EP1369642B1 - Aktiv gedämmter Kamin, insbesondere Stahlkamin - Google Patents

Aktiv gedämmter Kamin, insbesondere Stahlkamin Download PDF

Info

Publication number
EP1369642B1
EP1369642B1 EP20030010797 EP03010797A EP1369642B1 EP 1369642 B1 EP1369642 B1 EP 1369642B1 EP 20030010797 EP20030010797 EP 20030010797 EP 03010797 A EP03010797 A EP 03010797A EP 1369642 B1 EP1369642 B1 EP 1369642B1
Authority
EP
European Patent Office
Prior art keywords
chimney
insulation
chimney according
heat
discharge layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20030010797
Other languages
English (en)
French (fr)
Other versions
EP1369642A1 (de
Inventor
Dr. Claus Bissinger
Volker Albrecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover G+H AG
Original Assignee
Saint Gobain Isover G+H AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Isover G+H AG filed Critical Saint Gobain Isover G+H AG
Publication of EP1369642A1 publication Critical patent/EP1369642A1/de
Application granted granted Critical
Publication of EP1369642B1 publication Critical patent/EP1369642B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J13/00Fittings for chimneys or flues 
    • F23J13/02Linings; Jackets; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2213/00Chimneys or flues
    • F23J2213/30Specific materials
    • F23J2213/303Specific materials metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2213/00Chimneys or flues
    • F23J2213/40Heat insulation fittings

