EP1369467A1 - Hydrodesulfurization of sulphur and olefins containing fractions with a supported catalyst conatining an element of group VIII and tungsten. - Google Patents

Hydrodesulfurization of sulphur and olefins containing fractions with a supported catalyst conatining an element of group VIII and tungsten. Download PDF

Info

Publication number
EP1369467A1
EP1369467A1 EP03291116A EP03291116A EP1369467A1 EP 1369467 A1 EP1369467 A1 EP 1369467A1 EP 03291116 A EP03291116 A EP 03291116A EP 03291116 A EP03291116 A EP 03291116A EP 1369467 A1 EP1369467 A1 EP 1369467A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
group viii
tungsten
hydrodesulfurization
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03291116A
Other languages
German (de)
French (fr)
Other versions
EP1369467B1 (en
Inventor
Denis Uzio
Stéphane Cremer
Nathalie Marchal
Christophe Bouchy
Florent Picard
Carine Petit-Clair
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1369467A1 publication Critical patent/EP1369467A1/en
Application granted granted Critical
Publication of EP1369467B1 publication Critical patent/EP1369467B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range

Definitions

  • the present invention relates to a catalyst comprising at least one support, at least one element of group VIII and tungsten, and allowing the hydrodesulfurization of hydrocarbon feedstocks, preferably of the gasoline type of catalytic cracking (FCC, Fluid Catalytic Cracking or catalytic cracking in fluidized bed).
  • the invention relates more particularly to a process for hydrodesulfurization of gasoline cuts in the presence of a catalyst comprising at least one support, at least one element of group VIII and tungsten, in which the atomic ratio (element of group VIII) / ( element of group VIII + tungsten) is greater than 0.15 and less than 0.50.
  • Essence cuts and more particularly essences from FCC contain approximately 20 to 40% of olefinic compounds, 30 to 60% of aromatics and 20 to 50% of saturated compounds of paraffin or naphthene type.
  • olefinic compounds branched olefins are predominant compared to linear and cyclic olefins.
  • These essences also contain traces of highly unsaturated compounds of the diolefin type which are capable of deactivating the catalysts by the formation of gums.
  • patent EP 685 552 B1 proposes to selectively hydrogenate the diolefins, that is to say without transforming the olefins, before carrying out the hydrotreatment for the elimination of sulfur.
  • the sulfur compounds content of these gasolines is very variable depending on the type of gasoline (steam cracker, catalytic cracking, coking ...) or in the case of catalytic cracking of the severity applied to the process. It can fluctuate between 200 and 5000 ppm of S, preferably between 500 and 2000 ppm relative to the mass of filler.
  • the families of thiophenic and benzothiophenic compounds are in the majority, the mercaptans being present only at very low levels generally between 10 and 100 ppm.
  • FCC gasolines also contain nitrogen compounds in proportions generally not exceeding 100 ppm.
  • Desulfurization (hydrodesulfurization) of gasolines and mainly FCC gasolines is therefore of obvious importance for compliance with the specifications.
  • Hydrotreating (or hydrodesulfurization) of catalytic cracking gasolines when carried out under conventional conditions known to those skilled in the art, makes it possible to reduce the sulfur content of the cut.
  • this process has the major drawback of causing a very significant drop in the octane number of the cut, due to the saturation of all the olefins during the hydrotreatment.
  • Methods have therefore been proposed which make it possible to deeply desulfurize FCC gasolines while maintaining the octane number at a high level.
  • US Pat. No. 5,318,690 proposes a process consisting of fractionating the gasoline, softening the light fraction and hydrotreating the heavy fraction on a conventional catalyst and then treating it on a ZSM5 zeolite to approximately find the initial octane number.
  • Patent application WO 01/40409 claims the treatment of an FCC gasoline under conditions of high temperature, low pressure and high hydrogen / charge ratio. Under these particular conditions, the recombination reactions leading to the formation of mercaptans, involving the H 2 S formed by the desulfurization reaction and the olefins are minimized.
  • 5,968,346 proposes a scheme making it possible to achieve very low residual sulfur contents by a process in several stages: hydrodesulfurization on a first catalyst, separation of the liquid and gaseous fractions, and second hydrotreatment on a second catalyst.
  • the liquid / gas separation makes it possible to eliminate the H 2 S formed in the first reactor, in order to achieve a better compromise between hydrodesulfurization and octane loss.
  • the catalysts used for this type of application are sulfide type catalysts containing an element of group VIB (Cr, Mo, W) and an element of group VIII (Fe, Ru, Os, Co, Rh , Ir, Pd, Ni, Pt).
  • a catalyst having a surface concentration of between 0.5.10 -4 and 3.10 -4 gMoO 3 / m 2 achieves high selectivities in hydrodesulfurization (hydrodesulfurization 93% (HDS) against 33% hydrogenation of olefins (HDO)).
  • a catalyst has been found which can be used in a process. gasoline hydrodesulfurization and making it possible to reduce the total sulfur contents and in mercaptans of hydrocarbon cuts and preferably of gasoline cuts FCC, without significant loss of gasoline and minimizing the decrease in the index octane.
  • the invention relates more precisely to a process for hydrodesulfurization of sections gasolines in the presence of a catalyst comprising at least one support, at least one element of group VIII and tungsten, in which the atomic ratio (element of group VIII) / (element of group VIII + tungsten) is greater than 0.15 and less than 0.50, preferably greater than 0.20 and less than 0.50.
  • the feed to be hydrotreated (or hydrodesulfurized) by means of the process according to the invention is generally a gasoline cut containing sulfur; such as for example a section from a coking unit (coking according to Anglo-Saxon terminology), visbreaking (visbreaking according to Anglo-Saxon terminology), steam cracking (steam cracking according to Anglo-Saxon terminology) or catalytic cracking (FCC, Fluid Catalytic Cracking according to Anglo-Saxon terminology).
  • the said charge is preferably made of a petrol cut from a cracking unit catalytic whose range of boiling points typically extends from points boiling of hydrocarbons with 5 carbon atoms up to about 250 ° C.
  • This gasoline can possibly be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline from direct distillation (or straight run gasoline according to terminology Anglo-Saxon) or conversion processes (essence of coking or steam cracking).
  • the hydrodesulfurization catalysts according to the invention are catalysts comprising tungsten and at least one element of group VIII on an appropriate support.
  • the OR the elements of group VIII are preferably chosen from nickel and / or cobalt.
  • the catalyst support is usually a porous solid chosen from the group consisting of: aluminas, silica, alumina silicas or titanium oxides or magnesium used alone or as a mixture with alumina or silica alumina.
  • the support is essentially constituted by at least one transition alumina, that is to say that it comprises at least 51% by weight, preferably at least 60% by weight very preferred at least 80% by weight, or even at least 90% by weight of transition alumina. he can optionally consist only of a transition alumina.
  • the specific surface of the support according to the invention is generally less than approximately 200 m 2 / g, preferably less than 170 m 2 / g and even more preferably less than 150 m 2 / g, or even less than 135 m 2 / g.
  • the support can be prepared using any precursor, any preparation method and any shaping tool known to those skilled in the art.
  • the catalyst according to the invention can be prepared using any known technique skilled in the art, and in particular by impregnating the elements of groups VIII and tungsten on the selected support.
  • This impregnation can for example be carried out according to the method known to those skilled in the art under terminology dry impregnation, in which we just introduce the quantity of elements desired under form of salts soluble in the chosen solvent, for example demineralized water, so as to fill the porosity of the support as exactly as possible.
  • the support as well filled with the solution is preferably dried.
  • This treatment generally aims to transform the molecular precursors of the elements in the oxide phase. In this case it is an oxidizing treatment but a direct reduction can also be carried out.
  • an oxidizing treatment also called calcination
  • this is generally carried out in air or under dilute oxygen, and the treatment temperature is generally between 200 ° C and 550 ° C, preferably between 300 ° C and 500 ° C.
  • a reducing treatment this is generally carried out under pure or preferably diluted hydrogen, and the treatment temperature is generally between 200 ° C and 600 ° C, preferably between 300 ° C and 500 ° C.
  • Salts of group VIII elements and tungsten which can be used in the process according to the invention are, for example, cobalt nitrate, aluminum nitrate, or ammonium metatungstate. Any other salt known to a person skilled in the art having sufficient solubility and which can be broken down during the activation treatment can also be used.
  • the catalyst is usually used in a sulfurized form obtained after temperature treatment in contact with a decomposable sulfur-containing organic compound and generator of H 2 S or directly in contact with a gaseous flow of H 2 S diluted in H 2 .
  • This step can be carried out in situ or ex situ (inside or outside the reactor) of the hydrodesulfurization reactor at temperatures between 200 and 600 ° C and more preferably between 300 and 500 ° C.
