EP1358524A1 - Power supply device for a component testing installation - Google Patents

Power supply device for a component testing installation

Info

Publication number
EP1358524A1
EP1358524A1 EP02716224A EP02716224A EP1358524A1 EP 1358524 A1 EP1358524 A1 EP 1358524A1 EP 02716224 A EP02716224 A EP 02716224A EP 02716224 A EP02716224 A EP 02716224A EP 1358524 A1 EP1358524 A1 EP 1358524A1
Authority
EP
European Patent Office
Prior art keywords
source
current
hfla
pwm
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02716224A
Other languages
German (de)
French (fr)
Inventor
Jean-Pascal Mallet
Bernard Plantier
Damien Lamarche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axalto SA
Original Assignee
Schlumberger Systemes SA
Schlumberger Malco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Systemes SA, Schlumberger Malco Inc filed Critical Schlumberger Systemes SA
Publication of EP1358524A1 publication Critical patent/EP1358524A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage

Definitions

  • the invention relates to the field of non-destructive testing of electronic components. It relates more particularly to the field of installations for testing such components.
  • the present invention improves the situation.
  • the device offers an electrical supply device for an installation for testing electronic components.
  • the device comprises first and second power sources, as well as a control module "coupled from the two sources.
  • the first and second sources respectively comprise s - a high frequency amplification module capable of delivering a first intensity during a first time interval
  • a low frequency amplification module capable of outputting a second intensity during a second time interval longer than the first interval; the control module, to quickly reach and maintain an intensity of the order of said first intensity, first activating the first source, then the second source.
  • control module comprises a measuring member capable of measuring an electrical parameter at the output of the first source, to activate the second source as a function of the value of said measured parameter.
  • the current supplied by the second source is intended to replace the current supplied by the first source.
  • controller is arranged to activate both sources at the same time ? at least for a selected transient period, while maintaining a substantially stable delivered current intensity-
  • the first source comprises a high frequency linear amplifier and the second source comprises a switching power supply or PWM so that the first source has a steeper supply current rising edge than the supply current rising edge from the second source, allowing the device according to the invention to deliver about 200 amps in less than 500 nanoseconds, preferably 200 nanoseconds.
  • the device also comprises a third source capable of delivering a current, preferably between measurement, significantly lower than the current delivered by the second source.
  • FIG. 3 represents the temporal variations in the intensities of the currents which the elements of the device of FIG. 2 respectively deliver, as well as the temporal variation of the voltage applied to the components to be tested (DUT Voltage);
  • FIG. 5 shows in detail the circuits provided for the device in this preferred embodiment.
  • a test facility In the field of tests, in production or in characterization, in particular of mixed CMOS components (analog / digital) with very large integration scale, and more particularly the components operating with high currents such as microcontrollers or microprocessors, a test facility ( Figure 1) generally includes.
  • a computer or any other workstation platform which is the PC workstation allowing an operator to prepare, by means of appropriate software (such as the software developed by the Applicant and marketed under the brand ASAP) , test sequences that it intends to perform on electronic components, for example at the end of a production line, in order to verify their proper functioning;
  • appropriate software such as the software developed by the Applicant and marketed under the brand ASAP
  • an electronic bay BA connected to the computer by a central unit (not shown) and capable of generating the test sequence prepared by the operator and of comparing the responses obtained with the responses provided in advance within the framework of correct operation of the components;
  • the BA electronic bay includes an ALIM supply sub-assembly, consisting of as many supply circuits as necessary to supply the components under test.
  • Each supply circuit is intended to supply the electronic components COMP with a supply current in a given range under a nominal bias voltage, + 3 volts for example.
  • microelectronics components such as microprocessors or microcontrollers are more and more efficient.
  • they are supposed to consume high electrical intensities (of the order of a hundred amps), adding, if necessary, to an established current (which can also be equal to a hundred amps ), and this, by abrupt variations.
  • intensity variations are rapid, typically of the order of a few nanoseconds.
  • the supply voltage of the component to be tested must be controlled and properly regulated for the tests to be effective, even if the variations in current intensity are rapid and significant.
  • This control is advantageously carried out by controlling the voltage measured directly at the terminals of the component.
  • linear amplifiers are generally used, which are sometimes of the high frequency (HFLA) type. These linear amplifiers make it possible to regulate the voltage by supplying a current in a time interval of the order of a microsecond.
  • HFLA high frequency
  • the yield of this type of feed is relatively low (around 50%).
  • the desired current intensities are too large (a few tens to a hundred amps), such currents can only be delivered for limited periods (for only a few tens of microseconds).
  • this supply device including the connection system to the component to be tested, should preferably include a minimum number of resistors and inductors, capable of limiting the dynamic performance of the device.
  • the supply device is advantageously arranged as close as possible (in terms of distance) to the component to be tested.
  • a power device capable of delivering about 200 amps is sought, for a supply voltage of 0.4 to 3 volts, with a maximum response speed in the range of tens of nanoseconds.