Definitions

  • the present invention relates to a chimney according to the preamble of claim 1.
  • a dew point can lead, especially on the outside or on the inner surface of the outer casing and in the insulating layer to the formation of moisture, which can result in a loss of insulation effect, for example, when a dampening of the insulating layer.
  • an excessive cooling of the flue gas in the chimney head would mean that the withdrawal of flue gases from the chimney would no longer be guaranteed. It would not be possible to maintain the so-called "train".
  • Heat removal channels are provided within two shells of insulating bodies, wherein the shells are arranged to the actual insulation element within the fireplace along a radial separation plane composed within the chimney.
  • the channels are in this case arranged substantially in the corner region of the chimney or of the constructed of two shells insulating body.
  • the DE 295 20 888 U1 describes a Schornsteindämmsystem in which the heat dissipation layer is not formed within, but outside of the insulating body.
  • the insulation must counteract especially during winter in frosty periods of excessive cooling of the fireplace and in particular the chimney head to ensure a sufficient train in the chimney.
  • This is achieved by a sufficiently thick insulation is provided, which prevents the environment under extreme temperature stress (emergency) too hot or that the relatively low flue gas temperature at the chimney head (normal operation in winter) drops so much that a deduction of Flue gases could no longer be guaranteed.
  • this requires a relatively thick-sized insulation, which in turn leads to a large cross-section of the chimney and a high consumption of space and insulation material. A relatively thick insulating layer would therefore be required, even in steel chimneys to pass the prescribed test for burnout resistance according to DIN with 1000 ° C hot test gas.
  • the present invention is based on the realization that for a normal operation of a fireplace a much thinner insulation would be sufficient. Only for the emergency situation of a burn-out a corresponding precaution would have to be taken.
  • This is achieved in accordance with the invention in a simple manner, that within the insulation, a so-called heat dissipation layer is provided which completely surrounds the chimney in essential parts and allows heat transfer in the axial direction and within the chimney from bottom to top.
  • a heat transfer causes namely the two positive effects that on the one hand at a combustion of the chimney occurring in the lower part of the fireplace strong temperature load by the addition to the radial or horizontal insulation provided removal of heat in the vertical direction, ie upwards, manageable becomes.
  • the proposed additional heat transport within the insulation in the direction of the chimney head causes it does not cool down too much in extremely cold weather, so as to provide the necessary train for the withdrawal of flue gases from the chimney.
  • a heat dissipation layer can be realized by all materials having good heat conductivity.
  • the heat dissipation position which should be arranged around the chimney for the entire height of the chimney, at least starting from flue gas introduction and as completely as possible, is formed as completely as possible by an annular gap. Only for stability reasons necessary spacers or supports should then interrupt the annular gap. In this case, it may then be advantageous to design the spacers or supports in such a way that they taper radially inwards, in order to provide an annular gap or a heat dissipation layer that is as continuous as possible in the circumferential direction despite the presence of spacers or supports.
  • tubes can be integrally provided in Dämm analyses-form elements, while annular gaps can be provided by two-piece or two-shell design of Dämm analysesformiata with formation of grooves or depressions in one or both shell bodies on the inner or outer sides. Since it is preferred to provide the sauceabfiihrungslage approximately centrally in the insulation, in particular offers a two-shell construction of Dämm analyses-form elements, wherein the annular gap is arranged in accordance with a centrally arranged coaxially to the flue pipe of the chimney separation surface. In order to prevent the annular gap from closing, appropriate spacers are then preferably provided here, which in particular can be designed to taper radially inward.
  • means for improving the heat transfer can be provided.
  • a layer having a high heat transfer coefficient such as a metal layer of aluminum or copper.
  • the metal layer can be formed by a preferably laminated foil or an inserted metal tube.
  • layers of glass fleece, glass silk or a water glass spray coating are also conceivable as heat transfer agents. These have in common that they ensure a particularly good heat transfer, especially on the column, slots, tubes or other recesses flowing through medium.
  • An aluminum foil with a thickness in the range of 17 to 60 ⁇ m has proven particularly useful.