  • the use of a support with a large specific surface is sometimes problematic in the case of highly olefinic fillers. Indeed, the surface acidity increasing with the specific surface of the supports, the catalyzed acido reactions will be favored for the supports of large specific surface. Thus, the polymerization or coking reactions leading to the formation of gums or coke and ultimately to the premature deactivation of the catalyst will in this case be greater on supports with a high specific surface. Better stability of the catalysts will then be obtained for supports with a small specific surface area.
  • the specific surface of the support should preferably not exceed approximately 300 m 2 / g and should more preferably be less than 280 m 2 / g, or even less than 150 m 2 / g.
  • the content of group VIII elements in the catalyst according to the invention is preferably between 1% by weight and 20% by weight of oxides of elements of group VIII, of preferably between 2% by weight and 8% by weight of oxides of elements from group VII.
  • the element of group VIII is cobalt or nickel or a mixture of these two elements, and more preferably the element of group VIII consists only cobalt and / or nickel.
  • the tungsten content is preferably between 1.5% by weight and 60% by weight tungsten oxide, more preferably between 3% by weight and 50% by weight of oxide of tungsten.
  • the atomic ratio (element of group VIII) / (element of group VIII + tungsten) is greater than 0.15 and less than 0.50, preferably greater than 0.20 and less than 0.50, more preferably greater than 0.20 and less than or equal to 0.45, or even greater than 0.30 and less than or equal to 0.45. Very preferably, said atomic ratio is greater than or equal to 0.35 and less than or equal to 0.40.
  • the catalyst according to the invention can be used in any process known to man of the trade, making it possible to desulfurize hydrocarbon cuts of the gasoline type catalytic cracking (FCC) for example by keeping the octane number at values high. It can be used in any type of reactor operated in a fixed bed or in a bed mobile or in a bubbling bed, it is however preferably used in a reactor operated on a fixed bed.
  • FCC gasoline type catalytic cracking
  • the operating conditions allowing a selective hydrodesulfurization of the catalytic cracking essences are a temperature between approximately 200 ° C and approximately 400 ° C, preferably between approximately 250 ° C and approximately 350 ° C, a total pressure ranging between 1 MPa and 3 MPa and more preferably between approximately 1 MPa and approximately 2.5 MPa with a ratio: volume of hydrogen per volume of hydrocarbon feedstock, between approximately 100 and approximately 600 liters per liter and more preferably between approximately 200 and approximately 400 liters per liter.
  • the hourly volume velocities (VVH) are between 1 and 15 h -1 .
  • the VVH is defined by the ratio of the volume flow rate of liquid hydrocarbon feedstock to the volume of catalyst loaded into the reactor.
  • Molybdenum-based catalyst A is prepared by adding cobalt and molybdenum to an alumina support which is in the form of a "ball". These two elements are introduced simultaneously by dry impregnation of the support.
  • the cobalt salt used is cobalt nitrate, the molybdenum precursor being ammonium heptamolybdate tetrahydrate.
  • the solution is then impregnated dropwise on the alumina.
  • catalyst A The characteristics of catalyst A are provided in table 1 below: characteristics of catalyst A (non-compliant).
  • Support S BET of the support m 2 / g Areal density CoO mole / m 2 Area density MoO 3 mole / m 2 Co / (Co + Mo) SCM139XL 135 3.56.10 -6 6.40.10 -6 0.36
  • Catalyst B (non-compliant):
  • Molybdenum-based catalyst B is prepared in the same manner as catalyst A, with a high surface area alumina to decrease the surface density of molybdenum oxide.
  • the characteristics of catalyst B are provided in Table 2 below. characteristics of catalyst B (non-compliant).
  • Support S BET of the support m 2 / g Areal density CoO mole / m 2 Area density MoO 3 mole / m 2 Co / (Co + Mo) GSFG 273 3.14.10 -6 4.60.10 -6 0.40
  • Catalyst C based on tungsten is prepared by adding cobalt and tungsten to an alumina support which is in the form of a ball. The two elements are introduced simultaneously by dry impregnation of the support.
  • the cobalt salt used is Co nitrate, the precursor of tungsten being ammonium metatungstate.
  • the characteristics of catalyst C are given in table 3 below. characteristics of catalyst C (compliant).
  • Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 3.88.10 -6 6.21.10 -6 0.38
  • Catalyst D based on tungsten is prepared in the same way as catalyst C, with an alumina with a high specific surface to decrease the surface density of tungsten oxide.
  • the characteristics of catalyst D are given in table 4 below. characteristics of catalyst D (compliant).
  • Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) GSFG 273 3.14.10 -6 4.66.10 -6 0.40
  • Catalyst E is prepared in the same way as catalyst C.
  • the surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is reduced.
  • the characteristics of catalyst E are given in the table below. characteristics of catalyst E (non-compliant).
  • Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 6.90.10 -7 6.21.10 -6 0.10
  • Catalyst F is prepared in the same way as catalyst C.
  • the surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is reduced.
  • the characteristics of catalyst F are given in the table below. characteristics of catalyst F (compliant).
  • Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 1.27.10 -6 6.21.10 -6 0.17
  • Catalyst G is prepared in the same way as catalyst C.
  • the surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is reduced.
  • the characteristics of catalyst G are given in the table below. characteristics of catalyst G (compliant).
  • Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 1.75.10 -6 6.21.10 -6 0.22
  • Catalyst H is prepared in the same way as catalyst C.
  • the surface density of tungsten oxide is identical to that of catalyst C (conform), while that of cobalt is increased.
  • the characteristics of catalyst H are given in the table below. characteristics of catalyst H (compliant).
  • Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 5.08.10 -6 6.21.10 -6 0.45
  • Catalyst I is prepared in the same way as catalyst C.
  • the surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is increased.
  • the characteristics of catalyst I are provided in the table below. characteristics of catalyst 1 (non-compliant).
  • Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 7.00.10 -6 6.21.10 -6 0.53
  • the performances of the CoMo and CoW catalysts were compared for surface densities close to Mo and W, as well as for comparable Co / Co + atomic ratios (Mo or W).
  • the catalysts A, B, C and D previously described were tested in the reaction for the selective desulfurization of a model charge of the gasoline type of FCC.
  • the test is carried out in a Grignard reactor (batch) at 200 ° C. under a hydrogen pressure of 3.5 MPa kept constant.
  • the model charge is constituted by 1000 ppm of 3-methyl-thiophene and 10% by weight of 2,3-dimethyl-2-butene in n-heptane.
  • the volume of solution is 210 cc when cold, the mass of catalyst tested being 4 grams (before sulfurization).
  • the catalyst Before testing, the catalyst is sulphurized beforehand in a sulphurization bench, under H 2 S / H 2 mixture (4l / h, 15% vol H 2 S) at 500 ° C for two hours (ramp of 5 ° C / min) then reduced under pure H 2 at 200 ° C for two hours. The catalyst is then transferred to the Grignard reactor, sheltered from air. The tests are continued up to HDS (conversion of 3-methylthiophene) levels close to 90%.
  • HDS conversion of 3-methylthiophene
  • the rate constant (normalized per g of catalyst) is calculated by considering an order 1 for the desulfurization reaction (k HDS ), and a order 0 for the hydrogenation reaction (k HDO ).
  • the selectivity of a catalyst is defined by the ratio of its rate constants, k HDS / k HDO .
  • the rate constants relative to catalyst A of catalysts A, B, C and D as well as their selectivity are reported in Table 9 below.
  • tungsten catalysts are more selective, with iso-surface density, than molybdenum catalysts. catalytic properties of catalysts A, B, C and D.
  • Catalyst k HDS k HDO k HDS / k HDO Co / Co + (W or Mo) Surface density MoO 3 or WO 3 mole / m 2 A (MB) 1.00 1.62 0.62 0.36 6.40.10 -6 B (MB) 1.26 2.29 0.55 0.40 4.60.10 -6 C (W) 0.75 1.05 0.71 0.38 6.21.10 -6 D (W) 1.07 1.67 0.64 0.40 4.66.10 -6
  • Catalysts C, E, F, G, H, I are tested on model charge, according to the same protocol as described in Example 1.
  • the relative rate constants of the catalysts as well as their selectivity are reported in Table 10 below. below. catalytic properties of catalysts C, E, F, G, H, I.
  • Catalyst E sees its selectivity greatly decrease for a Co / (Co + W) ratio of 0.10. Likewise, the catalyst l having a too high Co / (Co + W) ratio (0.53) sees its selectivity decrease.

Abstract

In the hydrodesulfurization of petrol cuts in the presence of a catalyst comprising a support, a group VIII metal and tungsten, the atomic ratio group VIII element:(group VIII element + tungsten) is greater than 0.15 and less than 0.50.

Description

La présente invention concerne un catalyseur comprenant au moins un support, au moins un élément du groupe VIII et du tungstène, et permettant l'hydrodésulfuration de charges hydrocarbonées, de préférence de type essences de craquage catalytique (FCC, Fluid Catalytic Cracking ou craquage catalytique en lit fluidisé).
L'invention concerne plus particulièrement un procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un support, au moins un élément du groupe VIII et du tungstène, dans lequel le rapport atomique (élément du groupe VIII) / (élément du groupe VIII + tungstène) est supérieur à 0,15 et inférieur à 0,50.
The present invention relates to a catalyst comprising at least one support, at least one element of group VIII and tungsten, and allowing the hydrodesulfurization of hydrocarbon feedstocks, preferably of the gasoline type of catalytic cracking (FCC, Fluid Catalytic Cracking or catalytic cracking in fluidized bed).
The invention relates more particularly to a process for hydrodesulfurization of gasoline cuts in the presence of a catalyst comprising at least one support, at least one element of group VIII and tungsten, in which the atomic ratio (element of group VIII) / ( element of group VIII + tungsten) is greater than 0.15 and less than 0.50.

