EP1370840A1 - Method and device for monitoring a sensor - Google Patents

Method and device for monitoring a sensor

Info

Publication number
EP1370840A1
EP1370840A1 EP02714070A EP02714070A EP1370840A1 EP 1370840 A1 EP1370840 A1 EP 1370840A1 EP 02714070 A EP02714070 A EP 02714070A EP 02714070 A EP02714070 A EP 02714070A EP 1370840 A1 EP1370840 A1 EP 1370840A1
Authority
EP
European Patent Office
Prior art keywords
temperature
sensor
signal
aftertreatment system
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02714070A
Other languages
German (de)
French (fr)
Inventor
Holger Plote
Andreas Krautter
Michael Walter
Juergen Sojka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1370840A1 publication Critical patent/EP1370840A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method and a device for monitoring a sensor.
  • DE 199 06 287 discloses a method and a device for controlling an internal combustion engine with an exhaust gas aftertreatment system.
  • a particle filter is used that filters out particles contained in the exhaust gas.
  • the state of the exhaust gas aftertreatment system must be known for precise control of the internal combustion engine and of the exhaust gas aftertreatment system.
  • Sensors are used, among other things, to record the state of the exhaust gas aftertreatment system. In particular, sensors are used that provide temperature values that characterize the temperature before, after and / or in the exhaust gas aftertreatment system.
  • Method for monitoring a sensor of an exhaust gas aftertreatment system in particular one Temperature sensor.
  • a first signal of a first sensor to be monitored is compared with a second signal of a second sensor and an error is detected when at least the two signals differ from one another by more than a predeterminable value is simple and reliable monitoring possible from sensors of an exhaust gas aftertreatment system.
  • Temperature sensors are preferably monitored using the procedure. The procedure is also for other sensors that control the
  • Exhaust gas treatment system can be used. This preferably applies to sensors for detecting the state of the exhaust gas aftertreatment system and / or for pressure, temperature and / or air volume sensors.
  • the first signal characterizes the temperature of the exhaust gases upstream of an exhaust aftertreatment system, in an exhaust aftertreatment system and / or after one
  • these signals are compared with a second signal which characterizes the temperature of the gases which are fed to the internal combustion engine, the oxidation catalytic converter or the particle filter. These signals are particularly suitable, since in certain operating states this comparison signal assumes almost the same values as the signals to be monitored.
  • FIG. 1 shows a block diagram of the device according to the invention
  • FIG. 2 shows a flow diagram to illustrate the procedure according to the invention.
  • Example of a self-igniting internal combustion engine is shown, in which the fuel metering is controlled by a so-called common rail system.
  • the procedure according to the invention is not restricted to these systems. It can also be used in other internal combustion engines.
  • the exhaust gas aftertreatment means 110 is arranged in the exhaust gas line 104, from which the cleaned exhaust gases reach the surroundings via the line 106.
  • the exhaust gas aftertreatment means 110 essentially comprises a so-called pre-catalyst 112 and a filter 114 downstream Pre-catalytic converter 112 and the filter 114, a temperature sensor 124 is arranged, which provides a temperature signal TVF.
  • Sensors 120a and 120b are provided in front of the pre-catalytic converter 112 and after the filter 114. These sensors act as a differential pressure sensor 120 and set
  • Differential pressure signal DP ready which characterizes the differential pressure between the inlet and outlet of the exhaust gas aftertreatment agent.
  • a sensor 126 is arranged in the intake line 102, which detects a signal T1 which characterizes the temperature T1 of the fresh air supplied.
  • a sensor 125 supplies a signal TVO, which characterizes the temperature upstream of the exhaust gas aftertreatment system 110.
  • the internal combustion engine 100 is metered fuel via a fuel metering unit 140. This measures fuel via injectors 141, 142, 143 and 144 to the individual cylinders of internal combustion engine 100.
  • the fuel metering unit is preferably a so-called common rail system.
  • a high pressure pump delivers fuel to an accumulator. The fuel reaches the internal combustion engine via the injectors.
  • Various sensors 151 are arranged on the fuel metering unit 140, which provide signals that characterize the state of the fuel metering unit.
  • a common rail system is, for example, the pressure P in the pressure accumulator.
  • Sensors 152 which characterize the state of the internal combustion engine, are arranged on the internal combustion engine 100. This is, for example, a temperature sensor that provides a signal TW that characterizes the engine temperature.
  • the output signals of these sensors go to a controller 130, which acts as a first sub-controller 132 and a second partial control 134 is shown.
  • the two partial controls preferably form a structural unit.
  • the first sub-controller 132 preferably controls the fuel metering unit 140 with control signals AD that influence the fuel metering.
  • the first partial control 132 includes a fuel quantity control 136. This supplies a signal ME, which characterizes the quantity to be injected, to the second partial control 134.
  • the second sub-controller 134 preferably controls the exhaust gas aftertreatment system and detects the corresponding sensor signals for this purpose. Furthermore, the second sub-controller 134 exchanges signals, in particular via the injected fuel quantity ME, with the first sub-controller 132. Preferably use the two
  • the first partial control which is also referred to as motor control 132, controls depending on various conditions
  • the exhaust gas aftertreatment means 110 filter them out of the exhaust gas. Through this filtering process, 114 particles collect in the filter. These particles are then in certain operating states, loading states and / or after certain times or counter readings for Amount of fuel or distance burned to clean the filter. For this purpose, it is usually provided that the temperature in the exhaust gas aftertreatment means 110 is increased so that the particles burn in order to regenerate the filter 114.
  • the precatalyst 112 is provided for increasing the temperature.
  • the temperature is increased, for example, by increasing the proportion of unburned hydrocarbons in the exhaust gas. These unburned hydrocarbons then react in the pre-catalyst 112 and increase its temperature and the temperature of the exhaust gas.
  • This temperature increase of the pre-catalytic converter and the exhaust gas temperature requires an increased fuel consumption and should therefore only be carried out when this is necessary, i.e. the filter 114 is loaded with a certain proportion of particles.
  • One way of recognizing the loading condition is to determine the differential pressure DP between the inlet and outlet of the
