EP1370868A2 - Technique and screening method for detecting reversible protein-protein interactions - Google Patents

Technique and screening method for detecting reversible protein-protein interactions

Info

Publication number
EP1370868A2
EP1370868A2 EP01986933A EP01986933A EP1370868A2 EP 1370868 A2 EP1370868 A2 EP 1370868A2 EP 01986933 A EP01986933 A EP 01986933A EP 01986933 A EP01986933 A EP 01986933A EP 1370868 A2 EP1370868 A2 EP 1370868A2
Authority
EP
European Patent Office
Prior art keywords
protein
ras
rafrbd
gfp
interaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01986933A
Other languages
German (de)
French (fr)
Inventor
Oliver c/o Max-Planck-Inst. für molekulare ROCKS
Alfred c/o Max-Planck-Institut für WITTINGHOFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Evotec OAI AG
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Evotec OAI AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV, Evotec OAI AG filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of EP1370868A2 publication Critical patent/EP1370868A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures

Definitions

  • the present invention is in the field of cell biology and describes a method for the detection of protein-protein interactions and an assay for testing active substances which act on protein-protein interactions.
  • the detection of such protein-protein interactions is of great interest for the elucidation of cellular processes.
  • it is of increasing importance to identify substances that influence such interactions. Screening methods in which active substances are tested on a large scale are becoming increasingly important. These must be as effective and inexpensive as possible and should be used at the earliest possible stage in drug discovery.
  • Protein-protein interactions are of central importance for a variety of cell biological processes and are based on different processes such as receptor-ligand interactions, signal transduction cascades, gene expression and a number of other processes, such as cell adhesion phenomena, antigen-antibody interactions and many more .
  • the physiology of a cell is largely determined by protein-protein interactions.
  • this also implies that even the slightest disruption of protein-protein interactions can have far-reaching consequences for the normal function of a cell and can therefore also be the cause of the development of diseases.
  • the biological activity of a target protein to be tested is usually an enzymatic activity or the ability to bind an effector (Silverman et al, 1993).
  • Various methods can be used to detect a protein-protein interaction or the effect of a substance on the extent of a protein-protein interaction, which are suitable for use in vivo and / or in vitro. In general, there is a trend here to switch from radioactive to fluorescence-based methods, which enable faster and more precise evaluation and at the same time do not limit the miniaturization of a test procedure.
  • FRET effect fluorescence resonance energy transfer
  • both proteins are provided with fluorophores which are coordinated with one another with regard to the absorption and emission wavelengths.
  • the emission light of one dye can now be absorbed by the other dye, so that longer-wave light is emitted.
  • the FRET effect is only possible if both proteins are bound to each other so that the fluorophores are in close proximity to one another.
  • the advantage of this method is the general applicability in vivo with different variants of the genetic encoded fluorophore GFP (green fluorescent protein) (Mitra et al, 1996).
  • the disadvantage is the fact that the FRET effect only occurs with optimal spatial orientation of the two fluorophores, which can only be achieved empirically and with great effort for a protein pair.
  • a second method is fluorescence polarization spectroscopy (Nasir & Jolley, 1999). If fluorescent molecules are excited in solution with polarized light, the extent to which the emitted light maintains this polarization depends on the rapidity of the rotational movement of the molecule during the fluorescence lifetime. Since this rotational speed and thus the loss of polarization is inversely proportional to the molecular weight, this effect can be used to distinguish a free protein from a complexed protein (Lynch et al, 1997). An application is only practicable in vivo.
  • FCS fluorescence correlation spectroscopy
  • both proteins must be components of a signal path connected in direct succession, the biological effect of which can be used to detect the interaction.
  • These include the release of low-molecular messenger substances such as calcium ions, cAMP and inositol triphosphate, the changes in concentration of which are measured after the activation of the corresponding signaling pathways through the binding of both partner proteins.
  • a reporter gene assay can be carried out. This takes advantage of the fact that the extent of the binding of both proteins - at least that is the hypothesis - correlates with the extent of the activation of the signaling pathway and thus with the transcription rate of the corresponding gene. If its promoter sequence is fused with the coding sequence of a reporter gene, the expression rate of the reporter protein can be measured as a representative.
  • One such method is, for example, the "two-hybrid method" (Yang et al., 1995), in which the interaction of two proteins in yeast cells is tested.
  • the disadvantage of the common cell-based methods is the fact that the binding of the two partner proteins is not detected directly, but always a downstream effect.
  • Non-specific interactions and the influence of other signal proteins can increase the number of false positive results. It cannot be ruled out that signal components that were only switched within the signal path after the two partner proteins to be examined were blocked. In the reporter gene assays, gene expression also results in a longer period of time before an effect can be detected.
  • Such a translocation assay was developed by Schneider et al. (1999, Nature Biotechn. 17, pl70-175). Two fusion proteins are expressed in one cell. The first contains a potential interaction domain and a core localization signal, the second contains a potential interaction domain and a GFP domain. Both proteins are synthesized in the cytosol, after which the first protein migrates to the nucleus due to its signal sequence. However, if it binds to the second protein through the interaction domains in the cytosol, the second protein is also transferred into the nucleus and can be detected there because of the fluorescence of the GFP domain. This technique enables interactions between protein domains to be determined in vivo.
  • the transport of proteins from the cytosol to the The nucleus occurs via the so-called nuclear pore complex, a cross-membrane multiprotein complex consisting of eight copies of approx. 100 different proteins (in the higher eukaryotes) with a total molecular weight of 125 MDa (Doye & Hurt, 1997; Obno et al, 1998; Gorlich & Kutay, 1999 ).
  • the core transport takes place not only by targeting the proteins with nuclear localization signals, but also by diffusion (Talcott & Moore, 1999).
  • the architecture of the nuclear pore complex allows proteins with a diameter of up to approx.
  • the problem underlying the invention is to provide a method for determining protein-protein interactions. This process is said to be feasible in vivo and to overcome the disadvantages of the prior art processes. In particular, the problem is to provide a method that enables the direct detection of an interaction and therefore does not require indirect detection via an additional signal path. In addition, the method is said to be applicable to proteins, protein domains and peptides of any size and to be suitable for testing a large number of interaction partners or of substances which could influence the protein-protein interaction in the context of assays.
  • the problem is solved according to the invention by a method for the detection of protein-protein interactions in expression systems such as cells, whereby a protein I interacts with a protein II, whereby a transfer of the protein I takes place in a cell compartment in which both protein I and protein II do not occur naturally, and when protein II is detected in the compartment into which protein I has been transferred, an interaction between protein I and protein II is determined.
  • the cell compartment into which the transfer takes place is preferably the nucleus.
  • Other cellular compartments are the endoplasmic reticulum, the nucleolus, the lysosomes, the Golgi apparatus, the dictyosomes, mitochondria, chloroplasts, peroxisomes, vacuoles, endosomes, a periplasmic space or a membrane.
  • Protein I is preferably transferred by a signal sequence, in particular by a nuclear localization sequence.
  • the protein II preferably has an export signal, in particular a core export signal.
  • protein II is furthermore a fusion protein with a fluorescent protein, preferably GFP.
  • Cellular expression systems include, among others, primary cells or immortalized cell lines.
  • a cellular expression system can preferably be derived from mammalian cells, such as human cells Origin, or cells from rodents (mouse, rat), but also from other eukaryotic cells, such as plant cells.
  • the protein-protein interaction is preferably detected by spectroscopic detection, fluorescence detection, colorimetry or radiometry.
  • the invention also relates to an assay using the method according to the invention, substances being added which may interfere with the protein-protein interaction.
  • the method and the assay according to the invention are thus suitable for screening (screening, HTS) proteins or substances on a large scale, which potentially influence protein protein-protein interactions or participate in them.
  • the method according to the invention is suitable for checking putative protein-protein interactions. Due to the high sensitivity of the method according to the invention, it is also possible to investigate dose-dependent effects of chemical substances on protein-protein interactions.
  • the combination of protein II with a nuclear export signal can achieve that a nuclear localization assay can be carried out in vivo with proteins, domains or peptides of any size. It has been found that when such a fusion protein is used as Protein II, the problem of the undesired diffusion of Protein II into and (after the transfer has taken place) from the cell nucleus is avoided. The signals obtained are extraordinarily rich in contrast when using the method and assay according to the invention. This makes it much easier to carry out tests in which active ingredients are tested or differential differences in binding strength are determined quantitatively.
  • the aim of this invention was to produce various constructs of the oncogenic variant G12V of Ras and the Ras-binding domain of Raf kinase (RafRBD) which allow fluorescent labeling or are fused to the genetically encoded fluorophore GFP (green fluorescent protein) and for Localization studies and translocation studies in the cell can be used.
  • the focus should be on the translocation of Ras and RafRBD constructs into the cell nucleus.
  • NLS nuclear localization signal
  • Ras should be enabled to accumulate in the cell nucleus and thus be able to transport RafRBD into the cell nucleus.
  • RafRBD should receive a nuclear export signal (NES).
  • HTS high-throughput screening
  • H-Ras constitutively active H-Ras (G12V mutant) was used, in which the C-terminal CAAX motif, which is responsible for the attachment to the plasma membrane (aa 1-174), and the Ras binding domain of c-Rafl ( RafRBD, aa 51-132) is missing.
  • RafRBD binds to Ras-GTP with affinity in the nanomolar range and is sufficient but necessary for the Ras-Raf interaction (Scheffler et al., 1994; Herrmann et al., 1995).
  • a modified pcDNA3 vector (Invitrogen) was constructed, which made it possible to express a protein of choice, which is fused to a 22 amino acid sequence which is the commonly used nuclear localization signal (NLS) , derived from the simian virus 40 large tumor antigen (SV40 T-ag), and a predicted phosphorylation site for casein kinase II (Serlll / 112), which has been shown to greatly increase the core import of SV40 T-ag .
  • NLS nuclear localization signal
  • Serlll / 112 a predicted phosphorylation site for casein kinase II
  • the RafRBD sequence was inserted into the pEGFP-Cl vector (Clontech).
  • the well-characterized core export signal derived from the HIV Rev protein (Fischer et al., 1995) was fused to the C-terminal end.
  • the expression of the constructs used in NIH3T3 fibroblasts was confirmed by Western blot analyzes (FIGS. 2A and 2B).
  • the constructs for Ras and RafRBD were expressed either alone or together transiently and the intracellular localization of the proteins was examined 12-48 hours after the transfection using a confocal laser microscope. The functionality of both signals, NLS and NES, could be shown here (FIG. 2C).
  • Ras (G12V) -NLS (just like wt-Ras-NLS) but not a control construct that lacks the NLS is completely accumulated in the core.
  • GFP-Raf-RBD-NES was localized exclusively in the cytosol.
  • a construct without NES showed the same distribution of fluorescence as GFP, somewhat more accumulated in the nucleus. Due to these unfavorable properties of GFP, the use of a single NLS in a translocation system is not sufficient to produce a clear, interaction-dependent distinction between the fluorescence intensities between the nucleus and the cytosol.
  • GFP-RafRBD-NES2% Only GFP-RafRBD-NES2%, with a significantly weakened export activity, was completely localized within the core with Ras (G12V) -NLS (FIG. 3B). Individually transfected GFP-RafRBD-NES2% was evenly distributed in the core and cytosol, significantly less enriched within the core than GFP-RafRBD without NES. The other GFP-RafRBD-NES mutants with 8% or higher export activity were completely localized within the cytosol. These experiments clarified that GFP-RafRBD-NES2%, due to its relatively low molecular weight of 38 kDa, is subject to a balanced balance between weak signal-controlled nuclear export and free diffusion through the nuclear pore complex.
  • GFP-RafRBD-NES was increased by adding two more GFP units. Despite its molecular weight of 84 kDa, which should prevent diffusion into the nucleus, GFP3 was still found significantly enriched in the nucleus. This fact indicates that GFP contains a cryptic NLS (Fig. 4A-C). The expression of GFP3-RafRBD-NES2% resulted in the expected accumulation in the cytoplasm. After co-transfection with Ras (G12V) -NLS, colocalization of both proteins in the nucleus was indeed observed.
  • Quantification software can be further improved.
  • GTPase activating proteins The primary defect of oncogenic Ras mutants is their inability to hydrolyze GTP both in the presence and in the absence of GTPase activating proteins (GAPs). Considering that the catalytic effect of GTPase stimulation by GAPs is related to the involvement of an arginine finger of GAP, it was argued that stimulation of the GTPase response of oncogenic Ras in Ras-dependent tumors would be an anti-cancer target (Scheffzek et al., 1997). Recent studies using a GTP analog have supported the idea that small molecules that would induce the GTPase reaction would be preferred lead structures for drug development. This raises the question of whether the GFP-RafRBD translocation assay would be suitable for detecting such compounds.
  • Cdc42-NLS G12V and wt
  • Grb2-NLS were expressed alone, they were localized exclusively in the nucleus, while GFP3-RalGDSRBD-NES2%, GFP3-WASP-CRIB-NES2% and GFP3-Sosl (C- ter) - NES2% accumulated in the cytosol.
  • GFP3-RalGDSRBD-NES2% were predominant, and the other two GFP fusion proteins were completely localized in the nucleus after transfection with their corresponding NLS-containing interaction partners (FIG. 6C).
  • the P49L mutation within the N-terminal SH3 domain of Grb2 is known to prevent interaction with Sosl (Chardin et al., 1993).
  • the method according to the invention can be used for cell-based drug screening search methods for antagonists of protein interactions and, after appropriate modification, may also be applicable for the search for agonists.
  • An enormous advantage of this method is the ability to directly and reversibly demonstrate the interaction, which considerably reduces the amount of false positives in a drug screening search.
  • small molecules could also be identified that block the core transport machinery and, as an alternative, would lead to a weakening of the nuclear GFP fluorescence.
  • Such molecules, which are also of particular interest could be simple by immunodetection of the NLS-containing protein, which would also no longer be located in the nucleus.
  • the simple experimental conditions of the method according to the invention support simple automated quantification and high throughput.
  • this method enables not only quantitative information about active substances, but possibly also mechanistic studies on protein interactions and their regulation, e.g. structure-function studies by using point mutations or analysis of the nucleotide hydrolysis of GTP binding proteins.
  • a further application of the method according to the invention, using the principle of core-cytosol translocation, could be an alternative “mammalian two-hybrid method” for verifying possible interactions or for screening searches of unknown interaction partners of individual proteins, or even a complete genetic expression. Be a library.
  • Fig. 1 Schematic representation of NIFTY: A fluorescence-based protein-protein interaction assay based on a nuclear cytoplasm translocation of reporter fluorescence.
  • Fig. 2 Construction and expression of fusion proteins for the initial studies.
  • A Schematic representation of the constructs produced.
  • B Immunoblots of the initial constructs after transient expression in NIH3T3 cells. For this purpose, cell lysates were separated on 15% SDS polyacrylamide gels, transferred to membranes and stained with anti-GFP or anti-HA antibodies.
  • C Intracellular localization of the initial Ras and RafRBD constructs after expression in NIH3T3 cells. For this purpose, the samples were scanned with a Leica TCS SP2 confocal microscope and a 63x oil immersion objective.
  • Fig. 3 Fine-tuning the NES strength.
  • A Schematic representation of the pool of the GFP-RafRBD-NES constructs produced with weakened export signals. Changes in the amino acids of the NES are marked with red. The percentage NES activities given relate to the export activity of NES-mutated Rev protein in comparison to wild-type Rev (Zhang & Dayton, 1998).
  • B Intracellular localization of GFP-RafRBD-NES2% after single expression (a) and of Ras (G12V) -NLS and GFP-RafRBD-NES2% after co-expression.
  • Fig. 4 Fine-tuning the property of GFP-RafRBD to diffuse through the nuclear pore complex.
  • A Schematic representation of the construct GFP3-RafRBD-NES2%.
  • B Immunoblots of GFP, GFP2, GFP3 and GFP3-RafRBD-NES2% after transient expression in NIH3T3 cells.
  • C Intracellular localization of GFP3, GFP3-RafRBD-NES2% (a) and GFP3-Raf-NES2% (b) after single expression and of Ras (G12V) - NLS after co-expression with either GFP3-RafRBD-NES2% or GFP3-Raf-NES2%. The inverse subcellular is to be compared here Localization of the reporter fluorescence in the second and third image of the lower half of the image with that in FIG. 1.
  • FIG. 5 Correlation of the amount of nuclear accumulation of GFP3-RafRBD-NES2% and Ras * RafRBD affinity or complex concentration.
  • A Co-expression of Ras (G12V) -NLS with different constructs of GFP3-RafRBD-NES2% with the point mutations indicated in each case. Lower half of the figure: Co-expression of wt-Ras-NLS and GFP3-RafRBD-NES2%.
  • B Correlation of Ras * RafRBD binding affinity and the level of nuclear accumulation of reporter fluorescence. The relative nuclear fluorescence is shown against the logarithm of the dissociation constant of the wt-Ras * RafRBD complex (Block et al., 1997).
  • Fig. 6 General application of NIFTY for other interacting proteins.
  • A Schematic representation of the generated constructs.
  • B Immunoblot analysis of the indicated constructs after expression of NIH3T3 cells.
  • C Intracellular localization of individually expressed GFP3-RalGDSRBD-NES2% (a), GFP3-WASP-CRIB-NES2% (b) or GFP-SOS (C-ter) -NES2% (c) or from the indicated constructs Co-expression.
  • the Ras protein is a central link in various signal transduction pathways, the growth and differentiation processes regulate. As a GTP-binding protein, it acts as a regulated molecular switch. Ras switches between two states in which it has either bound GTP (switch position: on), or the GTP is hydrolyzed to GDP (switch position: off). The activated Ras can now recruit the serine threonine kinase Raf (rapid fibrosarcoma), the best characterized effector of Ras, to the plasma membrane, which leads to the activation of this kinase.
  • Raf serine threonine kinase
  • Raf can in turn activate the protein kinase MEK (MAPK / Erk kinase) by phosphorylation, which then in turn activates the protein kinase Erk (extracellular-signal-related kinase).
  • MEK protein kinase MEK
  • Erk extracellular-signal-related kinase
  • MAP kinase module for mitogen activated protein. The activation of this module leads to the phosphorylation of several transcription factors and finally to the expression of different genes (Campbell et al, 1998).
  • Raf interacts with activated Ras via the Ras binding domain (RBD) in the regulatory N-terminus of Raf (Vojtek et al, 1993), which is an independently folding, stable module of 80 amino acids (Scheffler et al, 1994).
  • Ras can bind the isolated RBD in a GTP-dependent manner in the same way as complete Raf.
  • Ras variants with point mutations in the effector region that lead to the blocking of the biological Ras activity are likewise not able to interact with the RBD.
  • the isolated RafRBD is believed to have the same properties as the domain in the intact total protein (Koide et al, 1993; Van Aelst et al, 1993; Moodie et al, 1993).
  • Plasmids pcDNA3-HA-CKII-NLS was obtained by inserting a Hindlll / Kpnl fragment which contains a Kozak sequence, a start codon and a sequence coding for the hemagglutinin epitope (YPYDVPDYA), and an EcoRI / XhoI fragment which is used for the casein kinase II phosphorylation site (SSDDEATADSQHSST) and the nuclear localization sequence (NLS) (PPKKKRKV) of the SV40 T-ag, in the cloning site of the plasmid vector pcDNA3 (Invitrogen).
  • PCR-amplified sequences of H-Ras (aa 1-174), hCdc42 (aa 1-178) and hGrb2 were cloned into the BamHI / EcoRI site of pcDNA3-HA-CKII-NLS.
  • the Ras control construct was prepared by cloning the H-Ras sequence with a stop codon into the plasmid pcDNA3-HA, which lacks the second sequence insertion.
  • the G12V mutations were generated using directed mutagenesis.
  • a c-Rafl fragment coding for the Ras binding domain (aa 51-132) was amplified by PCR and cloned into the XhoI / EcoRI site of plasmid pEGFP-Cl (Clontech) (pGFP-RafRBD).
  • pGFP-RafRBD-NES the sequence coding for the core export signal (NES) of the Rev protein was inserted into the plasmid pGFP-RafRBD by means of a 3 "- overlapping primer.
  • Point mutations within the NES sequences were added
  • the plasmid pEGFP3-Cl-NES2% enables the expression of proteins with an N-terminal fusion of three units GFP and also with a C-terminal fusion of an attenuated NES protein.
  • PEGFP3-C1-NES2% was produced by subsequently adding a Nhel / Agel and an Agel / Agel / fragment of GFP, each containing a Kozak sequence, and one for a strongly attenuated Rev protein NES (into the pEGFP-Cl plasmid. LPPLERLETLD) coding EcoRI / Pstl fragment were inserted.
  • PCR-amplified sequences of hRalGDS-RBD (aa 788-884), hWASP-CRIB (aa 221-257) and the C-terminal region of hSOSl (aa 1132-1333) were used to prepare the GFP fusion constructs (see FIG. 6A). inserted into the XhoI / EcoRI restriction site of pEGFP3-Cl-NES2%.
  • the plasmid pGFP3-RafRBD-NES2% was constructed by subcloning the XhoI / PstI fragment from pGFP-RafRBD2% into the plasmid pEGFP3-Cl-NES2%. Mutations in the RafRBD coding sequence were generated by directed mutagenesis. Finally, all constructs were sequenced from both the 5 "end and the 3" end, which confirmed the correct base sequence.
  • NIH3T3 cells were in DMEM (Dulbecco's modified Eagle medium) supplemented with 10% calf serum with penicillin (1000 IU / ml), streptomycin (1000 ⁇ g / ml) at 37 ° C and a CO 2 content of 7.5% cultivated. The same culture conditions also existed for MDCK and 293 cells. For transient transfection, cells were sown on 21x26 mm coverslips in 6-well tissue culture dishes and cultivated to a confluence of 70%.
  • DMEM Dulbecco's modified Eagle medium
  • penicillin 1000 IU / ml
  • streptomycin 1000 ⁇ g / ml
  • the transfection was carried out with LipofectAMINE PLUS reagent (Invitrogen) according to the manufacturer's instructions using 0.4 ⁇ g pcDNA3 plasmid and 0.7 ⁇ g pEGFP plasmid.
  • the cells were washed in washing buffer (PBS, 0.5 mM CaCl 2 , 0.25 mM MgCl 2 ), fixed in 3.7% formaldehyde for 15 min and in 0.1% Triton for 10 min X-100 permeabilized in Tris / HCl pH 7.5 and 100 mM NaCl.
  • the cells were washed with the primary antibody (rat, anti-HA; Sigma) in a dilution of 1: 100 for 1 h, then washed three times with PBS and with the fluorescence-labeled secondary antibody (Cy-3 or Cy-5, goat, anti-rat; Dianova) in a dilution of 1: 100 for 1 h. After the incubation, three washing steps were carried out with PBS. The coverslips were embedded on slides with Mowiol.
  • NIH3T3 cells were placed on a 10 cm tissue culture dish 48 h after transfection with corresponding plasmid constructs in lysis buffer (20 mM Tris / HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 0 , 1% SDS, 1% NaDOC and proteinase inhibitors).
  • the cells were detached from the dishes using a rubber spatula. After centrifugation at 4 ° C for 10 min at 22000 g, the supernatant was separated on an SDS-PAGE. The electrophoretically separated proteins were then transferred to a PVDF membrane.
  • the membranes were then incubated for one hour either with rat anti-HA antibody (Sigma) coupled with horseradish peroxidase or with rabbit anti-GFP antibody (Dianova).
  • the membranes incubated with the anti-GFP antibody were washed and then incubated with secondary horseradish peroxidase-coupled anti-rabbit antibodies (Amersham Pharmacia).
  • An ECL chemiluminescent substrate (Pierce) was used to visualize the protein bands.
  • a focus on the equatorial level of the cell nucleus and the determination of the compartment boundaries within which the image analysis should take place was made possible by the Cy5 staining of the protein carrying the nuclear localization signal.
  • the cytoplasmic area was defined by two closely spaced rings near the border to the cell nucleus. The average fluorescence intensity per area was measured for both the GFP and the Cy5 signal and the percentage intensity of the core signal was determined therefrom.
  • the HIV- 1 Rev activation domain is a nuclear export signal that accesses an export pathway used by speeifie cellular RNAs. Cell 82, 475-483 (1995).
  • Urano, T., Emkey, R. & Feig, L.A. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 15, 810-816 (1996).