ART ANTERIEURPRIOR ART

Les coupes essences et plus particulièrement les essences issues du FCC contiennent environ 20 à 40 % de composés oléfiniques, 30 à 60 % d'aromatiques et 20 à 50 % de composés saturés de type paraffines ou naphtènes. Parmi les composés oléfiniques, les oléfines ramifiées sont majoritaires par rapport aux oléfines linéaires et cycliques. Ces essences contiennent également des traces de composés hautement insaturés de type dioléfiniques et qui sont susceptibles de désactiver les catalyseurs par formation de gommes. Ainsi, le brevet EP 685 552 B1 propose d'hydrogéner sélectivement les dioléfines, c'est à dire sans transformer les oléfines, avant d'effectuer l'hydrotraitement pour l'élimination du soufre. La teneur en composés soufrés de ces essences est très variable en fonction du type d'essence (vapocraqueur, craquage catalytique, cokéfaction...) ou dans le cas du craquage catalytique de la sévérité appliquée au procédé. Elle peut fluctuer entre 200 et 5000 ppm de S, de préférence entre 500 et 2000 ppm par rapport à la masse de charge. Les familles des composés thiophéniques et benzothiophéniques sont majoritaires, les mercaptans n'étant présents qu'à des niveaux très faibles généralement compris entre 10 et 100 ppm. Les essences de FCC contiennent également des composés azotés dans des proportions n'excédant généralement pas 100 ppm.
La production d'essences reformulées répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue le moins possible leur concentration en oléfines afin de conserver un indice d'octane élevé, mais que l'on diminue de façon importante leur teneur en soufre. Ainsi, les normes environnementales en vigueur et futures contraignent les raffineurs à diminuer la teneur en soufre dans les essences à des valeurs inférieures ou au plus égales à 50 ppm en 2003 et 10 ppm au-delà de 2005. Ces normes concernent la teneur totale en soufre mais également la nature des composés soufrés tels que les mercaptans. Les essences de craquage catalytique, qui peuvent représenter 30 à 50 % du pool essence, présentent des teneurs en oléfines et en soufre élevées. Le soufre présent dans les essences reformulées est imputable, à près de 90 %, à l'essence de FCC. La désulfuration (l'hydrodésulfuration) des essences et principalement des essences de FCC est donc d'une importance évidente pour le respect des spécifications. L'hydrotraitement (ou hydrodésulfuration) des essences de craquage catalytique, lorsqu'il est réalisé dans des conditions classiques connues de l'homme du métier permet de réduire la teneur en soufre de la coupe. Cependant, ce procédé présente l'inconvénient majeur d'entraíner une chute très importante de l'indice d'octane de la coupe, en raison de la saturation de l'ensemble des oléfines au cours de l'hydrotraitement. Il a donc été proposé des procédés permettant de désulfurer profondément les essences de FCC tout en maintenant l'indice d'octane à un niveau élevé.
Essence cuts and more particularly essences from FCC contain approximately 20 to 40% of olefinic compounds, 30 to 60% of aromatics and 20 to 50% of saturated compounds of paraffin or naphthene type. Among the olefinic compounds, branched olefins are predominant compared to linear and cyclic olefins. These essences also contain traces of highly unsaturated compounds of the diolefin type which are capable of deactivating the catalysts by the formation of gums. Thus, patent EP 685 552 B1 proposes to selectively hydrogenate the diolefins, that is to say without transforming the olefins, before carrying out the hydrotreatment for the elimination of sulfur. The sulfur compounds content of these gasolines is very variable depending on the type of gasoline (steam cracker, catalytic cracking, coking ...) or in the case of catalytic cracking of the severity applied to the process. It can fluctuate between 200 and 5000 ppm of S, preferably between 500 and 2000 ppm relative to the mass of filler. The families of thiophenic and benzothiophenic compounds are in the majority, the mercaptans being present only at very low levels generally between 10 and 100 ppm. FCC gasolines also contain nitrogen compounds in proportions generally not exceeding 100 ppm.
The production of reformulated gasolines meeting new environmental standards requires in particular that the concentration of olefins be reduced as little as possible in order to maintain a high octane number, but that their sulfur content is significantly reduced . Thus, current and future environmental standards oblige refiners to reduce the sulfur content in gasolines to values less than or at most equal to 50 ppm in 2003 and 10 ppm beyond 2005. These standards concern the total content of sulfur but also the nature of sulfur compounds such as mercaptans. The catalytic cracked gasolines, which can represent 30 to 50% of the gasoline pool, have high olefin and sulfur contents. Nearly 90% of the sulfur in reformulated gasolines is due to FCC gasoline. Desulfurization (hydrodesulfurization) of gasolines and mainly FCC gasolines is therefore of obvious importance for compliance with the specifications. Hydrotreating (or hydrodesulfurization) of catalytic cracking gasolines, when carried out under conventional conditions known to those skilled in the art, makes it possible to reduce the sulfur content of the cut. However, this process has the major drawback of causing a very significant drop in the octane number of the cut, due to the saturation of all the olefins during the hydrotreatment. Methods have therefore been proposed which make it possible to deeply desulfurize FCC gasolines while maintaining the octane number at a high level.

Ainsi, le brevet US 5 318 690 propose un procédé consistant à fractionner l'essence, adoucir la fraction légère et à hydrotraiter la fraction lourde sur un catalyseur conventionnel puis à la traiter sur une zéolithe ZSM5 pour retrouver approximativement l'indice d'octane initial.
La demande de brevet WO 01/40409 revendique le traitement d'une essence de FCC dans des conditions de haute température, faible pression et fort ratio hydrogène/charge. Dans ces conditions particulières, les réactions de recombinaison conduisant à la formation des mercaptans, mettant en jeu l'H2S formé par la réaction de désulfuration et les oléfines sont minimisées.
Enfin, le brevet US 5 968 346 propose un schéma permettant d'atteindre de teneurs résiduelles en soufre très faibles par un procédé en plusieurs étapes: hydrodésulfuration sur un premier catalyseur, séparation des fractions liquides et gazeuses, et second hydrotraitement sur un deuxième catalyseur. La séparation liquide/gaz permet d'éliminer l'H2S formé dans le premier réacteur, afin d'aboutir à un meilleur compromis entre hydrodésulfuration et perte octane.
Thus, US Pat. No. 5,318,690 proposes a process consisting of fractionating the gasoline, softening the light fraction and hydrotreating the heavy fraction on a conventional catalyst and then treating it on a ZSM5 zeolite to approximately find the initial octane number. .
Patent application WO 01/40409 claims the treatment of an FCC gasoline under conditions of high temperature, low pressure and high hydrogen / charge ratio. Under these particular conditions, the recombination reactions leading to the formation of mercaptans, involving the H 2 S formed by the desulfurization reaction and the olefins are minimized.
Finally, US Pat. No. 5,968,346 proposes a scheme making it possible to achieve very low residual sulfur contents by a process in several stages: hydrodesulfurization on a first catalyst, separation of the liquid and gaseous fractions, and second hydrotreatment on a second catalyst. The liquid / gas separation makes it possible to eliminate the H 2 S formed in the first reactor, in order to achieve a better compromise between hydrodesulfurization and octane loss.

L'obtention de la sélectivité de réaction recherchée (ratio entre hydrodésulfuration et hydrogénation des oléfines) peut donc être en partie due au choix du procédé mais dans tous les cas l'utilisation d'un système catalytique intrinsèquement sélectif est très souvent un facteur clé.Obtaining the desired reaction selectivity (ratio between hydrodesulfurization and hydrogenation of olefins) may therefore be partly due to the choice of process but in any case the use of an intrinsically selective catalytic system is very often a key factor.

D'une façon générale, les catalyseurs utilisés pour ce type d'application sont des catalyseurs de type sulfure contenant un élément du groupe VIB (Cr, Mo, W) et un élément du groupe VIII (Fe, Ru, Os, Co, Rh, Ir, Pd, Ni, Pt). Ainsi dans le brevet US 5985136, il est revendiqué qu'un catalyseur présentant une concentration de surface comprise entre 0,5.10-4 et 3.10-4 gMoO3/m2 permet d'atteindre des sélectivités élevées en hydrodésulfuration (93% d'hydrodésulfuration (HDS) contre 33 % d'hydrogénation des oléfines (HDO)). Par ailleurs, selon les brevets US 4 140 626 et US 4 774 220, il peut être avantageux d'ajouter un dopant (alcalin, alcalino-terreux) à la phase sulfure conventionnelle (CoMoS) dans le but de limiter l'hydrogénation des oléfines.Generally, the catalysts used for this type of application are sulfide type catalysts containing an element of group VIB (Cr, Mo, W) and an element of group VIII (Fe, Ru, Os, Co, Rh , Ir, Pd, Ni, Pt). Thus in US Patent 5985136, it is claimed that a catalyst having a surface concentration of between 0.5.10 -4 and 3.10 -4 gMoO 3 / m 2 achieves high selectivities in hydrodesulfurization (hydrodesulfurization 93% (HDS) against 33% hydrogenation of olefins (HDO)). Furthermore, according to US Patents 4,140,626 and US 4,774,220, it may be advantageous to add a dopant (alkaline, alkaline earth) to the conventional sulfide phase (CoMoS) in order to limit the hydrogenation of olefins .