  • a central function in the control of the exhaust gas aftertreatment system are the sensors used, in particular the temperature sensors, which are used for the correct control of the exhaust gas
  • Exhaust aftertreatment systems are essential. It is not sufficient to test the functionality of the sensors as part of maintenance or a technical check. This applies in particular against the background of the legal requirements for on-board diagnosis of emission-relevant systems.
  • the defect of a sensor must be recognized early in order to prevent the permissible emissions from being exceeded and to ensure the functionality of the exhaust gas aftertreatment system. The procedure described below enables a simple check, in particular of the temperature sensors in the exhaust system, and thus ensures the functionality of the
  • the procedure according to the invention is described below using the example of temperature sensors. In principle, this procedure can also be used with other sensors, in particular for sensors in the exhaust system. With the procedure according to the invention, all sensors that are based on the internal combustion engine, ie. H. between internal combustion engine and exhaust gas aftertreatment system, sensors in exhaust gas aftertreatment, d. H. between the oxidation catalytic converter and the particle filter and / or sensors after the particle filter. Furthermore, the procedure according to the invention is also possible with other arrangements of the catalysts and / or the particle filter.
  • the malfunction of the temperature sensor in the exhaust system is recognized by a
  • Control unit available so that no further sensors are necessary.
  • FIG. 2 shows an exemplary embodiment of the procedure according to the invention as a flow chart.
  • a first one Query 200 checks whether the last start was long enough ago.
  • a second query 205 checks whether the internal combustion engine has started to rotate.
  • Query 205 preferably checks whether speed N is greater than 0. If this is not the case, step 205 follows again. If the internal combustion engine rotates, a time counter Z is started in step 208 and a query 210 checks whether different temperature signals such as the cooling water temperature TW and / or the temperature of the fresh air quantity T 1 drawn in and / or the
  • Ambient temperature which corresponds in a first approximation to the temperature Tl, is less than a threshold value SW. If not, i. H. if one of the temperatures is greater than the threshold value, it is recognized in step 295 that no check is possible. If the temperatures are lower than the threshold value, query 220 follows. In a simplified embodiment it can also be provided that only one of the temperature values is checked.
  • the query 220 checks whether the amount of the difference between these two temperature values is less than a threshold value SW2. If not, i. H. the
  • the query 230 checks whether the speed N is greater than a threshold value SN. If this is not the case, step 230 takes place again. If query 230 recognizes that the
  • query 240 follows. This query 240 checks whether the time Z since the first rotation of the internal combustion engine is less than a threshold value ST. If this is not the case, it is also recognized that no check is possible. Is the time since the first rotation of the internal combustion engine less than a threshold value, the actual checking of the temperature sensors takes place from step 250.
  • a first query 250 checks whether the amount of
  • step 280 Difference between the fresh air temperature Tl and the temperature TVO before the exhaust gas aftertreatment system is greater than a threshold value GW1. If this is the case, an error is recognized in step 280. If this is not the case, it is checked whether the amount of the difference between the ambient temperature T1 and the temperature in the exhaust gas aftertreatment system TVF is greater than a threshold value GW2. If this is the case, then an error is also detected in step 280. If this is not the case, query 270 checks whether the amount of the difference between the temperature signal TVO, the temperature in front of the exhaust gas aftertreatment system and the temperature TVF in the exhaust gas aftertreatment system is greater than a threshold value GW3. If this is the case, errors are also recognized in step 280. If this is not the case, then in step 290 it is recognized that there is no error and the sensors are working properly.
  • the procedure described shows the monitoring using the example of a temperature sensor 125 before
  • Exhaust gas aftertreatment system and a temperature sensor 124 in the exhaust gas aftertreatment system which is arranged between an oxidation catalyst and a particle filter.
  • the procedure described is not limited to this special arrangement of the sensors. It can also be used in other arrangements of sensors and / or catalysts and filters.
  • a temperature sensor in particular temperature sensor 125, can be replaced by a sensor in front of the NOx storage catalytic converter.
  • further sensors are arranged in the exhaust gas aftertreatment system, in which case these are checked for plausibility both with the ambient temperature and with one another.
  • a check is preferably only carried out when there is a cold start. This means that the check is only carried out if the engine has not been operated for a long time. For this purpose, it is checked whether the last start process was long enough ago. This is recognized by means of query 200. A check in this case is prevented because the
  • the measured temperatures have changed only slightly, which is due, among other things, to the inertia of the sensors. If the starting process takes too long, this can no longer be guaranteed. It is therefore checked in query 240 whether the start release speed was reached within a predeterminable maximum time. The plausibility check is preferably only carried out when all checks have been carried out. In simplified embodiments, it can also be provided that one or the other query does not take place. If the above conditions apply, the temperature differences between the temperature sensors to be monitored and the intake air temperature as well as the difference between the individual temperature signals to be monitored are formed. In the exemplary embodiment shown, the temperature sensors upstream of the catalytic converter and upstream of the filter are monitored. If the differences are larger than a limit value, an error is recognized. An error-free state is recognized when all temperature sensors display the value of a reference sensor. Instead of the intake air temperature, the ambient air temperature can also be used as a reference sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The invention relates to a device and to a method for monitoring a sensor of an exhaust gas aftertreatment system, especially a temperature sensor. In defined operational states a first signal of the first sensor to be monitored is compared with a second signal of a second sensor. An error is detected if at least the two signals deviate from each other by more than one value.