  • the Dämm emotions-form elements are preferably in the circumferential direction of several parts, in particular segmented, so that the segments in a simple manner between the flue gas leading inner tube and the outer casing will be attached can.
  • the Dämm stresses-form elements made of mineral wool, especially rock wool preferably have a gross weight of 65 to 165 kg / m 3 , in particular 80 to 130 kg / m 3 and most preferably 110 to 120 kg / m 3 .
  • a higher bulk density for example in the range of 110 to 150 kg / m 3
  • 80 to 110 kg / m 3 is provided in the axial direction of the fireplace, as is known, be composed of several shots.
  • FIG. 1 shows a cross section through a steel chimney according to the invention, which has an inner steel shell (inner tube) 1 and an outer tube 2 also made of steel.
  • inner tube 1 and the outer tube 2 insulating material 3, 4 is provided, which is formed in the illustrated embodiment of two composite ring bodies 3 and 4.
  • the insulating material usually consists of mineral wool, in particular rock wool with a density of 65-165 kg / m 3 , in particular 80-130 kg / m 3 .
  • an air gap 7 is arranged, which stretches over the entire length of the fireplace.
  • the air gap 7 is generated by spacing elements 5, which keep the inner ring body 3 and the outer ring body 4 at a distance and subdivide the air gap 7, at specific intervals in the outer ring body 4.
  • an aluminum foil 6 is further arranged, which surrounds the inner ring body 3 completely over its entire surface. The aluminum foil 6 serves to deliver the heat absorbed by the inner annular body 3 as possible to the air flowing past in the annular gap 7.
  • the spacers 5 are formed as semicircular webs, so that they are in contact with the annular body 3 almost along a line. This ensures that the annular gap 7 is maximized in the circumferential direction.
  • the spacers 5 may also assume other suitable cross-sectional shapes, in particular triangular, with the tips correspondingly pointing inwards.
  • FIG. 2 shows in the partial image a) a cross section through a fireplace according to the invention, as he already in the FIG. 1 has been shown.
  • the partial images b) to e) show a cross section through chimneys not according to the invention, wherein the insulating material arranged between the inner tube 1 and the outer tube 2 3 is also formed of one-piece segments.
  • the tubes 7 for the air duct along the chimney can also have different cross-sectional shapes and be either on the inside (partial image d) or on the outside (partial image e) of the insulating body 3 or located in the insulating body (partial images b and c).
  • the segmented design also facilitates the production of the insulating body or the partial insulation body 3, since then the areas that represent the annular gap 7, can be milled from the solid material in a simple manner, for example via appropriate wire milling.
  • FIG. 3 shows again in the diagrams a) and b) a fireplace according to the invention, as he already in the FIG. 1 is shown.
  • the FIG. 3 it also makes clear that the annular gap extends over the entire length of the chimney (partial image b).
  • FIG. 4 clearly, in which the drawing of the FIG. 3 b) can be seen in an enlarged view.
  • the chimney connection 8 can also be arranged laterally, wherein the annular gap 7 extends over the entire length and preferably has an opening at the lower end of the chimney.
  • the arrows in FIG. 4 illustrate the flow of air flowing through the annular gap 7.
  • FIG. 5 shows how the temperature at the measuring points 1 and 2 of the FIG. 4 developed over time during a burnout attempt.
  • a burnout test was carried out in a stainless steel chimney with a 50 mm thick mineral insulating body and stomata (see drawing 1).
  • the chimney was loaded with 1000 ° C for 50 min.
  • the highest temperatures were measured at the chimney head without reaching critical values.
  • the temperatures on the outside of the chimney pot were well above the temperatures in the lower part of the chimney. This is in contrast to the temperature behavior of conventional (homogeneous) systems. In those, the highest temperatures in the inner tube as well as on the outer sheath are always measured above the entry point.
  • the temperature at the measuring point 2 in relation to the conventional chimney increases after a certain time, while it is lower at the measuring point 1 after a certain time than in a conventional chimney. This ensures that in a burnout more heavily loaded lower part of the chimney is cooled by a heat dissipation, while the temperature increase at the chimney head as a result of the heat transport remains in a non-critical range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chimneys And Flues (AREA)
  • Thermal Insulation (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Kamin gemäß Oberbegriff des Anspruches 1.