  • FIG. 2 to describe a supply device according to the invention.
  • the device comprises a first current source il, consisting of a high frequency linear amplifier HFLA, as well as a second current source i2, low frequency BF.
  • the low frequency power supply LF of the device preferably comprises two blocks PWM and LCM which can be selected one or the other to supply the component COMP.
  • the PWM source is capable of delivering relatively high intensities in a few microseconds.
  • the LCM source includes a linear amplifier and delivers low currents. Preferably, these low currents correspond to measurement currents typically less than 5 amperes which make it possible to obtain high precision due to a range of small extent.
  • a supply voltage V is applied to the HFLA block, which reacts quickly by delivering a current il in a few hundred nanoseconds, typically 200 nanoseconds.
  • a sensor C1 (FIG. 4) measures the current there that the HFLA block delivers. This sensor is connected to a COM control module ( Figure 4) in supply voltage ⁇ from the LF block.
  • the LF block is actuated and delivers the intensity i2 which is added first to the intensity il, the sum of these two intensities then supplying the COMP component to be tested.
  • the LF block supplies only the component to be tested COMP, without the current there.
  • FIG. 2 also shows an accumulator circuit (or capacity C), normally supplied and charged by the supply device formed from the two sources HFLA and BF.
  • the accumulator circuit When a variation in current intensity occurs at the COMP component, the accumulator circuit is discharged and thus supplies the COMP component with current i c .
  • the COMP component can be supplied, at the same time, by the capacitance C, by the first HFLA source and by the second LF source.
  • the accumulator circuit is shown diagrammatically in the form of a capacitor C, but reference may be made to FIG. 5 to find a detailed embodiment of this circuit C.
  • the LCM block can be selected from the switch SW (in the example shown diagrammatically in FIG. 2).
  • the PWM block is selected using the switch SW.
  • the switching between the PWM block and the LCM block is controlled from a measurement of the current il at the output of the high frequency block HFLA. If the value of it measured is less than 5 amperes, it is the LCM block which is activated and the intensity i2 delivered is in a range which corresponds to this value. On the other hand, if the measured value of il is greater than 5 A, the PWM block is activated to supply an intensity i2 greater than 5A.
  • the current il that the HFLA high frequency block delivers goes from 0 to more than 100 amperes (in 200 nanoseconds in the example shown).
  • the current there. that the HFLA block outputs drops in a few microseconds and the PWM block, during this time, outputs the intensity i2.
  • the rise front of the current i2 is much less steep than the rise of the current il.
  • the capacitor C discharges and delivers the current i c .
  • the voltage actually applied and measured on the component to be tested stabilizes in a few microseconds (variation shown in the graph entitled "Dut Voltage” in Figure 3).
  • the control of the currents il, i2 which the current sources debit thus makes it possible to maintain a voltage at the COMP component terminals whose stability meets the required conditions.
  • the few pseudo-oscillations after the voltage peak are mainly due to the parasitic inductances and capacitances of the circuit.
  • FIG. 4 to describe in more detail a preferred embodiment of the supply device according to the invention.
  • the loop supply voltage regulation is carried out by detecting the voltage on the component to be tested and comparing it with the programmed supply voltage which is desired.
  • the result of this Verr comparison is applied to the HFLA block.
  • This block includes a broadband linear amplifier, with a structure called "PUSH / PULL" which allows a very fast response.
  • the HFLA linear amplifier is controlled as a function of the voltage Verr error signal.
  • the output current of the HFLA block is measured by the sensor C1 and then preferably applied to a low-pass amplifier to be compared with a 0 amp reference value.
  • the result of this comparison is sent to the PWM module, which supplies the current i2 in place of the current il.
  • the PWM block comprises an MPBS converter (for "multi-phase buck switcher") which is regulated in so-called “medium current” mode.
  • MPBS converter for "multi-phase buck switcher”
  • the MPBS block is regulated using two loops s
  • the other loop consists in measuring the output current of the HFLA block and thus controls the output current of the PWM block by controlling, if necessary, the cancellation of the current at the output of the HFLA block.
  • the PWM block delivers the corresponding average current i2, in place of the HFLA block which delivered the current il. Thus, after a few hundred nanoseconds of activation of the HFLA block, the PWM block takes precedence over the HFLA high frequency block.
  • the LCM block includes a linear amplifier arranged to deliver a current up to 5 amps. This LCM amplifier makes it possible to carry out low current measurements in a broadband response and can therefore be used as a low current generator to carry out tests making it possible to check the continuity of the connections up to the component to be tested.
  • the LCM block delivers a current whose intensity value can be saturated at 5 amps.
  • a HYS hysteresis detector is connected, on the one hand, to the LCM block and, on the other hand, to the control block of the PWM block.
  • the PWM block is activated.
  • this intensity value is less than 5 amperes (and therefore unsaturated)
  • the PWM block is inhibited.
  • voltage regulation by controlling the current delivered, is preferably carried out as follows.
  • the high frequency linear amplifier delivers a supply current for a few tens of microseconds then this current drops. Then, the PWM amplifier makes it possible to deliver the same average supply current of the component to be tested, using, if necessary, a discharge current of the capacitance C connected to the component COMP and which discharges.
  • the embodiment of the invention is not limited to the structure of the circuits shown in FIGS. 4 and 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