Abstract

The invention relates to methods and assays for detecting protein-protein interactions and for testing active substances in expression systems such as cells. According to the invention, protein I interacts with protein II, and a transfer of protein I into a cell compartment ensues, in which both protein I as well as protein II do not normally occur. When detecting protein II in the compartment, into which protein I was transferred, an interaction between protein I and protein II is determined.

Description

Methode und Screening-Verfahren zum Nachweis von reversiblen Protein-Protein WechselwirkungenMethod and screening method for the detection of reversible protein-protein interactions
Die vorliegende Erfindung liegt auf dem Gebiet der Zellbiologie und beschreibt ein Verfahren zum Nachweis von Protein-Protein Wechselwirkungen sowie ein Assay zum Testen von Wirkstoffen, die auf Protein-Protein Wechselwirkungen einwirken. Der Nachweis solcher Protein-Protein Wechselwirkungen ist für die Aufklärung zellulärer Prozesse von großem Interesse. Außerdem ist es aus pharmazeutischer Sicht von zunehmender Bedeutung, Substanzen zu ermitteln, die solche Wechselwirkungen beeinflussen. Dabei gewinnen zunehmend Screening- Verfahren an Bedeutung, bei denen in großem Maßstab Wirkstoffe getestet werden. Diese müssen möglichst effektiv und kostengünstig sein und sollen in einem möglichst frühen Stadium der Wirkstoffforschung eingesetzt werden.The present invention is in the field of cell biology and describes a method for the detection of protein-protein interactions and an assay for testing active substances which act on protein-protein interactions. The detection of such protein-protein interactions is of great interest for the elucidation of cellular processes. In addition, from a pharmaceutical perspective, it is of increasing importance to identify substances that influence such interactions. Screening methods in which active substances are tested on a large scale are becoming increasingly important. These must be as effective and inexpensive as possible and should be used at the earliest possible stage in drug discovery.
Protein-Protein Wechselwirkungen sind von zentraler Bedeutung für eine Vielzahl von zellbiologischen Vorgängen und liegen so unterschiedlichen Prozessen wie Rezeptor-Liganden Interaktionen, Signaltransduktions- kaskaden, der Genexpression sowie einer Reihe anderer Prozesse zugrunde, wie beispielsweise Zeiladhäsionsphänomenen, Antigen- Antikörper Interaktionen und vielen weiteren mehr. In diesem Sinne wird die Physiologie einer Zelle weitestgehend durch Protein-Protein Wechselwirkungen bestimmt. Dies impliziert aber auch, dass selbst geringfügigste Störungen von Protein-Protein Wechselwirkungen weitreichende Folgen für die normale Funktion einer Zelle haben können und somit auch Ursache für die Entstehung von Krankheiten sein können. Vor diesem Hintergrund ist es von zunehmendem Interesse, Methoden zu entwickeln mittels derer Protein-Protein Wechselwirkungen identifiziert und möglichst komplett analysiert werden können, und aufbauend darauf Verfahren zu entwickeln mit denen Substanzen identifiziert werden können, die für therapeutische Applikationen mit Protein-Protein Wechselwirkungen interferieren.Protein-protein interactions are of central importance for a variety of cell biological processes and are based on different processes such as receptor-ligand interactions, signal transduction cascades, gene expression and a number of other processes, such as cell adhesion phenomena, antigen-antibody interactions and many more , In this sense, the physiology of a cell is largely determined by protein-protein interactions. However, this also implies that even the slightest disruption of protein-protein interactions can have far-reaching consequences for the normal function of a cell and can therefore also be the cause of the development of diseases. Against this background, it is of increasing interest to develop methods by means of which protein-protein interactions can be identified and analyzed as completely as possible, and, based on this, to develop methods with which substances can be identified that interfere for therapeutic applications with protein-protein interactions.
Bei solchen Verfahren werden größtenteils automatisierte Massentestun- gen von Substanzbibliotheken auf einen biologischen Effekt gegen ein molekulares Zielprotein durchgeführt. Durch fortschreitende Miniaturisierung und verfeinerte Detektionstechniken erhöht sich der mögliche Probendurchsatz kontinuierlich, so dass mittlerweile der Begriff "High Throughput Screening" (HTS) verwendet wird.With such methods, largely automated mass tests of substance libraries for a biological effect against a molecular target protein are carried out. Due to advancing miniaturization and refined detection techniques, the possible sample throughput increases continuously, so that the term "High Throughput Screening" (HTS) is now used.
Bei der zu testenden biologischen Aktivität eines Zielproteins handelt es sich zumeist um eine enzymatische Aktivität oder aber um die Fähigkeit, einen Effektor zu binden (Silverman et al, 1993). Zur Detektion einer Protein-Protein Wechselwirkung oder der Wirkung einer Substanz auf das Ausmaß einer Protein-Protein Wechselwirkung können verschiedene Verfahren eingesetzt werden, die sich zur Anwendung in vivo und/oder in vitro eignen. Generell zeichnet sich hierbei als Trend die Abkehr von radioaktiven hin zu fluoreszenzbasierten Methoden ab, die eine schnellere und präzisere Auswertung ermöglichen und gleichzeitig die Miniaturisierung eines Testverfahrens nicht limitieren.The biological activity of a target protein to be tested is usually an enzymatic activity or the ability to bind an effector (Silverman et al, 1993). Various methods can be used to detect a protein-protein interaction or the effect of a substance on the extent of a protein-protein interaction, which are suitable for use in vivo and / or in vitro. In general, there is a trend here to switch from radioactive to fluorescence-based methods, which enable faster and more precise evaluation and at the same time do not limit the miniaturization of a test procedure.
Eine gängige Methode hierzu nutzt einen Energietransfer-Prozess zwischen den beiden Partnerproteinen aus, den sogenannten FRET- Effekt (fluorescence resonance energy transfer) (Clegg, 1995). Hierzu werden beide Proteine mit aufeinander bezüglich der Absorptions- und Emissionswellenlängen abgestimmten Fluorophoren versehen. Das Emissionslicht des einen Farbstoffs kann nun von dem anderen Farbstoff absorbiert werden, so dass längerwelliges Licht emittiert wird. Der FRET- Effekt ist aber nur dann möglich, wenn beide Proteine aneinander gebunden sind, so dass sich die Fluorophore in unmittelbarer Nähe zueinander befinden. Der Vorteil dieses Verfahrens ist die prinzipielle Anwendbarkeit in vivo mit verschiedenen Varianten des genetisch codierten Fluorophors GFP (green fluorescent protein) (Mitra et al, 1996). Nachteil ist die Tatsache, dass sich der FRET-Effekt nur bei optimaler räumlicher Orientierung der beiden Fluorophore einstellt, die für ein Proteinpaar nur empirisch und unter großem Aufwand erreicht werden kann.A common method for this uses an energy transfer process between the two partner proteins, the so-called FRET effect (fluorescence resonance energy transfer) (Clegg, 1995). For this purpose, both proteins are provided with fluorophores which are coordinated with one another with regard to the absorption and emission wavelengths. The emission light of one dye can now be absorbed by the other dye, so that longer-wave light is emitted. However, the FRET effect is only possible if both proteins are bound to each other so that the fluorophores are in close proximity to one another. The advantage of this method is the general applicability in vivo with different variants of the genetic encoded fluorophore GFP (green fluorescent protein) (Mitra et al, 1996). The disadvantage is the fact that the FRET effect only occurs with optimal spatial orientation of the two fluorophores, which can only be achieved empirically and with great effort for a protein pair.
Eine zweite Methode ist die Fluoreszenz Polarisations-Spektroskopie (Nasir & Jolley, 1999). Werden fluoreszierende Moleküle in Lösung mit polarisiertem Licht angeregt, so hängt das Ausmaß, mit der das emittierte Licht diese Polarisation beibehält, von der Schnelligkeit der Rotationsbewegung des Moleküls während der Fluoreszenz-Lebenszeit ab. Da diese Rotationsgeschwindigkeit und damit der Verlust an Polarisation umgekehrt proportional zum Molekulargewicht ist, kann dieser Effekt zur Unterscheidung eines freien Proteins von einem komplexierten Protein verwendet werden (Lynch et al, 1997). Eine Anwendung ist nur in vivo praktikabel.A second method is fluorescence polarization spectroscopy (Nasir & Jolley, 1999). If fluorescent molecules are excited in solution with polarized light, the extent to which the emitted light maintains this polarization depends on the rapidity of the rotational movement of the molecule during the fluorescence lifetime. Since this rotational speed and thus the loss of polarization is inversely proportional to the molecular weight, this effect can be used to distinguish a free protein from a complexed protein (Lynch et al, 1997). An application is only practicable in vivo.
Eine weitere Möglichkeit zur Detektion einer Protein-Protein- Wechselwirkung ist die Fluoreszenzkorrelations-Spektroskopie (FCS) (Eigen & Rigler, 1994), die prinzipiell auch in einem zellbasierten System einsetzbar ist. Hierbei definiert ein fokussierter Laserstrahl eine sehr kleine Volumeneinheit. Gemessen wird nun die Verweildauer einzelner Moleküle, die dieses Volumen passieren. Der Wert ist abhängig von der Diffusionsgeschwindigkeit des Moleküls, die wiederum umgekehrt proportional zum Molekulargewicht ist. Ein Fluorophor in einem binären Komplex würde also durchschnittlich eine längere Zeit zur Passage der Volumeneinheit benötigen und daher länger fluoreszieren als ein freies Fluorophor.Another possibility for detecting a protein-protein interaction is fluorescence correlation spectroscopy (FCS) (Eigen & Rigler, 1994), which in principle can also be used in a cell-based system. Here, a focused laser beam defines a very small volume unit. The residence time of individual molecules that pass through this volume is now measured. The value depends on the rate of diffusion of the molecule, which in turn is inversely proportional to the molecular weight. A fluorophore in a binary complex would therefore take an average longer time to pass through the volume unit and would therefore fluoresce longer than a free fluorophore.
Zellbasierte Testsysteme werden zunehmend attraktiver für den Einsatz im High-Throughput-Screening (Silverman et al, 1998). Trotz der größeren Herausforderung an die Automatisierbarkeit, Miniaturisierbarkeit und Messtechnologie haben sie den bedeutenden Vorteil gegenüber in vitro Assays, dass sich die Zielproteine in einer biologischen Umgebung befinden, die weitgehend der normalen physiologischen Situation entspricht. In vivo Systeme lassen daher bereits beim Primärscreening eingeschränkte Aussagen über Bioverfügbarkeit, pharmakokinetisches Verhalten und Toxizität einer Substanz zu. Dies bedeutet Zeit- und Kostenersparnis.Cell-based test systems are becoming increasingly attractive for use in high-throughput screening (Silverman et al, 1998). Despite the greater automation challenges, Miniaturizability and measurement technology have the significant advantage over in vitro assays that the target proteins are in a biological environment that largely corresponds to the normal physiological situation. In vivo systems therefore allow limited statements about the bioavailability, pharmacokinetic behavior and toxicity of a substance even during primary screening. This means time and cost savings.
In vivo ist bislang noch kein universell anwendbarer und zugleich praktikables Bindungsassay etabliert worden, mit dem ein beliebiges Proteinpaar untersucht werden kann. Die FCS-Technik könnte dies zukünftig leisten, hat aber bislang noch nicht das Stadium breiter Anwendbarkeit erreicht und ist zudem instrumenteil sehr aufwendig. Bei allen gängigen in vivo Methoden müssen beide Proteine unmittelbar hintereinander geschaltete Komponenten eines Signalwegs sein, dessen biologischer Effekt zur Detektion der Wechselwirkung ausgenutzt werden kann. Hierzu gehören die Ausschüttung von niedermolekularen Botenstoffen wie Calciumionen, cAMP und Inositoltriphosphat, deren Konzentrationsänderungen nach Aktivierung der entsprechenden Signalwege durch die Bindung beider Partnerproteine gemessen werden.So far, no universally applicable and at the same time practical binding assay has been established in vivo with which any pair of proteins can be examined. FCS technology could do this in the future, but has not yet reached the stage of broad applicability and is also very expensive in terms of instruments. In all common in vivo methods, both proteins must be components of a signal path connected in direct succession, the biological effect of which can be used to detect the interaction. These include the release of low-molecular messenger substances such as calcium ions, cAMP and inositol triphosphate, the changes in concentration of which are measured after the activation of the corresponding signaling pathways through the binding of both partner proteins.
Führt der aktivierte Signaltransduktionsweg zur Transkription eines definierten Gens, so kann ein Reportergenassay durchgeführt werden. Hierbei wird ausgenutzt, dass das Ausmaß der Bindung beider Proteine - so ist zumindest die Hypothese - mit dem Ausmaß der Aktivierung des Signalwegs und damit mit der Transkriptionsrate des entsprechenden Gens korreliert. Wird dessen Promotorsequenz mit der codierenden Sequenz eines Reportergens fusioniert, so kann stellvertretend die Expressionsrate des Reporterproteins gemessen werden. Ein solches Verfahren ist zum Beispiel das "Two-Hybrid-Verfahren" (Yang et al., 1995), bei dem die Interaktion zweier Proteine in Hefezellen getestet wird. Der Nachteil der gängigen Zell-basierten Verfahren ist die Tatsache, dass die Bindung der beiden Partnerproteine nicht unmittelbar detektiert wird, sondern stets ein nachgeschalteter Effekt. Unspezifische Wechselwirkungen sowie der Einfluss anderer Signalproteine kann die Anzahl falsch positiver Ergebnisse erhöhen. Es kann nicht ausgeschlossen werden, dass Signalkomponenten blockiert wurden, die erst nach den beiden zu untersuchenden Partnerproteinen innerhalb des Signalwegs geschaltet sind. Bei den Reportergen-Assays ergibt sich aufgrund der Genexpression zudem eine längere Zeitspanne, bis ein Effekt detektierbar ist.If the activated signal transduction pathway leads to the transcription of a defined gene, a reporter gene assay can be carried out. This takes advantage of the fact that the extent of the binding of both proteins - at least that is the hypothesis - correlates with the extent of the activation of the signaling pathway and thus with the transcription rate of the corresponding gene. If its promoter sequence is fused with the coding sequence of a reporter gene, the expression rate of the reporter protein can be measured as a representative. One such method is, for example, the "two-hybrid method" (Yang et al., 1995), in which the interaction of two proteins in yeast cells is tested. The disadvantage of the common cell-based methods is the fact that the binding of the two partner proteins is not detected directly, but always a downstream effect. Non-specific interactions and the influence of other signal proteins can increase the number of false positive results. It cannot be ruled out that signal components that were only switched within the signal path after the two partner proteins to be examined were blocked. In the reporter gene assays, gene expression also results in a longer period of time before an effect can be detected.
Es wurde versucht, die Nachteile der oben beschriebenen Techniken durch Translokationsassays zu überwinden. Dabei wird der Transfer eines fluoreszenzmarkierten Proteins in einen subzellulären Bereich wie die Plasmamembran verfolgt (Barak et al, 1997). Das markierte Protein kann dann in seiner neuen Umgebung direkt visualisiert werden, ohne dass es erforderlich ist, einen Signalweg zu aktivieren.Attempts have been made to overcome the disadvantages of the techniques described above using translocation assays. The transfer of a fluorescence-labeled protein into a subcellular area such as the plasma membrane is monitored (Barak et al, 1997). The labeled protein can then be visualized directly in its new environment without the need to activate a signaling pathway.