  • Es ist seit langem bekannt, bei zweischalig ausgeführten Schornsteinen mit einem das Rauchgas führenden Innenrohr und einer den Schornstein nach außen abschließenden Außenummantelung zwischen der Außenummantelung und dem Innenrohr Dämmstoffe vorzusehen, um einerseits eine Überhitzung benachbarter Bauteile, insbesondere im Notfall bei einem Ausbrand des Kamins, und andererseits im Normalbetrieb eine zu starke Abkühlung des Rauchgases, insbesondere am Schornsteinkopf, zu vermeiden. Die Aufrechterhaltung einer bestimmten Mindesttemperatur ist nämlich aus zweierlei Gründen erforderlich. Zum einen würde eine Absenkung der Rauchgastemperatur unter einen bestimmten Taupunkt zur Bildung von Feuchtigkeit in dem Schornstein mit nachfolgenden Durchfeuchtungs- und Versottungserscheinungen führen, wobei insbesondere durch die aggressiven Bestandteile der Rauchgase, beispielsweise Schwefeldioxid, aggressive Stoffe entstehen können. Darüber hinaus kann eine Taupunktunterschreitung insbesondere an der Außenseite bzw. an der Innenfläche der Außenummantelung sowie in der Dämmschicht zur Feuchtigkeitsbildung führen, was zum Beispiel bei einer Durchfeuchtung der Dämmschicht zu einem Verlust der Dämmwirkung führen kann. Zum anderen würde eine zu starke Abkühlung des Rauchgases im Schornsteinkopf dazu führen, dass der Abzug der Rauchgase aus dem Schornstein nicht mehr gewährleistet wäre. Es würde der sogenannte "Zug" nicht mehr aufrecht erhalten werden können.
  • Um diesen Problemen Herr zu werden sind, aus dem Stand der Technik verschiedene Lösungen bekannt. So ist es beispielsweise aus der DE 3211536 A1 , der DE 3151327 A1 und der CH 614990 A5 bekannt, zwischen der Außenummantelung und dem Innenrohr des Schornsteins Lüftungskanäle vorzusehen, die durch die durchströmende Luft dafür Sorge leisten, dass eventuell sich bildende Feuchtigkeit durch die durchströmende Luft ausgetragen wird. Darüber hinaus wird bei der CH 614990 A5 noch vorgeschlagen, einen Durchtritt von Feuchtigkeit in den Mantelstein des Kamins dadurch zu verhindern, dass eine Aluminiumfolie vorgesehen wird. Gemeinsam ist den Schornsteinen, die in den obengenannten Schriften beschrieben sind, dass es im Wesentlichen darauf ankommt, Feuchtigkeit aus dem Kamin zu entfernen.
  • Nach dem gattungsgemäßen Stand der Technik ( DE 195 11 586 A1 ) sind Wärmeabführungskanäle innerhalb zweier Schalen von Dämmstoffkörpern vorgesehen, wobei die Schalen zum eigentlichen Dämmelement innerhalb des Kamins längs einer radialen Trennebene zusammengesetzt innerhalb des Kamins angeordnet werden. Die Kanäle sind hierbei im Wesentlichen im Eckenbereich des Kamins bzw. des aus zwei Schalen aufgebauten Dämmstoffkörpers angeordnet.
  • Die DE 295 20 888 U1 beschreibt ein Schornsteindämmsystem, bei dem die Wärmeabführungslage nicht innerhalb, sondern außerhalb des Dämmkörpers ausgebildet ist.
  • Bei neueren Heizsystemen, insbesondere in Einfamilienhäusern, werden zunehmend Brennwerttechnologien eingesetzt, bei denen die Wärme des Abgases zur Vorwärmung im Heizsystem verwendet wird, so dass das Rauchgas, das über den Schornstein abgegeben wird, an sich eine relativ niedrige Temperatur hat. Bei derartigen Kaminen steht nicht mehr im Vordergrund, dass eine bestimmte Feuchtigkeit durch Taupunktunterschreitung im Kamin vermieden wird, sondern ein Problem besteht darin, durch die Dämmung einen Brandschutz für Notfallsituationen bereit zu stellen. Beispielsweise kann es bei Ablagerung von Ruß im Kamin zu einem Ausbrand kommen, bei dem statt der üblichen Temperaturen von 50°C bis maximal 300°C eine Temperatur von 1000°C entstehen kann. Darüber hinaus muss die Dämmung insbesondere im Winter bei Frostperioden einer zu starken Abkühlung des Kamins und hier insbesondere des Kaminkopfs entgegenwirken, um einen ausreichenden Zug im Schornstein sicher zu stellen. Dies wird dadurch erreicht, dass eine ausreichend dicke Dämmung vorgesehen wird, die verhindert, dass sich bei extremer Temperaturbelastung (Notfall) die Umgebung zu stark erhitzt oder dass die relativ niedrige Rauchgastemperatur am Schornsteinkopf (Normalbetrieb im Winter) so stark absinkt, dass ein Abzug der Rauchgase nicht mehr gewährleistet sein könnte. Dies erfordert jedoch eine relativ dick dimensionierte Dämmung, welche wiederum zu einem großen Querschnitt des Schornsteins und zu einem hohen Verbrauch an Platz und Dämmmaterial führt. Eine relativ dicke Dämmschicht wäre daher erforderlich, auch bei Stahlkaminen, um die vorgegebene Prüfung auf Ausbrandbeständigkeit nach DIN mit 1000°C heißem Prüfgas zu bestehen.
  • Aus diesem Grunde ist es Ziel der vorliegenden Erfindung, einen Kamin bzw. entsprechendes Dämmmaterial bereit zu stellen, welches gewährleistet, dass eine zu starke Erhitzung umgebender Teile im Notfall vermieden wird, da diese gleichzeitig eine Brandgefahr darstellt. Ferner soll die Verbesserung der Dämmwirkung einhergehen mit geringerem Platzbedarf und geringerem Dämmstoffbedarf.
  • Diese Aufgabe wird gelöst durch einen Kamin mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.