The invention relates to installations for testing components, particularly electronic chips having a permanently-increasing performance, especially in terms of current supported over long periods. In order to perform said tests correctly, the invention provides for a device that can deliver currents of up to and of the order of 200A in a few microseconds. For this purpose, the device comprises a time-dependent power chopper (PWM) linked to a high-frequency linear amplifier (HFLA).

Description

Dispositif df alimentation électrique pour une installation de tests de composants F device power supply for installation of component tests
L * invention concerne le domaine des tests non destructifs de composants électroniques» Elle concerne plus particulièrement le domaine des installations pour tester de tels composants.The invention relates to the field of non-destructive testing of electronic components. It relates more particularly to the field of installations for testing such components.
Les performances des puces électroniques , notamment des microprocesseurs, augmentent en permanence. Actuellemen , les intensités électriques que sont censés supporter ces composants dépassent des seuils sans cesse croissants , et pendant des durées de plus en plus longues.The performance of electronic chips, especially microprocessors, is constantly increasing. Currently, the electrical currents that these components are supposed to withstand exceed ever-increasing thresholds, and for longer and longer durations.
Pour effectuer correctement les tests sur de tels composants, on recherche des dispositifs d'alimentation électrique, notamment en courant, qui permettraient d'atteindre rapidement de telles intensités et pendant des durées suffisamment longues.To correctly carry out the tests on such components, electrical power devices, in particular current, are sought which would allow such intensities to be reached quickly and for sufficiently long periods of time.
La présente invention vient améliorer la situation.The present invention improves the situation.
Elle propose à cet effet un dispositif d'alimentation électrique pour une installation de tests de composants électroniques- Le dispositif comprend une première et une seconde source d'alimentation, ainsi qu'un module de commande" couplée des deux sources-To this end, it offers an electrical supply device for an installation for testing electronic components. The device comprises first and second power sources, as well as a control module "coupled from the two sources.
Selon une caractéristique générale de l'invention, la première et la seconde source comprennent respectivement s - un module d'amplification haute fréquence capable de débiter une première intensité pendant un premier intervalle de temps , etAccording to a general characteristic of the invention, the first and second sources respectively comprise s - a high frequency amplification module capable of delivering a first intensity during a first time interval, and
- un module d'amplification basse fréquence capable de débiter une seconde intensité pendant un second intervalle de temps plus long que le premier intervalle ; le module de commande, pour atteindre rapidement et maintenir une intensité de l'ordre de ladite première intensité , activant d'abord la première source , puis la seconde source.- a low frequency amplification module capable of outputting a second intensity during a second time interval longer than the first interval; the control module, to quickly reach and maintain an intensity of the order of said first intensity, first activating the first source, then the second source.
Avantageusement, le module de commande comprend un organe de mesure apte à mesurer un paramètre électrique en sortie de la première source, pour activer la seconde source en fonction de la valeur dudit paramètre mesurée. Préférentiellementy le courant débité par la seconde source est destiné à remplacer le courant débité par la première source. En complément ou en variante ? 1 ' organe de commande est agencé pour activer les deux sources à la fois? au moins pendant une durée transitoire choisie, tout en maintenant une intensité de courant délivré sensiblement stable-Advantageously, the control module comprises a measuring member capable of measuring an electrical parameter at the output of the first source, to activate the second source as a function of the value of said measured parameter. Preferably, the current supplied by the second source is intended to replace the current supplied by the first source. In addition or as a variant ? 1 the controller is arranged to activate both sources at the same time ? at least for a selected transient period, while maintaining a substantially stable delivered current intensity-
Préférentiellemen y la première source comprend un amplificateur linéaire haute fréquence et la seconde source comprend une alimentation à découpage ou PWM de sorte que la première source présente un front de montée en courant d'alimentation plus raide que le front de montée en courant d'alimentation de la seconde source, permettant au dispositif selon l'invention de délivrer environ 200 ampères en moins de 500 nanosecondes, de préférence 200 nanosecondes.Preferably, the first source comprises a high frequency linear amplifier and the second source comprises a switching power supply or PWM so that the first source has a steeper supply current rising edge than the supply current rising edge from the second source, allowing the device according to the invention to deliver about 200 amps in less than 500 nanoseconds, preferably 200 nanoseconds.
Avantageusement,, le dispositif comprend en outre une troisième source propre à délivrer un courant, préférentielle ent de mesure, sensiblement plus faible que le courant que délivre la seconde source.Advantageously, the device also comprises a third source capable of delivering a current, preferably between measurement, significantly lower than the current delivered by the second source.
D ' autres avantages et caractéristiques de l' invention apparaîtront à la lecture de la description détaillée ci-après et à l' examen des dessins sur lesquels :Other advantages and characteristics of the invention will appear on reading the detailed description below and on examining the drawings in which:
- la figure 1 représente une installation de test de composants électroniques COMP ;- Figure 1 shows an installation for testing electronic components COMP;
- la figure 2 représente très schématiquement un dispositif d'alimentation électrique de cette installation ;- Figure 2 very schematically shows an electrical supply device of this installation;
- la figure 3 représente les variations temporelles des intensités des courants que délivrent respectivement les éléments du dispositif de la figure 2 , ainsi que la variation temporelle de la tension appliquée aux composants à tester (DUT Voltage) ;FIG. 3 represents the temporal variations in the intensities of the currents which the elements of the device of FIG. 2 respectively deliver, as well as the temporal variation of the voltage applied to the components to be tested (DUT Voltage);
- la figure 4 représente de façon plus détaillée le dispositif dans une forme de réalisation préférée de l'invention p et- Figure 4 shows in more detail the device in a preferred embodiment of the invention p and