Une autre voie permettant d'améliorer la sélectivité intrinsèque des catalyseurs est de tirer bénéfice de la présence de dépôts carbonés à la surface du catalyseur. Ainsi, le brevet US 4149965 propose de prétraiter un catalyseur conventionnel d'hydrotraitement de naphta pour le désactiver partiellement avant son utilisation pour l'hydrotraitement des essences. De même, la demande de brevet EP 0 745 660 A1 indique que le prétraitement d'un catalyseur afin de déposer entre 3 et 10 % poids de coke améliore les performances catalytiques. Dans ce cas, il est précisé que le ratio C/H ne doit pas être supérieur à 0,7.Another way of improving the intrinsic selectivity of the catalysts is to benefit from the presence of carbon deposits on the surface of the catalyst. So the US Patent 4149965 proposes to pretreat a conventional catalyst naphtha hydrotreatment to partially deactivate it before use for hydrotreatment of essences. Likewise, patent application EP 0 745 660 A1 indicates that the pretreatment of a catalyst in order to deposit between 3 and 10% by weight of coke improves catalytic performance. In this case, it is specified that the ratio C / H must not be greater than 0.7.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

Dans la présente invention, il a été trouvé un catalyseur utilisable dans un procédé d'hydrodésulfuration d'essence et permettant de réduire les teneurs en soufre total et en mercaptans des coupes hydrocarbonées et de préférence de coupes essences de FCC, sans perte importante d'essence et en minimisant la diminution de l'indice d'octane. In the present invention, a catalyst has been found which can be used in a process. gasoline hydrodesulfurization and making it possible to reduce the total sulfur contents and in mercaptans of hydrocarbon cuts and preferably of gasoline cuts FCC, without significant loss of gasoline and minimizing the decrease in the index octane.

L'invention concerne plus précisément un procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un support, au moins un élément du groupe VIII et du tungstène, dans lequel le rapport atomique (élément du groupe VIII) / (élément du groupe VIII + tungstène) est supérieur à 0,15 et inférieur à 0,50, de préférence supérieur à 0,20 et inférieur à 0,50.The invention relates more precisely to a process for hydrodesulfurization of sections gasolines in the presence of a catalyst comprising at least one support, at least one element of group VIII and tungsten, in which the atomic ratio (element of group VIII) / (element of group VIII + tungsten) is greater than 0.15 and less than 0.50, preferably greater than 0.20 and less than 0.50.

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

La charge à hydrotraiter (ou hydrodésulfurer) au moyen du procédé selon l'invention est généralement une coupe essence contenant du soufre; telle que par exemple une coupe issue d'une unité de cokéfaction (coking selon la terminologie anglo-saxonne ), de viscoréduction (visbreaking selon la terminologie anglo-saxonne), de vapocraquage (steam cracking selon la terminologie anglo-saxonne) ou de craquage catalytique (FCC, Fluid Catalytic Cracking selon la terminologie anglo-saxonne). La dite charge est de préférence constituée d'une coupe essence issue d'une unité de craquage catalytique dont la gamme de points d'ébullition s'étend typiquement des points d'ébullition des hydrocarbures à 5 atomes de carbone jusqu'à environ 250°C. Cette essence peut éventuellement être composée d'une fraction significative d'essence provenant d'autres procédés de production telle que la distillation atmosphérique (essence issue d'une distillation directe (ou essence straight run selon la terminologie anglo-saxonne) ou de procédés de conversion (essence de cokéfaction ou de vapocraquage).The feed to be hydrotreated (or hydrodesulfurized) by means of the process according to the invention is generally a gasoline cut containing sulfur; such as for example a section from a coking unit (coking according to Anglo-Saxon terminology), visbreaking (visbreaking according to Anglo-Saxon terminology), steam cracking (steam cracking according to Anglo-Saxon terminology) or catalytic cracking (FCC, Fluid Catalytic Cracking according to Anglo-Saxon terminology). The said charge is preferably made of a petrol cut from a cracking unit catalytic whose range of boiling points typically extends from points boiling of hydrocarbons with 5 carbon atoms up to about 250 ° C. This gasoline can possibly be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline from direct distillation (or straight run gasoline according to terminology Anglo-Saxon) or conversion processes (essence of coking or steam cracking).

Les catalyseurs d'hydrodésulfuration selon l'invention sont des catalyseurs comprenant du tungstène et au moins un élément du groupe VIII sur un support approprié. Le ou les éléments du groupe VIII sont de préférence choisis parmi le nickel et/ou le cobalt. Le support du catalyseur est habituellement un solide poreux choisi dans le groupe constitué par: les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l'alumine ou la silice alumine. Il est de préférence choisi dans le groupe constitué par : la silice, la famille des alumines de transition et les silices alumine, de manière très préférée, le support est essentiellement constitué par au moins une alumine de transition, c'est-à-dire qu'il comprend au moins 51 % poids, de préférence au moins 60 % poids de manière très préféré au moins 80 % poids, voire au moins 90 % poids d'alumine de transition. Il peut éventuellement être constitué uniquement d'une alumine de transition.The hydrodesulfurization catalysts according to the invention are catalysts comprising tungsten and at least one element of group VIII on an appropriate support. The OR the elements of group VIII are preferably chosen from nickel and / or cobalt. The catalyst support is usually a porous solid chosen from the group consisting of: aluminas, silica, alumina silicas or titanium oxides or magnesium used alone or as a mixture with alumina or silica alumina. It is preferably chosen from the group consisting of: silica, the family of aluminas transition and the alumina silicas, very preferably, the support is essentially constituted by at least one transition alumina, that is to say that it comprises at least 51% by weight, preferably at least 60% by weight very preferred at least 80% by weight, or even at least 90% by weight of transition alumina. he can optionally consist only of a transition alumina.

La surface spécifique du support selon l'invention est généralement inférieure à environ 200 m2/g, de manière préférée inférieure à 170 m2/g et de manière encore plus préférée inférieure à 150 m2/g, voire inférieure à 135 m2/g. Le support peut être préparé en utilisant tout précurseur, toute méthode de préparation et tout outil de mise en forme connus de l'homme de métier.The specific surface of the support according to the invention is generally less than approximately 200 m 2 / g, preferably less than 170 m 2 / g and even more preferably less than 150 m 2 / g, or even less than 135 m 2 / g. The support can be prepared using any precursor, any preparation method and any shaping tool known to those skilled in the art.

Le catalyseur selon l'invention peut être préparé au moyen de toute technique connu de l'homme du métier, et notamment par imprégnation des éléments des groupes VIII et du tungstène sur le support sélectionné. Cette imprégnation peut par exemple être réalisée selon le mode connu de l'homme du métier sous la terminologie d'imprégnation à sec, dans lequel on introduit juste la quantité d'éléments désirés sous forme de sels solubles dans le solvant choisi, par exemple de l'eau déminéralisée, de façon à remplir aussi exactement que possible la porosité du support. Le support ainsi rempli par la solution est de préférence séché.The catalyst according to the invention can be prepared using any known technique skilled in the art, and in particular by impregnating the elements of groups VIII and tungsten on the selected support. This impregnation can for example be carried out according to the method known to those skilled in the art under terminology dry impregnation, in which we just introduce the quantity of elements desired under form of salts soluble in the chosen solvent, for example demineralized water, so as to fill the porosity of the support as exactly as possible. The support as well filled with the solution is preferably dried.

