EP1384276A2 - Cathode compositions and use thereof, particularly in electrochemical generators - Google Patents

Cathode compositions and use thereof, particularly in electrochemical generators

Info

Publication number
EP1384276A2
EP1384276A2 EP02708069A EP02708069A EP1384276A2 EP 1384276 A2 EP1384276 A2 EP 1384276A2 EP 02708069 A EP02708069 A EP 02708069A EP 02708069 A EP02708069 A EP 02708069A EP 1384276 A2 EP1384276 A2 EP 1384276A2
Authority
EP
European Patent Office
Prior art keywords
positive electrode
battery according
composition according
mixture
optionally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02708069A
Other languages
German (de)
French (fr)
Inventor
Nathalie Ravet
Michel Armand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Montreal
Centre National de la Recherche Scientifique CNRS
Original Assignee
Universite de Montreal
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Montreal, Centre National de la Recherche Scientifique CNRS filed Critical Universite de Montreal
Publication of EP1384276A2 publication Critical patent/EP1384276A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to new cathode compositions and their uses, in particular in electrochemical generators.
  • the invention also relates to electrochemical cells comprising at least one electrode comprising a composition according to the invention.
  • A Mg, Zn, Al, Fe, Cr, Co, Mn, Ni, Zn, Ga, 0 ⁇ x, y, a, f ⁇ 1.
  • Another disadvantage is the low mass capacity of these materials, between 90 and 130 mAh / g. These materials are used in electronics, and the potential standard of 4.1 - 4.2 V is required in most portable electronics systems.
  • these materials are non-toxic and formed from abundant elements.
  • operating in a very narrow potential range is an advantage in terms of simplification of the electronics, especially since the resistance of these materials to overcharging and over-discharging is excellent.
  • these materials have an electronic conductivity too low and require the addition either of a large mass fraction of carbon for their use in primary or secondary generators, or of an extremely thin deposit of carbonaceous material distributed over the surface of the grains. In this case, the apparent density, therefore the connectivity of the grains, must be as high as possible so as to obtain a good electronic exchange. This results in the need for large volume fractions of double phosphate in the composite material serving as cathode.
  • the invention relates to a positive electrode composition containing at least one mixed oxide of spinel or lamellar structure of general formula.
  • A Mg, Zn, Al, Fe, Cr, Co, Mn, Ni, Zn Ga, 0 ⁇ x, y, a, f ⁇ l,
  • the mixed oxide is preferably Lii- x Co ⁇ 2 or Li ⁇ _ x Nii-yC ⁇ y ⁇ 2 for which 0.1 ⁇ y ⁇ 0.4, while the mixed phosphate is preferably Li ⁇ _
  • the proportion of mixed phosphate relative to the mixed oxide is between 5 and 95% by weight, preferably between
  • the mixed phosphate can be covered on the surface with a homogeneous conductive carbon-based deposit or with a pyrolyzed organic material.
  • the active cathode mixture can be added with a polymer serving as a binder and optionally as an electrolytic conductor by addition of a salt containing at least partly lithium ions, and optionally with a polar liquid.
  • the active cathode mixture can be added with an electronic conductor allowing exchanges between the current collector and the grains of electrode material, in particular carbon black, graphite or their mixture.
  • the invention also relates to an electrochemical cell comprising at least one electrode containing at least one material consisting of a composition as defined above.
  • this electrochemical cell comprises a positive electrode of composition as defined above, and it functions as a primary or secondary battery, or as a super-capacity.
  • the electrolyte is a polymer, solvating or not, optionally plasticized or gelled with a polar solvent and containing in solution one or more metal salts, in particular a lithium salt.
  • the electrolyte can also be a polar liquid containing in solution one or more metal salts, in particular a lithium salt, optionally immobilized in a microporous separator, in particular a polyolefin, a polyester, nanoparticles of silica, alumina or lithium aluminate LiA10 2 or a mixture thereof as a composite.
  • a metal salts in particular a lithium salt
  • a microporous separator in particular a polyolefin, a polyester, nanoparticles of silica, alumina or lithium aluminate LiA10 2 or a mixture thereof as a composite.
  • the polymer containing a salt and optionally a polar liquid is preferably formed from oxyethylene, oxypropylene, acrylonitrile, vinylidene fluoride units, esters of acrylic or methacrylic acid, esters of itaconic acid with alkyl groups or oxa-alkyls, in particular containing the oxyethylene units.
  • the polymer contains in particular powders of nanoparticles such as silica, titanium oxide, alumina, LiA10 3 .
  • the polar liquid is preferably chosen from cyclic or linear carbonates, carboxylic esters, alpha-omega ethers of oligoethylene glycols, N-methylpyrrolididone, gamma-butyrolactone, tetraalkyl sulfonamides and their mixtures, a fraction of the atoms of hydrogen which may be substituted by fluorine atoms.
  • the negative electrode of the battery according to the invention can contain metallic lithium or one of its alloys, in particular with aluminum, a compound for inserting lithium into carbon, in particular graphite. or the pyrolytic carbons, LiFe0 2 , Li 2 Mn 2 0 or Li 4 Ti 5 0 ⁇ 2 or the solid solutions formed between these oxides.
  • the current collector of the electrode containing the electrode material according to the invention is made of aluminum, optionally in the form of expanded or expanded metal.
  • the power capable of being delivered by these systems is greater than that obtained with the oxides used alone in the cathode mixture, in particular when very high powers are required.
  • Figure 1 shows charge and discharge profiles at different speeds obtained at room temperature for LiCo0 2 and LiFeP0 4 batteries.
  • Figure 2 represents charge and discharge profiles at different regimes obtained at room temperature for batteries containing a mixture composed of 72% LiCo0 2 and 28% LiFeP0 4 .
  • Figure 3 represents the evolution of the capacity supplied as a function of the intensity of the charge and discharge current for batteries containing
  • LiCo0 2 between 4.1 and 3 V
  • LiFeP0 4 between 4.1 and 2.5 V
  • a mixture composed of 72% LiCo0 2 and 28% of LiFeP0 4 between 4.1 and 2.5 V and between 4.1 and
  • Figure 4 shows the charge and discharge profiles of batteries containing LiMn 2 0 4 on the one hand and a mixture of LiMn 2 0 4 and LiFeP0 4 on the other hand.
  • the electrodes containing one or mixtures of the two families of the aforementioned electrode materials, double oxides or double phosphates can function advantageously, whether in terms of capacity and available power. This behavior is unexpected with regard to the dilution and the decrease in the contacts between grains of phosphate that these mixtures imply.
  • the grains of phosphate-based materials are very poorly conductive and cannot ensure a continuum of high electronic conductivity in the mixture, a condition necessary for rapid electrochemical kinetics.
  • the conductive coating possibly deposited on the surface of the phosphate grains which is the subject of US Pat. No.
  • Cathode composed of a mixture of LiFeP0 4 and LiCo0 2
  • the cathodes consist of a mixture of active material, carbon black, and a binding agent (PVDF in solution in N-methyl pyrolidone) in the proportions 85: 5: 10.
  • PVDF in solution in N-methyl pyrolidone
  • the composite is spread on a collector aluminum current. After drying, 1.3 cm electrodes with a capacity of about 1.6 mAh are cut out with a cookie cutter.
  • the batteries are assembled in a glove box, under an inert atmosphere.
  • the measurements were carried out in an electrolyte containing LiC10 1M in a mixture EC: DMC 1: 1.
  • the anode consists of lithium.
  • the tests are carried out at room temperature.
  • the batteries containing LiCo0 2 alone as well as the mixture were charged in galvanostatic mode up to 4.1 V with maintenance of the potential until the current is less than 25 micro-amperes.
  • the battery containing LiFeP0 4 was generally charged up to 4.1 V except for the 5C regime where the maintenance in potential was imposed.
  • the cathodes consist of a mixture of active material, carbon black, and a binding agent (PVDF in solution in N-methyl pyrolidone) in the proportions 90: 3: 7.
  • the composite is spread on a collector aluminum current. After drying, electrodes of 1.3 cm and about 11 mg of active material are cut out with a cookie cutter.
  • the batteries are assembled in a glove box, under an inert atmosphere.
  • the measurements were carried out in an electrolyte containing LiC10 4 1M in a mixture EC: DMC 1: 1.
  • the anode consists of lithium. The tests are carried out at room temperature.
  • the batteries were charged up to 4.2 V and discharged up to 2.5 V at a current of 400 ⁇ A.
  • FIG. 4 shows the charge and discharge profiles of LiMn 2 0 4 alone and of the LiMn 2 0 4 LiFeP0 4 mixture.
  • the activity of LiFeP0 4 is located between the two pairs of manganese spinel and is clearly differentiated from the two plateaus of the latter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to a positive electrode composition containing at least one mixed oxide with a spinel or lamellar structure having general formula Li1-xM1-yAaO2-fFf, and at least one mixed phosphate having general formula Li1-zFenMnmPO4, wherein: M = Co, Ni, Mn, A = Mg, Zn, Al, Fe, Cr, Co, Mn, Ni, Zn Ga, 0 </= x, y, a, f </= 1, 0 </= z, n, m </= 1, and which operates in the 4.3 V ->} 2.5 V voltage range with a voltage plateau located between said two values.