- la figure 5 représente de façon détaillée les circuits prévus pour le dispositif dans cette forme de réalisation préférée.- Figure 5 shows in detail the circuits provided for the device in this preferred embodiment.
La description détaillée ci-après et les dessins annexés contiennent pour l'essentiel des éléments de caractère certain. Ils pourront non seulement servir à mieux comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant. Dans ce qui suit, la présente invention est décrite dans le cadre d'une installation pour tester des composants. Cependant, d'autres applications peuvent être envisagées, notamment des dispositifs d'alimentation pour tests d'endurance, contrôles d'entrées, appareillage de laboratoire, etc.The detailed description below and the attached drawings essentially contain elements of a certain nature. They can not only serve to better understand the present invention, but also contribute to its definition, if necessary. In the following, the present invention is described in the context of an installation for testing components. However, other applications can be envisaged, in particular supply devices for endurance tests, input controls, laboratory equipment, etc.
Dans le domaine des tests, en production ou en caractérisa- tion, notamment de composants CMOS mixtes (analogiques/ numériques) à très grande échelle d'intégration, et plus spécialement les composants fonctionnant avec des courants élevés tels que des microcontrôleurs ou des microprocesseurs, une installation de tests (figure 1) comprend généralement .In the field of tests, in production or in characterization, in particular of mixed CMOS components (analog / digital) with very large integration scale, and more particularly the components operating with high currents such as microcontrollers or microprocessors, a test facility (Figure 1) generally includes.
- un ordinateur ou tout autre plate-forme de station de travail qui est le poste de travail PC permettant à un opérateur de préparer, au moyen d'un logiciel approprié (tel que le logiciel développé par la Demanderesse et commercialisé sous la marque ASAP), des séquences de tests qu'il entend effectuer sur les composants électroniques, par exemple en sortie d'une chaîne de fabrication, afin d'en vérifier le bon fonctionnement ;a computer or any other workstation platform which is the PC workstation allowing an operator to prepare, by means of appropriate software (such as the software developed by the Applicant and marketed under the brand ASAP) , test sequences that it intends to perform on electronic components, for example at the end of a production line, in order to verify their proper functioning;
- une baie électronique BA, reliée à l'ordinateur par une unité centrale (non représentée) et capable de générer la séquence de tests préparée par l'opérateur et à comparer les réponses obtenues aux réponses prévues à l'avance dans le cadre d'un fonctionnement conforme des composants ; et- an electronic bay BA, connected to the computer by a central unit (not shown) and capable of generating the test sequence prepared by the operator and of comparing the responses obtained with the responses provided in advance within the framework of correct operation of the components; and
- une tête de mesure T dans laquelle sont disposés les composants électroniques COMP à tester. Par ailleurs, la baie électronique BA comprend un sous- ensemble d'alimentation ALIM, constitué d'autant de circuits d'alimentation qu'il est nécessaire pour alimenter les composants sous test. Chaque circuit d'alimentation est destiné à fournir aux composants électroniques COMP un courant d'alimentation dans une gamme donnée sous une tension nominale de polarisation, + 3 volts par exemple.- a measurement head T in which the electronic components COMP to be tested are placed. In addition, the BA electronic bay includes an ALIM supply sub-assembly, consisting of as many supply circuits as necessary to supply the components under test. Each supply circuit is intended to supply the electronic components COMP with a supply current in a given range under a nominal bias voltage, + 3 volts for example.
Plus précisément, les composants à tester ici sont alimentés en tension, mais il est plus avantageux de contrôler leur courant "d'alimentation". C'est pourquoi l'on décrit ci-après des "sources d'alimentation" en courant.More precisely, the components to be tested here are supplied with voltage, but it is more advantageous to control their "supply" current. This is why the following describes "current supply sources".
Selon le type de composants à tester, il convient de prévoir des circuits d'alimentation électrique dans le bloc ALIM capables de débiter des courants électriques adéquats.Depending on the type of components to be tested, it is necessary to provide electrical supply circuits in the ALIM block capable of delivering adequate electrical currents.
Avec les développements technologiques récents de la microélectronique, les composants tels que des microprocesseurs ou microcontrôleurs sont de plus en plus performants. En particulier, ils sont censés consommer des intensités électriques élevées (de l'ordre d'une centaine d'ampères), s 'ajoutant, le cas échéant, à un courant établi (qui peut être lui aussi égal à une centaine d'ampères), et ce, par varia- tions brusques. En effet, ces variations d'intensité sont rapides, typiquement de l'ordre de quelques nanosecondes.With recent technological developments in microelectronics, components such as microprocessors or microcontrollers are more and more efficient. In particular, they are supposed to consume high electrical intensities (of the order of a hundred amps), adding, if necessary, to an established current (which can also be equal to a hundred amps ), and this, by abrupt variations. Indeed, these intensity variations are rapid, typically of the order of a few nanoseconds.
Les alimentations de la technique antérieure n'ont jamais eu à fournir des intensités aussi élevées en si peu de temps. Pour des microprocesseurs dont la fréquence de travail est maintenant dans la gamme des GHz, il faut prévoir des alimentations dans des installations de tests qui soient capables de délivrer de telles intensités en des temps aussiPrior art power supplies have never had to provide such high intensities in such a short time. For microprocessors whose working frequency is now in the GHz range, it is necessary to provide power supplies in test facilities which are capable of delivering such intensities in times too
Plus précisément, la tension d'alimentation du composant à tester doit être contrôlée et correctement régulée pour que les tests soient efficaces, même si les variations d'intensité en courant sont rapides et importantes . Ce contrôle s ' effectue avantageusement par le biais du contrôle de la tension mesurée directement aux bornes du composant.More specifically, the supply voltage of the component to be tested must be controlled and properly regulated for the tests to be effective, even if the variations in current intensity are rapid and significant. This control is advantageously carried out by controlling the voltage measured directly at the terminals of the component.
