension plus élevée et qui est appelé vallée 4,
  • au moins un retour de flux 5 réunissant de façon rigide, la culasse inférieure 2 à la culasse supérieure 2'.
Les bobines 6 sont de forme essentiellement circulaire et sont localisées dans l'espace annulaire laissé entre les secteurs 3 et 3' et les retours de flux 5.
Un dispositif d'injection 100 est disposé de manière essentiellement axiale, c'est-à-dire à une certaine distance à l'extérieur du cyclotron par rapport au plan médian 10. De manière adéquate, ce dispositif d'injection est situé dans le prolongement de l'axe central du cyclotron.
Un conduit central 20 est alors créé dans la culasse, par exemple supérieure, de manière à permettre que les particules chargées soient injectées au centre de l'appareil.
De cette manière, le faisceau de particules chargées sera injecté dans ledit conduit et sera ensuite dirigé à l'aide d'éléments d'inflexion jusqu'à se positionner dans le plan médian dudit cyclotron.
Dans ce but, un inflecteur 30 est disposé essentiellement dans l'entrefer au niveau du conduit central et permettra d'infléchir progressivement le faisceau de particules provenant du dispositif d'injection 100 vers le plan médian 10.
Selon la présente invention, le cyclotron présente des moyens d'inflexion ou un inflecteur magnétiques. La caractéristique essentielle de la présente invention réside donc dans le fait que ce genre d'inflecteur ne génère pas de champ électrique au centre du cyclotron. L'inflecteur selon la présente invention est composé de matériaux magnétiques, c'est-à-dire de matériaux ferro-magnétiques ou d'aimants permanents, qui vont perturber le champ magnétique axial du cyclotron, en créant ainsi une composante horizontale ou radiale dudit champ qui va infléchir progressivement le faisceau selon le trajet souhaité.
Selon une première forme d'exécution décrite aux figures 3a et 3b, un tel inflecteur est constitué de pièces formant le circuit magnétique dans la zone centrale du cyclotron. Ces pièces sont solidaires des pôles et sont réalisées en un matériau ferro-magnétique permettant d'introduire une composante radiale au champ magnétique.
Selon cette forme d'exécution préférée, les moyens d'inflexion sont constitués d'un premier élément 31 en forme de cône et dont l'axe de symétrie coïncide avec l'axe 22 du cyclotron et d'un deuxième élément 33 essentiellement sous la forme d'un anneau, avec le même axe de symétrie, et qui entoure essentiellement le cône 31, de manière à former un espace annulaire 34 entre les deux éléments 31 et 33. Ces éléments sont nécessairement réalisés en un matériau ferro-magnétique, tel qu'un acier à bas taux de carbone ou un alliage fer-cobalt.
Leur disposition va créer une perturbation du champ magnétique 25 entre les pôles du cyclotron qui va permettre l'inflexion souhaitée du faisceau 26 selon un trajet essentiellement en forme de spirale jusqu'à le positionner de manière adéquate dans le plan médian.
Pour arriver à ce résultat, une composante radiale du champ magnétique est donc créée par les moyens d'inflexion. On voit, comme représenté à la figure 3a, qu'une telle composante radiale sera créée grâce à la forme spécifique des éléments 31 et 33.
Le faisceau de particules aura tendance à s'infléchir selon un trajet en forme de spirale ou hélice tel que représenté à la Fig. 3b.
Du fait que le faisceau arrive essentiellement par la partie supérieure située au-dessus des éléments d'inflexion, il doit être légèrement défléchi par rapport à l'axe central (et vertical) du cyclotron lors de son passage entre lesdits moyens d'inflexion. Dans ce but, des bobines de guidage 28 ou d'autres dispositifs de déflexion adéquats doivent être présents au-dessus des éléments d'inflexion.
Selon une autre forme d'exécution décrite à la figure 4, les moyens d'inflexion sont constitués par des anneaux ou rondelles qui permettent également de donner une composante horizontale au champ magnétique. Lesdits anneaux 40 sont construits à partir de petits éléments 41 qui sont de préférence des aimants Samarium-Cobalt.
Comme représenté à la figure 5, chaque anneau est réalisé à partir d'éléments 41, qui sont tous des aimants permanents avec des orientations individuelles du champ magnétique qui évoluent progressivement le long du périmètre de l'anneau.
De cette manière, un champ uniforme 42 est réalisé à l'intérieur de l'anneau 40. Grâce aux caractéristiques du matériau utilisé, un anneau tel que représenté à la figure 5, disposé au centre du cyclotron, ne perturbera pas le champ magnétique essentiellement axial (vertical) qui est présent dans l'entrefer du cyclotron, à l'exception de l'espace situé à l'intérieur de l'anneau. A cet endroit, une composante additionnelle du champ magnétique est créée. En disposant adéquatement lesdits anneaux, on pourra infléchir progressivement le faisceau de particules jusqu'à le disposer dans le plan médian.
La solution, telle que représentée à la figure 4 et 5 et qui correspond à la seconde forme d'exécution, permet par la disposition d'une série d'aimants en forme d'anneaux au centre du cyclotron d'infléchir progressivement le faisceau provenant de l'injecteur axial selon un trajet formé par le point central des anneaux successifs. Ce trajet est symbolisé par une spirale.
Selon cette dernière forme d'exécution, la solution présentera l'avantage de ne pas exiger la présence de dispositifs de déflexion, telles que des bobines de guidage, en amont des éléments d'inflexion.
Un exemple d'exécution permet d'envisager l'accélération de particules H- dans un cyclotron de 115 MeV pour une énergie d'injection de 80 kV. Le champ magnétique au centre sera Bc = 0,811 T avec une rigidité magnétique de 4,15 T.cm. Le rayon du centre du cyclotron sera 5,12 cm et le rayon de raccordement sera compris entre 6 et 7 cm.

