EP1373829A1 - High-frequency ultrasound measurement of partial layer thickness of thin-walled tubes by a contact method - Google Patents

High-frequency ultrasound measurement of partial layer thickness of thin-walled tubes by a contact method

Info

Publication number
EP1373829A1
EP1373829A1 EP02727421A EP02727421A EP1373829A1 EP 1373829 A1 EP1373829 A1 EP 1373829A1 EP 02727421 A EP02727421 A EP 02727421A EP 02727421 A EP02727421 A EP 02727421A EP 1373829 A1 EP1373829 A1 EP 1373829A1
Authority
EP
European Patent Office
Prior art keywords
coupling
thin
thickness
layer thickness
walled tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02727421A
Other languages
German (de)
French (fr)
Other versions
EP1373829B1 (en
Inventor
Martin Dust
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Framatome ANP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Framatome ANP GmbH filed Critical Framatome ANP GmbH
Publication of EP1373829A1 publication Critical patent/EP1373829A1/en
Application granted granted Critical
Publication of EP1373829B1 publication Critical patent/EP1373829B1/en
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • G01B17/025Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness for measuring thickness of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0422Shear waves, transverse waves, horizontally polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the invention relates to a method for ultrasound measurement 7 of partial layer thicknesses on thin-walled tubes.
  • Pipes of this type are, for example, cladding tubes of nuclear fuels, which 9 have a wall thickness of 1 mm and less. On the outside or inside, such pipes are often with a duplex or
  • liner layer 12 Provides liner layer.
  • the thickness of liner layer 12 is often only 0.15 mm and less. 13
  • the object of the invention is to provide an ultrasound method.
  • 32 pelflache is a narrow rectangle.
  • the received echo signals have a reduced intensity
  • Ratio can be determined by using digital recording
  • processing and processing methods e.g. by overlaying echo pulse sequences.
  • Fig.2 shows a detail from Fig.l that the cladding tube and an is probe is enlarged.
  • Fig.l shows an apparatus for a method for ultra
  • 22 tube 1 has a diameter of 10 mm and a wall thickness
  • the cladding tube is e.g. outside with a
  • Liner layer 2 provided.
  • the oscilloscope 6 is a DV system, for example a PC 7
  • test head 3 is coupled to the pipe surface using contact technology, the pipe surface being wetted with a conventional coupling medium, for example water, oil or glycerin.
  • a conventional coupling medium for example water, oil or glycerin.
  • the evaluable sound bundle 10 is limited to a narrow area, which is predetermined by the contact surface 11 between the pipe surface 12 and the coupling surface 4.
  • the gap spaces 14 adjoining the contact surface 11 on both sides are also at least to a certain extent filled with coupling medium 8, which for practical reasons can hardly be avoided. These gaps generally produce disruptive echo signals that can affect the layer thickness measurement. These disturbances are strongly damped by the selected geometry of a flat coupling surface 4. An ultrasound beam 15 irradiated outside the contact surface 11 is not reflected back to its starting point due to the pipe bend 12. The long-lasting "ringing" that is known in plane-parallel columns does not occur. However, this negative effect can occur with test heads with a contact surface that is adapted to the pipe curvature.
  • a sound wave 13 radiated from the coupling surface 4 outside the contact surface 11 and widened by the relatively long coupling medium path in the gap spaces 14 and is therefore not suitable for the measurement task is caused by the flat coupling surface 4 and the curved one
  • Pipe surface 12 of the given geometry is deflected radially outwards, so it does not generate an echo signal which interferes with the measurement result.
  • the coupling medium does not interfere with the sound coupling, since here there is practically only direct material contact and the coupling medium essentially only fills the microscopic cavities given by the roughness of the surfaces in contact with one another. However, these cavities do not interfere with the sound coupling, since they have dimensions that are far below a wavelength of the HF ultrasound.
  • the method can of course also be used to measure the entire tube wall thickness. Furthermore, the layer thicknesses of multi-layered pipes can of course also be measured using the proposed method.
  • the received echoes are correspondingly weak.
  • the electronic noise can be filtered out by homologously superimposing several ultrasound shots.
  • interference signals caused by incomplete damping of the test head or by transverse waves can also be suppressed or at least reduced with the aid of the technology mentioned, as a result of which the signal / interference ratio can be improved.
  • Envelope liner layer Ultrasonic test head Coupling surface Ultrasonic test device Oscilloscope PC Coupling medium Contact surface Sound bundle Contact surface Pipe surface Sound wave Gap space Ultrasonic beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

A method for ultrasound measurement of the layer thickness of thin-walled tubes includes utilizing a high-frequency probe (more than 40 MHz) with a coupling area having a planar area surface. The area surface is coupled to the tube surface that is wetted with a coupling agent by way of a contact method. The inventive method is used for duplex or liner layers of 0.15 mm thickness of reactor fuel cladding tubes.