Description

COMPOSITIONS CATHODIQUES ET LEURS UTILISATIONS, NOTAMMENT DANS LES GÉNÉRATEURS ÉLECTROCHTMIQUES CATHODIC COMPOSITIONS AND USES THEREOF, ESPECIALLY IN ELECTROCHEMICAL GENERATORS
DOMAINE TECHNIQUE La présente invention concerne de nouvelles compositions cathodiques et leurs utilisations, notamment dans les générateurs électrochimiques. L'invention concerne aussi des cellules électrochimiques comportant au moins une électrode comprenant une composition selon l'invention.TECHNICAL FIELD The present invention relates to new cathode compositions and their uses, in particular in electrochemical generators. The invention also relates to electrochemical cells comprising at least one electrode comprising a composition according to the invention.
TECHNIQUE ANTÉRIEURE On connaît (J.-M. Tarascon, M. Armand, Nature, volume 414, 15 novembre 2001, pages 359 - 367) les composés d'électrodes positives de structure spinelle ou lamellaire de formule générale Liι_xMi-yAaθ2-fFf dans lesquels :PRIOR ART We know (J.-M. Tarascon, M. Armand, Nature, volume 414, November 15, 2001, pages 359 - 367) the positive electrode compounds of spinel or lamellar structure of general formula Liι_ x Mi-yA a θ2-fFf in which:
M = Co, Ni, Mn,M = Co, Ni, Mn,
A = Mg, Zn, Al, Fe, Cr, Co, Mn, Ni, Zn, Ga, 0 ≤ x, y, a, f < 1.A = Mg, Zn, Al, Fe, Cr, Co, Mn, Ni, Zn, Ga, 0 ≤ x, y, a, f <1.
Ces matériaux fonctionnent dans le domaine de potentielThese materials work in the potential domain
3,9 - 4,2 V vs Li : Li+ mais font d'une part appel à des éléments rares (Co), ou posent des problèmes de stabilité (Ni, Mn) qui limitent la durée de vie de batteries les utilisant. Un autre désavantage est la faible capacité massique de ces matériaux, comprise entre 90 et 130 mAh/g. Ces matériaux sont utilisés dans l'électronique, et la norme de potentiel de 4,1 - 4,2 V est requise dans la plupart des systèmes d'électronique portable.3.9 - 4.2 V vs Li: Li + but on the one hand call on rare elements (Co), or pose problems of stability (Ni, Mn) which limit the lifespan of batteries using them. Another disadvantage is the low mass capacity of these materials, between 90 and 130 mAh / g. These materials are used in electronics, and the potential standard of 4.1 - 4.2 V is required in most portable electronics systems.
On connaît aussi par ailleurs (brevet U.S. 5 910 382) les composés iχ_ zFel-mMnmP04 (0 < z, m < 1). Ces composés possèdent des propriétés rédox de type insertion-désinsertion du lithium. La capacité est essentiellement plus élevée de l'ordre de 170 mAh/g et la courbe de décharge/décharge est à potentiel constantAlso known (US Patent 5,910,382) the compounds iχ_ zF e l-mMn m P04 (0 <z, m <1). These compounds have redox properties of the lithium insertion-deactivation type. The capacity is essentially higher on the order of 170 mAh / g and the discharge / discharge curve is at constant potential.
3,3 - 3,5 V et 4,2 - 4,4 V vs. Li : Li+ pour les couples liés au fer et au manganèse respectivement. De plus, ces matériaux sont non toxiques et formés à partir d'éléments abondants. Par ailleurs, le fonctionnement dans une plage de potentiel très étroite est un avantage en terme de simplification de l'électronique, d'autant plus que la résistance de ces matériaux à la surcharge et le sur-décharge est excellente. Cependant, ces matériaux possèdent une conductivité électronique trop faible et nécessitent l'adjonction soit d'une fraction massique importante de carbone pour leur utilisation dans les générateurs primaires ou secondaires, soit d'un dépôt de matériau carboné extrêmement mince, réparti sur la surface des grains. Dans ce cas, la densité apparente, donc la connectivité des grains, doit être la plus élevée possible de manière à obtenir un bon échange électronique. Ceci se traduit par la nécessité de fractions volumiques importante de phosphate double dans le matériau composite servant de cathode.3.3 - 3.5 V and 4.2 - 4.4 V vs. Li: Li + for couples linked to iron and manganese respectively. In addition, these materials are non-toxic and formed from abundant elements. In addition, operating in a very narrow potential range is an advantage in terms of simplification of the electronics, especially since the resistance of these materials to overcharging and over-discharging is excellent. However, these materials have an electronic conductivity too low and require the addition either of a large mass fraction of carbon for their use in primary or secondary generators, or of an extremely thin deposit of carbonaceous material distributed over the surface of the grains. In this case, the apparent density, therefore the connectivity of the grains, must be as high as possible so as to obtain a good electronic exchange. This results in the need for large volume fractions of double phosphate in the composite material serving as cathode.
EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION
L'invention concerne une composition d'électrode positive contenant au moins un oxyde mixte de structure spinelle ou lamellaire de formule généraleThe invention relates to a positive electrode composition containing at least one mixed oxide of spinel or lamellar structure of general formula.
Liι_xMι.yAaθ2-fFf5 et au moins un phosphate mixte de formule générale Li]_ zFenMnmPθ4 et dans lesquelles :Liι_ x Mι.yA a θ2-fFf 5 and at least one mixed phosphate of general formula Li] _ z Fe n Mn m Pθ4 and in which:
M = Co, Ni, Mn,M = Co, Ni, Mn,
A = Mg, Zn, Al, Fe, Cr, Co, Mn, Ni, Zn Ga, 0 < x, y, a, f≤ l,A = Mg, Zn, Al, Fe, Cr, Co, Mn, Ni, Zn Ga, 0 <x, y, a, f≤ l,
0 < z, n, m ≤ l, et dont le fonctionnement se situe dans la plage de voltage0 <z, n, m ≤ l, and whose operation is within the voltage range
4,3 V *→ 2,5 V avec un plateau de voltage situé entre ces deux valeurs.4.3 V * → 2.5 V with a voltage plateau located between these two values.
L'oxyde mixte est de préférence Lii-xCoθ2 ou Liι_xNii-yCθyθ2 pour lequel 0,1 < y < 0,4, tandis que le phosphate mixte est de préférence Liι_The mixed oxide is preferably Lii- x Coθ2 or Liι_ x Nii-yCθyθ2 for which 0.1 <y <0.4, while the mixed phosphate is preferably Liι_
2FenMnmPθ4 pour lequel 0 < y < 0,4 et avec un des plateaux de voltage dans la zone 2 Fe n MnmPθ4 for which 0 <y <0.4 and with one of the voltage plates in the area
3,3 V «→ 3,5 N.3.3 V "→ 3.5 N.
Selon une réalisation préférée la proportion de phosphate mixte par rapport à l'oxyde mixte est comprise entre 5 et 95% en poids, de préférence entreAccording to a preferred embodiment, the proportion of mixed phosphate relative to the mixed oxide is between 5 and 95% by weight, preferably between
20 et 80% en poids.20 and 80% by weight.
Selon une autre réalisation, le phosphate mixte peut être recouvert en surface d'un dépôt homogène conducteur à base de carbone ou d'une matière organique pyrolysée. Selon une autre réalisation, le mélange cathodique actif peut être additionné d'un polymère servant de liant et éventuellement de conducteur électrolytique par addition d'un sel contenant au moins en partie des ions lithium, et éventuellement d'un liquide polaire. Selon une autre réalisation, le mélange cathodique actif peut être additionné d'un conducteur électronique permettant les échanges entre le collecteur de courant et les grains de matériau d'électrode, notamment un noir de carbone, du graphite ou leur mélange.According to another embodiment, the mixed phosphate can be covered on the surface with a homogeneous conductive carbon-based deposit or with a pyrolyzed organic material. According to another embodiment, the active cathode mixture can be added with a polymer serving as a binder and optionally as an electrolytic conductor by addition of a salt containing at least partly lithium ions, and optionally with a polar liquid. According to another embodiment, the active cathode mixture can be added with an electronic conductor allowing exchanges between the current collector and the grains of electrode material, in particular carbon black, graphite or their mixture.