Dans les circuits de tests de la technique antérieure, on utilise généralement des amplificateurs linéaires, lesquels sont parfois de type haute fréquence (HFLA). Ces amplificateurs linéaires permettent de réguler la tension en fournis- sant un courant dans un intervalle de temps de l'ordre de la microseconde. Cependant, le rendement de ce type d'alimentation est relativement faible (environ 50 %). Par ailleurs, si les intensités de courant souhaitées sont trop importantes (quelques dizaines à une centaine d'ampères), de tels courants ne peuvent être débités que pendant des durées restreintes (pendant quelques dizaines de microsecondes seulement).In the test circuits of the prior art, linear amplifiers are generally used, which are sometimes of the high frequency (HFLA) type. These linear amplifiers make it possible to regulate the voltage by supplying a current in a time interval of the order of a microsecond. However, the yield of this type of feed is relatively low (around 50%). Furthermore, if the desired current intensities are too large (a few tens to a hundred amps), such currents can only be delivered for limited periods (for only a few tens of microseconds).
D ' autres sources d" alimentation connues fonctionnant davantage en basse fréquence, concernent particulièrement les alimenta- tions à découpage (ou PWM, pour "PULSE WIDTH MODULATION"). Même si cette alimentation présente un meilleur rendement (environ 85 %), elle est bruitée, lente (10 à 50 kϋs) et très difficile à réguler en basse tension.Other known power sources operating more at low frequency, particularly concern switching power supplies (or PWM, for "PULSE WIDTH MODULATION"). Even if this power supply has a better efficiency (about 85%), it is noisy, slow (10 to 50 kϋs) and very difficult to regulate at low voltage.
La solution préférée dans l'état de la technique récent consiste en l'utilisation d'alimentations HFLA, notamment pour sa rapidité de réaction. Cependant, pour tester des composants qui admettent des intensités élevées, il devrait être prévu un dispositif de refroidissement en conséquence, ce qui, en termes de performances, de miniaturisation et de coût, devient prohibitif .The preferred solution in the recent prior art consists in the use of HFLA power supplies, in particular for its speed of reaction. However, to test components which admit high intensities, a cooling device should be provided accordingly, which, in terms of performance, miniaturization and cost, becomes prohibitive.
La Demanderesse s'est alors posé le problème de fournir un dispositif d'alimentation de puissance à courant élevé dont les performances permettent de maintenir une tension très stable appliquée aux composants à tester, dans des conditions de tests nécessitant des sauts de courant très importants. De plus, ce dispositif d'alimentation, incluant le système de connexion au composant à tester, doit, de préférence, comporter un nombre minimum de résistances et d'inductances, susceptibles de limiter les performances dynamiques du dispositif. Le dispositif d'alimentation est avantageusement disposé au plus près (en termes de distance) du composant à tester.The Applicant then posed the problem of providing a high current power supply device whose performance makes it possible to maintain a very stable voltage applied to the components to be tested, under test conditions requiring very large current jumps. In addition, this supply device, including the connection system to the component to be tested, should preferably include a minimum number of resistors and inductors, capable of limiting the dynamic performance of the device. The supply device is advantageously arranged as close as possible (in terms of distance) to the component to be tested.
Typiquement, il est recherché un dispositif d'alimentation capable de délivrer environ 200 ampères, pour une tension d'alimentation de 0,4 à 3 volts, avec une vitesse de réponse maximale dans la gamme des dizaines de nanosecondes.Typically, a power device capable of delivering about 200 amps is sought, for a supply voltage of 0.4 to 3 volts, with a maximum response speed in the range of tens of nanoseconds.
On se réfère maintenant à la figure 2 pour décrire un dispositif d'alimentation selon l'invention.Reference is now made to FIG. 2 to describe a supply device according to the invention.
Globalement, le dispositif comprend une première source de courant il, constituée d'un amplificateur linéaire à haute fréquence HFLA, ainsi qu'une seconde source de courant i2, basse fréquence BF. L'alimentation basse fréquence BF du dispositif comporte préférentiellement deux blocs PWM et LCM qui peuvent être sélectionnés l'un ou l'autre pour alimenter le composant COMP. La source PWM est capable de délivrer en quelques microsecon- des des intensités relativement élevées. La source LCM comprend un amplificateur linéaire et délivre de faibles courants. Préférentiellement, ces faibles courants correspondent à des courants de mesures typiquement inférieures à 5 ampères qui permettent d'obtenir une grande précision du fait d'une gamme de faible étendue.Overall, the device comprises a first current source il, consisting of a high frequency linear amplifier HFLA, as well as a second current source i2, low frequency BF. The low frequency power supply LF of the device preferably comprises two blocks PWM and LCM which can be selected one or the other to supply the component COMP. The PWM source is capable of delivering relatively high intensities in a few microseconds. The LCM source includes a linear amplifier and delivers low currents. Preferably, these low currents correspond to measurement currents typically less than 5 amperes which make it possible to obtain high precision due to a range of small extent.
En fonctionnement normal, une tension d'alimentation V est appliquée au bloc HFLA, lequel réagit rapidement en délivrant un courant il en quelques centaines de nanosecondes, typique- ment de 200 nanosecondes. Un capteur Cl (figure 4) mesure le courant il que délivre le bloc HFLA. Ce capteur est relié à un module de commande COM (figure 4) en tension d'alimentation ϋ du bloc BF.In normal operation, a supply voltage V is applied to the HFLA block, which reacts quickly by delivering a current il in a few hundred nanoseconds, typically 200 nanoseconds. A sensor C1 (FIG. 4) measures the current there that the HFLA block delivers. This sensor is connected to a COM control module (Figure 4) in supply voltage ϋ from the LF block.
Typiquement, si la mesure de il indique qu'une alimentation supplémentaire en courant i2 est nécessaire, le bloc BF est actionné et délivre l'intensité i2 qui s'additionne dans un premier temps à l'intensité il, la somme de ces deux intensités alimentant alors le composant COMP à tester. Dans un second temps, le bloc BF alimente seul le composant à tester COMP, sans le courant il.Typically, if the measurement of it indicates that an additional supply of current i2 is required, the LF block is actuated and delivers the intensity i2 which is added first to the intensity il, the sum of these two intensities then supplying the COMP component to be tested. In a second step, the LF block supplies only the component to be tested COMP, without the current there.