Ein solches Translokationsassay wurde von Schneider et al. (1999, Nature Biotechn. 17, pl70-175) entwickelt. Dabei werden in einer Zelle zwei Fusionsproteine expremiert. Das erste enthält eine potentielle Interaktionsdomäne und ein Kernlokalisierungssignal, das zweite eine potentielle Interaktionsdomäne und eine GFP-Domäne. Beide Proteine werden im Zytosol synthetisiert, wonach das erste Protein aufgrund seiner Signalsequenz, in den Kern wandert. Wenn es jedoch durch die Interaktionsdomänen im Zytosol an das zweite Protein bindet, so wird das zweite Protein mit in den Kern transferiert und kann wegen der Fluoreszenz der GFP-Domäne dort nachgewiesen werden. Diese Technik ermöglicht es, Wechselwirkungen zwischen Proteindomänen in vivo zu ermitteln. Allerdings ist die Anwendbarkeit dieses Assays sehr stark eingeschränkt: Der Transport von Proteinen aus dem Zytosol in den Zellkern erfolgt über den sogenannten Kernporenkomplex, einen membranübergreifenden Multiproteinkomplex aus acht Kopien von ca. 100 verschiedenen Proteinen (bei den höheren Eukaryoten) mit einem molekularen Gesamtgewicht von 125 MDa (Doye & Hurt, 1997;Obno et al, 1998;Gorlich & Kutay, 1999). Der Kerntransport erfolgt dabei nicht nur durch Zielsteuerung der Proteine mit Kernlokalisierungssignalen, sondern auch durch Diffusion (Talcott & Moore, 1999). Die Architektur des Kernporenkomplexes erlaubt prinzipiell Proteinen mit einem Durchmesser von bis zu ca. 9 nm den Durchlass durch Diffusion (Paine et al, 1975J, was je nach Globularität des Proteins einem Molekulargewicht von 30-60 kDa entspricht. Beim aktiven, signalvermittelten Transport kann die Kernpore infolge umfangreicher Konformationsänderungen auf bis zu 25 nm geöffnet werden, so dass Partikel bis zu einer Masse von 25-50 MDa transportiert werden können. Somit kann das beschriebene Kerntranslokationsassay nur durchgeführt werden, wenn das zweite Protein als Fusion aus GFP und einem potentiellen Interaktionsprotein eine ausreichende Größe aufweist. Anderenfalls würde das Protein auch passiv in den Kern diffundieren, sowie nach erfolgter Translokation wieder aus dem Kern hinaus diffundieren. Die Beschränkung auf große Fusionsproteine ist insbesondere unvorteilhaft, weil die in vivo Expression von artifiziellen Proteinen umso fehleranfälliger ist, je größer diese sind. Insbesondere werden bei großen Proteinen aus mehreren Domänen häufig Faltungsschwierigkeiten beobachtet.Such a translocation assay was developed by Schneider et al. (1999, Nature Biotechn. 17, pl70-175). Two fusion proteins are expressed in one cell. The first contains a potential interaction domain and a core localization signal, the second contains a potential interaction domain and a GFP domain. Both proteins are synthesized in the cytosol, after which the first protein migrates to the nucleus due to its signal sequence. However, if it binds to the second protein through the interaction domains in the cytosol, the second protein is also transferred into the nucleus and can be detected there because of the fluorescence of the GFP domain. This technique enables interactions between protein domains to be determined in vivo. However, the applicability of this assay is very limited: the transport of proteins from the cytosol to the The nucleus occurs via the so-called nuclear pore complex, a cross-membrane multiprotein complex consisting of eight copies of approx. 100 different proteins (in the higher eukaryotes) with a total molecular weight of 125 MDa (Doye & Hurt, 1997; Obno et al, 1998; Gorlich & Kutay, 1999 ). The core transport takes place not only by targeting the proteins with nuclear localization signals, but also by diffusion (Talcott & Moore, 1999). In principle, the architecture of the nuclear pore complex allows proteins with a diameter of up to approx. 9 nm to pass through diffusion (Paine et al, 1975J, which, depending on the globularity of the protein, corresponds to a molecular weight of 30-60 kDa. With active, signal-mediated transport, this can As a result of extensive conformation changes, the core pore can be opened up to 25 nm so that particles up to a mass of 25-50 MDa can be transported.Thus, the described core translocation assay can only be carried out if the second protein is a fusion of GFP and a potential interaction protein Otherwise the protein would also diffuse passively into the nucleus and diffuse out of the nucleus after translocation. The restriction to large fusion proteins is particularly disadvantageous because the larger the in vivo expression of artificial proteins, the more prone to errors si nd. In particular, folding difficulties are frequently observed with large proteins from several domains.
Das der Erfindung zugrundeliegende Problem ist es, ein Verfahren zur Bestimmung von Protein-Protein Wechselwirkungen bereitzustellen. Dieses Verfahren soll in vivo durchführbar sein und die Nachteile der Verfahren nach dem Stand der Technik überwinden. Insbesondere besteht das Problem darin, ein Verfahren bereitzustellen, das den direkten Nachweis einer Wechselwirkung ermöglicht, und daher keinen indirekten Nachweis über einen zusätzlichen Signalweg benötigt. Außerdem soll das Verfahren für Proteine, Proteindomänen und Peptide beliebiger Größen anwendbar sein, und geeignet sein, im Rahmen von Assays eine große Anzahl von Interaktionspartnern oder von Substanzen, die die Protein-Protein Interaktion beeinflussen könnten, durchzutesten.The problem underlying the invention is to provide a method for determining protein-protein interactions. This process is said to be feasible in vivo and to overcome the disadvantages of the prior art processes. In particular, the problem is to provide a method that enables the direct detection of an interaction and therefore does not require indirect detection via an additional signal path. In addition, the method is said to be applicable to proteins, protein domains and peptides of any size and to be suitable for testing a large number of interaction partners or of substances which could influence the protein-protein interaction in the context of assays.
Das Problem wird erfindungsgemäß gelöst durch ein Verfahren zum Nachweis von Protein-Protein Wechselwirkungen in Expressionssystemen wie Zellen, wobei ein Protein I mit einem Protein II interagiert, wobei ein Transfer des Protein I in ein Zellkompartiment erfolgt, in dem sowohl Protein I als auch Protein II natürlicherweise nicht vorkommen, und bei Nachweis von Protein II in dem Kompartiment, in das Protein I transferiert wurde, eine Wechselwirkung zwischen Protein I und Protein II festgestellt wird.The problem is solved according to the invention by a method for the detection of protein-protein interactions in expression systems such as cells, whereby a protein I interacts with a protein II, whereby a transfer of the protein I takes place in a cell compartment in which both protein I and protein II do not occur naturally, and when protein II is detected in the compartment into which protein I has been transferred, an interaction between protein I and protein II is determined.
Das Zellkompartiment, in das der Transfer erfolgt, ist bevorzugt der Nukleus. Weitere zelluläre Kompartimente sind das Endoplasmatische Reticulum, der Nukleolus, die Lysosomen, der Golgi-Apparat, die Dictyosomen, Mitochondrien, Chloroplasten, Peroxisomen, Vakuolen, Endosomen, ein periplasmatischer Raum oder eine Membran.The cell compartment into which the transfer takes place is preferably the nucleus. Other cellular compartments are the endoplasmic reticulum, the nucleolus, the lysosomes, the Golgi apparatus, the dictyosomes, mitochondria, chloroplasts, peroxisomes, vacuoles, endosomes, a periplasmic space or a membrane.
Der Transfer des Protein I erfolgt vorzugsweise durch eine Signalsequenz, insbesondere durch eine Kernlokalisationssequenz. Das Protein II weist vorzugsweise ein Exportsignal, insbesondere ein Kernexportsignal auf. Weiterhin ist Protein II in einer bevorzugten Ausführungsform ein Fusionsprotein mit einem fluoreszierenden Protein, bevorzugt GFP.Protein I is preferably transferred by a signal sequence, in particular by a nuclear localization sequence. The protein II preferably has an export signal, in particular a core export signal. In a preferred embodiment, protein II is furthermore a fusion protein with a fluorescent protein, preferably GFP.
Zelluläre Expressionssysteme umfassen, unter anderem, primäre Zellen oder immortalisierte Zelllinien. Ein zelluläres Expressionssystem kann vorzugsweise aus Zellen von Säugetieren, wie z.B. Zellen menschlicher Herkunft, oder Zellen von Nagetieren (Maus, Ratte), aber auch aus anderen eukaryontischen Zellen, wie z.B. pflanzlichen Zellen, bestehen.Cellular expression systems include, among others, primary cells or immortalized cell lines. A cellular expression system can preferably be derived from mammalian cells, such as human cells Origin, or cells from rodents (mouse, rat), but also from other eukaryotic cells, such as plant cells.
Erfindungsgemäß wird die Protein-Protein Wechselwirkung bevorzugt durch spektroskopische Detektion, Fluoreszenzdetektion, Colorimetrie oder Radiometrie nachgewiesen.According to the invention, the protein-protein interaction is preferably detected by spectroscopic detection, fluorescence detection, colorimetry or radiometry.
Gegenstand der Erfindung ist auch ein Assay unter Verwendung des erfindungsgemäßen Verfahrens, wobei Substanzen hinzugefügt werden, die möglicherweise mit der Protein-Protein Wechselwirkung interferieren. Somit sind das erfindungsgemäße Verfahren und das Assay geeignet, Proteine oder Substanzen in großem Maßstab durchzutesten (screenen, HTS), die potentiell Protein-Protein Wechselwirkungen beeinflussen oder an diesen partizipieren. Darüber hinaus ist das erfindungsgemäße Verfahren dazu geeignet, mutmaßliche Protein-Protein Wechselwirkungen zu überprüfen. Aufgrund der hohen Sensitivität des erfindungsgemäßen Verfahrens ist es auch möglich, dosis-abhängige Wirkungen von chemischen Substanzen auf Protein-Protein Wechselwirkungen zu untersuchen.The invention also relates to an assay using the method according to the invention, substances being added which may interfere with the protein-protein interaction. The method and the assay according to the invention are thus suitable for screening (screening, HTS) proteins or substances on a large scale, which potentially influence protein protein-protein interactions or participate in them. In addition, the method according to the invention is suitable for checking putative protein-protein interactions. Due to the high sensitivity of the method according to the invention, it is also possible to investigate dose-dependent effects of chemical substances on protein-protein interactions.
Überraschenderweise kann durch die Verbindung des Proteins II mit einem Kernexportsignal erreicht werden, dass ein Kernlokalisie- rungsassay in vivo mit Proteinen, Domänen oder Peptiden beliebiger Größen durchgeführt werden kann. Es wurde gefunden, dass bei Verwendung eines solchen Fusionsproteins als Protein II das Problem der unerwünschten Diffusion von Protein II in und (nach erfolgtem Transfer) aus dem Zellkern vermieden wird. Die erhaltenen Signale sind bei Verwendung des erfindungsgemäßen Verfahrens und Assays außergewöhnlich kontrastreich. Somit lassen sich auch viel besser Untersuchungen durchführen, bei denen Wirkstoffe durchgetestet oder differentielle Unterschiede der Bindungsstärke quantitativ ermittelt werden. Ziel dieser Erfindung war es, verschiedene Konstrukte der onkogenen Variante G12V von Ras und der Ras-bindenden Domäne der Raf-Kinase (RafRBD) herzustellen, die eine Fluoreszenzmarkierung erlauben bzw. mit dem genetisch kodierten Fluorophor GFP (green fluorescent protein) fusioniert sind und für Lokalisationsstudien und Translokationsstudien in der Zelle verwendet werden können. Schwerpunkt sollten Untersuchungen zur Translokation von Ras- und RafRBD-Konstrukten in den Zellkern sein. Ras sollte durch Fusion mit einem Kernlokalisationssignal (nuclear localization Signal, NLS) zur Akkumulation im Zellkern befähigt werden und damit in der Lage sein, RafRBD in den Zellkern zu transportieren. Hiernach sollte RafRBD ein Kernexportsignal (nuclear export Signal, NES) erhalten. Die zentrale Fragestellung dabei lautete : Welche Faktoren bestimmen die subzelluläre Lokalisation zweier hochaffiner Partnerproteine, die ein NLS und ein NES tragen? Lässt sich die Zielsteuerung dieser Proteine, die Lokalisations-Sequenzen enthalten, durch Variation dieser Faktoren manipulieren? Eine weitere Aufgabe war es zu überprüfen, ob sich mit Hilfe von Fluoreszenzmikroskopie eine scharf abgegrenzte Kolokalisation von Ras und einem RafRBD-GFP-Fusionsprotein an der Plasmamembran darstellen lässt. Hierdurch sollte die Grundlage für die Visualisierung Ras-abhängiger Signaltransduktion geschaffen werden, die mit der Translokation von Raf einhergeht. Als Praxisbezug bestand die Überlegung, mit einem nukleo-cytoplasmatischen oder membran- cytoplasmatischen Translokationssystem einen auf Fluoreszenz basierenden Ras-RafRBD-Bindungsassay in der lebenden Zelle zu etablieren. Es besteht Interesse an dem Einsatz eines solchen zeilbasierten Testsystems in einem sog. High-Throughput Screening (HTS), also einem automatisierten Testverfahren mit hohem Probendurchsatz zur Suche nach Substanzen, die die Interaktion von onkogenem Ras und Raf blockieren oder alternativ die GTPase-Aktivität von onkogenem Ras stimulieren können. Eine wichtige Anforderung an eine solche automatisierte Testmethode ist neben einem möglichst geringen präparativen Aufwand die Notwendigkeit der präzisen und verlässlichen Unterscheidbarkeit der beiden Situationen, in denen die Interaktion zwischen Ras und RafRBD entweder unbehindert oder aber geschwächt ist.Surprisingly, the combination of protein II with a nuclear export signal can achieve that a nuclear localization assay can be carried out in vivo with proteins, domains or peptides of any size. It has been found that when such a fusion protein is used as Protein II, the problem of the undesired diffusion of Protein II into and (after the transfer has taken place) from the cell nucleus is avoided. The signals obtained are extraordinarily rich in contrast when using the method and assay according to the invention. This makes it much easier to carry out tests in which active ingredients are tested or differential differences in binding strength are determined quantitatively. The aim of this invention was to produce various constructs of the oncogenic variant G12V of Ras and the Ras-binding domain of Raf kinase (RafRBD) which allow fluorescent labeling or are fused to the genetically encoded fluorophore GFP (green fluorescent protein) and for Localization studies and translocation studies in the cell can be used. The focus should be on the translocation of Ras and RafRBD constructs into the cell nucleus. By fusion with a nuclear localization signal (NLS), Ras should be enabled to accumulate in the cell nucleus and thus be able to transport RafRBD into the cell nucleus. According to this, RafRBD should receive a nuclear export signal (NES). The central question was: Which factors determine the subcellular localization of two high-affinity partner proteins that carry an NLS and an NES? Can the targeting of these proteins, which contain localization sequences, be manipulated by varying these factors? Another task was to check whether a clearly delineated colocalization of Ras and a RafRBD-GFP fusion protein on the plasma membrane can be visualized using fluorescence microscopy. This should create the basis for the visualization of Ras-dependent signal transduction, which is associated with Raf's translocation. As a practical reference, the idea was to establish a fluorescence-based Ras-RafRBD binding assay in the living cell using a nucleocytoplasmic or membrane-cytoplasmic translocation system. There is interest in the use of such a line-based test system in a so-called high-throughput screening (HTS), i.e. an automated test method with high sample throughput for the search for substances that block the interaction of oncogenic Ras and Raf or alternatively the GTPase activity of can stimulate oncogenic Ras. An important requirement Such an automated test method is, in addition to the lowest possible preparation effort, the need for a precise and reliable differentiation between the two situations in which the interaction between Ras and RafRBD is either unimpeded or weakened.