Description

Be s ehr e ibung Be honest
HOCHFREQUENTE ULTRASCHALLMESSUNG VON TE.ILSCHICHTDICKEN DÜNNWANDIGER ROHRE IN KONTAKTTECHNIKHIGH-FREQUENCY ULTRASONIC MEASUREMENT OF PARTIAL LAYER THIN-WALLED TUBES IN CONTACT TECHNOLOGY
β Die Erfindung betrifft ein Verfahren zur Ultraschallmessung 7 von Teilschichtdicken an dünnwandigen Rohren. Rohre dieser β Art sind beispielsweise Hüllrohre von Kernbrennstoffen, die 9 eine Wanddicke von 1mm und weniger aufweisen. Außen- oder in- 10 nenseitig sind solche Rohre vielfach mit einer Duplex- oderThe invention relates to a method for ultrasound measurement 7 of partial layer thicknesses on thin-walled tubes. Pipes of this type are, for example, cladding tubes of nuclear fuels, which 9 have a wall thickness of 1 mm and less. On the outside or inside, such pipes are often with a duplex or
11 Linerschicht versehen. Die Dicke von Linerschichte beträgt 12 oft nur 0,15 mm und weniger. 1311 Provide liner layer. The thickness of liner layer 12 is often only 0.15 mm and less. 13
14 In US 4,918,989 ist ein Verfahren zur Bestimmung der Liner-14 US 4,918,989 describes a method for determining the liner
15 schichtdicke eines Kernbrennstoffhüllrohres beschrieben, bei ιe dem die Schallankopplung über eine Wasservorlaufstrecke in15 layer thickness of a nuclear fuel cladding described, in which the sound coupling over a water inlet section in
17 Tauchtechnik erfolgt. Mit diesem Verfahren lassen sich jedoch is nur inerschichtdicken mit ausreichender Genauigkeit bestim-17 diving technology. With this method, however, only layer thicknesses can be determined with sufficient accuracy.
19 men, die eine Dicke von mehr als 0,4 mm aufweisen.19 men that have a thickness of more than 0.4 mm.
2020
21 Aufgabe der Erfindung ist es, ein Ultraschallverfahren vorzu-21 The object of the invention is to provide an ultrasound method.
22 schlagen, mit dem Teilschichtdicken dünnwandiger Rohre mit22, with the partial layer thickness of thin-walled pipes
23 hoher Messgenauigkeit bestimmbar sind.23 high measuring accuracy can be determined.
2424
25 Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des25 This task is accomplished by a procedure with the characteristics of
26 Anspruches 1 gelöst. Danach wird ein Hochfrequenz-Prüfköpf26 Claim 1 solved. Then a high-frequency test head
27 (HF-Prüfkopf) mit einer Ankoppelflache verwendet, die einen27 (HF test head) with a coupling surface, the one
2β planaren Flächenbereich aufweist, wobei dieser Flächenbereich2β has planar surface area, this surface area
29 an die mit einem Koppelmedium benetzte Rohroberfläche in Kon-29 in contact with the pipe surface wetted with a coupling medium
30 takttechnik angekoppelt wird. Die Verwendung von hochfrequen-30 cycle technology is coupled. The use of high-frequency
31 tem Ultraschall für messtechnische Zwecke ist zwar grundsätz-31 ultrasound for measurement purposes is fundamentally
32 lieh bekannt, sie wurde aber noch nicht für die Bestimmung32 borrowed, but has not yet been designated
33 von Schichtdicken dünnwandiger Rohre eingesetzt. Die Ankopp-33 of layer thicknesses of thin-walled tubes are used. The coupling
34 lung erfolgte bisher in Tauch- oder Pfützentechnik. Bei die- 1 ser Ankopplungsart ist der Einsatz von hochfrequentem Ultra-Up to now, the treatment has been carried out using immersion or puddle technology. With this- 1 type of coupling is the use of high-frequency ultra-
2 schall, also Ultraschall von mehr als 40 MHz nicht möglich,2 sound, i.e. ultrasound of more than 40 MHz not possible,
3 da Wasser solche Schallfrequenzen nur schlecht übertragen3 because water only poorly transmits such sound frequencies
4 kann. Aus „Ultraschallprüfung" Springerverlag, Berlin Heidel- s berg 1997, S.239-241 sind Prüfköpfe für die Ultraschallprü- 4 can. From "Ultrasonic Testing" Springerverlag, Berlin Heidelberg 1997, p.239-241 are test heads for the ultrasonic test
6 fung von Rohren bekannt, bei denen die Ankoppelflache eine6 tion of pipes in which the coupling surface is known