L'invention concerne aussi une cellule électrochimique comprenant au moins une électrode renfermant au moins un matériau constitué d'une composition telle que définie ci-dessus.The invention also relates to an electrochemical cell comprising at least one electrode containing at least one material consisting of a composition as defined above.
Selon une réalisation de l'invention, cette cellule électrochimique comprend une électrode positive de composition telle que définie ci-dessus, et elle fonctionne comme batterie primaire ou secondaire, ou comme super-capacité. Comme batterie primaire ou secondaire, selon une autre réalisation préférée, l'électrolyte est un polymère, solvatant ou non, éventuellement plastifié ou gélifié par un solvant polaire et contenant en solution un ou plusieurs sels métalliques, en particulier un sel de lithium. L'électrolyte peut aussi être un liquide polaire contenant en solution un ou plusieurs sels métalliques, notamment un sel de lithium, éventuellement immobilisé dans un séparateur microporeux, en particulier une polyoléfine, un polyester, des nanoparticules de silice, d'alumine ou d'aluminate de lithium LiA102 ou leur mélange sous forme de composite.According to one embodiment of the invention, this electrochemical cell comprises a positive electrode of composition as defined above, and it functions as a primary or secondary battery, or as a super-capacity. As primary or secondary battery, according to another preferred embodiment, the electrolyte is a polymer, solvating or not, optionally plasticized or gelled with a polar solvent and containing in solution one or more metal salts, in particular a lithium salt. The electrolyte can also be a polar liquid containing in solution one or more metal salts, in particular a lithium salt, optionally immobilized in a microporous separator, in particular a polyolefin, a polyester, nanoparticles of silica, alumina or lithium aluminate LiA10 2 or a mixture thereof as a composite.
Le polymère contenant un sel et éventuellement un liquide polaire est de préférence formé à partir des unités oxyéthylène, oxypropylène, acrylonitrile, fluorure de vinylidène, des esters de l'acide acrylique ou methacrylique, les esters de l'acide itaconique avec des groupements alkyles ou oxa-alkyles, en particuliers contenant les unités oxyéthylène.The polymer containing a salt and optionally a polar liquid is preferably formed from oxyethylene, oxypropylene, acrylonitrile, vinylidene fluoride units, esters of acrylic or methacrylic acid, esters of itaconic acid with alkyl groups or oxa-alkyls, in particular containing the oxyethylene units.
Selon une autre réalisaion de l'invention, le polymère contient notamment des poudres de nanoparticules telles que la silice, l'oxyde de titane, l'alumine, LiA103. Le liquide polaire est de préférence choisi parmi les carbonates cycliques ou linéaires, les esters carboxyliques, les alpha-oméga éthers des oligoéthylène glycols, la N-méthylpyrrolididone, la gamma-butyrolactone, les tétra- alkylsulfamides et leurs mélanges, une fraction des atomes d'hydrogène pouvant être substitués par des atomes de fluor.According to another embodiment of the invention, the polymer contains in particular powders of nanoparticles such as silica, titanium oxide, alumina, LiA10 3 . The polar liquid is preferably chosen from cyclic or linear carbonates, carboxylic esters, alpha-omega ethers of oligoethylene glycols, N-methylpyrrolididone, gamma-butyrolactone, tetraalkyl sulfonamides and their mixtures, a fraction of the atoms of hydrogen which may be substituted by fluorine atoms.
Selon une autre réalisation, l'électrode négative de la batterie selon l'invention, peut contenir du lithium métallique ou un de ses alliages, en particulier avec l'aluminium, un composé d'insertion du lithium dans le carbone, en particulier le graphite ou les carbones pyrolitiques, LiFe02, Li2Mn20 ou Li4Ti52 ou les solutions solides formées entre ces oxydes.According to another embodiment, the negative electrode of the battery according to the invention can contain metallic lithium or one of its alloys, in particular with aluminum, a compound for inserting lithium into carbon, in particular graphite. or the pyrolytic carbons, LiFe0 2 , Li 2 Mn 2 0 or Li 4 Ti 52 or the solid solutions formed between these oxides.
Selon une autre réalisation préférée, le collecteur de courant de l'électrode contenant le matériau d'électrode selon l'invention est en aluminium, éventuellement sous forme de métal déployé ou expansé.According to another preferred embodiment, the current collector of the electrode containing the electrode material according to the invention is made of aluminum, optionally in the form of expanded or expanded metal.
Selon une autre réalisation, la puissance capable d'être délivrée par ces systèmes, est supérieure à celle obtenue avec les oxydes utilisés seuls dans le mélange cathodique, en particulier lorsque de très fortes puissances sont demandées. DESCRIPTION BRÈVE DES DESSINSAccording to another embodiment, the power capable of being delivered by these systems is greater than that obtained with the oxides used alone in the cathode mixture, in particular when very high powers are required. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 représente des profils de charge et de décharge à différents régimes obtenus à température ambiante pour des batteries LiCo02 et LiFeP04.Figure 1 shows charge and discharge profiles at different speeds obtained at room temperature for LiCo0 2 and LiFeP0 4 batteries.
Figure 2 représente des profils de charge et de décharge à différents régimes obtenus à température ambiante pour des batteries contenant un mélange composé à 72% de LiCo02 et à 28% de LiFeP04.Figure 2 represents charge and discharge profiles at different regimes obtained at room temperature for batteries containing a mixture composed of 72% LiCo0 2 and 28% LiFeP0 4 .
Figure 3 représente l'évolution de la capacité fournie en fonction de l'intensité du courant de charge et de décharge pour des batteries contenantFigure 3 represents the evolution of the capacity supplied as a function of the intensity of the charge and discharge current for batteries containing
LiCo02 (entre 4,1 et 3 V) et LiFeP04 (entre 4,1 et 2,5 V) et contenant un mélange composé à 72% de LiCo02 et à 28% de LiFeP04.(entre 4,1 et 2,5 V et entre 4,1 etLiCo0 2 (between 4.1 and 3 V) and LiFeP0 4 (between 4.1 and 2.5 V) and containing a mixture composed of 72% LiCo0 2 and 28% of LiFeP0 4 (between 4.1 and 2.5 V and between 4.1 and
3 V).3 V).
Figure 4 représente les profils de charge et de décharge de batteries contenant LiMn204 d'une part et un mélange de LiMn204 et LiFeP04 d'autre part. MANIERE DE REALISER L'INVENTIONFigure 4 shows the charge and discharge profiles of batteries containing LiMn 2 0 4 on the one hand and a mixture of LiMn 2 0 4 and LiFeP0 4 on the other hand. MANNER OF CARRYING OUT THE INVENTION