Untersuchungen der Kern-Transport-Signale:Investigations of the core transport signals:
Es wurde konstitutiv aktives H-Ras (G12V-Mutante) verwendet, bei welchem das C-terminale CAAX-Motiv, dass für die Anlagerung an die Plasmamembran (aa 1-174) verantwortlich ist, sowie die Ras- Bindedomäne von c-Rafl (RafRBD, aa 51-132) fehlt. RafRBD bindet mit Affinität im nanomolaren Bereich an Ras-GTP und ist ausreichend aber notwendig für die Ras-Raf Interaktion (Scheffler et al., 1994; Herrmann et al., 1995). Um Ras gerichtet in den Kern zu transportieren, wurde ein modifizierter pcDNA3 Vektor (Invitrogen) konstruiert, der die Expression eines Proteins nach Wahl ermöglichte, das an eine 22 Aminosäuren umfassende Sequenz fusioniert ist, die das allgemein verwendete Kern- Lokalisations-Signal (NLS), abgeleitet aus dem simian virus 40 large tumor antigen (SV40 T-ag), und eine vorhergesagte Phosphorylierungsstelle für Caseinkinase II (Serlll/112), für die gezeigt worden war, dass sie den Kernimport von SV40 T-ag stark zu erhöht, enthält. Die RafRBD Sequenz wurde in den pEGFP-Cl Vektor (Clontech) eingesetzt. Um das GFP-RafRBD in das Zytosol zu dirigieren, wurde das gut charakterisierte Kern-Export-Signal (NES), abgeleitet aus dem HIV Rev Protein (Fischer et al., 1995), an das C-terminale Ende fusioniert. Die Expression der verwendeten Konstrukte in NIH3T3 Fibroblasten wurde durch Western Blot Analysen bestätigt (Fig. 2A and 2B). Die Konstrukte für Ras und RafRBD wurden entweder allein oder zusammen transient exprimiert und die intrazelluläre Lokalisation der Proteine 12-48 Stunden nach der Transfektion mit Hilfe eines konfokalen Lasermikroskops untersucht. Hierbei konnte die Funktionalität beider Signale, NLS und NES, gezeigt werden (Fig. 2C). Ras(G12V)-NLS (genauso wie wt-Ras-NLS) aber nicht ein Kontrollkonstrukt, dem das NLS fehlt, ist vollständig im Kern akkumuliert. GFP-Raf-RBD-NES war ausschließlich im Zytosol lokalisiert. Ein Konstrukt ohne NES zeigte eine gleiche Verteilung der Fluoreszenz wie GFP, etwas stärker akkumuliert im Kern. Aufgrund dieser unvorteilhaften Eigenschaften des GFP, ist die Verwendung eines einzelnen NLS in einem Translokationssystem nicht ausreichend, eine klare, interaktionsabhängige Unterscheidung der Fluoreszenzintensitäten zwischen Kern und Zytosol zu erzeugen. Die gemeinsame Transfektion von Ras(G12V)-NLS und GFP-RafRBD führt zu einer vollständig deckungsgleichen Lokalisation beider Proteine innerhalb der Kerns, was vermuten läßt, dass beides, die Ras*RafRBD Interaktion und das verwendete NLS stark genug sind für eine vollständige Kern- Trans-Lokalisation des GFP-RafRBD. Unerwartet führte die gemeinsame Transfektion von Ras(G12V)-NLS und GFP-RafRBD-NES nicht zu einer Translokation des Letzeren in den Kern. Vielmehr war GFP-RafRBD-NES vollständig im Zytosol lokalisiert, trotz der andauernden Anwesenheit von Ras(G12V)-NLS innerhalb des Kerns. Aus diesen Experimenten ist zu schließen, dass das verwendete NES über die Stärke der Protein-Protein Interaktion dominiert. Deshalb wurde die Stärke des Kern-Export- Signals im GFP-RafRBD-NES fein abgestimmt.Constitutively active H-Ras (G12V mutant) was used, in which the C-terminal CAAX motif, which is responsible for the attachment to the plasma membrane (aa 1-174), and the Ras binding domain of c-Rafl ( RafRBD, aa 51-132) is missing. RafRBD binds to Ras-GTP with affinity in the nanomolar range and is sufficient but necessary for the Ras-Raf interaction (Scheffler et al., 1994; Herrmann et al., 1995). In order to transport Ras into the nucleus, a modified pcDNA3 vector (Invitrogen) was constructed, which made it possible to express a protein of choice, which is fused to a 22 amino acid sequence which is the commonly used nuclear localization signal (NLS) , derived from the simian virus 40 large tumor antigen (SV40 T-ag), and a predicted phosphorylation site for casein kinase II (Serlll / 112), which has been shown to greatly increase the core import of SV40 T-ag , The RafRBD sequence was inserted into the pEGFP-Cl vector (Clontech). In order to direct the GFP-RafRBD into the cytosol, the well-characterized core export signal (NES), derived from the HIV Rev protein (Fischer et al., 1995), was fused to the C-terminal end. The expression of the constructs used in NIH3T3 fibroblasts was confirmed by Western blot analyzes (FIGS. 2A and 2B). The constructs for Ras and RafRBD were expressed either alone or together transiently and the intracellular localization of the proteins was examined 12-48 hours after the transfection using a confocal laser microscope. The functionality of both signals, NLS and NES, could be shown here (FIG. 2C). Ras (G12V) -NLS (just like wt-Ras-NLS) but not a control construct that lacks the NLS is completely accumulated in the core. GFP-Raf-RBD-NES was localized exclusively in the cytosol. A construct without NES showed the same distribution of fluorescence as GFP, somewhat more accumulated in the nucleus. Due to these unfavorable properties of GFP, the use of a single NLS in a translocation system is not sufficient to produce a clear, interaction-dependent distinction between the fluorescence intensities between the nucleus and the cytosol. The joint transfection of Ras (G12V) -NLS and GFP-RafRBD leads to a completely congruent localization of both proteins within the nucleus, which suggests that both the Ras * RafRBD interaction and the NLS used are strong enough for a complete nuclear Trans-localization of the GFP-RafRBD. Unexpectedly, the joint transfection of Ras (G12V) -NLS and GFP-RafRBD-NES did not lead to a translocation of the latter into the nucleus. Rather, GFP-RafRBD-NES was completely localized in the cytosol, despite the continued presence of Ras (G12V) -NLS within the nucleus. It can be concluded from these experiments that the NES used dominates over the strength of the protein-protein interaction. Therefore, the strength of the core export signal in the GFP-RafRBD-NES was fine-tuned.
Feinabstimmung des NES Signals:Fine-tuning the NES signal:
Zhang and Dayton (1998) hatten eine Reihe von Rev Protein Klonen, die an verschiedenen Positionen innerhalb des NES zufällig mutiert waren, erzeugt und deren abgeschwächte Kern-Export-Aktivität bestimmt. Es wurden fünf unterschiedlich mutierte NES Sequenzen, die ungefähr 50, 30, 16, 8 und 2% Kern-Export-Aktivität im Vergleich zum wt-Rev zeigten, ausgewählt. Diese wurden in die Sequenz des GFP-RafRBD-NES eingebaut (Fig. 3A). Die gemeinsame Transfektion von Ras(G12V)-NLS und den mutierten GFP-RafRBD-NES-Konstrukten zeigte, dass eine Reduktion der Exportaktivität auf 8% die GFP Fluoreszenz noch im Zytosol akkumulieren ließ und einer Anziehung des nuklearen Ras(G12V)-NLS entgegenwirkte. Einzig GFP-RafRBD-NES2%, mit einer deutlich abgeschwächten Exportaktivität war vollständig innerhalb des Kernes mit Ras(G12V)-NLS deckend lokalisiert (Fig. 3B). Einzeln transfiziertes GFP-RafRBD-NES2% war gleichmäßig im Kern und Zytosol verteilt, und zwar signifikant weniger stark angereichert innerhalb des Kern als GFP-RafRBD ohne NES. Die anderen GFP-RafRBD-NES Mutanten mit 8% oder höherer Exportaktivität waren vollständig innerhalb des Zytosols lokalisiert. Diese Experimente verdeutlichten, dass GFP- RafRBD-NES2%, aufgrund seines relativ geringen Molekulargewichtes von 38 kDa, einem ausbalanzierten Gleichgewicht zwischen schwachem signalgesteuerten Kernexport und freier Diffusion durch den Kernporenkomplex unterliegt.Zhang and Dayton (1998) had generated a number of Rev protein clones that were randomly mutated at different positions within the NES and determined their weakened core export activity. Five differently mutated NES sequences were selected, which showed approximately 50, 30, 16, 8 and 2% core export activity compared to wt-Rev. These were built into the sequence of the GFP-RafRBD-NES (Fig. 3A). The joint transfection of Ras (G12V) -NLS and the mutated GFP-RafRBD-NES constructs showed that a reduction in export activity to 8% allowed GFP fluorescence to accumulate in the cytosol and an attraction to the nuclear one Ras (G12V) -NLS counteracted. Only GFP-RafRBD-NES2%, with a significantly weakened export activity, was completely localized within the core with Ras (G12V) -NLS (FIG. 3B). Individually transfected GFP-RafRBD-NES2% was evenly distributed in the core and cytosol, significantly less enriched within the core than GFP-RafRBD without NES. The other GFP-RafRBD-NES mutants with 8% or higher export activity were completely localized within the cytosol. These experiments clarified that GFP-RafRBD-NES2%, due to its relatively low molecular weight of 38 kDa, is subject to a balanced balance between weak signal-controlled nuclear export and free diffusion through the nuclear pore complex.
Kontrolle der freien Diffusion des NES Konstrukts:Control of the free diffusion of the NES construct:
Um die freie Diffusion von RafRBD zu minimieren und dabei den Readout des Assays zu optimieren wurde, das Molekulargewicht von GFP-RafRBD- NES durch das Hinzufügen von zwei weiteren GFP Einheiten erhöht. Trotz seines Molekulargewichts von 84 kDa, das eine Diffusion in den Kern verhindern sollte, fand sich GFP3 immer noch signifikant angereichert im Kern. Dieser Umstand weist darauf hin, dass GFP ein kryptisches NLS enthält (Fig. 4A-C). Die Expression von GFP3-RafRBD- NES2% resultierte in der erwarteten Anreicherung im Zytoplasma. Nach Kotransfektion mit Ras(G12V)-NLS wurde in der Tat eine Kolokalisation beider Proteine im Kern beobachtet. Mit diesen zwei Konstrukten von Ras und RafRBD ist man in der Lage, den gewünschten Readout, wie in Fig. 1 dargestellt, zu erreichen. Um herauszufinden, ob die Translokation von RafRBD in den Kern durch aktiven Transport des Ras-NLS*GFP- RafRBD Komplexes vermittelt wird, oder eher durch die Diffusion von RafRBD durch den Kernporenkomplex und anschließendes Trappen durch nukleares Ras-NLS, wurde ein GFP-Fusionskonstrukt mit vollständigem c-Rafl verwendet. Sollte Diffusion der alleinige Transportmechanismus sein, sollte nach Koexpression mit Ras-NLS keine Kernlokalisierung von GFP-Raf-NES2% beobachtet werden, weil Rafl ein großes 80 kDa Protein ist, das mit weiteren regulatorischen Proteinen komplexiert ist (Morrison & Cutler, 1997). Koexprimiertes GFP-Raf-NES2% war vorwiegend im Kern akkumuliert (Fig. 4C) und deshalb kann gefolgert werden, dass die Translokation durch aktiven Transport des Ras-Raf Komplexes vermittelt wird. Diese Daten zeigen ebenso, dass der Translokationsassay auch für die Untersuchung von Ras und Raf und möglicherweise auch für die Regulation der Raf Aktivität in Säugerzellen geeignet ist.To minimize the free diffusion of RafRBD and thereby optimize the readout of the assay, the molecular weight of GFP-RafRBD-NES was increased by adding two more GFP units. Despite its molecular weight of 84 kDa, which should prevent diffusion into the nucleus, GFP3 was still found significantly enriched in the nucleus. This fact indicates that GFP contains a cryptic NLS (Fig. 4A-C). The expression of GFP3-RafRBD-NES2% resulted in the expected accumulation in the cytoplasm. After co-transfection with Ras (G12V) -NLS, colocalization of both proteins in the nucleus was indeed observed. With these two constructs from Ras and RafRBD one is able to achieve the desired readout as shown in FIG. 1. To find out whether the translocation of RafRBD into the nucleus is mediated by active transport of the Ras-NLS * GFP-RafRBD complex, or rather by the diffusion of RafRBD through the nuclear pore complex and subsequent trapping through nuclear Ras-NLS, a GFP fusion construct was developed used with full c-Rafl. If diffusion is the sole transport mechanism, after co-expression with Ras-NLS no core localization of GFP-Raf-NES2% can be observed because Rafl is a large 80 kDa protein that is complexed with other regulatory proteins (Morrison & Cutler, 1997). Co-expressed GFP-Raf-NES2% was predominantly accumulated in the nucleus (FIG. 4C) and it can therefore be concluded that the translocation is mediated by active transport of the Ras-Raf complex. These data also show that the translocation assay is also suitable for the investigation of Ras and Raf and possibly also for the regulation of Raf activity in mammalian cells.
Korrelation zwischen Komplexaffinität / Komplexkonzentration und Kernfluoreszenz: Um Ras-Raf Affinität mit dem Ausmaß der Kernakkumulation von GFP-RafRBD zu korrelieren, wurde ein Set von RafRBD Mutanten verwendet. Hierzu mußten Kern- und Zytoplasma Fluoreszenzintensitäten quantifiziert werden. Frühere Untersuchungen mit diesen Mutanten ergaben, dass die Affinität der Ras-RafRBD Interaktion in vivo mit der MAP Kinase Signaltransduktionskaskade in Verbindung gebracht werden kann. Wie erwartet, war RafRBD(R89L) mit einer ~104-fachen Reduktion in der Affinität nicht kolokalisiert mit Ras(G12V)-NLS und zeigte die gleich niedrige Fluoreszenzintensität innerhalb des Kerns wie alleine exprimiertes RafRBD. Da es zur Zeit keinen effektiven Antagonisten der Ras-Raf Interaktion gibt, simuliert die Kotransfektion dieser Mutante den Readout der für eine komplette Inhibition dieser Interaktion erwartet wird. Mit abnehmender Ras- RafRBD Affinität erniedrigt sich die durchschnittliche Prozentigkeit der Kernfluoreszenz, wie für die RafRBD Mutanten K65M, N64A, V69A, T68A, R59A, Q66A und K84A gezeigt (Fig. 5A and 5B). Allein exprimiert zeigten diese RafRBD Konstrukte dieselbe Akkumulation im Zytoplasma wie die Wildtyypform. Im Gegensatz dazu waren die allein exprimierten Mutanten K65A, K65E und R67A im Kern signifikant angereichert und konnten deshalb nicht für Vergleichstudien herangezogen werden. Diese durch nur eine einzige Aminosäureveränderung verursachte Verschiebung in der subzellulären Lokalisation könnte durch die abgeschwächte Bindung des Exportkomplexes zu seinem Cargo zustande kommen. Diese Untersuchungen machen deutlich, dass der anscheinend niedrigere Detektionslevel des beschriebenen Assays mit einer 5-fachen Reduktion in der Ras-Raf Affinität korrespondiert und potentiell mit stabil transfizierten Zelllinien und einer optimiertenCorrelation between complex affinity / complex concentration and nuclear fluorescence: In order to correlate Ras-Raf affinity with the extent of the nuclear accumulation of GFP-RafRBD, a set of RafRBD mutants was used. For this purpose, nuclear and cytoplasmic fluorescence intensities had to be quantified. Previous studies with these mutants have shown that the affinity of the Ras-RafRBD interaction in vivo can be linked to the MAP kinase signal transduction cascade. As expected, RafRBD (R89L) with a ~ 10 4 -fold reduction in affinity was not colocalized with Ras (G12V) -NLS and showed the same low fluorescence intensity within the nucleus as RafRBD expressed alone. Since there is currently no effective antagonist of the Ras-Raf interaction, the cotransfection of this mutant simulates the readout that is expected for a complete inhibition of this interaction. With decreasing Ras-RafRBD affinity, the average percentage of nuclear fluorescence decreases, as shown for the RafRBD mutants K65M, N64A, V69A, T68A, R59A, Q66A and K84A (FIGS. 5A and 5B). Expressed alone, these RafRBD constructs showed the same accumulation in the cytoplasm as the wild type. In contrast, the mutants K65A, K65E and R67A expressed alone were significantly enriched in the nucleus and could therefore not be used for comparative studies. This shift in the subcellular localization caused by only a single amino acid change could be caused by the weakened ties of the export complex to its cargo come about. These investigations make it clear that the apparently lower detection level of the described assay corresponds to a 5-fold reduction in the Ras-Raf affinity and potentially with stable transfected cell lines and an optimized one
Quantifizierungssoftware weiter verbessert werden kann.Quantification software can be further improved.