Claims (9)

  1. Cyclotron (1) destiné à l'accélération d'un faisceau (16) de particules chargées circulant dans le plan médian (10) se présentant essentiellement sous la forme de deux pôles induisant un champ magnétique et possédant un injecteur (100) dit axial, c'est-à-dire un injecteur disposé à l'extérieur du cyclotron essentiellement selon l'axe principal (22) du cyclotron et donc perpendiculairement au plan médian de celui-ci et qui est combiné à des moyens d'inflexion (30 ou 40) qui permettent d'infléchir le faisceau de particules jusqu'à le positionner dans le plan médian, caractérisé en ce que les moyens d'inflexion sont constitués par un inflecteur magnétique.
  2. Cyclotron selon la revendication 1, caractérisé en ce que les moyens d'inflexion donnent une composante horizontale ou radiale au champ magnétique au niveau du centre du cyclotron permettant ainsi de guider le faisceau de particules chargées de manière à ce qu'il s'infléchisse progressivement vers le plan médian.
  3. Cyclotron selon la revendication 1 ou 2, caractérisé en ce que les moyens d'inflexion sont constitués par des éléments ferro-magnétiques (31 et 33), de préférence solidaires aux deux pôles.
  4. Cyclotron selon la revendication 3, caractérisé en ce que lesdits moyens d'inflexion comprennent un premier élément en forme de cône (31) et un second élément en forme d'anneau (33) entourant une partie dudit cône.
  5. Cyclotron selon la revendication 4, dans lequel les axes de symétrie desdits éléments coïncident avec l'axe de symétrie du cyclotron.
  6. Cyclotron selon l'une quelconque des revendications 3 à 5, caractérisé en ce qu'il comprend en outre en amont des moyens d'inflexion des éléments de guidage (28) dudit faisceau.
  7. Cyclotron selon la revendication 1 ou 2, caractérisé en ce que les moyens d'inflexion sont constitués par des anneaux ou rondelles (40) assemblés à partir d'éléments individuels qui sont des aimants permanents.
  8. Cyclotron selon la revendication 7, dans lequel lesdits aimants permanents sont réalisés en un alliage tel un alliage Samarium-Cobalt ou Neodyme-Fer-Bore.
  9. Cyclotron selon la revendication 8 ou 9, dans lequel lesdits moyens d'inflexion sont constitués d'une série d'anneaux dont les points centraux forment une trajectoire en forme de spirale ou hélice.
EP02447140A 2002-07-22 2002-07-22 Cyclotron muni de nouveaux moyens d'inflexion du faisceau de particules Withdrawn EP1385362A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP02447140A EP1385362A1 (fr) 2002-07-22 2002-07-22 Cyclotron muni de nouveaux moyens d'inflexion du faisceau de particules
AT03739886T ATE524954T1 (de) 2002-07-22 2003-07-18 Zyklotron mit neuen teilchenstrahl- umlenkungsmitteln
US10/522,649 US7456591B2 (en) 2002-07-22 2003-07-18 Cyclotron equipped with novel particle beam deflecting means
ES03739886T ES2373548T3 (es) 2002-07-22 2003-07-18 Ciclotrón provisto de nuevos medios de inflexión del haz de partículas.
EP03739886A EP1527658B1 (fr) 2002-07-22 2003-07-18 Cyclotron muni de nouveaux moyens d inflexion du faisceau de particules
PCT/BE2003/000124 WO2004010748A1 (fr) 2002-07-22 2003-07-18 Cyclotron muni de nouveaux moyens d'inflexion du faisceau de particules
AU2003281602A AU2003281602A1 (en) 2002-07-22 2003-07-18 Cyclotron equipped with novel particle beam deflecting means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02447140A EP1385362A1 (fr) 2002-07-22 2002-07-22 Cyclotron muni de nouveaux moyens d'inflexion du faisceau de particules