Dans la présente invention, il est montré, que les électrodes contenant un ou des mélanges des deux familles de matériaux d'électrodes précités, oxydes doubles ou phosphates doubles peuvent fonctionner avantageusement, que ce soit en termes de capacité et de puissance disponible. Ce comportement est inattendu en regard de la dilution et de la diminution des contacts entre grains de phosphate que ces mélanges impliquent. En effet, les grains de matériaux à base de phosphate sont très peu conducteurs et ne peuvent assurer un continuum de conductivité électronique élevée dans le mélange, condition nécessaire à une cinétique électrochimique rapide. Le revêtement conducteur déposé éventuellement à la surface des grains de phosphate objet du brevet américain 5 910 382 et qui améliore la conductivité de surface est extrêmement fin, et s'il contribue à établir un champ électrique homogène à la surface des particules de phosphate, il ne peut jouer un rôle de transfert et de drainage des courants générés par les grains d'oxyde du mélange.In the present invention, it is shown that the electrodes containing one or mixtures of the two families of the aforementioned electrode materials, double oxides or double phosphates can function advantageously, whether in terms of capacity and available power. This behavior is unexpected with regard to the dilution and the decrease in the contacts between grains of phosphate that these mixtures imply. In fact, the grains of phosphate-based materials are very poorly conductive and cannot ensure a continuum of high electronic conductivity in the mixture, a condition necessary for rapid electrochemical kinetics. The conductive coating possibly deposited on the surface of the phosphate grains which is the subject of US Pat. No. 5,910,382 and which improves the surface conductivity is extremely fine, and if it contributes to establishing a homogeneous electric field on the surface of the phosphate particles, it cannot play a role of transfer and drainage of the currents generated by the oxide grains of the mixture.
Les avantages liés à l'utilisation de ces mélanges sont multiples :The advantages linked to the use of these mixtures are multiple:
• du fait de la présence d'un oxyde à haut voltage, les systèmes utilisant ces mélanges peuvent être directement substitués aux systèmes électroniques existants; • la capacité est augmentée;• due to the presence of a high voltage oxide, systems using these mixtures can be directly substituted for existing electronic systems; • the capacity is increased;
• le coût et la toxicité sont réduits, d'autant plus que la fraction volumique du matériau à haute capacité est plus élevée;• the cost and the toxicity are reduced, especially as the volume fraction of the high capacity material is higher;
• l'addition d'un oxyde possédant des propriétés de semi-conduction facilite la collection du courant du deuxième composé moins conducteur, tel le phosphate dé fer, et la mise en œuvre de l'électrode composite et sa performance électrochimique en nécessitant moins d'additif de conduction électronique;• the addition of an oxide having semi-conduction properties facilitates the collection of the current of the second less conductive compound, such as iron phosphate, and the implementation of the composite electrode and its electrochemical performance by requiring less d 'electronic conduction additive;
• l'existence d'une large plage de fonctionnement où le voltage est indépendant de l'état de charge de la batterie est un avantage en terme d'efficacité énergétique; • la stabilité thermique est augmentée du fait de la dilution de la phase réactive vis-à-vis de l'électrolyte, l'oxyde mixte, par un composé inerte par rapport à ce même électrolyte.• the existence of a wide operating range where the voltage is independent of the state of charge of the battery is an advantage in terms of energy efficiency; • the thermal stability is increased due to the dilution of the reactive phase vis-à-vis the electrolyte, the mixed oxide, by an inert compound compared to this same electrolyte.
D'une manière tout aussi surprenante, il apparaît un effet synergique. Il est en effet observé que la puissance capable d'être délivrée par ces systèmes est supérieure à celle obtenue avec les oxydes seuls pris individuellement dans des conditions comparables, en particulier lorsque de très fortes puissances sont demandées aux générateurs/ supercapacités. Ce dernier phénomène est important dans la mesure où les principales applications visées pour les marchés de l'électronique nécessitent des puissances élevées à basse température, notamment pour les téléphones cellulaires. EXEMPLESEqually surprisingly, there is a synergistic effect. It is in fact observed that the power capable of being delivered by these systems is greater than that obtained with the oxides alone taken individually under comparable conditions, in particular when very high powers are required from the generators / supercapacitors. The latter phenomenon is important insofar as the main applications targeted for the electronics markets require high powers at low temperatures, in particular for cell phones. EXAMPLES
Les. caractéristiques de l'invention vont maintenant être illustrés par les exemples qui suivent donnés à titre d'illustration et sans caractère limitatif. Exemple 1The. characteristics of the invention will now be illustrated by the following examples given by way of illustration and without limitation. Example 1
Cathode composée d'un mélange de LiFeP04 et LiCo02 Cathode composed of a mixture of LiFeP0 4 and LiCo0 2
Les performances électrochimiques d'une batterie contenant un électrolyte liquide, une anode de lithium et dont la matière active de la cathode est constituée d'un mélange de 28% de LiFeP04 et 72% de LiCo02 ont été étudiées à température ambiante. La capacité théorique d'un tel mélange est 146 mAh.g" . Pour comparaison, des batteries similaires contenant LiFeP04, d'une part et LiCo02 d'autre part ont également été assemblées.The electrochemical performance of a battery containing a liquid electrolyte, a lithium anode and whose active material of the cathode consists of a mixture of 28% of LiFePO4 and 72% of LiCo0 2 were studied at room temperature. The theoretical capacity of such a mixture is 146 mAh.g " . For comparison, similar batteries containing LiFeP0 4 on the one hand and LiCo0 2 on the other hand were also assembled.
Les cathodes sont constituées d'un mélange de matière active, de noir de carbone, et d'un agent liant (PVDF en solution dans la N-méthyl pyrolidone) dans les proportions 85 : 5 : 10. La composite est étendue sur un collecteur de courant en aluminium. Après séchage, des électrodes de 1,3 cm et d'une capacité d'environ 1,6 mAh sont découpées à l'emporte-pièce. Les batteries sont assemblées en boîte à gants, sous atmosphère inerte.The cathodes consist of a mixture of active material, carbon black, and a binding agent (PVDF in solution in N-methyl pyrolidone) in the proportions 85: 5: 10. The composite is spread on a collector aluminum current. After drying, 1.3 cm electrodes with a capacity of about 1.6 mAh are cut out with a cookie cutter. The batteries are assembled in a glove box, under an inert atmosphere.
Les mesures ont été réalisées dans un électrolyte contenant LiC10 1M dans un mélange EC : DMC 1 : 1. L'anode est constituée de lithium. Les tests sont réalisés à température ambiante. Les batteries contenant LiCo02 seul ainsi que le mélange ont été chargées en mode galvanostatique jusqu'à 4,1 V avec maintien du potentiel jusqu'à ce que le courant soit inférieur à 25 micro-ampères. La batterie contenant LiFeP04 a généralement été chargée jusqu'à 4,1 V sauf pour le régime 5C où le maintien en potentiel a été imposé.The measurements were carried out in an electrolyte containing LiC10 1M in a mixture EC: DMC 1: 1. The anode consists of lithium. The tests are carried out at room temperature. The batteries containing LiCo0 2 alone as well as the mixture were charged in galvanostatic mode up to 4.1 V with maintenance of the potential until the current is less than 25 micro-amperes. The battery containing LiFeP0 4 was generally charged up to 4.1 V except for the 5C regime where the maintenance in potential was imposed.