En revanche, si la mesure de il indique que le pic d'intensité délivrée par le bloc HFLA a suffi pour l'alimentation du composant COMP, la seconde source (bloc BF) reste inhibée (U = 0 volt). Sur la figure 2 apparaît en outre un circuit accumulateur (ou capacité C), normalement alimenté et chargé par le dispositif d'alimentation formé des deux sources HFLA et BF. Lorsqu'une variation d'intensité de courant se produit au niveau du composant COMP, le circuit accumulateur se décharge et alimente ainsi le composant COMP en courant ic. Ainsi, le composant COMP peut être alimenté, à la fois, par la capacité C, par la première source HFLA et par la seconde source BF. Sur la figure 2, le circuit accumulateur est représenté schématiquement sous la forme d'une capacité C, mais l'on pourra se référer à la figure 5 pour trouver un exemple de réalisation détaillé de ce circuit C.On the other hand, if the measurement of it indicates that the intensity peak delivered by the HFLA block was sufficient to supply the component COMP, the second source (block BF) remains inhibited (U = 0 volts). FIG. 2 also shows an accumulator circuit (or capacity C), normally supplied and charged by the supply device formed from the two sources HFLA and BF. When a variation in current intensity occurs at the COMP component, the accumulator circuit is discharged and thus supplies the COMP component with current i c . Thus, the COMP component can be supplied, at the same time, by the capacitance C, by the first HFLA source and by the second LF source. In FIG. 2, the accumulator circuit is shown diagrammatically in the form of a capacitor C, but reference may be made to FIG. 5 to find a detailed embodiment of this circuit C.
Les composants actuels tels que les microprocesseurs, lors de leur fonctionnement, ont besoin de courants d'alimentation très élevés (de 100 à 200 ampères), mais aussi de courants d'alimentation faibles par exemple lorsqu'un microprocesseur d'un ordinateur doit fonctionner en mode dit "de veille". Dans ce cas, les courants d'alimentation sont voisins de 0,5 à 1 ampère .Current components such as microprocessors, during their operation, require very high supply currents (from 100 to 200 amperes), but also low supply currents for example when a microprocessor of a computer must operate in so-called "standby" mode. In this case, the supply currents are close to 0.5 to 1 amp.
Tant que la demande en courant du composant de test n'excède pas une valeur seuil, par exemple de 5 ampères, le bloc LCM peut être sélectionné, à partir du commutateur SW (dans l'exemple représenté schématiquement sur la figure 2).As long as the current demand of the test component does not exceed a threshold value, for example of 5 amperes, the LCM block can be selected from the switch SW (in the example shown diagrammatically in FIG. 2).
En revanche, si la demande en courant excède cette valeur de 5 ampères, le bloc PWM est sélectionné à l'aide du commutateur SW. Dans une réalisation avantageuse, la commutation entre le bloc PWM et le bloc LCM est commandée à partir d'une mesure du courant il en sortie du bloc haute fréquence HFLA. Si la valeur de il mesurée est inférieure à 5 ampères, c'est le bloc LCM qui est activé et 1 ' intensité i2 délivrée est dans une gamme qui correspond à cette valeur. En revanche, si la valeur mesurée de il est supérieure à 5 A, c'est le bloc PWM qui est activé pour fournir une intensité i2 supérieure à 5A.On the other hand, if the current demand exceeds this value of 5 amps, the PWM block is selected using the switch SW. In an advantageous embodiment, the switching between the PWM block and the LCM block is controlled from a measurement of the current il at the output of the high frequency block HFLA. If the value of it measured is less than 5 amperes, it is the LCM block which is activated and the intensity i2 delivered is in a range which corresponds to this value. On the other hand, if the measured value of il is greater than 5 A, the PWM block is activated to supply an intensity i2 greater than 5A.
On se réfère maintenant à la figure 3 pour décrire les réactions respectives du bloc HFLA, du bloc PWM et de la capacité C du dispositif d'alimentation, à une demande d'alimentation en tension V. En quelques centaines de nanosecondes, le courant il que délivre le bloc haute fréquence HFLA passe de 0 à plus de 100 ampères (en 200 nanosecondes dans l'exemple représenté). Le courant il. que débite le bloc HFLA chute en quelques microsecondes et le bloc PWM, pendant ce temps, débite l'intensité i2. On remarque sur la figure 3 que le front de montée en intensité du courant i2 est beaucoup moins raide que la montée du courant il. De plus, la capacité C se décharge et délivre le courant ic.Reference is now made to FIG. 3 to describe the respective reactions of the HFLA block, the PWM block and the capacitance C of the supply device, to a request for supply of voltage V. In a few hundred nanoseconds, the current il that the HFLA high frequency block delivers goes from 0 to more than 100 amperes (in 200 nanoseconds in the example shown). The current there. that the HFLA block outputs drops in a few microseconds and the PWM block, during this time, outputs the intensity i2. It can be seen in FIG. 3 that the rise front of the current i2 is much less steep than the rise of the current il. In addition, the capacitor C discharges and delivers the current i c .
En se référant à la figure 3 (graphique intitulé "Power Supply current" ), la somme des trois courants il, i2 et ic correspond au courant demandé par le composant COMP. Ce courant demandé (représenté par le graphique de la figure 3 intitulé "Dut Current step" ) présente une variation d'intensité d'environ 100 ampères en quelques centaines de nanosecondes, par rapport à un courant établi qui peut être égal à 100 ampères.Referring to FIG. 3 (graph titled "Power Supply current"), the sum of the three currents il, i2 and i c corresponds to the current requested by the component COMP. This requested current (represented by the graph of FIG. 3 entitled "Dut Current step") presents a variation of intensity of approximately 100 amperes in a few hundred nanoseconds, compared to an established current which can be equal to 100 amperes.
La tension effectivement appliquée et mesurée sur le composant à tester se stabilise en quelques microsecondes (variation représentée sur le graphique intitulé "Dut Voltage" de la figure 3). Le contrôle des courants il, i2 que débitent les sources de courant permet ainsi de maintenir une tension aux bornes du composant COMP dont la stabilité respecte les conditions requises. Les quelques pseudo-oscillations après le pic de tension sont principalement dus aux inductances et capacités parasites du circuit.The voltage actually applied and measured on the component to be tested stabilizes in a few microseconds (variation shown in the graph entitled "Dut Voltage" in Figure 3). The control of the currents il, i2 which the current sources debit thus makes it possible to maintain a voltage at the COMP component terminals whose stability meets the required conditions. The few pseudo-oscillations after the voltage peak are mainly due to the parasitic inductances and capacitances of the circuit.
On se réfère maintenant à la figure 4 pour décrire de façon plus détaillée un mode de réalisation préféré du dispositif d' alimentation selon 1 ' invention.Reference is now made to FIG. 4 to describe in more detail a preferred embodiment of the supply device according to the invention.