  • Die vorliegende Erfindung geht aus von der Erkenntnis, dass für einen Normalbetrieb eines Kamins eine wesentlich dünnere Dämmung ausreichend wäre. Lediglich für die Notfallsituation eines Ausbrandes müsste eine entsprechende Vorsorge getroffen werden. Dies wird nach Maßgabe der Erfindung in einfacher Weise dadurch erreicht, dass innerhalb der Dämmung eine sogenannte Wärmeabführungslage vorgesehen ist, die den Kamin in wesentlichen Teilen vollständig umgibt und einen Wärmetransport in axialer Richtung entlang und innerhalb des Kamins von unten nach oben ermöglicht. Ein derartiger Wärmetransport bewirkt nämlich die beiden positiven Effekte, dass zum einen bei einem Ausbrand des Kamins die im unteren Teil des Kamins auftretende starke Temperaturbelastung durch die zusätzlich zu der radialen bzw. horizontalen Dämmung vorgesehene Abführung der Wärme in vertikaler Richtung, also nach oben, beherrschbar wird. Zum anderen führt der vorgesehene zusätzliche Wärmetransport innerhalb der Dämmung in Richtung des Kaminkopfs dazu, dass dieser bei extrem kalten Wetter nicht zu stark abkühlt, um so den nötigen Zug für den Abzug der Rauchgase aus dem Kamin bereit zu stellen. Eine derartige Wärmeabführungslage kann durch sämtliche Materialien, die eine gute Wärmeleitfähigkeit aufweisen, verwirklicht werden. Es hat sich jedoch als besonders wirkungsvoll herausgestellt, mindestens einen Kanal bzw. mehrere Aussparungen, in Form von Röhren, Spalten, Schlitzen und dgl. vorzusehen, durch die ein Medium, vorzugsweise Luft, strömen kann, um den Wärmeabtransport bzw. Wärmetransport zu übernehmen. Um hierbei eine möglichst große Wirkung zu erzielen, ist es bevorzugt, wenn die Wärmeabführungslage, die für die gesamte Höhe des Kamins, zumindest ab Rauchgaseinleitung und möglichst vollflächig um den Kamin herum angeordnet sein sollte, möglichst vollkommen durch einen Ringspalt gebildet ist. Lediglich aus Stabilitätsgründen notwendige Abstandshalter oder Stützen sollten dann den Ringspalt unterbrechen. Hierbei kann es dann vorteilhaft sein, die Abstandshalter bzw. Stützen so auszubilden, dass sie sich radial nach innen verjüngen, um trotz des Vorhandenseins von Abstandshaltern oder Stützen einen möglichst in Umfangsrichtung durchgängigen Ringspalt bzw. eine Wärmeabführungslage bereitzustellen.
  • In besonders einfacher Weise kann ein derartiger erfindungsgemäßer Kamin mit Dämmstoff-Formkörperelementen realisiert werden. Die Dämmkörperformelemente bieten nämlich die Möglichkeit, die für den Wärmetransport in der Wärmeabführungslage bevorzugten Ringspalte, Spalte, Schlitze, Röhren und dgl. in einfacher Weise zu realisieren, wobei das besondere Augenmerk eine möglichst vollflächig umgebende Wärmeabführungslage zu erhalten, erreichbar ist.
  • So können Röhren integral in Dämmkörper-Formelementen vorgesehen werden, während Ringspalte durch zweiteilige bzw. zweischalige Ausbildung der Dämmkörperformelemente mit Ausbildung von Nuten bzw. Vertiefungen in einem oder beiden Schalenkörpern an den Innen- oder Außenseiten vorgesehen werden können. Da es bevorzugt ist, die Wärmeabfiihrungslage ungefähr mittig in der Dämmung vorzusehen, bietet sich insbesondere ein zweischaliger Aufbau der Dämmkörper-Formelemente an, wobei der Ringspalt entsprechend an einer mittig koaxial zum Rauchgasrohr des Kamins angeordneten Trennfläche angeordnet ist. Um ein Schließen des Ringspalts zu verhindern, sind hier dann vorzugsweise entsprechende Abstandshalter vorgesehen, die insbesondere radial nach innen sich verjüngend ausgebildet sein können.
  • Um eine bessere Übertragung der Wärme von dem rauchgasführendem Innenrohr bzw. der an diesem angeordneten inneren Dämmlage auf die Wärmeabführungslage zu ermöglichen, können Mittel zur Verbesserung der Wärmeübertragung vorgesehen werden. Diese werden insbesondere durch eine Schicht gebildet, die einen hohen Wärmeübertragungskoeffizienten aufweist, wie beispielsweise eine Metallschicht aus Aluminium oder Kupfer. Hierbei kann die Metallschicht durch eine vorzugsweise aufkaschierte Folie oder ein eingeführtes Metallrohr ausgebildet sein. Daneben sind als Wärmeübertragungsmittel auch Schichten aus Glasvlies, Glasseide oder eine Wasserglassprühbeschichtung denkbar. Diesen ist gemeinsam, dass sie eine besonders gute Wärmeübertragung, insbesondere auf das die Spalte, Schlitze, Röhren oder sonstige Ausnehmungen durchströmende Medium gewährleisten. Besonders bewährt hat sich eine Aluminiumfolie mit einer Dicke im Bereich von 17 bis 60 µm.
  • Um eine besonders einfache Herstellung der Dämmkörper-Formelemente als auch des Kamins an sich zu gewährleisten, sind die Dämmkörper-Formelemente vorzugsweise in Umfangsrichtung mehrteilig, insbesondere segmentiert ausgeführt, so dass die Segmente in einfacher Weise zwischen dem das Rauchgas führende Innenrohr und der Außenummantelung angebracht werde können.
  • Die Dämmkörper-Formelemente aus Mineralwolle, insbesondere Steinwolle, weisen vorzugsweise ein Rohgewicht von 65 bis 165 kg/m3, insbesondere 80 bis 130 kg/m3und höchst vorzugsweise 110 bis 120 kg/m3auf. Vorteilhaft ist hierbei, an der Innenseite, also in der Nähe zum Rauchgas führenden Innenrohr, eine höhere Rohdichte, beispielweise im Bereich von 110 bis 150 kg/m3vorzusehen, während an der Außenseite eine geringere Rohdichte, beispielsweise im Bereich von 80 bis 110 kg/m3 vorgesehen wird. In axialer Richtung kann der Kamin, wie bekannt, aus mehreren Schüssen aufgebaut sein.
  • Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Erfindung werden bei der nachfolgenden detaillierten Beschreibung bevorzugter Ausführungsbeispiele anhand der beigefügten Zeichnungen ersichtlich. Dabei zeigen die Zeichnungen rein schematisch in
  • Fig. 1
    einen Querschnitt durch einen erfindungsgemäßen Stahlkamin;
    Fig. 2
    in Teilbild a) einen Querschnitt gemäß Figur 1 sowie in den Teilbildern b) bis e) Segmente von unterschiedlichen Dämmeinsätzen;
    Fig. 3
    einen Teilquerschnitt gemäß Figur 1(a) sowie einen Längsschnitt durch einen Kamin (b);
    Fig. 4
    einen Längsschnitt gemäß Figur 3 b); und in
    Fig. 5
    ein Diagramm, das den Temperatur-Zeitverlauf-Vergleich zwischen herkömmlichen Kaminen und dem erfindungsgemäßen Kamin bei einem Ausbrandversuch zeigt.
  • Figur 1 zeigt einen Querschnitt durch einen erfindungsgemäßen Stahlkamin, wobei dieser einen Innenstahlmantel (Innenrohr) 1 und ein Außenrohr 2 ebenfalls aus Stahl aufweist. Zwischen dem Innenrohr 1 und dem Außenrohr 2 ist Dämmmaterial 3, 4 vorgesehen, welches bei dem gezeigten Ausführungsbeispiel aus zwei zusammengesetzten Ringkörpern 3 und 4 gebildet ist. Das Dämmmaterial besteht üblicherweise aus Mineralwolle, insbesondere Steinwolle mit einer Rohdichte von 65-165 kg/m3, insbesondere 80-130 kg/m3. Zwischen den Dämmelementen 3 und 4 ist ein Luftspalt 7 angeordnet, der sich über die gesamte Länge des Kamins streckt. Der Luftspalt 7 wird dadurch erzeugt, dass in dem äußeren Ringkörper 4 in bestimmten Abständen Abstandselemente 5 vorgesehen sind, die den inneren Ringkörper 3 und den äußeren Ringkörper 4 auf Abstand halten und den Luftspalt 7 unterteilen. Zwischen den beiden Ringkörpern 3 und 4 ist weiterhin eine Aluminiumfolie 6 angeordnet, die den inneren Ringkörper 3 vollständig vollflächig umgibt. Die Aluminiumfolie 6 dient dazu, die vom inneren Ringkörper 3 aufgenommene Wärme möglichst an die in dem Ringspalt 7 vorbeiströmende Luft abzugeben.
  • Die Abstandshalter 5 sind als halbkreisförmige Stege ausgebildet, so dass sie nahezu entlang einer Linie in Kontakt mit dem Ringkörper 3 stehen. Dadurch wird erreicht, dass der Ringspalt 7 in Umfangichtung maximiert wird. Selbstverständlich können die Abstandshalter 5 auch andere geeignete Querschnittsformen annehmen, insbesondere dreieckig ausgebildet sein, wobei die Spitzen entsprechend nach innen zeigen würden.
  • Die Figur 2 zeigt in dem Teilbild a) einen Querschnitt durch einen erfindungsgemäßen Kamin, wie er bereits in der Figur 1 dargestellt worden ist. Allerdings zeigen die Teilbilder b) bis e) einen Querschnitt durch nicht erfindungsgemäße Kamine, wobei das zwischen dem Innenrohr 1 und dem Außenrohr 2 angeordnete Dämmmaterial 3 auch aus einstückigen Segmenten ausgebildet ist. Die Röhren 7 für die Luftführung entlang des Kamins können ebenfalls unterschiedliche Querschnittsformen aufweisen und entweder an der Innenseite (Teilbild d) oder an der Außenseite (Teilbild e) des Dämmkörpers 3 angeordnet sein oder sich im Dämmkörper befinden (Teilbilder b und c). Die segmentierte Ausbildung erleichtert auch die Herstellung des Dämmkörpers bzw. der Teildämmkörper 3, da dann die Bereiche, die den Ringspalt 7 darstellen, in einfacher Weise aus dem Vollmaterial gefräst werden können, zum Beispiel über entsprechende Drahtfräsen.
  • Figur 3 zeigt noch einmal in den Teilbildern a) und b) einen erfindungsgemäßen Kamin, wie er bereits in der Figur 1 dargestellt ist. Die Figur 3 verdeutlicht jedoch auch, dass der Ringspalt sich über die gesamte Länge des Kamins erstreckt (Teilbild b).
  • Dies wird auch in der Figur 4 deutlich, in der das Teilbild der Figur 3 b) in vergrößerter Darstellung zu sehen ist. Hier zeigt sich, dass auch der Kaminanschluss 8 seitlich angeordnet sein kann, wobei der Ringspalt 7 sich über die gesamte Länge erstreckt und vorzugsweise eine Öffnung am unteren Ende des Kamins aufweist. Die Pfeile in Figur 4 verdeutlichen die Strömung der Luft, die durch den Ringspalt 7 strömt.
  • Figur 5 zeigt, wie sich die Temperatur an den Messstellen 1 und 2 der Figur 4 über die Zeit bei einem Ausbrand-Versuch entwickelt. Beispielhaft wurde in einem Edelstahlkamin mit 50 mm starkem mineralischem Dämmkörper und Spaltöffnungen (siehe Zeichnung 1) ein Ausbrandversuch durchgeführt. Dabei wurde der Kamin 50 min mit 1000° C belastet Die höchsten Temperaturen wurden dabei am Kaminkopf gemessen, ohne kritische Werte zu erreichen. Bei dem vorliegenden System mit Hinterlüftung lagen die Temperaturen auf der Außenseite des Kaminkopfes deutlich über den Temperaturen im unteren Bereich des Kamins. Dies steht im Gegensatz zu dem Temperaturverhalten herkömmlicher (homogener) Systemen. Bei denen werden immer oberhalb der Eintrittsstelle die höchsten Temperaturen sowohl im Innenrohr als auch am Außenmantel gemessen. Wie deutlich zu sehen ist, nimmt die Temperatur an der Messstelle 2 gegenüber dem konventionellen Kamin nach einer bestimmten Zeit zu, während sie an der Messstelle 1 nach einer gewissen Zeit niedriger liegt als bei einem konventionellen Kamin. Damit wird erreicht, dass der bei einem Ausbrand stärker belastete untere Teil des Kamins durch eine Wärmeabfuhr gekühlt wird, während die Temperaturerhöhung am Kaminkopf in Folge des Wärmetransports in einem unkritischen Bereich bleibt.