7 der Rohroberfläche entsprechende Krümmung aufweist. Würde man s solche Prüfkδpfe für die in Rede stehende Messaufgabe verwen- 9 den, wäre eine äußerst exakte und aufwendige Anpassung der7 has the curvature corresponding to the pipe surface. If one were to use such test heads for the measurement task in question, 9 it would be an extremely exact and complex adjustment of the
10 mit einander zu kontaktierenden Krümmungsflächen erforder-10 curved surfaces to be contacted with each other
11 lieh, um die Entstehung von Spalträumen und damit von stδren-11 lent to the formation of gap spaces and thus
12 den Echosignalen zu verhindern. Bei Verwendung eines Prüfkop-12 to prevent the echo signals. When using a test head
13 fes mit einem planebenen Ankoppelflächenbereich oder mit ei-13 fixed with a flat coupling area or with a
14 ner insgesamt planebenen Koppelfläche wird dieser Effekt da-14 overall planar coupling surface, this effect is
15 gegen verhindert. Die Schalleinstrahlung erfolgt nur über ei- ιe nen schmalen etwa rechteckförmigen, durch den direkten Mate-15 against prevented. The sound radiation occurs only through a narrow, approximately rectangular, through the direct material
17 rialkontakt zwischen Prüfkopf und Rohroberfläche gebildeten17 rial contact formed between the test head and pipe surface
18 Flächenbereich. Außerhalb dieses Bereiches abgestrahlte18 surface area. Radiated outside this range
19 Schallwellen werden durch Reflexion an der gekrümmten Rohr-19 sound waves are generated by reflection on the curved tube
20 Oberfläche aus dem Strahlengang entfernt und durch Brechung20 surface removed from the beam path and by refraction
21 an der Rohroberfläche radial nach außen abgelenkt und erzeu-21 deflected radially outwards on the pipe surface and
22 gen keine vom Prüfköpf detektierbaren Echosignale. Ein weite-22 no echo signals detectable by the test head. Another
23 rer Vorteil des vorgeschlagenen Verfahrens besteht darin,The advantage of the proposed method is that
24 dass ein und der selbe Prüfkopf für die Messung von Rohren24 that one and the same test head for the measurement of pipes
25 unterschiedlichen Durchmessers verwendbar ist. Dagegen wären25 different diameters can be used. Would be against
26 Prüfkδpfe mit gekrümmter Ankoppelflache allenfalls nur für26 test heads with curved coupling surface at most only for
27 einen bestimmten Rohrdurchmesser geeignet. Problematisch da-27 suitable for a certain pipe diameter. Problematic-
28 bei ist noch, dass bei Rohren an verschiedenen Messstellen28 at is still that with pipes at different measuring points
29 unterschiedliche Rohroberflächen vorhanden sein können. Bei29 different pipe surfaces can be available. at
30 dem vorgeschlagenen Verfahren dagegen ist die Qualität derHowever, the proposed procedure is the quality of the
31 Rohroberfläche von untergeordneter Bedeutung, da die Ankop-31 Pipe surface of minor importance because the coupling
32 pelflache ein schmales Rechteck ist.32 pelflache is a narrow rectangle.
3333
Aufgrund des nur sehr eng begrenzten Ankoppelbereiches steht nur ein Teil des vom Schwinger des Prüfkopfes erzeugten Sen- 1 deimpulses für die Messung zur Verfügung. DementsprechendDue to the very narrowly limited coupling area, only a part of the sensor generated by the transducer 1 deimpulses available for the measurement. Accordingly
2 weisen die empfangenen Echosignale eine verringerte Intensi-2, the received echo signals have a reduced intensity
3 tat auf .3 opened.
44
5 Ein sich z.B. daraus ergebendes ungünstiges Signal/Stδr-5 For example resulting unfavorable signal / interference
6 Verhältnis lässt sich durch die Anwendung digitaler Aufzeich-6 Ratio can be determined by using digital recording
7 nungs- und Verarbeitungsverfahren, z.B. durch Überlagerung s von Echoimpulsfolgen, verbessern.7 processing and processing methods, e.g. by overlaying echo pulse sequences.
99
10 Die Erfindung wird nun anhand eines in den beigefügten Zeich-10 The invention will now be described on the basis of a
11 nungen dargestellten AusführungsbeiSpieles näher erläutert.11 illustrated execution example explained in more detail.
12 Es zeigen:12 It shows:
13 u Fig.l eine Vorrichtung für ein Verfahren zur Messung der13 u Fig.l a device for a method for measuring the
15 Schichtdicke eines dünnwandigen Kernbrennstoffhüll-15 layer thickness of a thin-walled nuclear fuel envelope
16 rohres ,16 tubes,
17 Fig.2 ein Detail aus Fig.l, dass das Hüllrohr und einen is Prüfköpf vergrößert darstellt.17 Fig.2 shows a detail from Fig.l that the cladding tube and an is probe is enlarged.
1919
20 Fig.l zeigt eine Vorrichtung für ein Verfahren zur Ultra-20 Fig.l shows an apparatus for a method for ultra
21 Schallmessung eines Kernbrennstoffhüllrohres 1. Das Hüll-21 Sound measurement of a nuclear fuel cladding tube 1. The cladding
22 röhr 1 weist einen Durchmesser von 10 mm und eine Wanddicke22 tube 1 has a diameter of 10 mm and a wall thickness
23 von 0,6 mm auf. Das Hüllrohr ist z.B. außenseitig mit einer23 from 0.6 mm. The cladding tube is e.g. outside with a
24 Linerschicht 2 versehen. Das Hüllrohr 1 und die Liner-24 Liner layer 2 provided. The cladding tube 1 and the liner
25 Schicht 2 mit einer maximalen Dicke von 0,15 mm bestehen aus25 layer 2 with a maximum thickness of 0.15 mm consist of
26 Zirkoniumlegierungen, die sich in ihrer Zusammensetzung und26 zirconium alloys, which differ in their composition and
27 damit in ihrer Schallimpedanz voneinander unterscheiden. An27 differ from each other in their sound impedance. On
28 der Rohroberfläche ist ein Ultraschallprüfkopf 3 mit einer28 of the tube surface is an ultrasonic probe 3 with a
29 planebenen Ankoppelflache 4 angeordnet. Die vom Ultraschall-29 flat coupling surface 4 arranged. The ultrasound
30 prüfkopf 3 empfangenen Echosignale werden von einem Ultra-30 probe 3 received echo signals are from an ultra
31 schallprüfgerät 5 aufgenommen und von einem digitalen Oszil-31 sound test device 5 and recorded by a digital oscillator
32 loskop 6 in Form beispielsweise eines HF-Bildes aufgezeich-32 loskop 6 recorded in the form of, for example, an RF image
33 net. Zur Weiterverarbeitung der Daten des HF-Bildes ist an33 net. To process the data of the HF image is on
34 das Oszilloskop 6 eine DV-Anlage, beispielsweise ein PC 734 the oscilloscope 6 is a DV system, for example a PC 7
35 angeschlossen. Die Ankopplung des Prüfkopfes 3 an die Rohroberfläche er- folgt in Kontakttechnik, wobei die Rohroberfläche mit einem üblichen Koppelmedium, beispielsweise Wasser, Öl oder Glyce- rin benetzt ist .35 connected. The test head 3 is coupled to the pipe surface using contact technology, the pipe surface being wetted with a conventional coupling medium, for example water, oil or glycerin.
Wie insbesondere Fig.2 zu entnehmen ist, beschränkt sich das auswertbare Schallbündel 10 auf einen schmalen, durch die Kontaktfläche 11 zwischen der Rohroberfläche 12 und der Ankoppelfläche 4 vorgegebenen Bereich.As can be seen in particular in FIG. 2, the evaluable sound bundle 10 is limited to a narrow area, which is predetermined by the contact surface 11 between the pipe surface 12 and the coupling surface 4.
Die sich an die Kontaktfläche 11 beidseitig nach außen an- schließenden Spalträume 14 sind zumindest zu einem gewissen Teil ebenfalls mit Koppelmedium 8 gefüllt, was sich aus prak- tischen Gründen kaum vermeiden lässt. Durch diese Spalträume entstehen grundsätzlich störende Echosignale, die die Schichtdickenmessung beeinträchtigen können. Durch die ge- wählte Geometrie einer ebenen Ankoppelflache 4 werden diese Störungen stark gedämpft. Ein außerhalb der Kontaktfläche 11 eingestrahlter Ultraschall-Strahl 15 wird aufgrund der Rohr- krümmung 12 nicht wieder zu seinem Ausgangspunkt zurück re- flektiert. Das in planparallelen Spalten bekannte, lang an- haltende „Klingeln" entsteht nicht. Dieser negative Effekt kann jedoch bei Prüfköpfen mit einer der Rohrkrümmung ange- passten Kontaktfläche auftreten.The gap spaces 14 adjoining the contact surface 11 on both sides are also at least to a certain extent filled with coupling medium 8, which for practical reasons can hardly be avoided. These gaps generally produce disruptive echo signals that can affect the layer thickness measurement. These disturbances are strongly damped by the selected geometry of a flat coupling surface 4. An ultrasound beam 15 irradiated outside the contact surface 11 is not reflected back to its starting point due to the pipe bend 12. The long-lasting "ringing" that is known in plane-parallel columns does not occur. However, this negative effect can occur with test heads with a contact surface that is adapted to the pipe curvature.