La régulation de tension d'alimentation en boucle s'effectue en détectant la tension sur le composant à tester et en la comparant avec la tension d'alimentation programmée qui est souhaitée. Le résultat de cette comparaison Verr est appliqué au bloc HFLA. Ce bloc comprend un amplificateur linéaire large bande, avec une structure de type dit "PUSH/PULL" qui permet une réponse très rapide. C'est en fonction du signal d'erreur Verr en tension que l'amplificateur linéaire HFLA est commandé. Le courant de sortie du bloc HFLA est mesuré par le capteur Cl puis appliqué préférentiellement à un amplificateur passe-bas pour être comparé à une valeur 0 ampère de référence. Le résultat de cette comparaison est envoyé au module PWM, lequel fournit le courant i2 en remplacement du courant il.The loop supply voltage regulation is carried out by detecting the voltage on the component to be tested and comparing it with the programmed supply voltage which is desired. The result of this Verr comparison is applied to the HFLA block. This block includes a broadband linear amplifier, with a structure called "PUSH / PULL" which allows a very fast response. The HFLA linear amplifier is controlled as a function of the voltage Verr error signal. The output current of the HFLA block is measured by the sensor C1 and then preferably applied to a low-pass amplifier to be compared with a 0 amp reference value. The result of this comparison is sent to the PWM module, which supplies the current i2 in place of the current il.
Préférentiellement, le bloc PWM comprend un convertisseur MPBS (pour "multi-phase buck switcher") qui est régulé en mode dit "courant moyen".Preferably, the PWM block comprises an MPBS converter (for "multi-phase buck switcher") which is regulated in so-called "medium current" mode.
En se référant à la figure 5, le bloc MPBS est régulé en utilisant deux boucles sReferring to Figure 5, the MPBS block is regulated using two loops s
- l'une, régulée en courant,. est basée sur la détection d'un courant moyen de sortie ; - l'autre boucle consiste à mesurer le courant de sortie du bloc HFLA et contrôle ainsi le courant de sortie du bloc PWM en commandant, le cas échéant, l'annulation du courant en sortie du bloc HFLA.- one, current regulated ,. is based on the detection of an average output current; the other loop consists in measuring the output current of the HFLA block and thus controls the output current of the PWM block by controlling, if necessary, the cancellation of the current at the output of the HFLA block.
Le bloc PWM délivre le courant moyen correspondant i2, à la place du bloc HFLA qui a délivré le courant il. Ainsi, après quelques centaines de nanosecondes d'activation du bloc HFLA, le bloc PWM prend le pas sur le bloc haute fréquence HFLA.The PWM block delivers the corresponding average current i2, in place of the HFLA block which delivered the current il. Thus, after a few hundred nanoseconds of activation of the HFLA block, the PWM block takes precedence over the HFLA high frequency block.
De manière à obtenir une réponse très rapide en courant, lorsque 1 ' alimentation du composant COMP doit fournir une variation brusque, une mesure du courant à proximité du composant à tester est utilisée. Dans une réalisation préférée, cette mesure est effectuée par le bloc HFLCC de la figure 5 , ce bloc permettant un contrôle en boucle du courant de charge. En parallèle avec le bloc PWM, le bloc LCM comprend un amplificateur linéaire agencé pour délivrer un courant jusqu'à 5 ampères. Cet amplificateur LCM permet d'effectuer des mesures de faible courant dans une réponse large bande et peut ainsi être utilisé en tant que générateur de faible courant pour effectuer des tests permettant de vérifier la continuité de la connectique jusqu'au composant à tester.In order to obtain a very rapid current response, when the supply of the component COMP has to provide an abrupt variation, a measurement of the current near the component to be tested is used. In a preferred embodiment, this measurement is carried out by the HFLCC block of FIG. 5, this block allowing loop control of the load current. In parallel with the PWM block, the LCM block includes a linear amplifier arranged to deliver a current up to 5 amps. This LCM amplifier makes it possible to carry out low current measurements in a broadband response and can therefore be used as a low current generator to carry out tests making it possible to check the continuity of the connections up to the component to be tested.
En se référant à la figure 5, le bloc LCM délivre un courant dont la valeur en intensité peut être saturée à 5 ampères. Un détecteur d'hystérésis HYS est connecté, d'une part, au bloc LCM et, d'autre part, au bloc de commande du bloc PWM. Ainsi, si la valeur en intensité du courant que délivre le bloc LCM est supérieure à 5 ampères, le bloc PWM est activé. En revanche, si cette valeur en intensité est inférieure à 5 ampères (et donc non saturée), le bloc PWM est inhibé. L'homme du métier trouvera dans la figure 5 d'autres détails de réalisation technique du dispositif dans le mode décrit ci- avant.Referring to FIG. 5, the LCM block delivers a current whose intensity value can be saturated at 5 amps. A HYS hysteresis detector is connected, on the one hand, to the LCM block and, on the other hand, to the control block of the PWM block. Thus, if the current intensity value delivered by the LCM block is greater than 5 amperes, the PWM block is activated. On the other hand, if this intensity value is less than 5 amperes (and therefore unsaturated), the PWM block is inhibited. Those skilled in the art will find in FIG. 5 other details of technical embodiment of the device in the mode described above.
Ainsi, la régulation en tension, par la commande du courant délivré, s'effectue préférentiellement comme suit.Thus, voltage regulation, by controlling the current delivered, is preferably carried out as follows.
L'amplificateur linéaire haute fréquence délivre un courant d'alimentation pendant quelques dizaines de microsecondes puis ce courant chute. Ensuite, l'amplificateur PWM permet de délivrer un même courant moyen d'alimentation du composant à tester, en utilisant, le cas échéant, un courant de décharge de la capacité C connectée au composant COMP et qui- se décharge. Un second amplificateur linéaire capable de délivrer une intensité maximale par exemple de 5 ampères est utilisé pour la mesure des faibles courants. •.The high frequency linear amplifier delivers a supply current for a few tens of microseconds then this current drops. Then, the PWM amplifier makes it possible to deliver the same average supply current of the component to be tested, using, if necessary, a discharge current of the capacitance C connected to the component COMP and which discharges. A second linear amplifier capable of delivering a maximum current, for example 5 amps, is used for the measurement of low currents. •.
Bien entendu, la présente invention ne se limite pas à la forme de réalisation décrite ci-avant. Elle s'étend à d'autres variantes.Of course, the present invention is not limited to the embodiment described above. It extends to other variants.
En particulier, la forme de réalisation de l'invention n'est pas limitée à la structure des circuits représentée sur les figures 4 et 5. In particular, the embodiment of the invention is not limited to the structure of the circuits shown in FIGS. 4 and 5.