Der primäre Defekt von onkogenen Ras Mutanten ist deren Unfähigkeit, sowohl in der Gegenwart als auch Abwesenheit von GTPase- aktivierenden Proteinen (GAPs), GTP zu hydrolysieren. Unter Berücksichtigung, dass der katalytische Effekt der GTPase Stimulation durch GAPs mit der Beteiligung eines Arginin-Fingers von GAP zusammenhängt, wurde argumentiert, dass die Stimulation der GTPase Reaktion von onkogenem Ras in Ras-abhängigen Tumoren ein anti-Krebs Zielmolekül darstellen würde (Scheffzek et al., 1997). Neuerliche Untersuchungen mit einem GTP Analogon haben die Idee unterstützt, dass kleine Moleküle, die die GTPase Reaktion induzieren würden, bevorzugte Leadstrukturen für die Medikamentenentwicklung sein würden. Von daher stellt sich die Frage, ob der GFP-RafRBD Translokationsassay geeignet wäre, um solche Verbindungen zu detektieren. Wenn Wildtyp Ras-NLS mit GFP-RafRBD-NES2% co- transfiziert wird, findet sich die GFP Fluoreszenz hoch angereichert im zytoplasmatischen Kompartiment (Fig. 5A). Das deutet darauf hin, dass wegen GTP-Hydrolyse der Anteil an Komplexbildung zwischen Ras und Raf stark reduziert ist und dass der Assay geeignet ist die GTPase Reaktion aufzuzeichnen.The primary defect of oncogenic Ras mutants is their inability to hydrolyze GTP both in the presence and in the absence of GTPase activating proteins (GAPs). Considering that the catalytic effect of GTPase stimulation by GAPs is related to the involvement of an arginine finger of GAP, it was argued that stimulation of the GTPase response of oncogenic Ras in Ras-dependent tumors would be an anti-cancer target (Scheffzek et al., 1997). Recent studies using a GTP analog have supported the idea that small molecules that would induce the GTPase reaction would be preferred lead structures for drug development. This raises the question of whether the GFP-RafRBD translocation assay would be suitable for detecting such compounds. If wild-type Ras-NLS is co-transfected with GFP-RafRBD-NES2%, the GFP fluorescence is found highly enriched in the cytoplasmic compartment (FIG. 5A). This indicates that the proportion of complex formation between Ras and Raf is greatly reduced due to GTP hydrolysis and that the assay is suitable for recording the GTPase reaction.
Es wurde gezeigt, dass das erfindungsgemäße Verfahren es ermöglichte eine Protein-Protein Interaktion direkt zu überwachen (monitoren). Ebenfalls wurde untersucht, ob dieses Verfahren allgemein anwendbar ist auf andere Protein-Protein Interaktionen. Als Proteinpaare wurden Ras und RalGDS, Cdc42 und WASP und Grb2 und Sosl ausgewählt. Die Expression der in Fig. 6A mit den zugehörigen Molekulargewichten dargestellten Konstrukte wurde durch Western Blot Analyse bestätigt (Fig. 6B) . Wurden Cdc42-NLS (G12V und wt) und Grb2-NLS allein exprimiert, so waren sie ausschließlich im Kern lokalisiert, während GFP3-RalGDSRBD-NES2%, GFP3-WASP-CRIB-NES2% und GFP3-Sosl(C- ter)-NES2% im Zytosol akkumulierten. Im Gegensatz dazu waren GFP3- RalGDSRBD-NES2% vorwiegend, und die anderen zwei GFP- Fusionsproteine vollständig, nach gemeinsamer Transfektion mit ihren entsprechenden NLS-enthaltenen Interaktionspartnern (Fig. 6C), im Kern lokalisiert. Für die P49L Mutation innerhalb der N-terminalen SH3 Domäne von Grb2 ist bekannt, dass sie die Interaktion mit Sosl verhindert (Chardin et al., 1993). Dieser Sachverhalt konnte bestätigt werden durch den Nachweis, dass die Kernlokalisation der GFP- Fluoreszenz verhindert wird. Ähnlich zu dem, was für RafRBD beobachtet wurde (Fig. 5), ist wt-Ras-NLS nicht imstande RalGDSRBD deutlich zu translozieren, ebenso kann WASP-CRIB von wt-Cdc42-NLS nicht umorientiert werden. Diese Daten unterstreichen, dass der erfindungsgemäße Assay es allgemein ermöglicht, zwischen GTPase- negativ und wt-Formen von kleinen GTP-bindenden Proteinen zu unterscheiden.It was shown that the method according to the invention made it possible to directly monitor (monitor) a protein-protein interaction. It was also examined whether this method is generally applicable to other protein-protein interactions. Ras and RalGDS, Cdc42 and WASP and Grb2 and Sosl were selected as protein pairs. The Expression of the constructs shown in FIG. 6A with the associated molecular weights was confirmed by Western blot analysis (FIG. 6B). If Cdc42-NLS (G12V and wt) and Grb2-NLS were expressed alone, they were localized exclusively in the nucleus, while GFP3-RalGDSRBD-NES2%, GFP3-WASP-CRIB-NES2% and GFP3-Sosl (C- ter) - NES2% accumulated in the cytosol. In contrast, GFP3-RalGDSRBD-NES2% were predominant, and the other two GFP fusion proteins were completely localized in the nucleus after transfection with their corresponding NLS-containing interaction partners (FIG. 6C). The P49L mutation within the N-terminal SH3 domain of Grb2 is known to prevent interaction with Sosl (Chardin et al., 1993). This fact could be confirmed by the proof that the nuclear localization of the GFP fluorescence is prevented. Similar to what was observed for RafRBD (Fig. 5), wt-Ras-NLS is not able to translocate RalGDSRBD clearly, nor can WASP-CRIB be reoriented by wt-Cdc42-NLS. These data underline that the assay according to the invention generally makes it possible to differentiate between GTPase-negative and wt forms of small GTP-binding proteins.
Das erfindungsgemäße Verfahren kann für zell-basierende Wirkstoffdurchmusterungssuchmethoden nach Antagonisten von Proteininteraktionen angewendet werden und mag, nach entsprechender Modifikation, ebenfalls anwendbar sein für die Suche nach Agonisten. Ein enormer Vorteil dieser Methode ist die Möglichkeit, die Interaktion direkt und reversibel nachzuweisen, wodurch die Menge an Falschpositiven in einer Wirkstoffdurchmusterungssuche beträchtlich reduziert wird. Allerdings könnten auch kleine Moleküle identifiziert werden, die die Kern-Transport-Maschinerie blockieren und so alternativ zu einer Abschwächung der nuklearen GFP-Fluoreszenz führen würden. Derartige Moleküle, die ebenfalls von besonderem Interesse sind, könnten einfach durch Immunnachweis des NLS-enthaltenen Proteins, welches ebenfalls nicht mehr im Kern lokalisiert wäre, identifiziert werden. Letztendlich unterstützen die einfachen experimentellen Bedingungen des erfindungsgemäßen Verfahrens eine einfache automatisierte Quantifizierung und hohen Durchsatz. Aufgrund seiner Sensitivität werden mit diesem Verfahren nicht nur quantitative Informationen über wirkstoffaktive Substanzen, sondern möglicherweise auch mechanistische Untersuchungen über die Proteininteraktionen und deren Regulation, z.B. Struktur-Funktionsuntersuchungen durch Anwendung von Punktmutationen oder Analyse der Nukleotidhydrolyse von GTP- Bindeproteinen, ermöglicht. Eine weitere Anwendung des erfindungsgemäßen Verfahrens, unter Verwendung des Prinzips der Kern-Zytosol-Translokation, könnte ein alternatives „Säuger-Two- Hybrid-Verfahren" zur Verifizierung möglicher Interaktionen oder zur Durchmusterungssuche von unbekannten Interaktionspartnern einzelner Proteine, oder gar einer kompletten genetischen Expressions-Bibliothek sein.The method according to the invention can be used for cell-based drug screening search methods for antagonists of protein interactions and, after appropriate modification, may also be applicable for the search for agonists. An enormous advantage of this method is the ability to directly and reversibly demonstrate the interaction, which considerably reduces the amount of false positives in a drug screening search. However, small molecules could also be identified that block the core transport machinery and, as an alternative, would lead to a weakening of the nuclear GFP fluorescence. Such molecules, which are also of particular interest, could be simple by immunodetection of the NLS-containing protein, which would also no longer be located in the nucleus. Ultimately, the simple experimental conditions of the method according to the invention support simple automated quantification and high throughput. Due to its sensitivity, this method enables not only quantitative information about active substances, but possibly also mechanistic studies on protein interactions and their regulation, e.g. structure-function studies by using point mutations or analysis of the nucleotide hydrolysis of GTP binding proteins. A further application of the method according to the invention, using the principle of core-cytosol translocation, could be an alternative “mammalian two-hybrid method” for verifying possible interactions or for screening searches of unknown interaction partners of individual proteins, or even a complete genetic expression. Be a library.
Abbildungenpictures
Fig. 1 : Schematische Darstellung von NIFTY: Ein fluoreszenz-basierter Protein-Protein Interaktionsassay auf der Basis einer Kern-Zytoplasma Translokation von Reporterfluoreszenz.Fig. 1: Schematic representation of NIFTY: A fluorescence-based protein-protein interaction assay based on a nuclear cytoplasm translocation of reporter fluorescence.
Fig. 2 : Konstruktion und Expression von Fusionsproteinen für die Initialstudien. (A) Schematische Darstellung der hergestellten Konstrukte. (B) Immunoblots der initialen Konstrukte nach transienter Expression in NIH3T3 Zellen. Hierzu wurden Zellysate auf 15% SDS Polyacrylamidgelen aufgetrennt, auf Membranen transferiert und mit anti-GFP or anti-HA Antikörpern angefärbt. (C) Intrazelluläre Lokalisierung der initialen Ras und RafRBD Konstrukte nach Expression in NIH3T3 Zellen. Hierzu wurden die Proben mit einem Leica TCS SP2 konfokalen Microskop und einem 63x Ölimmersionsobjektiv gescanned. Für die Immunlokalisierung von HA-markiertem Ras wurden fixierte und permeabilisierte Zellen mit anti-HA Antikörpern und Cy5 (Co- Lokalisierungsstudien) bzw. Cy3 (Einzelexpression) markierten Sekundärantikörpern markiert. Obere Abbildungsreihe: subzelluläre Lokalisierung von einzel exprimiertem Ras(G12V)-NLS (a), der Ras Kontrolle (b), GFP-RafRBD-NES (c), GFP and GFP-RafRBD (d). Unterer Abbildungsblock: subzelluläre Lokalisierung von Ras(G12V)-NLS nach Co-expression mit GFP-RafRBD or GFP-RafRBD-NES. Zu beachten : für jedes Co-expressionsexperiment werden drei Darstellungen gezeigt: eine für das GFP Signal (grün), eine für das HA-Signal (blau) sowie eine überlappende Darstellung beider Signale.Fig. 2: Construction and expression of fusion proteins for the initial studies. (A) Schematic representation of the constructs produced. (B) Immunoblots of the initial constructs after transient expression in NIH3T3 cells. For this purpose, cell lysates were separated on 15% SDS polyacrylamide gels, transferred to membranes and stained with anti-GFP or anti-HA antibodies. (C) Intracellular localization of the initial Ras and RafRBD constructs after expression in NIH3T3 cells. For this purpose, the samples were scanned with a Leica TCS SP2 confocal microscope and a 63x oil immersion objective. For the immunolocalization of HA-labeled Ras, fixed and permeabilized cells were labeled with anti-HA antibodies and Cy5 (co-localization studies) or Cy3 (single expression) labeled secondary antibodies. Top row of pictures: subcellular localization of individually expressed Ras (G12V) -NLS (a), the Ras control (b), GFP-RafRBD-NES (c), GFP and GFP-RafRBD (d). Lower image block: subcellular localization of Ras (G12V) -NLS after co-expression with GFP-RafRBD or GFP-RafRBD-NES. Note: three representations are shown for each co-expression experiment: one for the GFP signal (green), one for the HA signal (blue) and an overlapping representation of both signals.
Fig. 3 : Feinabstimmung der NES Stärke. (A) Schematische Darstellung des Pools der hergestellten GFP-RafRBD-NES Konstrukte mit abgeschwächten Exportsignalen. Veränderungen der Aminosäuren des NES sind mit rot markiert. Die angegebenen prozentualen NES- Aktivitäten beziehen sich auf die Exportaktivität von NES-mutiertem Rev Protein im Vergleich zu Wildtyp-Rev (Zhang & Dayton, 1998). (B) Intrazelluläre Lokalisierung von GFP-RafRBD-NES2% nach Einzelexpression (a) und von Ras(G12V)-NLS und GFP-RafRBD-NES2% nach Co-Expression.Fig. 3: Fine-tuning the NES strength. (A) Schematic representation of the pool of the GFP-RafRBD-NES constructs produced with weakened export signals. Changes in the amino acids of the NES are marked with red. The percentage NES activities given relate to the export activity of NES-mutated Rev protein in comparison to wild-type Rev (Zhang & Dayton, 1998). (B) Intracellular localization of GFP-RafRBD-NES2% after single expression (a) and of Ras (G12V) -NLS and GFP-RafRBD-NES2% after co-expression.
Fig. 4: Feinabstimmung der Eigenschaft von GFP-RafRBD, durch den nuklearen Porenkomplex zu diffundieren . (A) Schematische Darstellung des Konstrukts GFP3-RafRBD-NES2%. (B) Immunoblots von GFP, GFP2, GFP3 and GFP3-RafRBD-NES2% nach transienter Expression in NIH3T3 Zellen. (C) Intrazelluläre Lokalisierung von GFP3, GFP3-RafRBD-NES2% (a) and GFP3-Raf-NES2% (b) nach Einzelexpression und von Ras(G12V)- NLS nach Co-expression mit entweder GFP3-RafRBD-NES2% oder GFP3- Raf-NES2%. Zu vergleichen ist hier die inverse subzelluläre Lokalisierung der Reporterfluoreszenz im zweiten und dritten Bild der unteren Abbildungshälfte mit jener in Fig. 1.Fig. 4: Fine-tuning the property of GFP-RafRBD to diffuse through the nuclear pore complex. (A) Schematic representation of the construct GFP3-RafRBD-NES2%. (B) Immunoblots of GFP, GFP2, GFP3 and GFP3-RafRBD-NES2% after transient expression in NIH3T3 cells. (C) Intracellular localization of GFP3, GFP3-RafRBD-NES2% (a) and GFP3-Raf-NES2% (b) after single expression and of Ras (G12V) - NLS after co-expression with either GFP3-RafRBD-NES2% or GFP3-Raf-NES2%. The inverse subcellular is to be compared here Localization of the reporter fluorescence in the second and third image of the lower half of the image with that in FIG. 1.
Fig. 5 : Korrelation der Menge an nuklearer Akkumulation von GFP3- RafRBD-NES2% and Ras*RafRBD Affinität oder Komplexkonzentration. (A) Co-expression von Ras(G12V)-NLS mit verschiedenen Konstrukten von GFP3-RafRBD-NES2% mit den jeweils angegebenen Punktmutationen. Unterer Abbildungshälfte : Co-expression von wt-Ras- NLS and GFP3-RafRBD-NES2%. (B) Korrelation der Ras*RafRBD Bindungsaffinität und dem Ausmaß an nuklearer Akkumulation von Reporterfluoreszenz. Dargestellt ist die relative Kernfluoreszenz gegen den Logarithmus der Dissoziationskonstante des wt-Ras*RafRBD Komplexes (Block et al., 1997).Figure 5: Correlation of the amount of nuclear accumulation of GFP3-RafRBD-NES2% and Ras * RafRBD affinity or complex concentration. (A) Co-expression of Ras (G12V) -NLS with different constructs of GFP3-RafRBD-NES2% with the point mutations indicated in each case. Lower half of the figure: Co-expression of wt-Ras-NLS and GFP3-RafRBD-NES2%. (B) Correlation of Ras * RafRBD binding affinity and the level of nuclear accumulation of reporter fluorescence. The relative nuclear fluorescence is shown against the logarithm of the dissociation constant of the wt-Ras * RafRBD complex (Block et al., 1997).
Fig. 6 : Generelle Anwendung von NIFTY für andere interagierende Proteine. (A) Schematische Darstellung der generierten Konstrukte. (B) Immunoblot Analyse der indizierten Konstrukte nach Expression NIH3T3 Zellen. (C) Intrazelluläre Lokalisierung von einzel expremiertem GFP3- RalGDSRBD-NES2% (a), GFP3-WASP-CRIB-NES2% (b) oder GFP-SOS(C- ter)-NES2% (c) oder von den indizierten Konstrukten nach Co- expression.Fig. 6: General application of NIFTY for other interacting proteins. (A) Schematic representation of the generated constructs. (B) Immunoblot analysis of the indicated constructs after expression of NIH3T3 cells. (C) Intracellular localization of individually expressed GFP3-RalGDSRBD-NES2% (a), GFP3-WASP-CRIB-NES2% (b) or GFP-SOS (C-ter) -NES2% (c) or from the indicated constructs Co-expression.
Beispiel 1example 1
Die der Erfindung zugrundeliegenden wesentlichen Arbeiten wurden am Beispiel des kleinen GTP-bindenden Proteins Ras und seinem hauptsächlichen Effektor Protein Raf Kinase durchgeführt, obwohl die Erfindung auf jedes andere interagiernde Proteinpaar angewandt und ausgedehnt werden kann.The essential work on which the invention is based was carried out using the example of the small GTP-binding protein Ras and its main effector protein Raf Kinase, although the invention can be applied and extended to any other interacting protein pair.