Après introduction des éléments des groupes VIII et du tungstène, et éventuellement une mise en forme du catalyseur, celui-ci subi un traitement d'activation. Ce traitement a généralement pour but de transformer les précurseurs moléculaires des éléments en phase oxyde. Il s'agit dans ce cas d'un traitement oxydant mais une réduction directe peut également être effectuée. Dans le cas d'un traitement oxydant, également appelé calcination, celui-ci est généralement mis en oeuvre sous air ou sous oxygène dilué, et la température de traitement est généralement comprise entre 200°C et 550°C, de préférence entre 300°C et 500°C. Dans le cas d'un traitement réducteur, celui-ci est généralement mis en oeuvre sous hydrogène pur ou de préférence dilué, et la température de traitement est généralement comprise entre 200°C et 600°C, de préférence entre 300°C et 500°C.
Des sels d'éléments du groupe VIII et du tungstène utilisables dans le procédé selon l'invention sont par exemple le nitrate de cobalt, le nitrate d'aluminium, ou le métatungstate d'ammonium. Tout autre sel connu de l'homme du métier présentant une solubilité suffisante et décomposable lors du traitement d'activation peut également être utilisé.
After introduction of the elements of groups VIII and of tungsten, and possibly shaping of the catalyst, the latter undergoes an activation treatment. This treatment generally aims to transform the molecular precursors of the elements in the oxide phase. In this case it is an oxidizing treatment but a direct reduction can also be carried out. In the case of an oxidizing treatment, also called calcination, this is generally carried out in air or under dilute oxygen, and the treatment temperature is generally between 200 ° C and 550 ° C, preferably between 300 ° C and 500 ° C. In the case of a reducing treatment, this is generally carried out under pure or preferably diluted hydrogen, and the treatment temperature is generally between 200 ° C and 600 ° C, preferably between 300 ° C and 500 ° C.
Salts of group VIII elements and tungsten which can be used in the process according to the invention are, for example, cobalt nitrate, aluminum nitrate, or ammonium metatungstate. Any other salt known to a person skilled in the art having sufficient solubility and which can be broken down during the activation treatment can also be used.

Le catalyseur est habituellement utilisé sous une forme sulfurée obtenue après traitement en température au contact d'un composé organique soufré décomposable et générateur d'H2S ou directement au contact d'un flux gazeux d'H2S dilué dans H2. Cette étape peut être réalisée in situ ou ex situ (en dedans ou en dehors du réacteur) du réacteur d'hydrodésulfuration à des températures comprises entre 200 et 600°C et plus préférentiellement entre 300 et 500°C.The catalyst is usually used in a sulfurized form obtained after temperature treatment in contact with a decomposable sulfur-containing organic compound and generator of H 2 S or directly in contact with a gaseous flow of H 2 S diluted in H 2 . This step can be carried out in situ or ex situ (inside or outside the reactor) of the hydrodesulfurization reactor at temperatures between 200 and 600 ° C and more preferably between 300 and 500 ° C.

D'autre part, l'utilisation de support de surface spécifique importante est parfois problématique dans le cas de charge fortement oléfiniques. En effet, l'acidité de surface augmentant avec la surface spécifique des supports, les réactions acido catalysées seront favorisées pour les supports de surface spécifique importante. Ainsi, les réactions de polymérisation ou de cokage conduisant à la formation de gommes ou de coke et finalement à la désactivation prématurée du catalyseur seront dans ce cas plus importantes sur des supports de surface spécifique élevée. Une meilleure stabilité des catalyseurs sera alors obtenue pour des supports de surface spécifique peu importante. Dans ce cas la surface spécifique du support ne doit préférentiellement pas excéder environ 300 m2/g et doit de manière plus préférée être inférieure à 280 m2/g, voire inférieure à 150 m2/g.On the other hand, the use of a support with a large specific surface is sometimes problematic in the case of highly olefinic fillers. Indeed, the surface acidity increasing with the specific surface of the supports, the catalyzed acido reactions will be favored for the supports of large specific surface. Thus, the polymerization or coking reactions leading to the formation of gums or coke and ultimately to the premature deactivation of the catalyst will in this case be greater on supports with a high specific surface. Better stability of the catalysts will then be obtained for supports with a small specific surface area. In this case, the specific surface of the support should preferably not exceed approximately 300 m 2 / g and should more preferably be less than 280 m 2 / g, or even less than 150 m 2 / g.

La teneur en éléments du groupe VIII du catalyseur selon l'invention est de préférence comprise entre 1 % poids et 20 % poids d'oxydés d'éléments du groupe VIII, de préférence comprise entre 2 % poids et 8% poids d'oxydes d'éléments du groupe Vlll. De préférence l'élément du groupe VIII est le cobalt ou le nickel ou un mélange de ces deux éléments, et de manière plus préféré l'élément du groupe VIII est constitué uniquement de cobalt et/ou de nickel.The content of group VIII elements in the catalyst according to the invention is preferably between 1% by weight and 20% by weight of oxides of elements of group VIII, of preferably between 2% by weight and 8% by weight of oxides of elements from group VII. Preferably the element of group VIII is cobalt or nickel or a mixture of these two elements, and more preferably the element of group VIII consists only cobalt and / or nickel.

La teneur en tungstène est de préférence comprise entre 1,5 % poids et 60 % poids d'oxyde de tungstène, de manière plus préférée entre 3 % poids et 50 % poids d'oxyde de tungstène. Le rapport atomique (élément du groupe VIII) / (élément du groupe VIII + tungstène) est supérieur à 0,15 et inférieur à 0,50, de préférence supérieur à 0,20 et inférieur à 0,50, de manière plus préférée supérieur à 0,20 et inférieur ou égal à 0,45, voire supérieur à 0,30 et inférieur ou égal à 0,45. De manière très préférée, ledit rapport atomique est supérieur ou égal à 0,35 et inférieur ou égal à 0,40. The tungsten content is preferably between 1.5% by weight and 60% by weight tungsten oxide, more preferably between 3% by weight and 50% by weight of oxide of tungsten. The atomic ratio (element of group VIII) / (element of group VIII + tungsten) is greater than 0.15 and less than 0.50, preferably greater than 0.20 and less than 0.50, more preferably greater than 0.20 and less than or equal to 0.45, or even greater than 0.30 and less than or equal to 0.45. Very preferably, said atomic ratio is greater than or equal to 0.35 and less than or equal to 0.40.

Le catalyseur selon l'invention peut être utilisé dans tout procédé, connu de l'homme du métier, permettant de désulfurer des coupes hydrocarbonées de type essences de craquage catalytique (FCC) par exemple en maintenant l'indice d'octane à des valeurs élevées. Il peut être mis en oeuvre dans tout type de réacteur opéré en lit fixe ou en lit mobile ou en lit bouillonnant, il est toutefois de préférence utilisé dans un réacteur opéré en lit fixe.The catalyst according to the invention can be used in any process known to man of the trade, making it possible to desulfurize hydrocarbon cuts of the gasoline type catalytic cracking (FCC) for example by keeping the octane number at values high. It can be used in any type of reactor operated in a fixed bed or in a bed mobile or in a bubbling bed, it is however preferably used in a reactor operated on a fixed bed.

A titre indicatif, les conditions opératoires permettant une hydrodésulfuration sélective des essences de craquage catalytique sont une température comprise entre environ 200°C et environ 400°C, préférentiellement entre environ 250°C et environ 350°C, une pression totale comprise entre 1 MPa et 3 MPa et plus préférentiellement entre environ 1 MPa et environ 2,5 MPa avec un ratio: volume d'hydrogène par volume de charge hydrocarbonée, compris entre environ 100 et environ 600 litres par litre et plus préférentiellement entre environ 200 et environ 400 litres par litre. Généralement, les vitesses volumiques horaires (VVH) sont comprises entre 1 et 15 h-1. La VVH se définie par le rapport du débit volumique de charge hydrocarbonée liquide par le volume de catalyseur chargé dans le réacteur.As an indication, the operating conditions allowing a selective hydrodesulfurization of the catalytic cracking essences are a temperature between approximately 200 ° C and approximately 400 ° C, preferably between approximately 250 ° C and approximately 350 ° C, a total pressure ranging between 1 MPa and 3 MPa and more preferably between approximately 1 MPa and approximately 2.5 MPa with a ratio: volume of hydrogen per volume of hydrocarbon feedstock, between approximately 100 and approximately 600 liters per liter and more preferably between approximately 200 and approximately 400 liters per liter. Generally, the hourly volume velocities (VVH) are between 1 and 15 h -1 . The VVH is defined by the ratio of the volume flow rate of liquid hydrocarbon feedstock to the volume of catalyst loaded into the reactor.

EXEMPLES:EXAMPLES: Préparation des catalyseurs.Preparation of catalysts. Catalyseur A (non conforme) : Catalyst A (non-compliant):

Le catalyseur A à base de molybdène est préparé par ajout du cobalt et du molybdène sur un support alumine qui se présente sous la forme " bille ". Ces deux éléments sont introduits simultanément par imprégnation à sec du support. Le sel de cobalt utilisé est le nitrate de cobalt, le précurseur de molybdène étant l'heptamolybdate d'ammonium tétrahydraté. La solution d'imprégnation est préparée par dissolution de l'heptamolybdate d'ammonium dans l'eau avec ajout d'eau oxygéné (H2O2/MoO3=0.5) de manière à faciliter la solubilisation du molybdène, la solubilisation du Co ne posant pas de problème. L'imprégnation de la solution se fait ensuite au goutte à goutte sur l'alumine. Après imprégnation à sec, les billes sont laissées à maturer en atmosphère saturée en eau pendant 12h puis sont séchées une nuit à 120°C et enfin calcinées à 500°C (pente=5°C/min) pendant 2 heures sous air sec (1 l/h/g de catalyseur). Les caractéristiques du catalyseur A sont fournies dans le tableau 1 ci-dessous: caractéristiques du catalyseur A (non conforme). Support SBET du support m2/g Densité surfacique CoO mole/m2 Densité surfacique MoO3 mole/m2 Co/(Co+Mo) SCM139XL 135 3,56.10-6 6,40.10-6 0,36 Molybdenum-based catalyst A is prepared by adding cobalt and molybdenum to an alumina support which is in the form of a "ball". These two elements are introduced simultaneously by dry impregnation of the support. The cobalt salt used is cobalt nitrate, the molybdenum precursor being ammonium heptamolybdate tetrahydrate. The impregnation solution is prepared by dissolving the ammonium heptamolybdate in water with the addition of hydrogen peroxide (H 2 O 2 / MoO 3 = 0.5) so as to facilitate the solubilization of molybdenum, the solubilization of Co not a problem. The solution is then impregnated dropwise on the alumina. After dry impregnation, the beads are left to mature in an atmosphere saturated with water for 12 hours then are dried overnight at 120 ° C and finally calcined at 500 ° C (slope = 5 ° C / min) for 2 hours in dry air ( 1 l / h / g of catalyst). The characteristics of catalyst A are provided in table 1 below: characteristics of catalyst A (non-compliant). Support S BET of the support m 2 / g Areal density CoO mole / m 2 Area density MoO 3 mole / m 2 Co / (Co + Mo) SCM139XL 135 3.56.10 -6 6.40.10 -6 0.36