Description

Verfahren und Vorrichtung zur Überwachung eines SensorsMethod and device for monitoring a sensor
Stand der TechnikState of the art
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Überwachung eines Sensors.The invention relates to a method and a device for monitoring a sensor.
Aus der DE 199 06 287 sind ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine mit einem AbgasnachbehandlungsSystem bekannt. Bei dem dort beschriebenen System wird ein Partikelfilter eingesetzt, der im Abgas enthaltene Partikel ausfiltert. Zur genauen Steuerung der Brennkraftmaschine sowie des AbgasnachbehandlungsSystems muss der Zustand des Abgasnachbehandlungssystems bekannt sein. Zur Erfassung des Zustandes des Abgasnachbehandlungssystems werden unter anderem Sensoren eingesetzt. Insbesondere werden Sensoren eingesetzt, die Temperaturwerte bereitstellen, die die Temperatur vor, nach und/oder im Abgasnachbehandlungssystem charakterisieren.DE 199 06 287 discloses a method and a device for controlling an internal combustion engine with an exhaust gas aftertreatment system. In the system described there, a particle filter is used that filters out particles contained in the exhaust gas. The state of the exhaust gas aftertreatment system must be known for precise control of the internal combustion engine and of the exhaust gas aftertreatment system. Sensors are used, among other things, to record the state of the exhaust gas aftertreatment system. In particular, sensors are used that provide temperature values that characterize the temperature before, after and / or in the exhaust gas aftertreatment system.
Vorteile der ErfindungAdvantages of the invention
Verfahren zur Überwachung eines Sensors eines Abgasnachbehandlungssystems, insbesondere eines Temperatursensors. Dadurch, dass in bestimmten Betriebszuständen ein erstes Signal eines zu überwachenden ersten Sensors mit einem zweiten Signal eines zweiten Sensors verglichen wird, und auf Fehler erkannt wird, wenn wenigstens die beiden Signale um mehr als ein vorgebbarer Wert voneinander abweichen, ist eine einfache und sichere Überwachung von Sensoren eines Abgasnachbehandlungssystems möglich. Vorzugsweise werden Temperatursensoren mit der Vorgehensweise überwacht. Die Vorgehensweise ist aber auch für andere Sensoren, die zur Steuerung desMethod for monitoring a sensor of an exhaust gas aftertreatment system, in particular one Temperature sensor. The fact that, in certain operating states, a first signal of a first sensor to be monitored is compared with a second signal of a second sensor and an error is detected when at least the two signals differ from one another by more than a predeterminable value is simple and reliable monitoring possible from sensors of an exhaust gas aftertreatment system. Temperature sensors are preferably monitored using the procedure. The procedure is also for other sensors that control the
AbgasnachbehandlungsSystem verwendet werden, einsetzbar. Dies gilt vorzugsweise für Sensoren zur Erfassung des Zustandes des Abgasnachbehandlungssystems und/oder für Druck-, Temperatur- und/oder Luftmengensensoren.Exhaust gas treatment system can be used. This preferably applies to sensors for detecting the state of the exhaust gas aftertreatment system and / or for pressure, temperature and / or air volume sensors.
Besonders vorteilhaft ist die Anwendung des Verfahrens auf Temperatursensoren. Insbesondere charakterisiert das erste Signal die Temperatur der Abgase vor einem AbgasnachbehandlungsSystem, in einem Abgasnachbehandlungssystem und/oder nach einemThe application of the method to temperature sensors is particularly advantageous. In particular, the first signal characterizes the temperature of the exhaust gases upstream of an exhaust aftertreatment system, in an exhaust aftertreatment system and / or after one
AbgasnachbehandlungsSystem. Die Erfassung dieser Temperaturgrößen ist besonders sensibel, da diese zur Steuerung des Abgasnachbehandlungssytems mit hoher Genauigkeit zu erfassen sind.Aftertreatment system. The detection of these temperature variables is particularly sensitive since they have to be recorded with high accuracy for controlling the exhaust gas aftertreatment system.
Besonders vorteilhaft ist es, wenn diese Signale mit einem zweiten Signal verglichen werden, das die Temperatur der Gase, die der Brennkraftmaschine, dem Oxidationskatalysator oder dem Partikelfilter zugeführt werden, charakterisiert. Diese Signale sind besonders geeignet, da in bestimmten Betriebszuständen dieses Vergleichssignal nahezu die gleichen Werte annimmt, wie die zu überwachenden Signale.It is particularly advantageous if these signals are compared with a second signal which characterizes the temperature of the gases which are fed to the internal combustion engine, the oxidation catalytic converter or the particle filter. These signals are particularly suitable, since in certain operating states this comparison signal assumes almost the same values as the signals to be monitored.
Besonders vorteilhaft ist die Überwachung in Betriebszuständen, bei denen die Kühlwassertemperatur und/oder die Temperatur der Gase, die der Brennkraftmaschine zugeführt werden, und/oder die Differenz der beiden Temperaturen kleiner als ein Schwellenwert ist. In diesen Betriebszuständen ist der Unterschied der zu überwachenden Signale und der Vergleichssignale am geringsten.Monitoring in operating states in which the cooling water temperature is particularly advantageous and / or the temperature of the gases that are supplied to the internal combustion engine and / or the difference between the two temperatures is less than a threshold value. The difference between the signals to be monitored and the comparison signals is the smallest in these operating states.
Weitere besonders vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.Further particularly advantageous configurations are characterized in the subclaims.
Zeichnungdrawing
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsform erläutert. Es zeigen Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung und Figur 2 ein Ablauf-Diagramm zur Verdeutlichung der erfindungsgemäßen Vorgehensweise .The invention is explained below with reference to the embodiment shown in the drawing. FIG. 1 shows a block diagram of the device according to the invention and FIG. 2 shows a flow diagram to illustrate the procedure according to the invention.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Im folgenden wird die erfindungsgemäße Vorrichtung amIn the following the device according to the invention
Beispiel einer selbstzündenden Brennkraftmaschine dargestellt, bei der die Kraftstoffzumessung mittels eines sogenannten Common-Rail-Systems gesteuert wird. Die erfindungsgemäße Vorgehensweise ist aber nicht auf diese Systeme beschränkt. Sie kann auch bei anderen Brennkraftmaschinen eingesetzt werden.Example of a self-igniting internal combustion engine is shown, in which the fuel metering is controlled by a so-called common rail system. However, the procedure according to the invention is not restricted to these systems. It can also be used in other internal combustion engines.
Mit 100 ist eine Brennkraftmaschine bezeichnet, die über eine Ansaugleitung 102 Frischluft zugeführt bekommt und über eine Abgasleitung 104 Abgase abgibt. In der Abgasleitung 104 ist ein Abgasnachbehandlungsmittel 110 angeordnet, von dem die gereinigten Abgase über die Leitung 106 in die Umgebung gelangen. Das Abgasnachbehandlungsmittel 110 umfaßt im wesentlichen einen sogenannten Vorkatalysator 112 und stromabwärts einen Filter 114. Vorzugsweise ist zwischen dem Vorkatalysator 112 und dem Filter 114 ein Temperatursensor 124 angeordnet, der ein Temperatursignal TVF bereitstellt. Vor dem Vorkatalysator 112 und nach dem Filter 114 sind jeweils Sensoren 120a und 120b vorgesehen. Diese Sensoren wirken als Differenzdrucksensor 120 und stellen ein100 denotes an internal combustion engine which receives fresh air via an intake line 102 and emits exhaust gases via an exhaust line 104. An exhaust gas aftertreatment means 110 is arranged in the exhaust gas line 104, from which the cleaned exhaust gases reach the surroundings via the line 106. The exhaust gas aftertreatment means 110 essentially comprises a so-called pre-catalyst 112 and a filter 114 downstream Pre-catalytic converter 112 and the filter 114, a temperature sensor 124 is arranged, which provides a temperature signal TVF. Sensors 120a and 120b are provided in front of the pre-catalytic converter 112 and after the filter 114. These sensors act as a differential pressure sensor 120 and set