Das Ras-Protein ist ein zentrales Glied verschiedener Signaltransduktionswege, die Wachstums- und Differenzierungsprozesse regulieren. Als GTP-bindendes Protein nimmt es die Funktion eines regulierten molekularen Schalters ein. Ras wechselt dabei zwischen zwei Zuständen, in denen es entweder GTP gebunden hat (Schalterstellung : ein), oder das GTP zu GDP hydrolysiert ist (Schalterstellung : aus). Das aktivierte Ras kann nun die Serin-Threonin-Kinase Raf (rapid fibrosarcoma), den am besten charakterisierten Effektor von Ras, an die Plasmamembran rekrutieren, was zur Aktivierung dieser Kinase führt. Raf kann nun seinerseits durch Phosphorylierung die Proteinkinase MEK (MAPK/Erk-Kinase) aktivieren, die dann wiederum die Proteinkinase Erk (extracellular-signal-related kinase) aktiviert. Diese drei in Reihe geschalteten Kinasen bilden das sogenannte MAP-Kinase-Modul (für mitogen activated protein). Die Aktivierung dieses Moduls führt zur Phosphorylierung mehrerer Transkriptionsfaktoren und schließlich zur Expression verschiedener Gene (Campbell et al, 1998).The Ras protein is a central link in various signal transduction pathways, the growth and differentiation processes regulate. As a GTP-binding protein, it acts as a regulated molecular switch. Ras switches between two states in which it has either bound GTP (switch position: on), or the GTP is hydrolyzed to GDP (switch position: off). The activated Ras can now recruit the serine threonine kinase Raf (rapid fibrosarcoma), the best characterized effector of Ras, to the plasma membrane, which leads to the activation of this kinase. Raf can in turn activate the protein kinase MEK (MAPK / Erk kinase) by phosphorylation, which then in turn activates the protein kinase Erk (extracellular-signal-related kinase). These three kinases connected in series form the so-called MAP kinase module (for mitogen activated protein). The activation of this module leads to the phosphorylation of several transcription factors and finally to the expression of different genes (Campbell et al, 1998).
Die Tatsache, dass in 20-30% aller menschlichen Tumoren Punktmutationen im ras-Protoonkogen gefunden werden (Barbacid, 1987), unterstreicht die bedeutende Funktion von Ras bei der Kontrolle des Zellwachstums. Diese Punktmutationen führen allesamt zum Verlust der GTPase-Aktivität von Ras, die auch in Gegenwart von GTPase aktivierenden Proteinen (GAP) nicht mehr angeregt werden kann. Da der Wechsel von der GTP-gebundenen Form zur GDP-Form blockiert ist, kommt es zu einer Akkumulation von aktivem Ras und damit zu einem permanenten wachsstumsstimulierenden Signal in der Zelle. Große Anstrengungen wurden unternommen, um die molekularen Grundlagen der Schalterfunktion von Ras-Proteinen zu verstehen und gegen onkogenes Ras gerichtete Antitumor-Medikamente zu entwickeln.The fact that point mutations are found in the ras proto-oncogene in 20-30% of all human tumors (Barbacid, 1987) underscores the important role of Ras in controlling cell growth. These point mutations all lead to the loss of Ras GTPase activity, which can no longer be stimulated even in the presence of GTPase activating proteins (GAP). Since the change from the GTP-bound form to the GDP form is blocked, there is an accumulation of active Ras and thus a permanent growth-stimulating signal in the cell. Great efforts have been made to understand the molecular basis of the switch function of Ras proteins and to develop anti-tumor drugs directed against oncogenic Ras.
Die Interaktion von Raf mit aktiviertem Ras geschieht über die Rasbindende Domäne (RBD) im regulatorischen N-Terminus von Raf (Vojtek et al, 1993), die ein unabhängig faltendes, stabiles Modul aus 80 Aminosäuren darstellt (Scheffler et al, 1994). Die isolierte RBD vermag Ras in gleicher Weise GTP-abhängig zu binden wie vollständiges Raf. Zudem sind Ras-Varianten mit Punktmutationen in der Effektorregion, die zur Blockierung der biologischen Ras-Aktivität führen, gleichfalls nicht in der Lage, mit der RBD zu interagieren. Aus diesem Grund wird angenommen, dass die isolierte RafRBD die gleichen Eigenschaften hat wie die Domäne im intakten Gesamtprotein (Koide et al, 1993;Van Aelst et al, 1993;Moodie et al, 1993).Raf interacts with activated Ras via the Ras binding domain (RBD) in the regulatory N-terminus of Raf (Vojtek et al, 1993), which is an independently folding, stable module of 80 amino acids (Scheffler et al, 1994). Ras can bind the isolated RBD in a GTP-dependent manner in the same way as complete Raf. In addition, Ras variants with point mutations in the effector region that lead to the blocking of the biological Ras activity are likewise not able to interact with the RBD. For this reason, the isolated RafRBD is believed to have the same properties as the domain in the intact total protein (Koide et al, 1993; Van Aelst et al, 1993; Moodie et al, 1993).
Experimentelle DurchführungExperimental implementation
Plasmide: pcDNA3-HA-CKII-NLS wurde durch die Inserierung eines Hindlll/Kpnl Fragments, welches eine Kozak-Sequenz, ein Startkodon und eine Sequenz kodierend für das Hämagglutinin-Epitop (YPYDVPDYA) beinhaltet, und eines EcoRI/XhoI Fragments, welches für die Casein Kinase II Phosphorylierungsstelle (SSDDEATADSQHSST) und der Kernlokalisierungssequenz (NLS) (PPKKKRKV) des SV40 T-ag, in die Klonierungsstelle des Plasmidvektors pcDNA3 (Invitrogen) erstellt. PCR- amplifizierte Sequenzen von H-Ras (aa 1-174), hCdc42 (aa 1-178) und hGrb2 wurden in die BamHI/EcoRI-Schnittstelle von pcDNA3-HA-CKII- NLS kloniert. Das Ras-Kontrollkonstrukt wurde hergestellt, indem die H- Ras Sequenz mit einem Stopkodon in das Plasmid pcDNA3-HA, welchem die zweite Sequenzinsertion fehlt, kloniert wurde. Die G12V Mutationen wurden mittels gerichteter Mutagenese hergestellt. Ein für die Ras Bindedomäne (aa 51-132) kodierendes c-Rafl Fragment wurde mittels PCR amplifiziert und in die XhoI/EcoRI-Schnittstelle von Plasmid pEGFP- Cl (Clontech) kloniert (pGFP-RafRBD). Um das Plasmid pGFP-RafRBD- NES zu generieren, wurde mittels eines 3 " - überlappenden Primers die für das Kernexportsignal (NES) des Rev Proteins kodierende Sequenz in das Plasmid pGFP-RafRBD eingefügt. Punktmutationen innerhalb der NES Sequenzen (siehe Abbildung 3A) wurden im gleichen Verfahren hergestellt. Das Plasmid pEGFP3-Cl-NES2% ermöglicht die Expression von Proteinen mit einer N-terminalen Fusion von drei Einheiten GFP und ebenso mit einer C-terminalen Fusion eines attenuierten NES Proteins. PEGFP3-C1-NES2% wurde hergestellt, indem nachträglich in das pEGFP- Cl Plasmid ein Nhel/Agel- und ein Agel/Agel/-Fragment von GFP, jeweils eine Kozak-Sequenz beinhaltend, und ein für ein stark attenuiertes Rev protein NES (LPPLERLETLD) kodierendes EcoRI/Pstl- Fragment eingefügt wurden. Zur Herstellung der GFP-Fusionskonstrukte (siehe Abbildung 6A) wurden PCR-amplifizierte Sequenzen von hRalGDS- RBD (aa 788-884), hWASP-CRIB (aa 221-257) und dem C-terminalen Bereich von hSOSl (aa 1132-1333) in die XhoI/EcoRI Restriktionsschnittstelle von pEGFP3-Cl-NES2% eingefügt. Die Konstruktion des Plasmids pGFP3-RafRBD-NES2% erfolgte durch die Subklonierung des XhoI/PstI Fragments von pGFP-RafRBD2% in das Plasmid pEGFP3-Cl-NES2%. Mutationen in der RafRBD kodierenden Sequenz wurden mittels gerichteter Mutagenese erzeugt. Alle Konstrukte wurden abschließend sowohl vom 5 " - Ende als auch vom 3 " -Ende ausgehend sequenziert, wodurch die korrekte Basenabfolge bestätigt werden konnte.Plasmids: pcDNA3-HA-CKII-NLS was obtained by inserting a Hindlll / Kpnl fragment which contains a Kozak sequence, a start codon and a sequence coding for the hemagglutinin epitope (YPYDVPDYA), and an EcoRI / XhoI fragment which is used for the casein kinase II phosphorylation site (SSDDEATADSQHSST) and the nuclear localization sequence (NLS) (PPKKKRKV) of the SV40 T-ag, in the cloning site of the plasmid vector pcDNA3 (Invitrogen). PCR-amplified sequences of H-Ras (aa 1-174), hCdc42 (aa 1-178) and hGrb2 were cloned into the BamHI / EcoRI site of pcDNA3-HA-CKII-NLS. The Ras control construct was prepared by cloning the H-Ras sequence with a stop codon into the plasmid pcDNA3-HA, which lacks the second sequence insertion. The G12V mutations were generated using directed mutagenesis. A c-Rafl fragment coding for the Ras binding domain (aa 51-132) was amplified by PCR and cloned into the XhoI / EcoRI site of plasmid pEGFP-Cl (Clontech) (pGFP-RafRBD). In order to generate the plasmid pGFP-RafRBD-NES, the sequence coding for the core export signal (NES) of the Rev protein was inserted into the plasmid pGFP-RafRBD by means of a 3 "- overlapping primer. Point mutations within the NES sequences (see Figure 3A) were added The plasmid pEGFP3-Cl-NES2% enables the expression of proteins with an N-terminal fusion of three units GFP and also with a C-terminal fusion of an attenuated NES protein. PEGFP3-C1-NES2% was produced by subsequently adding a Nhel / Agel and an Agel / Agel / fragment of GFP, each containing a Kozak sequence, and one for a strongly attenuated Rev protein NES (into the pEGFP-Cl plasmid. LPPLERLETLD) coding EcoRI / Pstl fragment were inserted. PCR-amplified sequences of hRalGDS-RBD (aa 788-884), hWASP-CRIB (aa 221-257) and the C-terminal region of hSOSl (aa 1132-1333) were used to prepare the GFP fusion constructs (see FIG. 6A). inserted into the XhoI / EcoRI restriction site of pEGFP3-Cl-NES2%. The plasmid pGFP3-RafRBD-NES2% was constructed by subcloning the XhoI / PstI fragment from pGFP-RafRBD2% into the plasmid pEGFP3-Cl-NES2%. Mutations in the RafRBD coding sequence were generated by directed mutagenesis. Finally, all constructs were sequenced from both the 5 "end and the 3" end, which confirmed the correct base sequence.
Zellkultur, transiente Transfektion und Immunfluoreszenzfärbung : NIH3T3 Zellen wurden in mit 10% Kälberserum supplementiertem DMEM (Dulbecco's modified Eagle medium) mit Penicillin (1000 IU/ml), Streptomycin (1000 μg/ml) bei 37°C und einem CO2-Gehalt von 7,5% kultiviert. Gleiche Kulturbedingungen herrschten auch für MDCK und 293 Zellen. Für die transiente Transfektion wurden Zellen auf 21x26 mm Deckgläschen in 6-well Gewebekulturschalen ausgesäet und bis zu einer Konfluenz von 70% kultiviert. Die Transfektion erfolgte mit LipofectAMINE PLUS - Reagenz (Invitrogen) nach Anleitung des Herstellers unter Verwendung von 0,4 μg pcDNA3-Plasmid und 0,7 μg pEGFP-Plasmid. Für den immuncytochemischen Nachweis von Proteinen wurden die Zellen in Waschpuffer gewaschen (PBS, 0,5 mM CaCI2, 0,25 mM MgCI2), für 15 min in 3,7% Formaldehyd fixiert und für 10 min in 0,1% Triton X-100 in Tris/HCI pH 7,5 und 100 mM NaCI permeabilisiert. Nach einer 20 minütigen Inkubation mit 3% BSA wurden die Zellen mit dem primären Antikörper (Ratte, anti-HA; Sigma) in einer Verdünnung von 1 : 100 für 1 h inkubiert, anschließend dreimal mit PBS gewaschen und mit dem fluoreszenzmarkierten sekundären Antikörper (Cy-3 oder Cy-5, Ziege, anti-Ratte; Dianova) in einer Verdünnung von 1 : 100 für 1 h inkubiert. Nach der Inkubation erfolgten drei Waschschritte mit PBS. Die Deckgläschen wurden mit Mowiol auf Objektträgern eingebettet.Cell culture, transient transfection and immunofluorescence staining: NIH3T3 cells were in DMEM (Dulbecco's modified Eagle medium) supplemented with 10% calf serum with penicillin (1000 IU / ml), streptomycin (1000 μg / ml) at 37 ° C and a CO 2 content of 7.5% cultivated. The same culture conditions also existed for MDCK and 293 cells. For transient transfection, cells were sown on 21x26 mm coverslips in 6-well tissue culture dishes and cultivated to a confluence of 70%. The transfection was carried out with LipofectAMINE PLUS reagent (Invitrogen) according to the manufacturer's instructions using 0.4 μg pcDNA3 plasmid and 0.7 μg pEGFP plasmid. For the immuncytochemical detection of proteins, the cells were washed in washing buffer (PBS, 0.5 mM CaCl 2 , 0.25 mM MgCl 2 ), fixed in 3.7% formaldehyde for 15 min and in 0.1% Triton for 10 min X-100 permeabilized in Tris / HCl pH 7.5 and 100 mM NaCl. After a 20 minute incubation with 3% BSA, the cells were washed with the primary antibody (rat, anti-HA; Sigma) in a dilution of 1: 100 for 1 h, then washed three times with PBS and with the fluorescence-labeled secondary antibody (Cy-3 or Cy-5, goat, anti-rat; Dianova) in a dilution of 1: 100 for 1 h. After the incubation, three washing steps were carried out with PBS. The coverslips were embedded on slides with Mowiol.
Western Blot Analyse: NIH3T3 Zellen auf einer 10 cm Gewebekulturschale wurden 48 h nach Transfektion mit entsprechenden Plasmidkonstrukten in Lysepuffer (20 mM Tris/HCI pH 7,5, 150 mM NaCI, 1 mM EDTA, 0,5% Triton X-100, 0,1% SDS, 1% NaDOC und Proteinaseinhibitoren) inkubiert. Die Zellen wurden mit einem Gummispatel von den Schalen abgelöst. Nach Zentrifugation bei 4°C für 10 min bei 22000 g wurde der Überstand in einer SDS-PAGE aufgetrennt. Anschließend wurden die elekrophoretisch aufgetrennten Proteine auf eine PVDF-Membran übertragen. Die Membranen wurden im Anschluss entweder mit Meerrettich-Peroxidase gekoppeltem Ratten anti-HA Antikörper (Sigma) oder mit Kaninchen anti-GFP Antikörper (Dianova) eine Stunde lang inkubiert. Die mit dem anti-GFP Antikörper inkubierten Membranen wurden gewaschen und anschließend mit sekundärem Meerrettich-Peroxidase gekoppelten anti-Kaninchen Antikörper (Amersham Pharmacia) inkubiert. Zur Visualisierung der Proteinbanden wurde ein ECL Chemilumineszenz-Substrat (Pierce).Western blot analysis: NIH3T3 cells were placed on a 10 cm tissue culture dish 48 h after transfection with corresponding plasmid constructs in lysis buffer (20 mM Tris / HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 0 , 1% SDS, 1% NaDOC and proteinase inhibitors). The cells were detached from the dishes using a rubber spatula. After centrifugation at 4 ° C for 10 min at 22000 g, the supernatant was separated on an SDS-PAGE. The electrophoretically separated proteins were then transferred to a PVDF membrane. The membranes were then incubated for one hour either with rat anti-HA antibody (Sigma) coupled with horseradish peroxidase or with rabbit anti-GFP antibody (Dianova). The membranes incubated with the anti-GFP antibody were washed and then incubated with secondary horseradish peroxidase-coupled anti-rabbit antibodies (Amersham Pharmacia). An ECL chemiluminescent substrate (Pierce) was used to visualize the protein bands.
Imaging und Quantifizierung : Proben wurden mit einem konfokalen Mikroskop (Leica TCS SP2) analysiert. Durch ein sequentielle Abrasterung benachbarter Bildfelder wurden mehrere zelluläre Bildaufnahmen für jede Probe erhalten. Aufgrund der zu erwartenden Schwankungen der Proteinexpression in transientenImaging and quantification: Samples were analyzed with a confocal microscope (Leica TCS SP2). Sequential scanning of adjacent image fields resulted in multiple cellular images for each sample. Due to the expected fluctuations in protein expression in transients
Transfektionsexperimenten wurde vor der Bildanalyse eine Auswahl der zu aufzunehmenden Zellen getroffen. Die Überexpression eines Proteins kann zu einer schnellen Sättigung der Anreicherung des Proteins in einem entsprechenden Kompartiment führen, so dass es auch zu einer unerwünschten Anreicherung des Proteins in benachbarten Kompartimenten kommen kann. Aus diesem Grund wurden nur solche Zellen berücksichtigt, deren Fluoreszenzintensität unterhalb eines definierten Schwellenwertes für beide Fluorophoren lag. Ebenso fanden nur solche Zellen Berücksichtigung, die eine vergleichbare Expressionsrate beider Proteine aufwiesen. Diese Expressionsraten wurde mittels eines Quotienten der GFP- und Cy5- Fluoreszenzintensitäten im Kern und im Zytoplasma bestimmt. In jedem Experiment wurden mindestens 50 Zellen analysiert, die die gegebenen Auswahlkriterien erfüllten. Eine Fokussierung auf die Equatorialebene des Zellkerns und die Festlegung der Kompartimentgrenzen innerhalb derer die Bildanalyse erfolgen sollte, wurde durch die Cy5-Färbung des Kernlokalisierungssignal-tragenden Proteins ermöglicht. Die Zytoplasma- Fläche wurde durch zwei eng beieinander liegende Ringe in der Nähe der Grenze zum Zellkern definiert. Sowohl für das GFP- als auch für das Cy5-Signal wurde die durchschnittliche Fluoreszenzintensität pro Fläche gemessen und daraus die prozentuale Intensität des Kernsignals ermittelt.In the transfection experiments, a selection of the cells to be recorded was made before the image analysis. Overexpression of a protein can rapidly saturate the protein's accumulation in lead to a corresponding compartment, so that there may also be an undesired accumulation of the protein in neighboring compartments. For this reason, only those cells were considered whose fluorescence intensity was below a defined threshold for both fluorophores. Likewise, only those cells were considered that had a comparable expression rate of both proteins. These expression rates were determined using a quotient of the GFP and Cy5 fluorescence intensities in the nucleus and in the cytoplasm. In each experiment, at least 50 cells that met the given selection criteria were analyzed. A focus on the equatorial level of the cell nucleus and the determination of the compartment boundaries within which the image analysis should take place was made possible by the Cy5 staining of the protein carrying the nuclear localization signal. The cytoplasmic area was defined by two closely spaced rings near the border to the cell nucleus. The average fluorescence intensity per area was measured for both the GFP and the Cy5 signal and the percentage intensity of the core signal was determined therefrom.