Catalyseur B (non conforme) : Catalyst B (non-compliant):

Le catalyseur B à base de molybdène est préparé de la même manière que le catalyseur A, avec une alumine de surface spécifique élevée pour diminuer la densité surfacique de l'oxyde de molybdène. Les caractéristiques du catalyseur B sont fournies dans le tableau 2 ci-dessous. caractéristiques du catalyseur B (non conforme). Support SBET du support m2/g Densité surfacique CoO mole/m2 Densité surfacique MoO3 mole/m2 Co/(Co+ Mo) GFSA 273 3,14.10-6 4,60.10-6 0,40 Molybdenum-based catalyst B is prepared in the same manner as catalyst A, with a high surface area alumina to decrease the surface density of molybdenum oxide. The characteristics of catalyst B are provided in Table 2 below. characteristics of catalyst B (non-compliant). Support S BET of the support m 2 / g Areal density CoO mole / m 2 Area density MoO 3 mole / m 2 Co / (Co + Mo) GSFG 273 3.14.10 -6 4.60.10 -6 0.40

Catalyseur C (conforme) : Catalyst C (compliant):

Le catalyseur C à base de tungstène est préparé par ajout du cobalt et du tungstène sur un support alumine qui se présente sous forme bille. Les deux éléments sont introduits simultanément par imprégnation à sec du support. Le sel de cobalt employé est le nitrate de Co, le précurseur du tungstène étant le métatungstate d'ammonium. L'imprégnation de la solution s'effectue au goutte à goutte sur l'alumine. Après imprégnation à sec, les billes sont laissées à maturer en atmosphère saturée en eau durant 12h puis séchées une nuit à 120°C et calcinées à 500°C (pente=5°C/min) pendant 2 heures sous air sec (11/h/g de catalyseur). Les caractéristiques du catalyseur C sont fournies dans le tableau 3 ci-dessous. caractéristiques du catalyseur C (conforme). Support SBET du support m2/g Densité surfacique CoO mole/m2 Densité surfacique WO3 mole/m2 Co/(Co+ W) SCM139XL 135 3,88.10-6 6,21.10-6 0,38 Catalyst C based on tungsten is prepared by adding cobalt and tungsten to an alumina support which is in the form of a ball. The two elements are introduced simultaneously by dry impregnation of the support. The cobalt salt used is Co nitrate, the precursor of tungsten being ammonium metatungstate. The solution is impregnated dropwise on the alumina. After dry impregnation, the beads are left to mature in an atmosphere saturated with water for 12 hours then dried overnight at 120 ° C and calcined at 500 ° C (slope = 5 ° C / min) for 2 hours in dry air (11 / h / g of catalyst). The characteristics of catalyst C are given in table 3 below. characteristics of catalyst C (compliant). Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 3.88.10 -6 6.21.10 -6 0.38

Catalyseur D (conforme) : Catalyst D (compliant):

Le catalyseur D à base de tungstène est préparé de la même manière que le catalyseur C, avec une alumine de surface spécifique élevée pour diminuer la densité surfacique de l'oxyde de tungstène. Les caractéristiques du catalyseur D sont fournies dans le tableau 4 ci-dessous. caractéristiques du catalyseur D (conforme). Support SBET du support m2/g Densité surfacique CoO mole/m2 Densité surfacique WO3 mole/m2 Co/(Co+ W) GFSA 273 3,14.10-6 4,66.10-6 0,40 Catalyst D based on tungsten is prepared in the same way as catalyst C, with an alumina with a high specific surface to decrease the surface density of tungsten oxide. The characteristics of catalyst D are given in table 4 below. characteristics of catalyst D (compliant). Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) GSFG 273 3.14.10 -6 4.66.10 -6 0.40

Catalyseur E (non conforme) : Catalyst E (non-compliant):

Le catalyseur E est préparé de même manière que le catalyseur C. La densité surfacique de l'oxyde de tungstène est identique à celle du catalyseur C (conforme), tandis que celle du cobalt est diminuée. Les caractéristiques du catalyseur E sont fournies dans le tableau ci-dessous. caractéristiques du catalyseur E (non conforme). Support SBET du support m2/g Densité surfacique CoO mole/m2 Densité surfacique WO3 mole/m2 Co/(Co+W) SCM139XL 135 6,90.10-7 6,21.10-6 0,10 Catalyst E is prepared in the same way as catalyst C. The surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is reduced. The characteristics of catalyst E are given in the table below. characteristics of catalyst E (non-compliant). Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 6.90.10 -7 6.21.10 -6 0.10

Catalyseur F (conforme) : Catalyst F (compliant):

Le catalyseur F est préparé de même manière que le catalyseur C. La densité surfacique de l'oxyde de tungstène est identique à celle du catalyseur C (conforme), tandis que celle du cobalt est diminuée. Les caractéristiques du catalyseur F sont fournies dans le tableau ci-dessous. caractéristiques du catalyseur F (conforme). Support SBET du support m2/g Densité surfacique CoO mole/m2 Densité surfacique WO3 mole/m2 Co/(Co+W) SCM139XL 135 1,27.10-6 6,21.10-6 0,17 Catalyst F is prepared in the same way as catalyst C. The surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is reduced. The characteristics of catalyst F are given in the table below. characteristics of catalyst F (compliant). Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 1.27.10 -6 6.21.10 -6 0.17

Catalyseur G (conforme) : Catalyst G (compliant):

Le catalyseur G est préparé de même manière que le catalyseur C. La densité surfacique de l'oxyde de tungstène est identique à celle du catalyseur C (conforme), tandis que celle du cobalt est diminuée. Les caractéristiques du catalyseur G sont fournies dans le tableau ci-dessous. caractéristiques du catalyseur G (conforme). Support SBET du support m2/g Densité surfacique CoO mole/m2 Densité surfacique WO3 mole/m2 Co/(Co+W) SCM139XL 135 1,75.10-6 6,21.10-6 0,22 Catalyst G is prepared in the same way as catalyst C. The surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is reduced. The characteristics of catalyst G are given in the table below. characteristics of catalyst G (compliant). Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 1.75.10 -6 6.21.10 -6 0.22

Catalyseur H (conforme) : Catalyst H (compliant):

Le catalyseur H est préparé de même manière que le catalyseur C. La densité surfacique de l'oxyde de tungstène est identique à celle du catalyseur C (conforme), tandis que celle du cobalt est augmentée. Les caractéristiques du catalyseur H sont fournies dans le tableau ci-dessous. caractéristiques du catalyseur H (conforme). Support SBET du support m2/g Densité surfacique CoO mole/m2 Densité surfacique WO3 mole/m2 Co/(Co+W) SCM139XL 135 5,08.10-6 6,21.10-6 0,45 Catalyst H is prepared in the same way as catalyst C. The surface density of tungsten oxide is identical to that of catalyst C (conform), while that of cobalt is increased. The characteristics of catalyst H are given in the table below. characteristics of catalyst H (compliant). Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 5.08.10 -6 6.21.10 -6 0.45

Catalyseur I (non conforme) : Catalyst I (non-compliant):

Le catalyseur I est préparé de même manière que le catalyseur C. La densité surfacique de l'oxyde de tungstène est identique à celle du catalyseur C (conforme), tandis que celle du cobalt est augmentée. Les caractéristiques du catalyseur I sont fournies dans le tableau ci-dessous. caractéristiques du catalyseur 1 (non conforme). Support SBET du support m2/g Densité surfacique CoO mole/m2 Densité surfacique WO3 mole/m2 Co/(Co+ W) SCM139XL 135 7,00.10-6 6,21.10-6 0,53 Catalyst I is prepared in the same way as catalyst C. The surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is increased. The characteristics of catalyst I are provided in the table below. characteristics of catalyst 1 (non-compliant). Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 7.00.10 -6 6.21.10 -6 0.53

Exemple 1 (selon l'invention) Example 1 (according to the invention)