Differenzdrucksignal DP bereit, das den Differenzdruck zwischen Eingang und Ausgang des Abgasnachbehandlungsmittel charakterisiert. Ferner ist in der Ansaugleitung 102 ein Sensor 126 angeordnet, der ein Signal Tl erfasst, das die Temperatur Tl der zugeführten Frischluft charakterisiert. Ein Sensor 125 liefert ein Signal TVO, der die Temperatur vor dem Abgasnachbehandlungssystem 110 charakterisiert.Differential pressure signal DP ready, which characterizes the differential pressure between the inlet and outlet of the exhaust gas aftertreatment agent. In addition, a sensor 126 is arranged in the intake line 102, which detects a signal T1 which characterizes the temperature T1 of the fresh air supplied. A sensor 125 supplies a signal TVO, which characterizes the temperature upstream of the exhaust gas aftertreatment system 110.
Der Brennkraftmaschine 100 wird über eine Kraftstoffzumeßeinheit 140 Kraftstoff zugemessen. Diese mißt über Injektoren 141, 142, 143 und 144 den einzelnen Zylindern der Brennkraftmaschine 100 Kraftstoff zu. Vorzugsweise handelt es sich bei der Kraftstoffzumeßeinheit um ein sogenanntes Common-Rail-System. Eine Hochdruckpumpe fördert Kraftstoff in einen Druckspeicher. Vom Speicher gelangt der Kraftstoff über die Injektoren in die Brennkraftmaschine .The internal combustion engine 100 is metered fuel via a fuel metering unit 140. This measures fuel via injectors 141, 142, 143 and 144 to the individual cylinders of internal combustion engine 100. The fuel metering unit is preferably a so-called common rail system. A high pressure pump delivers fuel to an accumulator. The fuel reaches the internal combustion engine via the injectors.
An der Kraftstoffzumeßeinheit 140 sind verschiedene Sensoren 151 angeordnet, die Signale bereitstellen, die den Zustand der Kraftstoffzumeßeinheit charakterisieren. Hierbei handelt es sich bei einem Common-Rail-System beispielsweise um den Druck P im Druckspeicher. An der Brennkraftmaschine 100 sind Sensoren 152 angeordnet, die den Zustand der Brennkraftmaschine charakterisieren. Hierbei handelt es sich beispielsweise um ein Temperatursensor, der ein Signal TW bereitstellt, das die Motortemperatur charakterisiert.Various sensors 151 are arranged on the fuel metering unit 140, which provide signals that characterize the state of the fuel metering unit. A common rail system is, for example, the pressure P in the pressure accumulator. Sensors 152, which characterize the state of the internal combustion engine, are arranged on the internal combustion engine 100. This is, for example, a temperature sensor that provides a signal TW that characterizes the engine temperature.
Die Ausgangssignale dieser Sensoren gelangen zu einer Steuerung 130, die als eine erste Teilsteuerung 132 und eine zweite Teilsteuerung 134 dargestellt ist. Vorzugsweise bilden die beiden Teilsteuerungen eine bauliche Einheit. Die erste Teilsteuerung 132 steuert vorzugsweise die Kraftstoffzumeßeinheit 140 mit AnsteuerSignalen AD, die die Kraftstoffzumessung beeinflussen, an. Hierzu beinhaltet die erste Teilsteuerung 132 eine Kraftstoffmengensteuerung 136. Diese liefert ein Signal ME, das die einzuspritzende Menge charakterisiert, an die zweite Teilsteuerung 134.The output signals of these sensors go to a controller 130, which acts as a first sub-controller 132 and a second partial control 134 is shown. The two partial controls preferably form a structural unit. The first sub-controller 132 preferably controls the fuel metering unit 140 with control signals AD that influence the fuel metering. For this purpose, the first partial control 132 includes a fuel quantity control 136. This supplies a signal ME, which characterizes the quantity to be injected, to the second partial control 134.
Die zweite Teilsteuerung 134 steuert vorzugsweise das Abgasnachbehandlungssystem und erfaßt hierzu die entsprechenden Sensorsignale. Desweiteren tauscht die zweite Teilsteuerung 134 Signale, insbesondere über die eingespritzte Kraftstoffmenge ME, mit der ersten Teilsteuerung 132 aus. Vorzugsweise nutzen die beidenThe second sub-controller 134 preferably controls the exhaust gas aftertreatment system and detects the corresponding sensor signals for this purpose. Furthermore, the second sub-controller 134 exchanges signals, in particular via the injected fuel quantity ME, with the first sub-controller 132. Preferably use the two
Steuerungen gegenseitig die Sensorsignale und die internen Signale .Controls each other the sensor signals and the internal signals.
Die erste Teilsteuerung, die auch als Motorsteuerung 132 bezeichnet wird, steuert abhängig von verschiedenenThe first partial control, which is also referred to as motor control 132, controls depending on various
Signalen, die den Betriebszustand der Brennkraftmaschine 100, den Zustand der Kraftstoffzumeßeinheit 140 und die Umgebungsbedingung charakterisieren sowie einem Signal, das die von der Brennkraftmaschine gewünschte Leistung und/oder Drehmoment charakterisiert, das Ansteuersignal AD zur Ansteuerung der Kraftstoffzumeßeinheit 140. Solche Einrichtungen sind bekannt und vielfältig eingesetzt.Signals that characterize the operating state of internal combustion engine 100, the state of fuel metering unit 140 and the ambient condition, and a signal that characterizes the power and / or torque desired by the internal combustion engine, drive signal AD for controlling fuel metering unit 140. Such devices are known and varied used.
Insbesondere bei Dieselbrennkraftmaschinen können Partikelemissionen im Abgas auftreten. Hierzu ist es vorgesehen, daß die Abgasnachbehandlungsmittel 110 diese aus dem Abgas herausfiltern. Durch diesen Filtervorgang sammeln sich in dem Filter 114 Partikel an. Diese Partikel werden dann in bestimmten Betriebszuständen, Beladungszuständen und/oder nach Ablauf bestimmter Zeiten oder Zählerstände für Kraftstoffmenge oder Fahrstrecke verbrannt, um den Filter zu reinigen. Hierzu ist üblicherweise vorgesehen, daß zur Regeneration des Filters 114 die Temperatur im Abgasnachbehandlungsmittel 110 soweit erhöht wird, daß die Partikel verbrennen.In diesel internal combustion engines in particular, particle emissions can occur in the exhaust gas. For this purpose, it is provided that the exhaust gas aftertreatment means 110 filter them out of the exhaust gas. Through this filtering process, 114 particles collect in the filter. These particles are then in certain operating states, loading states and / or after certain times or counter readings for Amount of fuel or distance burned to clean the filter. For this purpose, it is usually provided that the temperature in the exhaust gas aftertreatment means 110 is increased so that the particles burn in order to regenerate the filter 114.
Zur Temperaturerhöhung ist der Vorkatalysator 112 vorgesehen. Die Temperaturerhöhung erfolgt beispielsweise dadurch, daß der Anteil an unverbrannten Kohlenwasserstoffen im Abgas erhöht wird. Diese unverbrannten Kohlenwasserstoffe reagieren dann in dem Vorkatalysator 112 und erhöhen dessen Temperatur und die Temperatur des Abgases .The precatalyst 112 is provided for increasing the temperature. The temperature is increased, for example, by increasing the proportion of unburned hydrocarbons in the exhaust gas. These unburned hydrocarbons then react in the pre-catalyst 112 and increase its temperature and the temperature of the exhaust gas.
Diese Temperaturerhöhung des Vorkatalysators und der Abgastemperatur erfordert einen erhöhten Kraftstoffverbrauch und soll daher nur dann durchgeführt werden, wenn dies erforderlich ist, d.h. der Filter 114 mit einem gewissen Anteil von Partikeln beladen ist. Eine Möglichkeit den Beladungszustand zu erkennen besteht darin, den Differenzdruck DP zwischen Eingang und Ausgang desThis temperature increase of the pre-catalytic converter and the exhaust gas temperature requires an increased fuel consumption and should therefore only be carried out when this is necessary, i.e. the filter 114 is loaded with a certain proportion of particles. One way of recognizing the loading condition is to determine the differential pressure DP between the inlet and outlet of the