Les profils de charge et de décharge à différents régimes sont présentés en figure 1 pour les composés séparés et en figure 2 pour le mélange. Les capacités spécifiques obtenues dans chacun des cas ont été reportées figure 3. Pour le mélange, les capacités ont été relevées pour deux limites de potentiel de décharge différentes : 3 V.et 2,5 V.The charge and discharge profiles at different regimes are presented in Figure 1 for the separate compounds and in Figure 2 for the mixture. The specific capacities obtained in each case have been reported in FIG. 3. For the mixture, the capacities have been noted for two different discharge potential limits: 3 V. and 2.5 V.
Pour les régimes inférieurs à 3C, les profils obtenus pour le mélange suivent le comportement de chacun des constituants séparés et montre clairement l'activité électrochimique des deux matériaux. Les capacités du mélange, ainsi que leur évolution en fonction du courant imposé sont proches de celles de LiCo02 À partir de 3C, les capacités spécifiques obtenues pour le mélange sont supérieures à celle des constituants séparés. Pour 5C la courbe de décharge est totalement différente de celles de LiFeP04 et LiCo02. La capacité fournie par ce mélange contenant 72 % d'oxyde de cobalt est deux fois plus importante que celle de LiCo02 seul. Exemple 2For regimes below 3C, the profiles obtained for the mixture follow the behavior of each of the separate constituents and clearly show the electrochemical activity of the two materials. The capacities of the mixture, as well as their evolution as a function of the imposed current are close to those of LiCo0 2 From 3C, the specific capacities obtained for the mixture are greater than that of the separate constituents. For 5C the discharge curve is completely different from those of LiFeP0 4 and LiCo0 2 . The capacity provided by this mixture containing 72% of cobalt oxide is twice as large as that of LiCo0 2 alone. Example 2
Un des matériaux de cathode des accumulateurs au lithium, les plus intéressant est la spinelle de manganèse LiMn204. Ce matériau est bon marché, abondant et non- toxique. Il présente théoriquement deux domaines de fonctionnement : un à 4 Volts et l'autre à 3 volts correspondant respectivement aux couples Mn20 / LiMn204 et LiMn204 / Li2Mn20 . Malheureusement, une perte de la capacité réversible rapide est observée lorsque la batterie est cyclée sur les deux domaines. Ce phénomène encore mal compris est souvent expliqué par une perte de contact électrique entre les grains. Ce dernier serait dû à un changement de volume important associé à une distortion du crystal de Li2Mn20 . Pour cette raison, la spinelle de manganèse ne peut être cyclée que dans la région des 4 volts. H apparaît en outre important de pouvoir protéger la batterie d'une sur-décharge en évitant la réduction de LiMn204 en Li2Mn204. Cette protection peut être réalisée en ajoutant à la cathode un matériau d'insertion réversible dont l'activité se situe entre celle des deux couples de la spinelle de manganèse. Cathodes composées d'un mélange de LiFeP04 et de LiMn204 Le comportement électrochimique d'une batterie contenant un électrolyte liquide, une anode de lithium et dont la matière active de la cathode est constituée d'un mélange de 23%) de LiFeP0 et 77% de LiMn204 ont été étudiées à température ambiante. Pour comparaison, une batterie similaires contenant LiMn204 a également été assemblée. Les cathodes sont constituées d'un mélange de matière active, de noir de carbone, et d'un agent liant (PVDF en solution dans la N-méthyl pyrolidone) dans les proportions 90 : 3 : 7. La composite est étendue sur un collecteur de courant en aluminium. Après séchage, des électrodes de 1,3 cm et d'environ 11 mg de matière active, sont découpées à l'emporte-pièce. Les batteries sont assemblées en boîte à gants, sous atmosphère inerte.One of the cathode materials of lithium accumulators, the most interesting is the manganese spinel LiMn 2 0 4 . This material is inexpensive, abundant and non-toxic. It theoretically presents two operating domains: one at 4 Volts and the other at 3 volts corresponding respectively to the couples Mn 2 0 / LiMn 2 0 4 and LiMn 2 0 4 / Li 2 Mn 2 0. Unfortunately, a rapid reversible capacity loss is observed when the battery is cycled on the two domains. This still poorly understood phenomenon is often explained by a loss of electrical contact between the grains. The latter is due to a significant change in volume associated with distortion of the crystal of Li 2 Mn 2 0. For this reason, manganese spinel can only be cycled in the 4-volt region. It also appears important to be able to protect the battery from overcharging by avoiding the reduction of LiMn 2 0 4 to Li 2 Mn 2 0 4 . This protection can be achieved by adding a reversible insertion material to the cathode, the activity of which lies between that of the two pairs of manganese spinel. Cathodes composed of a mixture of LiFeP0 4 and LiMn 2 0 4 The electrochemical behavior of a battery containing a liquid electrolyte, a lithium anode and whose active material of the cathode consists of a mixture of 23%) of LiFePO and 77% LiMn 2 0 4 were studied at room temperature. For comparison, a similar battery containing LiMn 2 0 4 was also assembled. The cathodes consist of a mixture of active material, carbon black, and a binding agent (PVDF in solution in N-methyl pyrolidone) in the proportions 90: 3: 7. The composite is spread on a collector aluminum current. After drying, electrodes of 1.3 cm and about 11 mg of active material are cut out with a cookie cutter. The batteries are assembled in a glove box, under an inert atmosphere.
Les mesures ont été réalisées dans un électrolyte contenant LiC104 1M dans un mélange EC : DMC 1 : 1. L'anode est constituée de lithium. Les tests sont réalisés à température ambiante.The measurements were carried out in an electrolyte containing LiC10 4 1M in a mixture EC: DMC 1: 1. The anode consists of lithium. The tests are carried out at room temperature.
Les batteries ont été chargées jusqu'à 4,2 V et déchargées jusqu'à 2,5 V à un courant de 400 μA.The batteries were charged up to 4.2 V and discharged up to 2.5 V at a current of 400 μA.
La figure 4 présente les profils de charge et de décharge de LiMn204 seul et du mélange LiMn204 LiFeP04. L'activité de LiFeP04 se situe entre les deux couples de la spinelle de manganèse et se différencie clairement des deux plateaux de cette dernière. En ajoutant une capacité réversible entre les deux plateaux de LiMn204 on limite les risque de surdécharge ce qui devrait augmenter la fiabilité de ces dispositifs.FIG. 4 shows the charge and discharge profiles of LiMn 2 0 4 alone and of the LiMn 2 0 4 LiFeP0 4 mixture. The activity of LiFeP0 4 is located between the two pairs of manganese spinel and is clearly differentiated from the two plateaus of the latter. By adding a reversible capacity between the two LiMn 2 0 4 trays, the risk of over-discharge is limited, which should increase the reliability of these devices.
Il est entendu que l'invention n'est pas restreinte aux réalisations préférées définies ci-dessus et qu'elle comprend aussi toutes modifications à la condition bien entendu que ces dernières soient couvertes par les revendications annexées. It is understood that the invention is not limited to the preferred embodiments defined above and that it also includes all modifications on the condition of course that these are covered by the appended claims.