Les performances des catalyseurs CoMo et CoW ont été comparées pour des densités surfaciques voisines en Mo et en W, ainsi que pour des rapports atomiques Co/Co+ (Mo ou W) comparables.
Les catalyseurs A, B, C et D précédemment décrits ont été testés dans la réaction de désulfuration sélective d'une charge modèle type essence de FCC. Le test est effectué en réacteur Grignard (batch) à 200°C sous une pression d'hydrogène de 3,5 MPa maintenue constante. La charge modèle est constituée par 1000 ppm de méthyl-3 thiophène et 10% pds de diméthyl-2,3 butène-2 dans du n-heptane. Le volume de solution est de 210 cc à froid, la masse de catalyseur testée étant de 4 grammes (avant sulfuration). Avant test, le catalyseur est préalablement sulfuré en banc de sulfuration, sous mélange H2S/H2 (4l/h, 15% vol H2S) à 500°C durant deux heures (rampe de 5°C/min) puis réduit sous H2 pur à 200°C durant deux heures. Le catalyseur est ensuite transféré dans le réacteur Grignard à l'abri de l'air.
Les tests sont poursuivis jusqu'à des taux d'HDS (conversion du méthyl-3 thiophène) voisins de 90 %.
The performances of the CoMo and CoW catalysts were compared for surface densities close to Mo and W, as well as for comparable Co / Co + atomic ratios (Mo or W).
The catalysts A, B, C and D previously described were tested in the reaction for the selective desulfurization of a model charge of the gasoline type of FCC. The test is carried out in a Grignard reactor (batch) at 200 ° C. under a hydrogen pressure of 3.5 MPa kept constant. The model charge is constituted by 1000 ppm of 3-methyl-thiophene and 10% by weight of 2,3-dimethyl-2-butene in n-heptane. The volume of solution is 210 cc when cold, the mass of catalyst tested being 4 grams (before sulfurization). Before testing, the catalyst is sulphurized beforehand in a sulphurization bench, under H 2 S / H 2 mixture (4l / h, 15% vol H 2 S) at 500 ° C for two hours (ramp of 5 ° C / min) then reduced under pure H 2 at 200 ° C for two hours. The catalyst is then transferred to the Grignard reactor, sheltered from air.
The tests are continued up to HDS (conversion of 3-methylthiophene) levels close to 90%.

La constante de vitesse (normalisée par g de catalyseur) est calculée en considérant un ordre 1 pour la réaction de désulfuration (kHDS), et un ordre 0 pour la réaction d'hydrogénation (kHDO). On définit la sélectivité d'un catalyseur par le rapport de ses constantes de vitesse, kHDS/kHDO. Les constantes de vitesses relatives par rapport au catalyseur A des catalyseurs A, B, C et D ainsi que leur sélectivité sont reportées dans le tableau 9 ci-dessous. De manière surprenante, les catalyseurs à base de tungstène sont plus sélectifs, à iso densité de surface, que les catalyseurs à base de molybdène. propriétés catalytiques des catalyseurs A, B, C et D. Catalyseur k HDS k HDO k HDS / k HDO Co/Co+ (W ou Mo) Densité surfacique MoO3 ou WO3 mole/m2 A (Mo) 1,00 1,62 0,62 0,36 6,40.10-6 B (Mo) 1,26 2,29 0,55 0,40 4,60.10-6 C (W) 0,75 1,05 0,71 0,38 6,21.10-6 D (W) 1,07 1,67 0,64 0,40 4,66.10-6 The rate constant (normalized per g of catalyst) is calculated by considering an order 1 for the desulfurization reaction (k HDS ), and a order 0 for the hydrogenation reaction (k HDO ). The selectivity of a catalyst is defined by the ratio of its rate constants, k HDS / k HDO . The rate constants relative to catalyst A of catalysts A, B, C and D as well as their selectivity are reported in Table 9 below. Surprisingly, tungsten catalysts are more selective, with iso-surface density, than molybdenum catalysts. catalytic properties of catalysts A, B, C and D. Catalyst k HDS k HDO k HDS / k HDO Co / Co + (W or Mo) Surface density MoO 3 or WO 3 mole / m 2 A (MB) 1.00 1.62 0.62 0.36 6.40.10 -6 B (MB) 1.26 2.29 0.55 0.40 4.60.10 -6 C (W) 0.75 1.05 0.71 0.38 6.21.10 -6 D (W) 1.07 1.67 0.64 0.40 4.66.10 -6

Exemple 2 (selon l'invention) : Example 2 (according to the invention):

Les catalyseurs C, E, F, G, H, I sont testés sur charge modèle, suivant le même protocole que décrit dans l'exemple 1. Les constantes de vitesse relatives des catalyseurs ainsi que leur sélectivité sont reportées dans le tableau 10 ci-dessous. propriétés catalytiques des catalyseurs C, E, F, G, H, I. Catalyseur k HDS k HDO k HDS / k HDO Co/(Co+W) Densité surfacique WO3 mole/m2 C 0,75 1,05 0,71 0,38 6,21.10-6 E 0,39 0,80 0,49 0,10 6,21.10-6 F 0,53 0,88 0,60 0,17 6,21.10-6 G 0,60 0,91 0,66 0,22 6,21.10-6 H 0,65 0,95 0,68 0,45 6,21.10-6 I 0,50 0,93 0,54 0,53 6,21.10-6 Catalysts C, E, F, G, H, I are tested on model charge, according to the same protocol as described in Example 1. The relative rate constants of the catalysts as well as their selectivity are reported in Table 10 below. below. catalytic properties of catalysts C, E, F, G, H, I. Catalyst k HDS k HDO k HDS / k HDO Co / (Co + W) Areal density WO 3 mole / m 2 VS 0.75 1.05 0.71 0.38 6.21.10 -6 E 0.39 0.80 0.49 0.10 6.21.10 -6 F 0.53 0.88 0.60 0.17 6.21.10 -6 G 0.60 0.91 0.66 0.22 6.21.10 -6 H 0.65 0.95 0.68 0.45 6.21.10 -6 I 0.50 0.93 0.54 0.53 6.21.10 -6

Le catalyseur E voit sa sélectivité fortement diminuer pour un rapport Co/(Co+W) de 0,10. De la même manière, le catalyseur l présentant un rapport Co/(Co+W) trop élevé (0,53) voit sa sélectivité diminuer.Catalyst E sees its selectivity greatly decrease for a Co / (Co + W) ratio of 0.10. Likewise, the catalyst l having a too high Co / (Co + W) ratio (0.53) sees its selectivity decrease.

Claims (10)

Procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un support, au moins un élément du groupe VIII et du tungstène, dans lequel le rapport atomique (élément du groupe VIII) / (élément du groupe VIII + tungstène) est supérieur à 0,15 et inférieur à 0,50.Hydrodesulfurization process for gasoline cuts in the presence of a catalyst comprising at least one support, at least one element of group VIII and tungsten, in which the atomic ratio (element of group VIII) / (element of group VIII + tungsten) is greater than 0.15 and less than 0.50. Procédé d'hydrodésulfuration selon la revendication 1 dans lequel le rapport atomique (élément du groupe VIII) / (élément du groupe VIII + tungstène) est supérieur à 0,20 et inférieur ou égal à 0,45.Hydrodesulfurization process according to claim 1 wherein the ratio atomic (group VIII element) / (group VIII element + tungsten) is greater than 0.20 and less than or equal to 0.45. Procédé d'hydrodésulfuration selon l'une des revendications 1 ou 2 dans lequel la teneur en éléments du groupe VIII du catalyseur est comprise entre 1 et 10% poids d'oxydes d'éléments du groupe VIII et la teneur en tungstène est comprise entre 1,5 % poids et 60 % poids d'oxyde de tungstène.Hydrodesulfurization process according to either of Claims 1 and 2, in which the content of elements of group VIII of the catalyst is between 1 and 10% by weight of group VIII element oxides and the tungsten content is between 1.5% by weight and 60% by weight of tungsten oxide. Procédé selon l'une des revendications 1 à 3 dans lequel le catalyseur comprend au moins un élément du groupe VIII choisi parmi le nickel et le cobalt.Method according to one of claims 1 to 3 wherein the catalyst comprises at least one element of group VIII chosen from nickel and cobalt. Procédé selon l'une des revendications 1 à 4 dans lequel le support du catalyseur est un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l'alumine ou la silice alumine.Process according to one of Claims 1 to 4, in which the support for the catalyst is a porous solid chosen from the group consisting of: aluminas, silica, alumina silicas or titanium or magnesium oxides used alone or in mixture with alumina or silica alumina. Procédé selon l'une des revendications 1 à 5 dans lequel le support du catalyseur comprend au moins 90% poids d'alumine de transition.Process according to one of Claims 1 to 5, in which the support for the catalyst comprises at least 90% by weight of transition alumina. Procédé selon l'une des revendications 1 à 6 dans lequel la charge à hydrodésulfurer est une coupe essence contenant du soufre issue d'une unité de cokéfaction, de viscoréduction, de vapocraquage, ou de craquage catalytique.Method according to one of claims 1 to 6 wherein the charge to hydrodesulfurizer is a gasoline cut containing sulfur resulting from a unit of coking, visbreaking, steam cracking, or catalytic cracking. Procédé selon l'une des revendications 1 à 7 dans lequel la charge à hydrodésulfurer est une coupe essence issue d'une unité de craquage catalytique dont la gamme de points d'ébullition s'étend typiquement des points d'ébullition des hydrocarbures à 5 atomes de carbone jusqu'à environ 250°C.Method according to one of claims 1 to 7 wherein the charge to hydrodesulfurizer is a petrol cut from a catalytic cracking unit whose range of boiling points typically extends from the boiling points of hydrocarbons with 5 carbon atoms up to around 250 ° C. Procédé selon la revendication 8 dans lequel les conditions opératoires d'hydrodésulfuration sont une température comprise entre environ 200 et environ 400°C, une pression totale comprise entre 1 MPa et 3 MPa, et un ratio : volume d'hydrogène par volume de charge hydrocarbonée, compris entre environ 100 et environ 600 litres par litre.The method of claim 8 wherein the operating conditions hydrodesulfurization are a temperature between about 200 and about 400 ° C, a total pressure between 1 MPa and 3 MPa, and a ratio: volume of hydrogen per volume of hydrocarbon feedstock, between approximately 100 and about 600 liters per liter. Procédé selon l'une des revendications 7 à 9 dans lequel la charge à hydrodésulfurer est une coupe essence fortement oléfinique et la surface spécifique du catalyseur n'excède pas 300 m2/g.Process according to one of Claims 7 to 9, in which the feedstock to be hydrodesulfurized is a highly olefinic petroleum cut and the specific surface of the catalyst does not exceed 300 m 2 / g.
EP03291116.6A 2002-06-03 2003-05-14 Hydrodesulfurization of sulphur and olefins containing fractions with a supported catalyst containing an element of group VIII and tungsten. Expired - Fee Related EP1369467B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0206816 2002-06-03
FR0206816A FR2840316B1 (en) 2002-06-03 2002-06-03 PROCESS FOR HYDRODESULFURING CUTS CONTAINING SULFUR COMPOUNDS AND OLEFINS IN THE PRESENCE OF A CATALYST COMPRISING A GROUP VIII ELEMENT AND TUNGSTEN