Abgasnachbehandlungsmittel zu erfassen und/oder zu berechnen und ausgehend von diesem den Beladungszustand zu ermitteln.To record and / or calculate exhaust gas aftertreatment agents and to determine the loading condition on the basis thereof.
Die Anforderungen an die Wirksamkeit und Verfügbarkeit der einzelnen Komponenten ist sehr hoch. Eine zentrale Funktion bei der Steuerung des AbgasnachbehandlungsSystems haben die verwendeten Sensoren, insbesondere die Temperatursensoren, die für die korrekte Steuerung desThe requirements for the effectiveness and availability of the individual components are very high. A central function in the control of the exhaust gas aftertreatment system are the sensors used, in particular the temperature sensors, which are used for the correct control of the
AbgasnachbehandlungsSystems unerlässlich sind. Dabei reicht es nicht aus, die Sensoren im Rahmen der Wartung oder einer technischen Überprüfung auf ihre Funktionsfähigkeit zu testen. Dies gilt insbesondere vor dem Hintergrund der gesetzlichen Forderungen nach einer On Bord Diagnose emissionsrelevanter Systeme. Der Defekt eines Sensors muss frühzeitig erkannt werden, um ein Überschreiten der zulässigen Emissionen zu verhindern und die Funktionsfähigkeit des Abgasnachbehandlungssystems sicher zu stellen. Die im Folgenden beschriebene Vorgehensweise ermöglicht eine einfache Überprüfung, insbesondere der Temperatursensoren im Abgasstrang und sichert damit die Funktionsfähigkeit desExhaust aftertreatment systems are essential. It is not sufficient to test the functionality of the sensors as part of maintenance or a technical check. This applies in particular against the background of the legal requirements for on-board diagnosis of emission-relevant systems. The defect of a sensor must be recognized early in order to prevent the permissible emissions from being exceeded and to ensure the functionality of the exhaust gas aftertreatment system. The procedure described below enables a simple check, in particular of the temperature sensors in the exhaust system, and thus ensures the functionality of the
Abgasnachbehandlungssystems. Dabei soll ein Ausfall und/oder eine unzulässige Drift der Sensoren frühzeitig erkannt werden.Exhaust aftertreatment system. A failure and / or an impermissible drift of the sensors should be detected early.
Im Folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel von Temperatursensoren beschrieben. Grundsätzlich ist diese Vorgehensweise auch bei anderen Sensoren, insbesondere für Sensoren im Abgasstrang, einsetzbar. Mit der erfindungsgemäßen Vorgehensweise können alle Sensoren, die nach der Brennkraftmaschine, d. h. zwischen Brennkraftmaschine und Abgasnachbehandlungssystem, Sensoren im Abgasnachbehandlung, d. h. zwischen Oxidationskatalysator und Partikelfilter und/oder Sensoren nach dem Partikelfilter überprüft werden. Desweiteren ist die erfindungsgemäße Vorgehensweise auch bei anderen Anordnungen der Katalysatoren und/oder des Partikelfilters möglich.The procedure according to the invention is described below using the example of temperature sensors. In principle, this procedure can also be used with other sensors, in particular for sensors in the exhaust system. With the procedure according to the invention, all sensors that are based on the internal combustion engine, ie. H. between internal combustion engine and exhaust gas aftertreatment system, sensors in exhaust gas aftertreatment, d. H. between the oxidation catalytic converter and the particle filter and / or sensors after the particle filter. Furthermore, the procedure according to the invention is also possible with other arrangements of the catalysts and / or the particle filter.
Erfindungsgemäß erfolgt die Erkennung des Fehlverhaltens des Temperatursensors im Abgasstrang durch eineAccording to the invention, the malfunction of the temperature sensor in the exhaust system is recognized by a
Plausibilisierung der Einzelsignale beim Start eines kalten Motors. In diesem Fall ist davon auszugehen, dass alle Temperatursignale im Bereich der Umgebungstemperatur liegen. Alle notwendigen Signale und Daten sind bereits imPlausibility check of the individual signals when starting a cold engine. In this case it can be assumed that all temperature signals are in the range of the ambient temperature. All necessary signals and data are already in the
Steuergerät vorhanden, so dass keine weiteren Sensoren notwendig sind.Control unit available so that no further sensors are necessary.
In Figur 2 ist ein Ausführungsbeispiel der erfindungsgemäßen Vorgehensweise als Flussdiagramm dargestellt. Eine erste Abfrage 200 überprüft, ob der letzte Start lange genug zurück liegt. Eine zweite Abfrage 205 überprüft, ob die Brennkraftmaschine zu drehen begonnen hat. Vorzugsweise überprüft die Abfrage 205, ob die Drehzahl N größer als 0 ist. Ist dies nicht der Fall, so folgt erneut Schritt 205. Dreht sich die Brennkraftmaschine, so wird in Schritt 208 ein Zeitzähler Z gestartet und es überprüft eine Abfrage 210, ob verschiedene Temperatursignale wie beispielsweise die Kühlwassertemperatur TW und/oder die Temperatur der angesaugten Frischluftmenge Tl und/oder dieFIG. 2 shows an exemplary embodiment of the procedure according to the invention as a flow chart. A first one Query 200 checks whether the last start was long enough ago. A second query 205 checks whether the internal combustion engine has started to rotate. Query 205 preferably checks whether speed N is greater than 0. If this is not the case, step 205 follows again. If the internal combustion engine rotates, a time counter Z is started in step 208 and a query 210 checks whether different temperature signals such as the cooling water temperature TW and / or the temperature of the fresh air quantity T 1 drawn in and / or the
Umgebungstemperatur, die in erster Näherung der Temperatur Tl entspricht, kleiner als ein Schwellwert SW sind. Ist dies nicht der Fall, d. h. eine der Temperaturen ist größer als der Schwellwert, so wird in Schritt 295 erkannt, dass keine Überprüfung möglich ist. Sind die Temperaturen kleiner als der Schwellwert, so folgt die Abfrage 220. Bei einer vereinfachten Ausführungsform kann auch vorgesehen sein, dass lediglich einer der Temperaturwerte überprüft wird.Ambient temperature, which corresponds in a first approximation to the temperature Tl, is less than a threshold value SW. If not, i. H. if one of the temperatures is greater than the threshold value, it is recognized in step 295 that no check is possible. If the temperatures are lower than the threshold value, query 220 follows. In a simplified embodiment it can also be provided that only one of the temperature values is checked.
Die Abfrage 220 überprüft, ob der Betrag der Differenz dieser beiden Temperaturwerte kleiner als ein Schwellwert SW2 ist. Ist dies nicht der Fall, d. h. dieThe query 220 checks whether the amount of the difference between these two temperature values is less than a threshold value SW2. If not, i. H. the
Kühlwassertemperatur und die Umgebungslufttemperatur weichen wesentlich voneinander ab, wird ebenfalls erkannt, dass keine Überprüfung möglich ist. Sind die beidenThe cooling water temperature and the ambient air temperature differ significantly, it is also recognized that no check is possible. Are the two
Temperaturwerte annähernd gleich, so folgt die Abfrage 230.If temperature values are approximately the same, query 230 follows.
Die Abfrage 230 überprüft, ob die Drehzahl N größer als ein Schwellwert SN ist. Ist dies nicht der Fall, so erfolgt erneut Schritt 230. Erkennt die Abfrage 230, dass dieThe query 230 checks whether the speed N is greater than a threshold value SN. If this is not the case, step 230 takes place again. If query 230 recognizes that the
Startabwurfdrehzahl erreicht ist, so folgt die Abfrage 240. Diese Abfrage 240 überprüft, ob die Zeit Z seit dem ersten Drehen der Brennkraftmaschine kleiner als ein Schwellwert ST ist. Ist dies nicht der Fall, so wird ebenfalls erkannt, dass keine Überprüfung möglich ist. Ist die Zeit seit dem ersten Drehen der Brennkraftmaschine kleiner als ein Schwellwert, so erfolgt ab Schritt 250 die eigentliche Überprüfung der Temperatursensoren.Starting release speed is reached, query 240 follows. This query 240 checks whether the time Z since the first rotation of the internal combustion engine is less than a threshold value ST. If this is not the case, it is also recognized that no check is possible. Is the time since the first rotation of the internal combustion engine less than a threshold value, the actual checking of the temperature sensors takes place from step 250.