Eine von der Ankoppelfläche 4 außerhalb der Kontaktfläche 11 abgestrahlte und durch die verhältnismäßig lange Koppelmediumstrecke in den Spalträumen 14 verbreiterte und daher für die Messaufgabe nicht geeignete Schallwelle 13 wird aufgrund der durch die planebene Ankoppelflache 4 und die gekrümmteA sound wave 13 radiated from the coupling surface 4 outside the contact surface 11 and widened by the relatively long coupling medium path in the gap spaces 14 and is therefore not suitable for the measurement task is caused by the flat coupling surface 4 and the curved one
Rohroberfläche 12 vorgegebenen Geometrie radial nach außen abgelenkt, erzeugt also kein das Messergebnis störendes Echo- signal. Im Bereich der Kontaktfläche 11 wirkt sich das Kop- pelmedium auf die Schallankoppelung nicht störend aus, da hier praktisch nur ein direkter Materialkontakt vorliegt und das Koppelmedium im wesentlichen nur die durch die Rauhigkeit der miteinander in Kontakt stehenden Oberflächen gegebenen mikroskopischen Hohlräume füllt. Diese Hohlräume stören aber die Schallankopplung nicht, da sie Abmessungen aufweisen, die weit unterhalb einer Wellenlänge des HF-Ultraschalls liegen.Pipe surface 12 of the given geometry is deflected radially outwards, so it does not generate an echo signal which interferes with the measurement result. In the area of the contact surface 11, the coupling medium does not interfere with the sound coupling, since here there is practically only direct material contact and the coupling medium essentially only fills the microscopic cavities given by the roughness of the surfaces in contact with one another. However, these cavities do not interfere with the sound coupling, since they have dimensions that are far below a wavelength of the HF ultrasound.
Das Verfahren kann selbstverständlich auch zur Messung der gesamten Rohrwanddicke angewendet werden. Weiterhin sind selbstverständlich auch die Schichtdicken von mehrfach geschichteten Rohren mit dem vorgeschlagenen Verfahren messbar.The method can of course also be used to measure the entire tube wall thickness. Furthermore, the layer thicknesses of multi-layered pipes can of course also be measured using the proposed method.
Aufgrund des eng begrenzten auswertbaren Schallbündels 10 sind die empfangenen Echos entsprechend schwach. Durch Anwen- düng digitaler Signalverarbeitungstechniken kann jedoch bei- spielsweise das elektronische Rauschen durch homologe Überla- gerung mehrerer Ultraschallschüsse herausgefiltert werden. Darüber hinaus lassen sich auch beispielsweise durch unvoll- ständige Dämpfung des Prüfkopfes oder durch Transversalwellen hervorgerufene Störsignale mit Hilfe der genannten Technik unterdrücken oder zumindest verringern, wodurch das Sig- nal/Stör-Verhältnis verbessert werden kann. Due to the narrowly limited evaluable sound bundle 10, the received echoes are correspondingly weak. However, using digital signal processing techniques, for example, the electronic noise can be filtered out by homologously superimposing several ultrasound shots. In addition, interference signals caused by incomplete damping of the test head or by transverse waves can also be suppressed or at least reduced with the aid of the technology mentioned, as a result of which the signal / interference ratio can be improved.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Hüllröhr Linerschicht Ultraschallprüfkopf Ankoppelflache Ultraschallprüfgerät Oszilloskop PC Koppelmedium Kontaktfläche Schallbündel Kontaktfläche Rohroberfläche Schallwelle Spaltraum Ultraschall-Strahl Envelope liner layer Ultrasonic test head Coupling surface Ultrasonic test device Oscilloscope PC Coupling medium Contact surface Sound bundle Contact surface Pipe surface Sound wave Gap space Ultrasonic beam