Publications (1)

Publication Number Publication Date
EP1385362A1 true EP1385362A1 (fr) 2004-01-28

Family

ID=29797372

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02447140A Withdrawn EP1385362A1 (fr) 2002-07-22 2002-07-22 Cyclotron muni de nouveaux moyens d'inflexion du faisceau de particules
EP03739886A Expired - Lifetime EP1527658B1 (fr) 2002-07-22 2003-07-18 Cyclotron muni de nouveaux moyens d inflexion du faisceau de particules

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP03739886A Expired - Lifetime EP1527658B1 (fr) 2002-07-22 2003-07-18 Cyclotron muni de nouveaux moyens d inflexion du faisceau de particules

Country Status (6)

Country Link
US (1) US7456591B2 (fr)
EP (2) EP1385362A1 (fr)
AT (1) ATE524954T1 (fr)
AU (1) AU2003281602A1 (fr)
ES (1) ES2373548T3 (fr)
WO (1) WO2004010748A1 (fr)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884340B2 (en) * 2006-05-26 2011-02-08 Advanced Biomarker Technologies, Llc Low-volume biomarker generator
US7476883B2 (en) * 2006-05-26 2009-01-13 Advanced Biomarker Technologies, Llc Biomarker generator system
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8373145B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
CN102172106B (zh) 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法束路径控制方法和装置
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9058910B2 (en) 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
WO2010101489A1 (fr) 2009-03-04 2010-09-10 Zakrytoe Aktsionernoe Obshchestvo Protom Procédé et appareil de thérapie contre le cancer par particules chargées à champs multiples
CN102119585B (zh) 2008-05-22 2016-02-03 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法患者定位的方法和装置
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
AU2009249867B2 (en) 2008-05-22 2013-05-02 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8129694B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
JP5497750B2 (ja) 2008-05-22 2014-05-21 エゴロヴィチ バラキン、ウラジミール 荷電粒子癌治療システムと併用されるx線方法及び装置
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
CN102119586B (zh) 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 多场带电粒子癌症治疗方法和装置
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
EP2283713B1 (fr) 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Appareil de traitement du cancer par particules chargees a axes multiples
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8229072B2 (en) * 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
KR101116483B1 (ko) * 2009-12-04 2012-02-27 삼성에스디아이 주식회사 에너지 저장 시스템
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US9336916B2 (en) 2010-05-14 2016-05-10 Tcnet, Llc Tc-99m produced by proton irradiation of a fluid target system
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9269467B2 (en) 2011-06-02 2016-02-23 Nigel Raymond Stevenson General radioisotope production method employing PET-style target systems
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
DE102014003536A1 (de) * 2014-03-13 2015-09-17 Forschungszentrum Jülich GmbH Fachbereich Patente Supraleitender Magnetfeldstabilisator
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
CN116156730B (zh) * 2023-01-09 2023-11-21 中国科学院近代物理研究所 一种用于回旋加速器的轴向注入器的结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9302257A (nl) * 1993-12-24 1995-07-17 Willem Jan Gerard Marie Kleeve Meervoudige axiale injectie in cyclotrons.
EP0853867A1 (fr) * 1995-10-06 1998-07-22 Ion Beam Applications S.A. Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2922061A (en) * 1957-01-31 1960-01-19 Lee C Teng Particle accelerator
US3794927A (en) * 1970-01-20 1974-02-26 Atomic Energy Commission System for producing high energy positively charged particles
LU85895A1 (fr) * 1985-05-10 1986-12-05 Univ Louvain Cyclotron
US4789839A (en) * 1986-06-24 1988-12-06 Morris Donald E Method and apparatus for injecting charged particles across a magnetic field
EP0840538A3 (fr) * 1994-08-19 1999-06-16 Nycomed Amersham plc Ciblé utilisée dans la production d'isotopes lourds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9302257A (nl) * 1993-12-24 1995-07-17 Willem Jan Gerard Marie Kleeve Meervoudige axiale injectie in cyclotrons.
EP0853867A1 (fr) * 1995-10-06 1998-07-22 Ion Beam Applications S.A. Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOTO A ET AL: "Design of injection system for the IPCR SSC. II", SCIENTIFIC PAPERS OF THE INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH, DEC. 1980, JAPAN, vol. 74, no. 4, pages 124 - 145, XP008010174, ISSN: 0020-3092 *
TOMINAKA T ET AL: "Design study of the injection and extraction elements for the RIKEN superconducting ring cyclotron", PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE (CAT. NO.97CH36167), PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE, VANCOUVER, BC, CANADA, 12-16 MAY 1997, 1998, Piscataway, NJ, USA, IEEE, USA, pages 3440 - 3442 vol.3, XP002224450, ISBN: 0-7803-4376-X *
YANO Y ET AL: "Design and model study of injection bending magnet for RIKEN SSC", SCIENTIFIC PAPERS OF THE INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH, DEC. 1981, JAPAN, vol. 75, no. 4, pages 176 - 192, XP008010173, ISSN: 0020-3092 *