Claims

. REVENDICATIONS . CLAIMS
1. Composition d'électrode positive caractérisée en ce qu'elle contient au moins un oxyde mixte de structure spinelle ou lamellaire de formule générale Lii-xMi-yAaθ2-fFf5 et au moins un phosphate mixte de formule générale Liι_2FenMn Pθ4 et dans lesquelles : M = Co, Ni, Mn,1. Composition of positive electrode characterized in that it contains at least one mixed oxide of spinel or lamellar structure of general formula Lii- x Mi-yA a θ2-fFf 5 and at least one mixed phosphate of general formula Liι_ 2 Fe n Mn Pθ4 and in which: M = Co, Ni, Mn,
A = Mg, Zn, Al, Fe, Cr, Co, Mn, Ni, Zn Ga, 0 < x, y, a, f< 1, 0 < z, n, m ≤ l, et dont le fonctionnement se situe dans la plage de voltage 4,3 V 2,5 V avec un plateau de voltage situé entre ces deux valeurs.A = Mg, Zn, Al, Fe, Cr, Co, Mn, Ni, Zn Ga, 0 <x, y, a, f <1, 0 <z, n, m ≤ l, and whose functioning is located in the 4.3 V 2.5 V voltage range with a voltage plateau located between these two values.
2. Composition d'électrode positive selon la revendication 1 caractérisée en ce que l'oxyde mixte est Lii-xCoθ2 ou Lii- Nii_yCθyθ2 pour lesquels 0,1 < y < 0,4.2. A positive electrode composition according to claim 1 characterized in that the mixed oxide is Lii- x Coθ2 or Lii- Nii_yCθyθ2 for which 0.1 <y <0.4.
3. Composition d'électrode positive selon la revendication 1 caractérisée en ce que le phosphate mixte est Lii_2îen nmP04 pour lequel 0 < y < 0,4 et un des plateaux de voltage est dans la zone 3,3 V <-> 3,5 V. 3. A positive electrode composition according to claim 1 characterized in that the mixed phosphate is Lii_ 2 ; ï î in n m P04 for which 0 <y <0.4 and one of the voltage plates is in the zone 3.3 V <-> 3.5 V.
4. Composition d'électrode positive selon la revendication 1 caractérisée en ce que la proportion de phosphate mixte par rapport à l'oxyde mixte est comprise entre 5 et 95% en poids.4. A positive electrode composition according to claim 1 characterized in that the proportion of mixed phosphate relative to the mixed oxide is between 5 and 95% by weight.
5. Composition d'électrode positive selon la revendication 4 caractérisée en ce que la proportion de phosphate mixte par rapport à l'oxyde mixte est comprise entre 20 et 80% en poids.5. A positive electrode composition according to claim 4 characterized in that the proportion of mixed phosphate relative to the mixed oxide is between 20 and 80% by weight.
6. Composition d'électrode positive selon la revendication 1 caractérisée en ce que le phosphate mixte est recouvert en surface d'un dépôt homogène conducteur à base de carbone ou d'une matière organique pyrolysée.6. A positive electrode composition according to claim 1 characterized in that the mixed phosphate is covered on the surface with a homogeneous conductive deposit based on carbon or on a pyrolyzed organic material.
7. Composition d'électrode positive selon la revendication 1 caractérisée en ce que le mélange cathodique actif est additionné d'un polymère servant de liant et éventuellement de conducteur électrolytique par addition d'un sel contenant au moins en partie des ions lithium, et éventuellement d'un liquide polaire.7. A positive electrode composition according to claim 1 characterized in that the active cathode mixture is added with a polymer serving as a binder and optionally an electrolytic conductor by adding a salt containing at least part of the lithium ions, and optionally a polar liquid.
8. Composition d'électrode positive selon la revendication 1 caractérisée en ce que le mélange cathodique actif est additionné d'un conducteur électronique permettant les échanges entre le collecteur de courant et les grains de matériau d'électrode.8. A positive electrode composition according to claim 1 characterized in that the active cathode mixture is added with an electronic conductor allowing exchanges between the current collector and the grains of electrode material.
9. Composition d'électrode positive selon la revendication 8 caractérisée en ce que le conducteur électronique permettant les échanges entre le collecteur de courant et les grains de matériau d'électrode est un noir de carbone, du graphite ou leur mélange.9. A positive electrode composition according to claim 8 characterized in that the electronic conductor allowing the exchanges between the current collector and the grains of electrode material is carbon black, graphite or their mixture.
10. Cellule électrochimique caractérisée en ce qu'elle comprend au moins une électrode renfermant au moins un matériau selon la revendication 1.10. Electrochemical cell characterized in that it comprises at least one electrode containing at least one material according to claim 1.
11. Cellule électrochimique caractérisée en ce qu'elle comprend une électrode positive de composition telle que définie dans la revendication 1, et en ce qu'elle fonctionne comme batterie primaire ou secondaire, ou comme super-capacité.11. Electrochemical cell characterized in that it comprises a positive electrode of composition as defined in claim 1, and in that it functions as a primary or secondary battery, or as a super-capacity.
12. Batterie primaire ou secondaire selon la revendication 11 caractérisée en ce que l'électrolyte est un polymère, solvatant ou non, éventuellement plastifié ou gélifié par un solvant polaire et contenant en solution un ou plusieurs sels métalliques, en particulier un sel de lithium. 12. Primary or secondary battery according to claim 11 characterized in that the electrolyte is a polymer, solvating or not, optionally plasticized or gelled with a polar solvent and containing in solution one or more metal salts, in particular a lithium salt.