Die zur Durchführung der hier beschriebenen Experimente notwendigen molekularbiologischen Methoden sind dem Fachmann bekannt (siehe Sambrook und Russell, Molecular Cloning : A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000). The molecular biological methods necessary to carry out the experiments described here are known to the person skilled in the art (see Sambrook and Russell, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000).
Literaturverzeichnisbibliography
Ahmadian,M.R. et al. Guanosine triphosphatase Stimulation of oncogenic Ras mutants. Proc. Natl. Acad. Sei. U. S. A. 96, 7065-7070 (1999) .Ahmadian, M.R.. et al. Guanosine triphosphatase stimulation of oncogenic ras mutants. Proc. Natl. Acad. Be. U.S.A. 96, 7065-7070 (1999).
Aronheim,A. Improved efficiency sos recruitment System : expression of the mammalian GAP reduces isolation of Ras GTPase false positives. Nucleic Acids Res. 25, 3373-3374 (1997).Aronheim, A. Improved efficiency sos recruitment system: expression of the mammalian GAP reduces isolation of Ras GTPase false positives. Nucleic Acids Res. 25, 3373-3374 (1997).
Aronheim,A., Zandi,E., Hennemann, H., Elledge,SJ. & Karin, M. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell. Biol. 17, 3094-3102 (1997).Aronheim, A., Zandi, E., Hennemann, H., Elledge, SJ. & Karin, M. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell. Biol. 17, 3094-3102 (1997).
Aspenstrom, P., Lindberg, U. & Hall,A. Two GTPases, Cdc42 and Rac, bind directiy to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr. Biol. 6, 70-75 (1996).Aspenstrom, P., Lindberg, U. & Hall, A. Two GTPases, Cdc42 and Rac, bind directiy to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr. Biol. 6, 70-75 (1996).
Barbacid,M. ras genes. Annual Reviews of Biochemistry 56, 779-827 (1987).Barbacid, M. ras genes. Annual Reviews of Biochemistry 56, 779-827 (1987).
Block, C. et al. Quantitative strueture-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo. Nat. Struct. Biol. 3, 244-251 (1996).Block, C. et al. Quantitative structural-activity analysis correlating Ras / Raf interaction in vitro to Raf activation in vivo. Nat. Struct. Biol. 3, 244-251 (1996).
Bos,J.L. All in the family? New insights and questions regarding interConnectivity of Ras, Rapl and Ral. EMBO J. 17, 6776-6782 (1998).Bos, J. L. All in the family? New insights and questions regarding interConnectivity of Ras, Rapl and Ral. EMBO J. 17, 6776-6782 (1998).
Bos,J.L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682-4689 (1989).Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682-4689 (1989).
Buday,L. & Downward,J. Epidermal growth factor regulates p21ras through the formation of a complex of reeeptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611-620 (1993). Burbelo,P.D., Drechsel,D. &. Hall,A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071-29074 (1995).Buday, L. & Downward, J. Epidermal growth factor regulates p21ras through the formation of a complex of reeeptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611-620 (1993). Burbelo, PD, Drechsel, D. &. Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071-29074 (1995).
Campbell, S.L. et al. Increasing complexity of Ras signaling. Oncogene 17, 1395-1413 (1998).Campbell, S.L. et al. Increasing complexity of Ras signaling. Oncogene 17, 1395-1413 (1998).
Chardin, P. et al. Human Sosl : a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338-1343 (1993) .Chardin, P. et al. Human Sosl: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338-1343 (1993).
Clegg,R.M. Fluorescence Imaging Spectroscopy and Microscopy. Wang,X.F. &. Herman,B. (eds.), pp. 179-252 (Wiley,1996).Clegg, R.M.. Fluorescence Imaging Spectroscopy and Microscopy. Wang, x.f. &. Herman, B. (eds.), pp. 179-252 (Wiley, 1996).
Cochran,A.G. Antagonists of protein-protein interactions. Chem. Biol. 7 , R85-R94 (2000).Cochran, A.G. Antagonists of protein-protein interactions. Chem. Biol. 7, R85-R94 (2000).
Colas,P. & Brent,R. The impact of two-hybrid and related methods on biotechnology. Trends Biotechnol. 16, 355-363 (1998).Colas, P. & Brent, R. The impact of two-hybrid and related methods on biotechnology. Trends in biotechnology. 16, 355-363 (1998).
Downward,J. Ras signalling and apoptosis. Curr. Opin. Genet. Dev. 8, 49-54 (1998).Downward, J. Ras signaling and apoptosis. Curr. Opin. Genet. Dev. 8, 49-54 (1998).
Drees,B.L. Progress and variations in two-hybrid and three-hybrid technologies. Curr. Opin. Chem. Biol. 3, 64-70 (1999).Drees, b.L. Progress and variations in two-hybrid and three-hybrid technologies. Curr. Opin. Chem. Biol. 3, 64-70 (1999).
Egan,S.E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase Signal transduction and transformation. Nature 363, 45-51 (1993).Egan, S. E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase Signal transduction and transformation. Nature 363, 45-51 (1993).
Ehrhard,K.N., Jacoby,J ., Fu,X.Y., Jahn,R. & Dohlman,H.G. Use of G- protein fusions to monitor integral membrane protein-protein interactions in yeast. Nat. Biotechnol. 18, 1075-1079 (2000). Fearon,E.R. et al. Karyoplasmic interaction selection strategy: a general strategy to detect protein-protein interactions in mammalian cells. Proc. Natl. Acad. Sei. U. S. A. 89, 7958-7962 (1992).Ehrhard, KN, Jacoby, J., Fu, XY, Jahn, R. & Dohlman, HG Use of G-protein fusions to monitor integral membrane protein-protein interactions in yeast. Nat. Biotechnol. 18, 1075-1079 (2000). Fearon, ER et al. Karyoplasmic interaction selection strategy: a general strategy to detect protein-protein interactions in mammalian cells. Proc. Natl. Acad. Be. USA 89, 7958-7962 (1992).
Fields,S. & Song,O. A novel genetic System to detect protein-protein interactions. Nature 340, 245-246 (1989).Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245-246 (1989).
Fischer,U., Huber,J., Boelens,W.C, Mattaj,I.W. & Luhrmann,R. The HIV- 1 Rev activation domain is a nuclear export Signal that accesses an export pathway used by speeifie cellular RNAs. Cell 82, 475-483 (1995).Fischer, U., Huber, J., Boelens, W.C, Mattaj, I.W. & Luhrmann, R. The HIV- 1 Rev activation domain is a nuclear export signal that accesses an export pathway used by speeifie cellular RNAs. Cell 82, 475-483 (1995).
Gail,R., Costisella,B., Ahmadian,M.R. & Wittinghofer,A. Ras-mediated cleavage of a GTP analogue by a novel mechanism. Chembiochem 2, 570-575 (2001) .Gail, R., Costisella, B., Ahmadian, M.R. & Wittinghofer, A. Ras-mediated cleavage of a GTP analogue by a novel mechanism. Chembiochem 2, 570-575 (2001).
Herrmann, C, Horn,G., Spaargaren,M. & Wittinghofer,A. Differential interaction of the ras family GTP-binding proteins H-Ras, RaplA, and R- Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271, 6794-6800 (1996).Herrmann, C, Horn, G., Spaargaren, M. & Wittinghofer, A. Differential interaction of the ras family GTP-binding proteins H-Ras, RaplA, and R- Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271, 6794-6800 (1996).
Herrmann, C, Martin, G.A. & Wittinghofer,A. Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf- 1 protein kinase. J. Biol. Chem. 270, 2901-2905 (1995).Herrmann, C, Martin, G.A. & Wittinghofer, A. Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 270, 2901-2905 (1995).
Huang,L., Hofer,F., Martin, G.S. & Kim,S.H. Structural basis for the interaction of Ras with RalGDS. Nat. Struct. Biol. 5, 422-426 (1998).Huang, L., Hofer, F., Martin, G.S. & Kim, S.H. Structural basis for the interaction of Ras with RalGDS. Nat. Struct. Biol. 5, 422-426 (1998).
Johnsson,N . & Varshavsky,A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sei. U. S. A. 91, 10340-10344 (1994).Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Be. U.S.A. 91, 10340-10344 (1994).
Karimova,G., Pidoux,J., Ullmann,A. & Ladant,D. A bacterial two-hybrid System based on a reconstituted Signal transduetion pathway. Proc. Natl. Acad. Sei. U. S. A. 95, 5752-5756 (1998). Koide, H . Satoh,T. Nakafuku,M. & Kaziro,Y. GTP-dependent association of Raf-1 with Ha-Ras: Identification of Raf as a target downstream of Ras in mammalian cells. Proc. Natl. Acad. Sei. U. S. A. 90, 8683-8686 (1993).Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Be. USA 95, 5752-5756 (1998). Koide, H. Satoh, T. Nakafuku, M. & Kaziro, Y. GTP-dependent association of Raf-1 with Ha-Ras: Identification of Raf as a target downstream of Ras in mammalian cells. Proc. Natl. Acad. Be. USA 90, 8683-8686 (1993).
Leanna,C.A. & Hannink,M. The reverse two-hybrid System : a genetic scheme for selection against specific protein/protein interactions. Nucleic Acids Res. 24, 3341-3347 (1996).Leanna, C.A.. & Hannink, M. The reverse two-hybrid system: a genetic scheme for selection against specific protein / protein interactions. Nucleic Acids Res. 24, 3341-3347 (1996).
Li,N. et al. Guanine-nucleotide-releasing factor hSosl binds to Grb2 and links receptor tyrosine kinases to Ras signalling . Nature 363, 85-88 (1993).Li, N. et al. Guanine-nucleotide-releasing factor hSosl binds to Grb2 and links receptor tyrosine kinases to Ras signaling. Nature 363, 85-88 (1993).
Mendelsohn,A.R. & Brent,R. Protein interaction methods - toward an endgame. Science 284, 1948-1950 (1999).Mendelsohn, A.R. & Brent, R. Protein interaction methods - toward an endgame. Science 284, 1948-1950 (1999).
Moodie,S.A., Willumsen,B.M., Weber,MJ. &. Wolfman,A. Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658-1661 (1993).Moodie, S.A., Willumsen, B.M., Weber, MJ. &. Wolfman, A. Complexes of Ras. GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658-1661 (1993).
Morrison, D. K. & Cutler,R.E. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9, 174-179 (1997).Morrison, D.K. & Cutler, R.E. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9, 174-179 (1997).
Nobes,C.D. & Hall,A. Rho, rac and cdc42 GTPases : regulators of actin structures, cell adhesion and motility. Biochem. Soc. Trans. 23, 456-459 (1995).Nobes, C.D. & Hall, A. Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem. Soc. Trans. 23, 456-459 (1995).
Pelletier,.]. N ., Campbell-Valois,F.X. & Michnick,S.W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Sei. U. S. A. 95, 12141- 12146 (1998).Pelletier ,.]. N., Campbell-Valois, F.X. & Michnick, S.W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc. Natl. Acad. Be. U.S.A. 95, 12141-12146 (1998).
Remy,I. & Michnick,S.W. Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc. Natl. Acad. Sei. U. S. A. 96, 5394-5399 (1999). Rohatgi,R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent Signals to actin assembly. Cell 97, 221- 231 (1999).Remy, I. & Michnick, SW Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc. Natl. Acad. Be. USA 96: 5394-5399 (1999). Rohatgi, R. et al. The interaction between N-WASP and the Arp2 / 3 complex links Cdc42-dependent Signals to actin assembly. Cell 97, 221-231 (1999).
Rossi,F., Charlton,C.A. & Blau,H.M. Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc. Natl. Acad. Sei. U. S. A. 94, 8405-8410 (1997).Rossi, F., Charlton, C.A. & Blau, H.M. Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc. Natl. Acad. Be. U.S.A. 94, 8405-8410 (1997).
Rossi,F.M ., Blakely,B.T. & Blau,H.M . Interaction blues : protein interactions monitored in live mammalian cells by beta-galactosidase complementation. Trends Cell Biol. 10, 119-122 (2000).Rossi, F.M., Blakely, B.T. & Blau, H.M. Interaction blues: protein interactions monitored in live mammalian cells by beta-galactosidase complementation. Trends Cell Biol. 10, 119-122 (2000).
Rozakis-Adcock,M., Fernley,R., Wade,J., Pawson,T. & Bowtell,D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSosl. Nature 363, 83-85 (1993).Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T. & Bowtell, D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSosl. Nature 363, 83-85 (1993).
Rudolph, .G. et al. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J. Biol. Chem. 273, 18067-18076 (1998).Rudolph, .G. et al. The Cdc42 / Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J. Biol. Chem. 273, 18067-18076 (1998).
Scheffler,J.E. et al. Characterization of a 78-residue fragment of c-Raf-1 that comprises a minimal binding domain for the interaction with Ras- GTP. J. Biol. Chem. 269, 22340-22346 (1994).Scheffler, J.E.. et al. Characterization of a 78-residue fragment of c-Raf-1 that comprises a minimal binding domain for the interaction with Ras- GTP. J. Biol. Chem. 269, 22340-22346 (1994).
Scheffzek,K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338 (1997).Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333-338 (1997).
Stagljar,I., Korostensky,C, Johnsson,N. &. te Heesen S. A genetic System based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Sei. U. S. A. 95, 5187- 5192 (1998). Symons,M. et al. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84 , 723-734 (1996).Stagljar, I., Korostensky, C, Johnsson, N. &. te Heesen S. A genetic system based on split ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc. Natl. Acad. Be. USA 95: 5187-5192 (1998). Symons, M. et al. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723-734 (1996).
Tsien,R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509- 544 (1998).Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544 (1998).
Urano,T., Emkey,R. & Feig,L.A. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 15, 810-816 (1996).Urano, T., Emkey, R. & Feig, L.A. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J. 15, 810-816 (1996).
Van Aelst,L. Barr,M., Marcus, S. Polverino,A & Wigler,M. Complex formation between Ras and Raf and other protein kinases. Proc. Natl. Acad. Sei. U. S. A. 90, 6213-6217 (1993).Van Aelst, L. Barr, M., Marcus, S. Polverino, A & Wigler, M. Complex formation between Ras and Raf and other protein kinases. Proc. Natl. Acad. Be. U.S.A. 90, 6213-6217 (1993).
Vetter,I. R. et al. Structural and biochemical analysis of Ras-effector signaling via RalGDS. FEBS Lett. 451, 175-180 (1999).Cousin, I. R. et al. Structural and biochemical analysis of Ras-effector signaling via RalGDS. FEBS Lett. 451, 175-180 (1999).
Vidal,M. & Legrain, P. Yeast forward and reverse 'n'-hybrid Systems. Nucleic Acids Res. 27, 919-929 (1999).Vidal, M. & Legrain, P. Yeast forward and reverse 'n' hybrid systems. Nucleic Acids Res. 27, 919-929 (1999).
Vidal,M., Brachmann, R.K., Fattaey,A., Harlow,E. & Boeke,J. D. Reverse two-hybrid and one-hybrid Systems to detect dissociation of protein- protein and DNA-protein interactions. Proc. Natl. Acad. Sei. U. S. A. 93, 10315-10320 (1996).Vidal, M., Brachmann, R.K., Fattaey, A., Harlow, E. & Boeke, J. D. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc. Natl. Acad. Be. U.S.A. 93, 10315-10320 (1996).
Vojtek,A.B., Hollenberg, S.M., & Cooper,J.A. Mammalian Ras interacts directiy with the serine/theorine kinase Raf. Cell, 74, 205-214 (1993).Vojtek, A.B., Hollenberg, S.M., & Cooper, J.A. Mammalian Ras interacts directiy with the serine / theorine kinase Raf. Cell, 74, 205-214 (1993).
Welch, M. D. The world according to Arp : regulation of actin nucleation by the Arp2/3 complex. Trends Cell Biol. 9, 423-427 (1999).Welch, M.D. The world according to Arp: regulation of actin nucleation by the Arp2 / 3 complex. Trends Cell Biol. 9, 423-427 (1999).
Wittinghofer,A. & Waldmann, H. Ras - A molecular switch involved in tumor formation. Angew. 39, 4193-4214 (2000). Wu,P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1-13 (1994).Witting Hofer, A. & Waldmann, H. Ras - A molecular switch involved in tumor formation. Angew. 39, 4193-4214 (2000). Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1-13 (1994).
Yang,M. Wu,Z. & Fields,S. Protein interactions analyzed with the yeast- two-hybrid System. Nuc. Acid Res. 23, 1152-1156 (1995).Yang, M. Wu, Z. & Fields, p. Protein interactions analyzed with the yeast two-hybrid system. Nuc. Acid Res. 23, 1152-1156 (1995).
Zhang,MJ. & Dayton,A.I. Tolerance of diverse amino acid substitutions at conserved positions in the nuclear export Signal (NES) of HIV-1 Rev. Biochem. Biophys. Res. Commun. 243, 113-116 (1998). Zhang, MJ. & Dayton, A.I. Tolerance of diverse amino acid substitutions at conserved positions in the nuclear export signal (NES) of HIV-1 Rev. Biochem. Biophys. Res. Commun. 243: 113-116 (1998).