Eine erste Abfrage 250 überprüft, ob der Betrag derA first query 250 checks whether the amount of
Differenz zwischen der Frischlufttemperatur Tl und der Temperatur TVO vor dem Abgasnachbehandlungssystem größer als ein Schwellwert GW1 ist. Ist dies der Fall, so wird in Schritt 280 auf Fehler erkannt. Ist dies nicht der Fall, so wird überprüft, ob der Betrag der Differenz zwischen der Umgebungstemperatur Tl und der Temperatur im Abgasnachbehandlungssystem TVF größer als ein Schwellwert GW2 ist. Ist dies der Fall, so wird in Schritt 280 ebenfalls auf Fehler erkannt. Ist dies nicht der Fall, so überprüft die Abfrage 270, ob der Betrag der Differenz zwischen dem Temperatursignal TVO der Temperatur vor dem Abgasnachbehandlunngssystem und der Temperatur TVF im Abgasnachbehandlungssystem größer als ein Schwellwert GW3 ist. Ist dies der Fall, so wird ebenfalls in Schritt 280 auf Fehler erkannt. Ist dies nicht der Fall, so wird in Schritt 290 erkannt, dass kein Fehler vorliegt und die Sensoren ordnungsgemäß arbeiten.Difference between the fresh air temperature Tl and the temperature TVO before the exhaust gas aftertreatment system is greater than a threshold value GW1. If this is the case, an error is recognized in step 280. If this is not the case, it is checked whether the amount of the difference between the ambient temperature T1 and the temperature in the exhaust gas aftertreatment system TVF is greater than a threshold value GW2. If this is the case, then an error is also detected in step 280. If this is not the case, query 270 checks whether the amount of the difference between the temperature signal TVO, the temperature in front of the exhaust gas aftertreatment system and the temperature TVF in the exhaust gas aftertreatment system is greater than a threshold value GW3. If this is the case, errors are also recognized in step 280. If this is not the case, then in step 290 it is recognized that there is no error and the sensors are working properly.
Die beschriebene Vorgehensweise zeigt die Überwachung am Beispiel eines Temperatursensors 125 vor demThe procedure described shows the monitoring using the example of a temperature sensor 125 before
Abgasnachbehandlungssystem und eines Temperatursensors 124 im AbgasnachbehandlungsSystem, der zwischen einem Oxidationskatalysator und einem Partikelfilter angeordnet ist. Die beschriebene Vorgehensweise ist nicht auf diese spezielle Anordnung der Sensoren beschränkt. Sie kann auch bei anderen Anordnungen von Sensoren und/oder Katalysatoren und Filtern verwendet werden. Insbesondere bei der Verwendung eines NOx-Speicherkatalysators kann ein Temperatursensor insbesondere der Temperatursensor 125 durch einen Sensor vor dem NOx-Speicherkatalysator ersetzt werden. Desweiteren kann vorgesehen sein, dass weitere Sensoren im Abgasnachbehandlungssystem angeordnet sind, wobei dann diese sowohl mit der Umgebungstemperatur als auch untereinander auf Plausibilität überprüft werden. Desweiteren kann bei einer vereinfachten Ausgestaltung auch vorgesehen sein, dass lediglich ein Sensor im Abgasnachbehandlungssystem vorgesehen ist und dieser mit der Umgebungslufttemperatur verplausibilsiert wird.Exhaust gas aftertreatment system and a temperature sensor 124 in the exhaust gas aftertreatment system, which is arranged between an oxidation catalyst and a particle filter. The procedure described is not limited to this special arrangement of the sensors. It can also be used in other arrangements of sensors and / or catalysts and filters. In particular when using a NOx storage catalytic converter, a temperature sensor, in particular temperature sensor 125, can be replaced by a sensor in front of the NOx storage catalytic converter. Furthermore, it can be provided that further sensors are arranged in the exhaust gas aftertreatment system, in which case these are checked for plausibility both with the ambient temperature and with one another. Furthermore, in a simplified embodiment, it can also be provided that only one sensor is provided in the exhaust gas aftertreatment system and that it is plausible with the ambient air temperature.
Eine Überprüfung erfolgt vorzugsweise nur dann, wenn ein kalter Start vorliegt. D. h., die Überprüfung erfolgt nur, wenn der Motor längere Zeit nicht betrieben wurde. Hierzu wird überprüft, ob der letzte Startvorgang lange genug zurückliegt. Dies wird mittels der Abfrage 200 erkannt. Eine Überprüfung in diesem Fall wird unterbunden, da sich dieA check is preferably only carried out when there is a cold start. This means that the check is only carried out if the engine has not been operated for a long time. For this purpose, it is checked whether the last start process was long enough ago. This is recognized by means of query 200. A check in this case is prevented because the
Temperaturen im Abgassystem bereits soweit geändert haben, dass irrtümlich ein Fehler ermittelt wird.Exhaust system temperatures have changed so far that an error is erroneously determined.
Des weiteren wird überprüft, ob die Kühlwassertemperatur TW und/oder die Ansauglufttemperatur Tl und/oder deren Differenz unterhalb eines Grenzwertes SW liegt.Furthermore, it is checked whether the cooling water temperature TW and / or the intake air temperature Tl and / or their difference is below a limit value SW.
Ferner erfolgt die Plausibilisierung erst, wenn die Startabwurfdrehzahl SN überschritten ist und die Brennkraftmaschine sich im Normalbetrieb befindet. Dies wird durch die Abfrage 230 gewährleistet.Furthermore, the plausibility check does not take place until the start release speed SN has been exceeded and the internal combustion engine is in normal operation. This is guaranteed by query 230.
Zu diesem Zeitpunkt haben sich die gemessenen Temperaturen nur unwesentlich geändert, was unter anderem auf der Trägheit der Sensoren zurückzuführen ist. Falls der Startvorgang zu lange dauert, kann dies nicht mehr gewährleistet werden. Deshalb wird in der Abfrage 240 geprüft, ob der Startabwurfdrehzahl innerhalb einer vorgebbaren Maximalzeit erreicht wurde. Bevorzugt wird die Plausibilisierung nur durchgeführt, wenn alle Überprüfungen durchgeführt wurden. Bei vereinfachten Ausführungsformen kann auch vorgesehen sein, dass die eine oder andere Abfrage nicht erfolgt. Sofern die genannten Voraussetzungen zutreffen, werden die Temperaturdifferenzen zwischen den zu überwachenden Temperatursensoren und der Ansauglufttemperatur sowie die Differenz zwischen den einzelnen zu überwachenden Temperatursignalen gebildet. In dem dargestellten Ausführungsbeispiel werden die Temperatursensoren vor dem Katalysator und vor dem Filter überwacht. Sind die Differenzen betragsmäßig größer als ein Grenzwert, wird ein Fehler erkannt. Ein fehlerfreier Zustand wird erkannt, wenn alle Temperatursensoren den Wert eines Referenzsensors anzeigen. Anstelle der Ansauglufttemperatur kann auch die Umgebungslufttemperatur als Referenzsenosr verwendet werden. At this point, the measured temperatures have changed only slightly, which is due, among other things, to the inertia of the sensors. If the starting process takes too long, this can no longer be guaranteed. It is therefore checked in query 240 whether the start release speed was reached within a predeterminable maximum time. The plausibility check is preferably only carried out when all checks have been carried out. In simplified embodiments, it can also be provided that one or the other query does not take place. If the above conditions apply, the temperature differences between the temperature sensors to be monitored and the intake air temperature as well as the difference between the individual temperature signals to be monitored are formed. In the exemplary embodiment shown, the temperature sensors upstream of the catalytic converter and upstream of the filter are monitored. If the differences are larger than a limit value, an error is recognized. An error-free state is recognized when all temperature sensors display the value of a reference sensor. Instead of the intake air temperature, the ambient air temperature can also be used as a reference sensor.