Claims

Ansprüche Expectations
1. Verfahren zur Ultraschallmessung von Schichtdicken in dünnwandigen Rohren, gekennzeichnet durch die Verwendung eines Hochfrequenz-Prüfköpfes (3) mit ei- ner Ankoppelflache (4) , die einen planebenen Flächenbe- reich aufweist, wobei dieser Flächenbereich an die mit einem Koppelmedium (8) benetzte Rohroberfläche (12) in Kontakttechnik angekoppelt wird.1. Method for ultrasound measurement of layer thicknesses in thin-walled tubes, characterized by the use of a high-frequency test head (3) with a coupling surface (4), which has a plane surface area, this surface area being connected to a coupling medium (8) wetted pipe surface (12) is coupled in contact technology.
2. Verfahren nach Anspruch 1, gekennzeichnet durch eine Ankoppelflache (4) mit insgesamt planebener Ausges- taltung.2. The method according to claim 1, characterized by a coupling surface (4) with an overall planar design.
3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die vom Prüfköpf (3) empfangenen Echosignale in di- gitaler Form aufgezeichnet und zur Verbesserung des Sig- nal/Stör-Verhältnisses digital weiter verarbeitet wer- den .3. The method according to claim 1 or 2, characterized in that the echo signals received by the test head (3) are recorded in digital form and digitally processed to improve the signal / interference ratio.
4. Verfahren nach einem der Ansprüche 1-3 gekennzeichnet durch die Verwendung für Rohre, deren Wanddicke ≤ 1mm ist.4. The method according to any one of claims 1-3 characterized by the use for pipes whose wall thickness is ≤ 1mm.
5. Verfahren nach einem der Ansprüche 1-4 dadurch gekennzeichnet, dass es für die Dickenmessung einer inneren oder äußeren Linerschicht (2) eines Kernbrennstoff-Hüllrohres (1) verwendet wird, wobei die Dicke der Linerschicht ca. 0,15 mm ist. 5. The method according to any one of claims 1-4, characterized in that it for the thickness measurement of an inner or outer liner layer (2) of a nuclear fuel cladding tube (1) is used, the thickness of the liner layer being approximately 0.15 mm.
EP02727421A 2001-03-28 2002-03-15 High-frequency ultrasound measurement of partial layer thickness of thin-walled nuclear fuel cladding tubes by a contact method Withdrawn - After Issue EP1373829B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10115328 2001-03-28
DE10115328A DE10115328A1 (en) 2001-03-28 2001-03-28 Method for ultrasonic measurement of partial layer thicknesses of thin-walled pipes
PCT/EP2002/002888 WO2002079725A1 (en) 2001-03-28 2002-03-15 High-frequency ultrasound measurement of partial layer thickness of thin-walled tubes by a contact method

Publications (2)

Publication Number Publication Date
EP1373829A1 true EP1373829A1 (en) 2004-01-02
EP1373829B1 EP1373829B1 (en) 2004-12-15