13. Batterie primaire ou secondaire selon la revendication 11 caractérisée en ce que l'électrolyte est un liquide polaire et contenant en solution un ou plusieurs sels métalliques, éventuellement immobilisé dans un séparateur microporeux, en particulier une polyoléfine, un polyester, des nanoparticules de silice, d'alumine ou d'aluminate de lithium LiA102 ou leur mélange sous forme de composite. 13. Primary or secondary battery according to claim 11 characterized in that the electrolyte is a polar liquid and containing in solution one or more metal salts, optionally immobilized in a microporous separator, in particular a polyolefin, a polyester, silica nanoparticles , lithium alumina or aluminate LiA10 2 or a mixture thereof as a composite.
14. Batterie primaire ou secondaire selon les revendications 12 et 13 caractérisée en ce que un des sels métalliques est un sel de lithium.14. Primary or secondary battery according to claims 12 and 13 characterized in that one of the metal salts is a lithium salt.
15. Batterie selon la revendication 12 caractérisée en ce que le polymère contenant un sel et éventuellement un liquide polaire est formé à partir des unités oxyéthylène, oxypropylène, acrylonitrile, fluorure de vinylidène, des esters de l'acide acrylique ou methacrylique, les esters de l'acide itaconique avec des groupements alkyles ou oxa-alkyles, en particuliers contenant les unités oxyéthylène.15. Battery according to claim 12 characterized in that the polymer containing a salt and optionally a polar liquid is formed from oxyethylene, oxypropylene, acrylonitrile, vinylidene fluoride units, esters of acrylic or methacrylic acid, esters of itaconic acid with alkyl or oxa-alkyl groups, in particular containing the oxyethylene units.
16. Batterie selon la revendication 15 caractérisée en ce que le polymère contient des poudres de nanoparticules telles que la silice, l'oxyde de titane, l'alumine, LiA103.16. Battery according to claim 15 characterized in that the polymer contains powders of nanoparticles such as silica, titanium oxide, alumina, LiA10 3 .
17. Batterie selon les revendications 12 à 16 caractérisée en ce que le liquide polaire est choisi parmi les carbonates cycliques ou linéaires, les esters carboxyliques, les alpha-oméga éthers des oligoéthylène glycols, la N- methylpyrrolididone, la gamma-butyrolactone, les tétra-alkylsulfamides, et leurs mélanges une fraction des atomes d'hydrogène pouvant être substitués par des atomes de fluor.17. Battery according to claims 12 to 16 characterized in that the polar liquid is chosen from cyclic or linear carbonates, carboxylic esters, alpha-omega ethers of oligoethylene glycols, N-methylpyrrolididone, gamma-butyrolactone, tetra -alkylsulfamides, and mixtures thereof a fraction of the hydrogen atoms which may be substituted by fluorine atoms.
18. Batterie selon les revendications 11 à 17 caractérisée en ce que l'électrode négative contient du lithium métallique ou un de ses alliages, en particulier avec l'aluminium, un composé d'insertion du lithium dans le carbone, en particulier le graphite ou les carbones pyrolitiques, LiFe02, Li2Mn204 ou Li4Ti52 ou les solutions solides formées entre ces deux oxydes.18. Battery according to claims 11 to 17 characterized in that the negative electrode contains metallic lithium or one of its alloys, in particular with aluminum, a compound for inserting lithium into carbon, in particular graphite or pyrolytic carbons, LiFe0 2 , Li 2 Mn 2 0 4 or Li 4 Ti 52 or the solid solutions formed between these two oxides.
19. Batterie selon les revendications 11 à 16 caractérisée en ce que le collecteur de courant de l'électrode contenant le matériau d'électrode selon la revendication 1 est en aluminium, éventuellement sous forme de métal déployé ou expansé.19. Battery according to claims 11 to 16 characterized in that the current collector of the electrode containing the electrode material according to claim 1 is made of aluminum, optionally in the form of expanded or expanded metal.
20. Batterie selon les revendications 11 à 15 caractérisée en ce que la puissance capable d'être délivrée par ces systèmes, est supérieure à celle obtenue avec les oxydes utilisés seuls dans le mélange cathodique, en particulier lorsque de très fortes puissances sont demandées. 20. Battery according to claims 11 to 15 characterized in that the power capable of being delivered by these systems is greater than that obtained with the oxides used alone in the cathode mixture, in particular when very high powers are required.
EP02708069A 2001-03-13 2002-03-13 Cathode compositions and use thereof, particularly in electrochemical generators Withdrawn EP1384276A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA002340798A CA2340798A1 (en) 2001-03-13 2001-03-13 Cathode compositions and their uses, particularly in electrochemical generators
CA2340798 2001-03-13
PCT/CA2002/000341 WO2002073716A2 (en) 2001-03-13 2002-03-13 Cathode compositions and use thereof, particularly in electrochemical generators

Publications (1)

Publication Number Publication Date
EP1384276A2 true EP1384276A2 (en) 2004-01-28

Family

ID=4168594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02708069A Withdrawn EP1384276A2 (en) 2001-03-13 2002-03-13 Cathode compositions and use thereof, particularly in electrochemical generators

Country Status (5)