Claims

Ansprüche Expectations
1. Verfahren zur Überwachung eines Sensors eines1. Method for monitoring a sensor
Abgasnachbehandlungssystems, insbesondere eines Temperatursensors, wobei in bestimmten Betriebszuständen ein erstes Signal des zu überwachenden ersten Sensors mit einem zweiten Signal eines zweiten Sensors verglichen wird, wobei auf Fehler erkannt wird, wenn wenigstens die beiden Signale um mehr als ein Wert voneinander abweichen.Exhaust gas aftertreatment system, in particular a temperature sensor, wherein in certain operating states a first signal of the first sensor to be monitored is compared with a second signal of a second sensor, an error being recognized if at least the two signals differ from one another by more than one value.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das erste Signal die Temperatur der Abgase vor einem2. The method according to claim 1, characterized in that the first signal is the temperature of the exhaust gases before a
Abgasnachbehandlungssystem, in einem Abgasnachbehandlungssystem und/oder nach einem Abgasnachbehandlungssystem charakterisiert .Exhaust aftertreatment system, characterized in an exhaust aftertreatment system and / or after an exhaust aftertreatment system.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das erste Signal die Temperatur der Abgase vor einem Katalysator, insbesondere einem Oxidationskatalysator, oder vor einem Partikelfilter charakterisiert.3. The method according to claim 2, characterized in that the first signal characterizes the temperature of the exhaust gases upstream of a catalyst, in particular an oxidation catalyst, or upstream of a particle filter.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Signal die Temperatur der Gase, die der Brennkraftmaschine, dem Katalysator, insbesondere dem Oxidationskatalysator, oder dem Partikelfilter zugeführt wird, charakterisiert. 4. The method according to any one of the preceding claims, characterized in that the second signal characterizes the temperature of the gases which is supplied to the internal combustion engine, the catalytic converter, in particular the oxidation catalytic converter, or the particle filter.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die bestimmten Betriebszustände vorliegen, wenn die Kühlwassertemperatur und/oder die Temperatur der Gase, die der Brennkraftmaschine zugeführt werden, und/oder die5. The method according to any one of the preceding claims, characterized in that the specific operating states are present when the cooling water temperature and / or the temperature of the gases that are supplied to the internal combustion engine, and / or the
Differenz der beiden Temperaturen kleiner als ein Schwellenwert ist.Difference between the two temperatures is less than a threshold.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die bestimmten6. The method according to any one of the preceding claims, characterized in that the certain
Betriebszustände vorliegen, wenn die Drehzahl größer als eine Startabwurfdrehzahl ist.Operating states exist when the speed is greater than a start release speed.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die bestimmten7. The method according to any one of the preceding claims, characterized in that the certain
Betriebszustände vorliegen, wenn die Zeitdauer seit dem letzten Startvorgang größer als ein Schwellenwert ist.Operating states are present if the time period since the last start process is greater than a threshold value.
8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die bestimmten Betriebszustände vorliegen, wenn die Zeitdauer des Startvorganges kleiner als ein Schwellwert ist.8. The method according to any one of the preceding claims, characterized in that the specific operating states are present when the duration of the starting process is less than a threshold value.
9. Vorrichtung zur Überwachung eines Sensors eines Abgasnachbehandlungssystems, insbesondere eines9. Device for monitoring a sensor of an exhaust gas aftertreatment system, in particular one
Temperatursensors, mit Mitteln, die in bestimmten Betriebszuständen ein erstes Signal des zu überwachenden ersten Sensors mit einem zweiten Signal eines zweiten Sensors vergleichen, und auf Fehler erkennen, wenn wenigstens die beiden Signale um mehr als ein Wert voneinander abweichen. Temperature sensor, with means which in certain operating states compare a first signal of the first sensor to be monitored with a second signal of a second sensor, and detect errors if at least the two signals differ from one another by more than one value.
EP02714070A 2001-03-14 2002-02-26 Method and device for monitoring a sensor Withdrawn EP1370840A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10112139A DE10112139A1 (en) 2001-03-14 2001-03-14 Method and device for monitoring a sensor
DE10112139 2001-03-14
PCT/DE2002/000705 WO2002073146A1 (en) 2001-03-14 2002-02-26 Method and device for monitoring a sensor

Publications (1)

Publication Number Publication Date
EP1370840A1 true EP1370840A1 (en) 2003-12-17

Family

ID=7677348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02714070A Withdrawn EP1370840A1 (en) 2001-03-14 2002-02-26 Method and device for monitoring a sensor

Country Status (6)