Family

ID=7679410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02727421A Withdrawn - After Issue EP1373829B1 (en) 2001-03-28 2002-03-15 High-frequency ultrasound measurement of partial layer thickness of thin-walled nuclear fuel cladding tubes by a contact method

Country Status (8)

Country Link
US (1) US20040069066A1 (en)
EP (1) EP1373829B1 (en)
JP (1) JP2004524536A (en)
KR (1) KR20030081533A (en)
CN (1) CN1500201A (en)
AT (1) ATE285064T1 (en)
DE (2) DE10115328A1 (en)
WO (1) WO2002079725A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258693B4 (en) * 2002-12-16 2006-06-01 Hjs Fahrzeugtechnik Gmbh & Co. Process for coating one or both sides of flat filter material with a dispersion of catalytically active components and a suitable solvent
CN102183229B (en) * 2011-02-25 2012-07-11 武汉大学 Ultrasonic detection method of scale thickness in pipeline
KR101222012B1 (en) 2011-07-08 2013-01-14 한전원자력연료 주식회사 Measuring device for the fuel rod outside diameter of nuclear fuel assembly
CN102980539A (en) * 2012-11-19 2013-03-20 河北省电力公司电力科学研究院 Method for measuring thicknesses of metal layer and oxide layer of wall of boiler heating surface tube
CN103134449A (en) * 2013-01-29 2013-06-05 浙江省质量检测科学研究院 Detecting method for plastic pipeline wall thickness ultrasonic
CN104792876A (en) * 2015-04-16 2015-07-22 西安热工研究院有限公司 Nondestructive testing method for peel-off of oxidation layer on inner wall of boiler tube
CN111397554A (en) * 2020-04-09 2020-07-10 雷昌贵 Ultrasonic thickness gauge for pipeline detection
CN114485497B (en) * 2022-01-27 2023-01-06 大连理工大学 Double-layer thin-wall structure fit clearance ultrasonic measurement device and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2743394C3 (en) * 1977-09-27 1980-06-26 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Device for attaching a sonic or ultrasonic transducer intended for level measurement to a container
JPS57154009A (en) * 1981-03-19 1982-09-22 Sumitomo Metal Ind Ltd Measurement of thickness of composite object composed of zirconium layer and zirconium alloy layer
JPS60142210A (en) * 1983-12-29 1985-07-27 Mitsubishi Metal Corp Method for measuring thickness of composite material made of zirconium alloy and zirconium
US4669310A (en) * 1986-03-26 1987-06-02 The Babcock & Wilcox Company High frequency ultrasonic technique for measuring oxide scale on the inner surface of boiler tubes
US4953147A (en) * 1987-11-04 1990-08-28 The Stnadard Oil Company Measurement of corrosion with curved ultrasonic transducer, rule-based processing of full echo waveforms
FR2629586B1 (en) * 1988-03-30 1992-01-03 Cezus Co Europ Zirconium METHOD FOR ULTRASONIC CONTROL OF THE PLACEMENT THICKNESS OF A METAL TUBE, CORRESPONDING DEVICE AND APPLICATION TO TUBES OF ZR PLATE ALLOY
US5349860A (en) * 1989-11-28 1994-09-27 Nkk Corporation Apparatus for measuring the thickness of clad material
US4991440A (en) * 1990-02-05 1991-02-12 Westinghouse Electric Corp. Method of ultrasonically measuring thickness and characteristics of zirconium liner coextruded with zirconium tube
US5038615A (en) * 1990-05-11 1991-08-13 General Motors Corporation Ultrasonic multilayer paint thickness measurement
FR2663115B1 (en) * 1990-06-08 1994-04-15 Framatome METHOD AND DEVICE FOR CONTROLLING THE THICKNESS AND THE COHESION OF THE INTERFACE OF A DUPLEX TUBE.
DE4239159C2 (en) * 1992-11-21 1995-11-30 Fraunhofer Ges Forschung Device for the non-destructive measurement of the thickness of a hardness layer
US5661241A (en) * 1995-09-11 1997-08-26 The Babcock & Wilcox Company Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
GB9711413D0 (en) * 1997-06-04 1997-07-30 Sonic Technologies Limited Measuring the thickness of a liner for a pipe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02079725A1 *