Country Link
US (1) US20040029011A1 (en)
EP (1) EP1384276A2 (en)
AU (1) AU2002242525A1 (en)
CA (1) CA2340798A1 (en)
WO (1) WO2002073716A2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524397B1 (en) 2004-11-08 2013-09-03 Quallion Llc Battery having high rate and high capacity capabilities
US7632317B2 (en) 2002-11-04 2009-12-15 Quallion Llc Method for making a battery
US7041239B2 (en) * 2003-04-03 2006-05-09 Valence Technology, Inc. Electrodes comprising mixed active particles
US20070141468A1 (en) * 2003-04-03 2007-06-21 Jeremy Barker Electrodes Comprising Mixed Active Particles
FR2864349B1 (en) * 2003-12-23 2014-08-15 Cit Alcatel ELECTROCHEMICALLY ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE ELECTROCHEMICAL ELECTROCHEMICAL GENERATOR POSITIVE ELECTRODE
FR2872633B1 (en) * 2004-07-02 2006-09-15 Commissariat Energie Atomique METHOD FOR CHARGING A LITHIUM-ION BATTERY WITH NEGATIVE ELECTRODE
US20070057228A1 (en) * 2005-09-15 2007-03-15 T/J Technologies, Inc. High performance composite electrode materials
US20070111099A1 (en) * 2005-11-15 2007-05-17 Nanjundaswamy Kirakodu S Primary lithium ion electrochemical cells
JP5250948B2 (en) * 2006-07-28 2013-07-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR101175375B1 (en) * 2006-09-14 2012-08-20 주식회사 엘지화학 Lithium secondary battery and preparation method thereof
US8197719B2 (en) * 2006-11-17 2012-06-12 American Lithium Energy Corp. Electroactive agglomerated particles
US20080248375A1 (en) * 2007-03-26 2008-10-09 Cintra George M Lithium secondary batteries
US20080240480A1 (en) * 2007-03-26 2008-10-02 Pinnell Leslie J Secondary Batteries for Hearing Aids
US20080241645A1 (en) * 2007-03-26 2008-10-02 Pinnell Leslie J Lithium ion secondary batteries
US8057711B2 (en) * 2008-02-29 2011-11-15 Byd Company Limited Composite compound with mixed crystalline structure
US8062559B2 (en) * 2008-02-29 2011-11-22 Byd Company Limited Composite compound with mixed crystalline structure
US8062560B2 (en) * 2008-02-29 2011-11-22 Byd Company Limited Composite compound with mixed crystalline structure
US20090220858A1 (en) * 2008-02-29 2009-09-03 Byd Company Limited Composite Compound With Mixed Crystalline Structure
US8052897B2 (en) * 2008-02-29 2011-11-08 Byd Company Limited Composite compound with mixed crystalline structure
JP5244966B2 (en) * 2008-03-26 2013-07-24 ビーワイディー カンパニー リミテッド Cathode material for lithium batteries
US20090297950A1 (en) * 2008-05-30 2009-12-03 Dongguan Amperex Technology Co., Ltd. Lithium battery
JP5376894B2 (en) 2008-10-20 2013-12-25 古河電池株式会社 Multi-component phosphoric acid lithium compound particles having an olivine structure, a method for producing the same, and a lithium secondary battery using the same as a positive electrode material
US9231252B2 (en) 2009-08-09 2016-01-05 American Lithium Energy Corp. Electroactive particles, and electrodes and batteries comprising the same
JP2013004421A (en) * 2011-06-20 2013-01-07 Namics Corp Lithium ion secondary battery
EP2629353A1 (en) * 2012-02-17 2013-08-21 Belenos Clean Power Holding AG Non-aqueous secondary battery having a blended cathode active material
KR101560862B1 (en) * 2012-08-02 2015-10-15 주식회사 엘지화학 Positive-electrode active material with improved output property, and lithium secondary battery comprising the same
CN103904329B (en) * 2012-12-27 2016-12-28 清华大学 Lithium ion battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69404602T2 (en) * 1993-10-07 1998-01-29 Matsushita Electric Ind Co Ltd Manufacturing method of a separator for a lithium secondary battery and a lithium secondary battery with organic electrolyte using such a separator
JP2966261B2 (en) * 1993-11-02 1999-10-25 三菱電線工業株式会社 Positive electrode material for lithium battery and method for producing the same
US5910382A (en) * 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
TW525313B (en) * 2000-04-25 2003-03-21 Sony Corp Positive electrode active material and non-aqueous electrolyte cell
JP3959929B2 (en) * 2000-04-25 2007-08-15 ソニー株式会社 Positive electrode and non-aqueous electrolyte battery
US6432581B1 (en) * 2000-05-11 2002-08-13 Telcordia Technologies, Inc. Rechargeable battery including an inorganic anode
CA2320661A1 (en) * 2000-09-26 2002-03-26 Hydro-Quebec New process for synthesizing limpo4 materials with olivine structure
JP2002279989A (en) * 2001-03-16 2002-09-27 Sony Corp Battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02073716A2 *

Also Published As

Publication number Publication date
WO2002073716A2 (en) 2002-09-19
AU2002242525A1 (en) 2002-09-24
CA2340798A1 (en) 2002-09-13
WO2002073716A3 (en) 2003-09-25
US20040029011A1 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
EP1384276A2 (en) Cathode compositions and use thereof, particularly in electrochemical generators
Mao et al. Balancing formation time and electrochemical performance of high energy lithium-ion batteries
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
EP1493202B1 (en) Lithium electrochemical generator comprising at least a bipolar electrode with conductive aluminium or aluminium alloy substrates
KR100700711B1 (en) Hybrid electrical energy storage apparatus
JP2008034368A (en) Lithium ion storage battery containing contains tio2-b as anode active substance
EP2156503A1 (en) Plastic crystal electrolyte with a broad potential window
JP2011216272A (en) Electrode material composition and lithium ion battery
CN102447134A (en) Method for producing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
EP2524410B1 (en) Lithium-based electrochemical generator including two types of distinct electrochemical cells
WO2015136199A1 (en) Long-life lithium-ion batteries
WO2000031811A1 (en) Hydrogenated fullerenes as an additive to carbon anode for rechargeable lithium-ion batteries
CN102549819B (en) Nonaqueous electrolyte lithium ion secondary battery
WO2023044934A1 (en) Secondary battery, battery module, battery pack, and power-consuming apparatus
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
KR20180066694A (en) Cathode composite with high power performance and all solid lithium secondary battery comprising the same
US20220102725A1 (en) Silicon-containing electrochemical cells and methods of making the same
EP2583347B1 (en) Lithium electrochemical accumulator having a bipolar architecture and operating with a lithium-sulphur compound electrode pair
KR20240016355A (en) Lithium-ion battery with high-performance electrolyte and silicon oxide active material that achieves long life, fast charging, and high thermal stability
KR20230029988A (en) Lithium ion battery having a negative electrode with a silicon-based active material and a water-based binder with good adhesion and cohesion
EP3701580B1 (en) Current collector and current collector-electrode assembly for an accumulator operating according to the principle of ion insertion and deinsertion
US20210074999A1 (en) Systems and Methods of Making Solid-State Batteries and Associated Solid-State Battery Anodes
EP3121883B1 (en) Electrode for non-aqueous electrolyte secondary battery
Ajuria et al. An ultrafast battery performing as a supercapacitor: Electrode tuning for high power performance
US20220069291A1 (en) Composite material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ARMAND, MICHEL

Inventor name: RAVET, NATHALIE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ARMAND, MICHEL

Inventor name: RAVET, NATHALIE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071002