Claims (15)

  1. Kamin, insbesondere Stahlkamin mit einem Rauchgas führenden Innenrohr (1) und einer Außenummantelung (2), die insbesondere beide aus Stahl gebildet sind und mit einer zwischen Innenrohr (1) und Außenummantelung (2) vorgesehenen Dämmung aus mindestens einem Dämmkörper-Formelement (3, 4) aus Mineralwolle, insbesondere Steinwolle, mit einer darin ausgebildeten Wärmeabführungslage, die sich mindestens ab Rauchgaseinleitung axial in Richtung des Kaminkopfes erstreckt,
    dadurch gekennzeichnet, dass
    sich die Wärmeabführungslage in der Dämmung über einen wesentlichen Teil des Umfangs des Kamins erstreckt, und dass das Dämmkörper-Formelement mehrteilig ausgeführt ist und die mindestens eine Teilungsfläche koaxial zu der das Innenrohr (1) umgebenden Innenfläche des Dämmkörper-Formelements angeordnet ist, so dass das Dämmkörper-Formelement mindestens zweischalig aufgebaut ist, wobei an der Grenzfläche der beiden Schalen (3, 4) zumindest an einer Schale (4) radial offene Aussparungen (7) vorgesehen sind, die die Wärmeabführungslage bilden, und die von der an Abstandshaltern (5) anliegenden anderen Schale (3) begrenzt werden.
  2. Kamin nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Wärmeabführungslage durch mindestens einen von einem Medium, vorzugsweise Luft, durchströmbaren Kanal (7) gebildet ist, der durch die sich über den Umfang der Dämmung erstreckenden Aussparungen begrenzt ist.
  3. Kamin nach Anspruch 1,
    dadurch gekennzeichnet, dass
    sich die Abstandshalter von außen nach innen verjüngen, insbesondere spitz zusammen laufen, so dass die Abstandshalter (5) vorzugsweise an ihrer inneren Auflage einen Linienkontakt aufweisen.
  4. Kamin nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Wärmeabführungslage im Wesentlichen radial mittig in der Dämmung vorgesehen ist.
  5. Kamin nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    an der Wärmeabführungslage (7) Wärmeübertragungsmittel (6) zur Übertragung von Wärme von der Mineralwolle zu der Wärmeabführungslage vorgesehen sind.
  6. Kamin nach Anspruch 5,
    dadurch gekennzeichnet, dass
    die Wärmeübertragungsmittel (6) durch eine zumindest teilweise an der Innenfläche der Aussparungen vorgesehene Schicht mit einem hohen Wärmeübertragungskoeffizienten, insbesondere eine Metallschicht, vorzugsweise aus Aluminium oder Kupfer, gebildet ist.
  7. Kamin nach Anspruch 5 oder 6,
    dadurch gekennzeichnet, dass
    das Wärmeübertragungsmittel eine vorzugsweise aufkaschierte Metallfolie (6), ein eingeführtes Metallrohr oder -teilrohr, ein Glasvlies, Glasseide oder eine Wasserglassprühbeschichtung umfassen.
  8. Kamin nach Anspruch 7,
    dadurch gekennzeichnet, dass
    die Metallfolie eine Dicke von 17-60 µm aufweist.
  9. Kamin nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Dämmkörper-Formelement mehrteilig, insbesondere segmentiert, ausgeführt ist, wobei die Trennflächen insbesondere auch zumindest teilweise radial verlaufend angeordnet sind, so dass bei vorzugsweise ringförmigem Querschnitt Teilkreissegmente gebildet sind.
  10. Kamin nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Dämmmaterial ein Rohgewicht von 65 bis 165 kg/m3, insbesondere 80 bis 130 kg/m3, vorzugsweise 110 bis 120 kg/m3, aufweist, wobei vorzugsweise die Rohdichte innen höher ist, insbesondere 110 bis 150 kg/m3 beträgt, während die Rohdichte außen kleiner ist, vorzugsweise 80 bis 110 kg/m3 beträgt.
  11. Kamin nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Wärmeabführungslage in Umfangsrichtung einen maximalen Anteil an Aussparungen aufweist, vorzugsweise mindestens 80 %, insbesondere 90 bis 95 %.
  12. Kamin nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Querschnitt des Kamins und des Dämmkörper-Formelements rund, rechteckig, quadratisch oder vieleckig ist.
  13. Kamin nach Anspruch 2,
    dadurch gekennzeichnet, dass
    der Kanal (7) im Bereich des Kaminkopfes Austrittsöffnungen und im Bereich des Kaminfußes Eintrittsöffnungen für die Luft aufweist.
  14. Kamin nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    am Kaminkopf Überströmdüsen zur Verstärkung des Luftstromes vorgesehen sind.
  15. Kamin nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Kamin mehrere Schüsse umfasst.
EP20030010797 2002-05-16 2003-05-14 Aktiv gedämmter Kamin, insbesondere Stahlkamin Expired - Fee Related EP1369642B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10221883 2002-05-16
DE10221883 2002-05-16