Publications (2)

Publication Number Publication Date
EP1369467A1 true EP1369467A1 (en) 2003-12-10
EP1369467B1 EP1369467B1 (en) 2016-03-09

Family

ID=29433308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03291116.6A Expired - Fee Related EP1369467B1 (en) 2002-06-03 2003-05-14 Hydrodesulfurization of sulphur and olefins containing fractions with a supported catalyst containing an element of group VIII and tungsten.

Country Status (5)

Country Link
US (1) US7223333B2 (en)
EP (1) EP1369467B1 (en)
JP (1) JP2004010893A (en)
CN (2) CN102358845A (en)
FR (1) FR2840316B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070053727A (en) * 2004-08-02 2007-05-25 쉘 인터내셔날 리써취 마트샤피지 비.브이. Process for removing mercaptans from a gas stream comprising natural gas or an inert gas
FR2895414B1 (en) * 2005-12-22 2011-07-29 Inst Francais Du Petrole SELECTIVE HYDROGENATION PROCESS USING A CATALYST HAVING CONTROLLED POROSITY
FR2895415B1 (en) * 2005-12-22 2011-07-15 Inst Francais Du Petrole SELECTIVE HYDROGENATION PROCESS USING A CATALYST HAVING A SPECIFIC SUPPORT
FR2895416B1 (en) * 2005-12-22 2011-08-26 Inst Francais Du Petrole SELECTIVE HYDROGENATION PROCESS USING A SULFIDE CATALYST
FR2904242B1 (en) * 2006-07-28 2012-09-28 Inst Francais Du Petrole PROCESS FOR HYDRODESULFURING CUTS CONTAINING SULFUR COMPOUNDS AND OLEFINS IN THE PRESENCE OF A SUPPORTED CATALYST COMPRISING ELEMENTS OF GROUPS VIII AND VIB
US20100247552A1 (en) 2006-11-10 2010-09-30 Massachusetts Institute Of Technology Pak modulators
FR2969646B1 (en) 2010-12-22 2012-12-28 IFP Energies Nouvelles METHOD OF HYDRODESULFURIZING ESSENTIAL CUTS USING A CATALYST BASED ON HETEROPOLYANIONS TRAPPED IN A SILICIC MESOSTRUCTURE MEDIUM
CN103146429B (en) 2011-12-06 2015-08-19 中国石油天然气股份有限公司 A kind of method of liquefied gas hydrotreatment
US8764854B1 (en) * 2012-03-20 2014-07-01 GM Global Technology Operations LLC Reference fuel composition
FR2998488B1 (en) 2012-11-29 2015-02-06 Ifp Energies Now HYDROTREATMENT CATALYST FROM ALUMIN GEL AND METHOD OF PREPARING SUCH A CATALYST
FR3049955B1 (en) 2016-04-08 2018-04-06 IFP Energies Nouvelles PROCESS FOR TREATING A GASOLINE
FR3057578B1 (en) 2016-10-19 2018-11-16 IFP Energies Nouvelles PROCESS FOR HYDRODESULFURING OLEFINIC ESSENCE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113603A (en) * 1977-10-19 1978-09-12 The Lummus Company Two-stage hydrotreating of pyrolysis gasoline to remove mercaptan sulfur and dienes
US4334982A (en) * 1979-05-21 1982-06-15 Institut Francais Du Petrole Process for the selective desulfurization of olefinic cuts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126814A (en) * 1996-02-02 2000-10-03 Exxon Research And Engineering Co Selective hydrodesulfurization process (HEN-9601)
US5807477A (en) * 1996-09-23 1998-09-15 Catalytic Distillation Technologies Process for the treatment of light naphtha hydrocarbon streams

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113603A (en) * 1977-10-19 1978-09-12 The Lummus Company Two-stage hydrotreating of pyrolysis gasoline to remove mercaptan sulfur and dienes
US4334982A (en) * 1979-05-21 1982-06-15 Institut Francais Du Petrole Process for the selective desulfurization of olefinic cuts

Also Published As

Publication number Publication date
US20040007504A1 (en) 2004-01-15
CN102358845A (en) 2012-02-22
US7223333B2 (en) 2007-05-29
JP2004010893A (en) 2004-01-15
EP1369467B1 (en) 2016-03-09
CN1467263A (en) 2004-01-14
FR2840316A1 (en) 2003-12-05
FR2840316B1 (en) 2005-08-26

Similar Documents

Publication Publication Date Title
EP1892039B1 (en) Method of hydrodesulfuration of cuts containing sulphur compounds and olefins in the presence of a supported catalyst comprising elements from groups VIII and VIB
EP1612255B1 (en) Hydrodesulfurization process for naphtha fractions using a catalyst with controled porosity.
EP1923452B1 (en) Method of deep sulphur removal from cracked petrol with minimum loss of octane number
EP2169032B1 (en) Catalyst capable of at least partially decomposing or hydrogenating unsaturated sulfur compounds
EP3428248B1 (en) Partially coked catalysts for use in the hydrotreatment of cuts containing sulphurous compounds and olefins
EP1746144B1 (en) New process for olefinic gasoline desulfurisation which limits mercaptan content
FR2895416A1 (en) SELECTIVE HYDROGENATION PROCESS USING A SULPHIDE CATALYST
EP2161076A1 (en) Selective hydrogenation method using a sulphurated catalyst with a specific composition
EP2644683B1 (en) Method for selective hydrogenation of a gasoline
CA2299152C (en) Process for the production of low-sulfur fuels
EP1849850A1 (en) Method of desulphurating olefin gasolines comprising at least two distinct hydrodesulphuration steps
EP1369466B1 (en) Hydrodesulfurization of sulphur and olefins containing fractions with a metals of groups VIII and VIB containing supported catalyst.
EP1369467B1 (en) Hydrodesulfurization of sulphur and olefins containing fractions with a supported catalyst containing an element of group VIII and tungsten.
EP2816094A1 (en) Method for producing gasoline with low sulphur and mercaptan content
WO2016096364A1 (en) Process for sweetening an olefinic gasoline of sulphide type compounds
WO2014068209A1 (en) Process for producing a petrol with low sulphur content
EP2886629B1 (en) Process for the hydrodesulfuration of hydrocarbon fractions
WO2006114510A1 (en) Method for desulfurising olefin motor gasoline
EP1508370B1 (en) Use of a silicon-carbide beta supported catalyst in a selective hydrodesulfurisation process
EP3283601B1 (en) Method for sweetening an olefinic petrol of sulphide-type compounds
FR2994864A1 (en) PROCESS FOR SULFURING A HYDRODESULFURATION CATALYST

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040611

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 20071214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151014

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60348621

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160509

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160531

Year of fee payment: 14

Ref country code: GB

Payment date: 20160512

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60348621

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170519

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60348621

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531