Country Link
US (1) US6952953B2 (en)
EP (1) EP1370840A1 (en)
JP (1) JP2004526959A (en)
KR (1) KR20030087014A (en)
DE (1) DE10112139A1 (en)
WO (1) WO2002073146A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10112138A1 (en) * 2001-03-14 2002-09-19 Bosch Gmbh Robert Method and device for monitoring a signal
DE10249411B3 (en) * 2002-10-23 2004-05-13 Honeywell B.V. Measuring arrangement and method for determining a measured variable such as temperature
EP1561019A1 (en) 2002-10-23 2005-08-10 Robert Bosch GmbH Method for testing at least three sensors, which detect a measurable variable for an internal combustion engine
JP3851881B2 (en) * 2003-02-20 2006-11-29 本田技研工業株式会社 Device for diagnosing failure of temperature sensor of cooling water in internal combustion engine
DE10329038B3 (en) * 2003-06-27 2005-02-24 Audi Ag Monitoring motor vehicle part temperature sensor operability, involves checking for defined minimum temperature change over defined period of measurement with starting temperature as reference value
DE10329039B3 (en) * 2003-06-27 2005-01-05 Audi Ag Function checking method for temperature sensor associated with automobile component using comparison of temperature values provided by temperature sensor and by second temperature measuring device
DE102005003832B4 (en) * 2004-02-08 2007-06-28 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Apparatus for measuring the temperature of flowing fluids
FR2873163B1 (en) * 2004-07-15 2008-06-27 Peugeot Citroen Automobiles Sa SYSTEM FOR MONITORING THE OPERATION OF A DIESEL ENGINE OF A MOTOR VEHICLE ASSOCIATED WITH AN OXIDATION CATALYST
JP2006071334A (en) * 2004-08-31 2006-03-16 Honda Motor Co Ltd Temperature detection apparatus for vehicle
JP4479465B2 (en) * 2004-10-29 2010-06-09 トヨタ自動車株式会社 Water temperature sensor abnormality diagnosis device
DE102004058714B4 (en) * 2004-12-06 2006-08-31 Siemens Ag Method and device for checking temperature values of a temperature sensor of an internal combustion engine
US7546761B2 (en) * 2005-04-12 2009-06-16 Gm Global Technology Operations, Inc. Diesel oxidation catalyst (DOC) temperature sensor rationality diagnostic
DE102005023448A1 (en) * 2005-05-20 2006-11-23 BSH Bosch und Siemens Hausgeräte GmbH measuring device
JP4483715B2 (en) * 2005-06-10 2010-06-16 トヨタ自動車株式会社 Exhaust gas sensor failure detection device
DE102005037717B3 (en) * 2005-08-10 2006-12-21 Daimlerchrysler Ag Method of treating or identifying faults in an exterior temperature sensor of a vehicle based on temperature gradient
KR100595701B1 (en) * 2006-02-07 2006-06-30 김동환 A temperature recorder using dual temperature sensors
JP4275154B2 (en) 2006-07-06 2009-06-10 本田技研工業株式会社 Exhaust temperature sensor inspection device
JP4247843B2 (en) * 2006-09-01 2009-04-02 本田技研工業株式会社 Temperature detection device abnormality determination device
JP4963052B2 (en) 2006-09-22 2012-06-27 Udトラックス株式会社 Exhaust temperature sensor abnormality detection device
JP4992373B2 (en) * 2006-10-16 2012-08-08 日産自動車株式会社 Diagnostic device for temperature detection means
JP4270290B2 (en) * 2007-02-22 2009-05-27 トヨタ自動車株式会社 High pressure tank temperature detection system, high pressure tank system
JP4894569B2 (en) * 2007-03-09 2012-03-14 日産自動車株式会社 Temperature sensor failure diagnosis device
US7815370B2 (en) * 2007-10-11 2010-10-19 Cummins Filtration Ip, Inc. Apparatus, system, and method for detecting temperature threshold events in an aftertreatment device
DE102008001919B4 (en) * 2008-05-21 2017-08-03 Robert Bosch Gmbh Method for checking the plausibility of a temperature sensor
US8515710B2 (en) 2009-03-16 2013-08-20 GM Global Technology Operations LLC On-board diagnostics of temperature sensors for selective catalyst reduction system
DE102009003091A1 (en) * 2009-05-14 2010-11-18 Robert Bosch Gmbh Method and device for monitoring a arranged in an exhaust region of an internal combustion engine component
JP5531776B2 (en) * 2010-05-24 2014-06-25 日産自動車株式会社 Temperature sensor failure diagnosis device
US9797288B2 (en) * 2010-07-08 2017-10-24 GM Global Technology Operations LLC Method of operating a vehicle under frozen diesel emission fluid conditions
US8608374B2 (en) 2010-08-27 2013-12-17 GM Global Technology Operations LLC Outside air temperature sensor diagnostic systems for a vehicle
DE102011083277A1 (en) * 2011-09-23 2013-03-28 Robert Bosch Gmbh Method for checking operation of temperature sensor of electric drive of hybrid vehicle, involves comparing first detected temperature with second detected temperature with respect to operation of two temperature sensors
DE102014201138B4 (en) 2013-03-28 2015-10-15 Ford Global Technologies, Llc Method for detecting faulty sensors in an exhaust system of a motor vehicle and motor vehicle suitable for carrying out this method
CN103698055A (en) * 2013-12-24 2014-04-02 天津市中环电子计算机有限公司 Functional test equipment for water temperature sensor
US20160348618A1 (en) * 2015-05-26 2016-12-01 Amphenol Thermometrics, Inc. Intake Air Sensor and Sensing Method for Determining Air Filter Performance, Barometric Pressure, and Manifold Pressure of a Combustion Engine
AT521736B1 (en) * 2018-09-27 2022-04-15 Avl List Gmbh Procedure for checking the function of a temperature sensor arrangement
FR3095009B1 (en) * 2019-04-09 2021-03-12 Psa Automobiles Sa PROCEDURE FOR CORRECTING A RICH FUEL DURING A COLD START
KR102432867B1 (en) * 2020-07-22 2022-08-12 김학철 Smart farm sensors fault detection system and method
KR20230052767A (en) * 2021-10-13 2023-04-20 엘에스오토모티브테크놀로지스 주식회사 Apparatus for after-treatment of exhaust gas
DE102022105077A1 (en) * 2022-03-03 2023-09-07 Volkswagen Aktiengesellschaft Method for determining a function criterion of a sensor of a motor vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712695B1 (en) * 1993-11-18 1996-04-12 Siemens Automotive Sa Method and device for measuring the temperature of a catalytic converter placed in the exhaust gas line of an internal combustion engine.
DE19612455C2 (en) * 1996-03-28 1999-11-11 Siemens Ag Method for determining a target torque on the clutch of a motor vehicle
DE19823280C1 (en) * 1998-05-25 1999-11-11 Siemens Ag Direct injected combustion engine operation method for starting engine
DE19906287A1 (en) 1999-02-15 2000-08-17 Bosch Gmbh Robert Method and control of an internal combustion engine with an exhaust gas aftertreatment system
FR2800801B1 (en) * 1999-11-10 2002-03-01 Siemens Automotive Sa METHOD FOR CONTROLLING THE STARTING OF AN INTERNAL COMBUSTION AND DIRECT INJECTION ENGINE
DE50108310D1 (en) * 2000-03-31 2006-01-12 Siemens Ag METHOD FOR STARTING AN INTERNAL COMBUSTION ENGINE AND STARING DEVICE FOR AN INTERNAL COMBUSTION ENGINE
JP3818099B2 (en) * 2001-08-23 2006-09-06 トヨタ自動車株式会社 Misfire detection device for internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02073146A1 *

Also Published As

Publication number Publication date
JP2004526959A (en) 2004-09-02
KR20030087014A (en) 2003-11-12
WO2002073146A1 (en) 2002-09-19
DE10112139A1 (en) 2002-09-19
US6952953B2 (en) 2005-10-11
US20040129065A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
EP1370840A1 (en) Method and device for monitoring a sensor
EP1373693B1 (en) Method and device for monitoring an exhaust gas treatment system
EP1336039B1 (en) Method and device for the control of an exhaust treatment system
EP1370751B1 (en) Method and device for monitoring a signal
DE102007059523B4 (en) Method and device for diagnosing a particulate filter
DE102016122849A1 (en) Soot load estimation during idle or low load
DE102014209840A1 (en) Method and device for diagnosing a particulate filter
EP1192340B1 (en) Method for verifying a catalytic exhaust box of an internal combustion engine
WO2018177897A1 (en) Method and computer program product for diagnosing a particle filter
EP0689640B1 (en) Process for checking the conversion capability of a catalyst
DE102014209810A1 (en) Method and device for detecting a soot and ash charge of a particulate filter
DE102008000691A1 (en) Method and device for monitoring a supply air system of an internal combustion engine
DE102014209794A1 (en) Method and device for the diagnosis of a removal of a component of an emission control system
DE102011000153A1 (en) Method for the diagnosis of exhaust gas aftertreatment
DE102011086118B4 (en) Method and system for an exhaust particulate filter
DE102007000001A1 (en) Method for detecting excessive combustion
DE102009014809B3 (en) Method and device for checking an injection device in an exhaust aftertreatment system of an internal combustion engine
DE10014224A1 (en) Method and device for controlling an internal combustion engine with an exhaust gas aftertreatment system
DE102007003547A1 (en) Internal-combustion engine's exhaust gas area diagnosing method for use in motor vehicle, involves determining measure for averaged conversion of device, comparing with threshold value and supplying error signal if measure falls below value
EP1180210B1 (en) Method and device for controlling an internal combustion engine with an exhaust treatment system
DE10145863A1 (en) Method / device for monitoring a pressure signal
AT501503B1 (en) Assembly and series of steps to determine the operating efficiency of an automotive exhaust selective catalyst reduction unit
DE102010003324A1 (en) Method for monitoring the function of a particle filter
DE102013200623A1 (en) Method for monitoring particulate filter in exhaust gas purification system in internal combustion engine of motor car, involves closing emission control component in comparison to oxide concentration in flow direction of exhaust gas
DE102004018676A1 (en) Method for operating an internal combustion engine and device for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WALTER, MICHAEL

Inventor name: PLOTE, HOLGER

Inventor name: SOJKA, JUERGEN

Inventor name: KRAUTTER, ANDREAS

17Q First examination report despatched

Effective date: 20070521

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100901