Also Published As

Publication number Publication date
EP1373829B1 (en) 2004-12-15
US20040069066A1 (en) 2004-04-15
DE50201782D1 (en) 2005-01-20
KR20030081533A (en) 2003-10-17
ATE285064T1 (en) 2005-01-15
DE10115328A1 (en) 2002-10-10
WO2002079725A1 (en) 2002-10-10
CN1500201A (en) 2004-05-26
JP2004524536A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
EP1649301B1 (en) Method and circuit arrangement for disturbance-free examination of objects by means of ultrasonic waves
DE4103808C2 (en) Device for non-destructive crack and dimension testing of thin-walled tubular elements
DE3036951C2 (en) Method for acoustic emission testing of containers or pipelines made of steel, in particular for nuclear reactor plants
EP2335064B1 (en) Pulse-echo method by means of an array-type probe and temperature compensation
DE4424555A1 (en) Detection of corrosion fatigue cracks in diaphragm boiler tubes
EP1762841B1 (en) Method and device for ultrasonic testing of a workpiece having an uneven surface
EP0640214B1 (en) Ultrasonic method for the inspection of point welds between metal plates
AT391210B (en) METHOD FOR DETERMINING THE TYPE OF DOT-SHAPED AND LENGTH-EXTENDED INDIVIDUAL ERRORS IN WORKPIECES BY MEANS OF ULTRASOUND
EP2676131B1 (en) Method for reducing ultrasonic data
DE2420094A1 (en) METHOD AND DEVICE FOR DETERMINING DEFECTS IN A PIPE WALL
DE10254053A1 (en) Method and device for determining and / or monitoring a volume and / or mass flow
EP1373829A1 (en) High-frequency ultrasound measurement of partial layer thickness of thin-walled tubes by a contact method
DE102008041831A1 (en) Impulse echo method with determination of the lead body geometry
DE102018208824A1 (en) Method for the non-destructive examination of a specimen by means of ultrasound
DE69938407T2 (en) Method and apparatus for the ultrasonic testing of steel tubes
DE10214678B4 (en) Process for the non-destructive determination of deposits and incrustations in liquid-filled containers or pipelines
DE10115329C2 (en) Ultrasonic method for measuring the thickness of weakly reflecting partial layers of a multilayer component
DE1773075A1 (en) Ultrasonic testing method for ultrasonic angle beam testing devices with return beam block
DE3309470C2 (en)
EP3794342A1 (en) Method for adjusting and calibrating testing devices for ultrasonic testing of workpieces
DE3017900A1 (en) METHOD FOR THE ACCURATE AUTOMATIC SETTING OF THE FAULT EXPECTING AREA OF ULTRASONIC TEST SYSTEMS THAT WORK AFTER THE PULSE-ECHO METHOD
EP2273260B1 (en) Improved non-destructive inspection of high pressure lines
DE19617455A1 (en) Ultrasound testing method for workpiece
DE102018119206A1 (en) Method for detecting the geometry of an area of an object using ultrasound
DE3138659C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUST, MARTIN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: HIGH-FREQUENCY ULTRASOUND MEASUREMENT OF PARTIAL LAYER THICKNESS OF THIN-WALLED NUCLEAR FUEL CLADDING TUBES BY A CONTACT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PUAC Information related to the publication of a b1 document modified or deleted

Free format text: ORIGINAL CODE: 0009299EPPU

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

DB1 Publication of patent cancelled
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

18W Application withdrawn

Effective date: 20041117

REF Corresponds to:

Ref document number: 50201782

Country of ref document: DE

Date of ref document: 20050120

Kind code of ref document: P

REG Reference to a national code

Ref country code: GB

Ref legal event code: ERR

Free format text: THE ABOVE EP(UK) PATENT WAS ADVERTISED IN THE PATENTS AND DESIGNS JOURNAL NO. 6030 DATED 20041215 AS GRANTED BY THE EUROPEAN PATENT OFFICE (EPO) WITH EFFECT FROM THAT DATE. THE GRANT DATE WAS HOWEVER DELETED BY THE EPO IN EUROPEAN PATENT BULLETIN NO. 2005/02 DATED 20050112. THE PATENT WAS ACTUALLY WITHDRAWN AT THE EPO ON 20041117.

BERE Be: lapsed

Owner name: FRAMATOME ANP G.M.B.H.

Effective date: 20050331

BERE Be: lapsed

Owner name: *FRAMATOME ANP G.M.B.H.

Effective date: 20050331