Also Published As

Publication number Publication date
EP1527658B1 (fr) 2011-09-14
US20050269497A1 (en) 2005-12-08
EP1527658A1 (fr) 2005-05-04
ATE524954T1 (de) 2011-09-15
AU2003281602A1 (en) 2004-02-09
WO2004010748A1 (fr) 2004-01-29
ES2373548T3 (es) 2012-02-06
US7456591B2 (en) 2008-11-25

Similar Documents

Publication Publication Date Title
EP1527658B1 (fr) Cyclotron muni de nouveaux moyens d inflexion du faisceau de particules
EP2591643B1 (fr) Cyclotron comprenant un moyen de modification du profil de champ magnétique et procédé associé
BE1009669A3 (fr) Methode d&#39;extraction de particules chargees hors d&#39;un cyclotron isochrone et dispositif appliquant cette methode.
JP4916097B2 (ja) 閉じた電子ドリフトプラズマ加速器
EP0613607B1 (fr) Cyclotron isochrone compact
JP4858743B2 (ja) 粒子光学静電レンズ
JP2015507334A (ja) 質量分析計における改良された感度のための方法および装置
US11589451B2 (en) Dense plasma focus devices having first and second DPF accelerators
JP2006032282A (ja) 螺旋軌道型荷電粒子加速器及びその加速方法
EP0473233A1 (fr) Tube neutronique à flux élevé
EP2652766A1 (fr) Dispositif generateur d&#39;ions a resonance cyclotronique electronique
KR100766093B1 (ko) 플라즈마를 분리 가속시키는 중성 빔 에칭 장치
BE1003551A3 (fr) Cyclotrons focalises par secteurs.
EP0813223B1 (fr) Dispositif pour engendrer un champ magnétique et source ecr comportant ce dispositif
CN110491621B (zh) 一种跳变磁铁
EP2633741B1 (fr) Synchrocyclotron
FR2598850A1 (fr) Obturateur de plasma a flux axial
WO2022243200A1 (fr) Electro-aimant multipolaire
Isoya et al. Development of the high-gradient electrostatic accelerator techniques in the Kyushu University tandem
Kovalchuk et al. Micro second plasma opening switch with gas-puff plasma guns at GIT-4 accelerator
KR100197889B1 (ko) 가속관내에서 접속 또는 확산이 가능한 가속기
JP2598666Y2 (ja) タンデム型静電加速器
Schwarzschild PLASMA CURRENTS IN THE A-2 STELLARATOR. Technical Memorandum No. 7
Teichman IMPROVEMENTS IN OR RELATING TO PARTICLE ACCELERATORS
FR2790594A1 (fr) Canon a electrons possedant une cathode froide a emission de champ et tube micro-ondes utilisant ce canon a electrons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040729