Publications (2)

Publication Number Publication Date
EP1369642A1 EP1369642A1 (de) 2003-12-10
EP1369642B1 true EP1369642B1 (de) 2014-07-16

Family

ID=29432135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030010797 Expired - Fee Related EP1369642B1 (de) 2002-05-16 2003-05-14 Aktiv gedämmter Kamin, insbesondere Stahlkamin

Country Status (1)

Country Link
EP (1) EP1369642B1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005008443U1 (de) * 2004-07-03 2005-09-29 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Stein- und Schlackenwolle-Dämmstoffe mit inhibierenden Zusätzen
IT1394511B1 (it) * 2009-06-19 2012-07-05 Canna S R L Comignolo perfezionato con relativa piastra distanziatrice.
CN109028119A (zh) * 2018-08-03 2018-12-18 青铜峡铝业发电有限责任公司 一种防腐蚀烟囱及其安装施工方法
CN111995319A (zh) * 2020-08-10 2020-11-27 遵义汉丰装饰材料有限责任公司 一种烟囱用防裂砌块及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2618364C2 (de) 1976-04-27 1978-06-08 Kabe-Werk Betonfertigteile Gmbh, 6052 Muehlheim Mehrschaliger Schornstein und Mantelstein für einen Schornstein
AT398106B (de) 1981-03-30 1994-09-26 Schiedel Gmbh & Co Mehrschaliger schornstein
DE3151327A1 (de) 1981-12-24 1983-07-07 Krauss Kaminwerke München-Geiselbullach GmbH & Co KG, 8031 Geiselbullach Kamin zum abzug von rauchgasen
DE29520888U1 (de) 1995-03-17 1996-08-08 Grünzweig + Hartmann AG, 67059 Ludwigshafen Schornstein-Dämmsystem
DE19511586A1 (de) 1995-03-29 1996-10-02 Schwoerer Haus Gmbh & Co Mehrschaliges Schornsteinelement
DE29701757U1 (de) * 1997-02-01 1997-03-20 Sommer, Rolf, 67125 Dannstadt-Schauernheim Asymetrisch genutete Mineralfaserdämmplatten, vorzugsweise für Wärmedämmung runder Rauchrohre von Schornsteinen und Abgasanlagen
DE19925548A1 (de) * 1999-06-04 2000-12-07 Benno Duechting Isolationskörper für Kaminrohre

Also Published As

Publication number Publication date
EP1369642A1 (de) 2003-12-10

Similar Documents

Publication Publication Date Title
EP2049841B1 (de) Brennkammer einer verbrennungsanlage
DE2522650A1 (de) Waermeisolierungsbauteil fuer einen zylindrischen koerper und verfahren zur waermeisolierung eines zylindrischen koerpers
EP1369642B1 (de) Aktiv gedämmter Kamin, insbesondere Stahlkamin
DE69822107T2 (de) Kühlplatte für metallurgische Schachtöfen
EP1990481B1 (de) Mantelstein für Schornsteinsysteme
DE102005058163B4 (de) Abgaskamin
DE1955713C3 (de) Stahlpanzer für elektrische Lichtbogenöfen
DE3031606A1 (de) Rekuperator.
DE102007010910B4 (de) Vorrichtung zur Ableitung von Verbrennungsabgasen aus einem Gebäude
EP0257636B2 (de) Kopf für hinterlüftete mehrschalige Hausschornsteine
AT505255B1 (de) Schornstein
EP0801266A2 (de) Aufsatz für ein Abgasrohr einer Heizungsanlage
WO2011039050A2 (de) Wärmedämmung für turbinengehäuse
EP1988318A1 (de) Wanddurchführung
DE4123614C2 (de)
DE102018130894B4 (de) Roststab sowie Brennrost aus solchen Roststäben
EP0472895A1 (de) Vorrichtung zur Regelung der Abgastemperatur in Heizkesseln
EP2851486A1 (de) Konzentrisches Schornsteinbauteil mit Zu- und Abluftkanal
DE19611040C2 (de) Formteil für einen Rauchgaszug eines Wärmeerzeugers
DE883612C (de) Waermeaustauscher
EP0296125B1 (de) Schornsteinabdeckelement sowie ein mit einem solchen verbundener Schornsteinaufsatz
DE3820872A1 (de) Abluftmanschette fuer hinterlueftete kamine
DE2849247C2 (de) Schornstein
EP0326000A2 (de) Kamin, insbesondere Fertigkamin
DE10227812C1 (de) Aufsetzkranz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040514

AKX Designation fees paid

Designated state(s): DE DK GB

17Q First examination report despatched

Effective date: 20090406

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315088

Country of ref document: DE

Effective date: 20140821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315088

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150417

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170509

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315088

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201