Claims

Patentansprüche claims
1. Verfahren zum Nachweis von Protein-Protein Wechselwirkungen in Expressionssystemen wie Zellen, wobei ein Protein I mit einem Protein II interagiert, wobei ein Transfer des Protein I in ein Zellkompartiment erfolgt, in dem sowohl Protein I als auch Protein II natürlicherweise nicht vorkommen, und bei Nachweis von Protein II in dem Kompartiment, in das Protein I transferiert wurde, eine Wechselwirkung zwischen Protein I und Protein II festgestellt wird.1. A method for the detection of protein-protein interactions in expression systems such as cells, a protein I interacting with a protein II, a transfer of the protein I into a cell compartment in which both protein I and protein II do not occur naturally, and when protein II is detected in the compartment into which protein I has been transferred, an interaction between protein I and protein II is determined.
2. Verfahren nach Anspruch 1, wobei das Zellkompartiment Nukleus, Endoplasmatisches Reticulum, Nukleolus, Lysosomen, Golgi-Apparat, Dictyosomen, Mitochondrien, Chloroplasten, Peroxisomen, Vakuolen, Endosomen, ein periplasmatischer Raum oder eine Membran ist/sind.2. The method according to claim 1, wherein the cell compartment is nucleus, endoplasmic reticulum, nucleolus, lysosomes, Golgi apparatus, dictyosomes, mitochondria, chloroplasts, peroxisomes, vacuoles, endosomes, a periplasmic space or a membrane.
3. Verfahren nach mindestens einem der Ansprüche 1 bis 2, wobei der Transfer des Protein I durch eine Signalsequenz, bevorzugt durch eine Kernlokalisationssequenz, erfolgt.3. The method according to at least one of claims 1 to 2, wherein the transfer of the protein I is carried out by a signal sequence, preferably by a nuclear localization sequence.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, wobei die Wechselwirkung durch spektroskopische Detektion, Fluoreszenzdetektion, Colorimetrie oder Radiometrie nachgewiesen wird.4. The method according to at least one of claims 1 to 3, wherein the interaction is detected by spectroscopic detection, fluorescence detection, colorimetry or radiometry.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, wobei Protein II ein Exportsignal, insbesondere ein Kernexportsignal, aufweist.5. The method according to at least one of claims 1 to 4, wherein protein II has an export signal, in particular a core export signal.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, wobei Protein II ein Fusionsprotein mit einem fluoreszierenden Protein, bevorzugt GFP, ist. Assay unter Verwendung des Verfahrens nach mindestens einem der Ansprüche 1 bis 6, wobei Substanzen hinzugefügt werden, die möglicherweise mit der Protein-Protein Wechselwirkung interferieren. 6. The method according to at least one of claims 1 to 5, wherein protein II is a fusion protein with a fluorescent protein, preferably GFP. Assay using the method according to at least one of claims 1 to 6, wherein substances are added which may interfere with the protein-protein interaction.
EP01986933A 2000-12-23 2001-12-21 Technique and screening method for detecting reversible protein-protein interactions Withdrawn EP1370868A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10064972 2000-12-23
DE10064972 2000-12-23
PCT/EP2001/015265 WO2002052272A2 (en) 2000-12-23 2001-12-21 Technique and screening method for detecting reversible protein-protein interactions

Publications (1)

Publication Number Publication Date
EP1370868A2 true EP1370868A2 (en) 2003-12-17

Family

ID=7668947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01986933A Withdrawn EP1370868A2 (en) 2000-12-23 2001-12-21 Technique and screening method for detecting reversible protein-protein interactions

Country Status (3)

Country Link
EP (1) EP1370868A2 (en)
AU (1) AU2002238479A1 (en)
WO (1) WO2002052272A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090131270A1 (en) * 2004-08-02 2009-05-21 Cellumen, Inc.A Corporation Methods for the detection of molecular interactions within cells
JP5406019B2 (en) 2006-05-17 2014-02-05 セルーメン、インコーポレイテッド Method for automated tissue analysis
EP3553527A1 (en) 2011-03-17 2019-10-16 Cernostics, Inc. Systems and compositions for diagnosing barrett's esophagus and methods of using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL128017A0 (en) * 1998-07-22 1999-11-30 Technion Res & Dev Foundation Method for detecting protein-protein interactions and a kit therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02052272A3 *

Also Published As

Publication number Publication date
AU2002238479A1 (en) 2002-07-08
WO2002052272A2 (en) 2002-07-04
WO2002052272A3 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
Wyszynski et al. Interaction between GRIP and liprin-α/SYD2 is required for AMPA receptor targeting
DE69333969T2 (en) Interactive trap system for the isolation of proteins
DE60212642T2 (en) METHOD FOR USE OF O6-ALKYLGUANIN DNA ALKYL TRANSFERASES
EP2110666B1 (en) New method of detecting and analysing protein interactions in vivo
Heath et al. Hph1p and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae
Lin et al. Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control
JP2008507995A (en) Method for detecting molecular interactions in cells
US20100112602A1 (en) Protein-Protein Interaction Biosensors and Methods of Use Thereof
DE69918123T2 (en) METHOD AND REAGENT SET FOR DETECTING PROTEIN PROTEIN INTERACTIONS
Stasi et al. Two-hybrid-based systems: Powerful tools for investigation of membrane traffic machineries
DE69935313T2 (en) PROOF OF PROOF FOR PEPTIDES
Shellhammer et al. Quantitative analysis of the yeast pheromone pathway
Schaefer et al. Wnt regulation: exploring Axin-Disheveled interactions and defining mechanisms by which the SCF E3 ubiquitin ligase is recruited to the destruction complex
Xu et al. Inactivation of Ras function by allele-specific peptide aptamers
EP1370868A2 (en) Technique and screening method for detecting reversible protein-protein interactions
JP6393260B2 (en) Fluorescence fusion polypeptide, biosensor containing the polypeptide and use thereof
DE60120942T2 (en) IMPROVED PROCESS FOR REVERSE N-HYBRID SCREENING
Perez et al. Septin‐associated proteins Aim44 and Nis1 traffic between the bud neck and the nucleus in the yeast Saccharomyces cerevisiae
EP1007968B1 (en) Method and kit for identifying interactions between proteins or peptides
DE69918260T2 (en) Methods for the identification and validation of functional targets by intramers or in vivo selection
Bhattacharya Adaptations of autophagy and lysosomal systems upon membrane damage and pathogenic invasion
Tenner Development and Application of Genetically Encoded Biosensors for Studying Compartmentalized Signaling
Chandan Identification and Characterization of G Protein Signaling Networks by Proximity Labeling-Coupled Proteomics
Rossi The Influence of Fic1 on Polarity and Cytokinesis in Fission Yeast
Stockhammer et al. When less is more–A fast TurboID KI approach for high sensitivity endogenous interactome mapping

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030718

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040728

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050208