Claims

evendications evendications
1. Dispositif d'alimentation électrique (ALIM) pour une installation de tests de composants électroniques (COMP), du type comprenant une première (HFLA) et une seconde (BF) source d'alimentation, ainsi qu'un module de commande couplée (COM) des deux sources, caractérisé en ce que la première et la seconde source comprennent respectivement : - une amplification haute fréquence (HFLA) capable de débiter une première intensité (il) pendant un premier intervalle de temps,1. Power supply device (ALIM) for an electronic component test installation (COMP), of the type comprising a first (HFLA) and a second (BF) power source, as well as a coupled control module ( COM) of the two sources, characterized in that the first and the second source respectively comprise: - a high frequency amplification (HFLA) capable of outputting a first intensity (il) during a first time interval,
- une amplification basse fréquence (PWM) capable de débiter une seconde intensité ( i2 ) pendant un second intervalle de temps plus long que le premier intervalle, et en ce que le module de commande (COM) , pour atteindre rapidement et maintenir une intensité de l'ordre de ladite première intensité, active d'abord la première source,, puis la seconde source.- a low frequency amplification (PWM) capable of delivering a second intensity (i2) for a second time interval longer than the first interval, and in that the control module (COM), to quickly reach and maintain an intensity of the order of said first intensity, first activates the first source, then the second source.
2. Dispositif selon la revendication 1, caractérisé en ce que le module de commande comprend un organe de mesure (Cl) apte à mesurer un paramètre électrique (il) en sortie de la première source, et en ce que le module de commande est agencé pour activer la seconde source (BF) en fonction de la valeur dudit paramètre mesurée.2. Device according to claim 1, characterized in that the control module comprises a measuring member (Cl) capable of measuring an electrical parameter (il) at the output of the first source, and in that the control module is arranged to activate the second source (BF) according to the value of said measured parameter.
3. Dispositif selon l'une des revendications 1 et 2, caractérisé en ce que la seconde source (BF) comprend une entrée connectable à la sortie de la première source (HFLA). 3. Device according to one of claims 1 and 2, characterized in that the second source (BF) comprises an input connectable to the output of the first source (HFLA).
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que la première source comprend un amplificateur linéaire haute fréquence (HFLA).4. Device according to one of claims 1 to 3, characterized in that the first source comprises a high frequency linear amplifier (HFLA).
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que la seconde source (BF) comprend une alimentation à découpage (PWM) .5. Device according to one of claims 1 to 4, characterized in that the second source (BF) comprises a switching power supply (PWM).
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le second intervalle de temps chevauche sensiblement le premier intervalle de temps .6. Device according to one of the preceding claims, characterized in that the second time interval substantially overlaps the first time interval.
7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les première et seconde sources sont reliées à un circuit accumulateur (C) , destiné à être connecté à un composant à tester (COMP) et à alimenter ledit composant (C) pendant une partie au moins dudit premier intervalle de temps .7. Device according to one of the preceding claims, characterized in that the first and second sources are connected to an accumulator circuit (C), intended to be connected to a component to be tested (COMP) and to supply said component (C) during at least part of said first time interval.
8. Dispositif selon la revendication 7, caractérisé en ce que le circuit accumulateur comprend au moins une capacité (C), et en ce que la première source (HFLA), activée, est agencée pour alimenter le circuit accumulateur (C) .8. Device according to claim 7, characterized in that the accumulator circuit comprises at least one capacity (C), and in that the first source (HFLA), activated, is arranged to supply the accumulator circuit (C).
9. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le module de commande (COM) est agencé pour désactiver la première source (HFLA) sensiblement après l'activation de la seconde source (PWM).9. Device according to one of the preceding claims, characterized in that the control module (COM) is arranged to deactivate the first source (HFLA) substantially after the activation of the second source (PWM).
10. Dispositif selon la revendication 9, caractérisé en ce que le module de commande est. agencé s - pour activer la première source (HFLA) qui, dans un premier temps, recharge le circuit accumulateur (C) et délivre le courant au composant, et10. Device according to claim 9, characterized in that the control module is. arranged s - to activate the first source (HFLA) which, initially, recharges the accumulator circuit (C) and delivers the current to the component, and
- pour activer la seconde source (PWM) et désactiver la première source (HFLA) sensiblement dans un second temps.- to activate the second source (PWM) and deactivate the first source (HFLA) substantially in a second step.
11. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la première source (HFLA) présente un front de montée en courant d'alimentation plus raide que le front de montée en courant d'alimentation de la seconde source (PWM).11. Device according to one of the preceding claims, characterized in that the first source (HFLA) has a steeper supply current rising edge than the supply current rising edge of the second source (PWM) .
12. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il est apte à délivrer environ 200 ampères en moins de 500 nanosecondes, de préférence 200 nanosecondes .12. Device according to one of the preceding claims, characterized in that it is capable of delivering about 200 amps in less than 500 nanoseconds, preferably 200 nanoseconds.
13. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre une troisième source (LCM) propre à délivrer un courant sensiblement plus faible que le courant que délivre la seconde source (PWM).13. Device according to one of the preceding claims, characterized in that it further comprises a third source (LCM) capable of delivering a current substantially weaker than the current delivered by the second source (PWM).
14. Dispositif selon la revendication 13, caractérisé en ce que le courant que débite la troisième source (LCM) est un courant de mesure.14. Device according to claim 13, characterized in that the current delivered by the third source (LCM) is a measurement current.
15. Dispositif selon l'une des revendications 13 et 14, caractérisé en ce qu'il comporte un élément de commutation (SW) entre ladite troisième source (LCM) et la seconde source (PWM), propre à activer sélectivement la seconde (PWM) ou la troisième (LCM) source en fonction du courant (il) que débite la première source (HFLA). 15. Device according to one of claims 13 and 14, characterized in that it comprises a switching element (SW) between said third source (LCM) and the second source (PWM), suitable for selectively activating the second (PWM ) or the third (LCM) source depending on the current (il) that the first source (HFLA).
EP02716224A 2001-01-31 2002-01-29 Power supply device for a component testing installation Withdrawn EP1358524A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0101366 2001-01-31
FR0101366A FR2820213B1 (en) 2001-01-31 2001-01-31 ELECTRICAL SUPPLY DEVICE FOR A COMPONENT TEST INSTALLATION
PCT/IB2002/000263 WO2002061518A1 (en) 2001-01-31 2002-01-29 Power supply device for a component testing installation

Publications (1)

Publication Number Publication Date
EP1358524A1 true EP1358524A1 (en) 2003-11-05

Family

ID=8859502

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02716224A Withdrawn EP1358524A1 (en) 2001-01-31 2002-01-29 Power supply device for a component testing installation

Country Status (5)

Country Link
US (1) US6979994B2 (en)
EP (1) EP1358524A1 (en)
FR (1) FR2820213B1 (en)
TW (1) TWI223077B (en)
WO (1) WO2002061518A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO333013B1 (en) 2009-07-06 2013-02-18 Smartfish As Composition comprising bioactive amino acids or derivatives thereof and marine oil in a stable oil-in-water emulsion, and process for preparing said composition.
JP2012122879A (en) * 2010-12-09 2012-06-28 Advantest Corp Power supply device, controlling method thereof, and test device using the same
CN110275103B (en) * 2019-06-24 2022-03-15 浙江华仪电子股份有限公司 Target board power consumption and level time sequence detection system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2458736C2 (en) * 1974-12-12 1981-09-17 Ibm Deutschland Gmbh, 7000 Stuttgart Method and arrangement for monitoring power supply systems
US4610019A (en) * 1984-10-24 1986-09-02 The United States Of America As Represented By The Secretary Of The Air Force Energizing arrangement for charge coupled device control electrodes
US5764040A (en) * 1996-09-24 1998-06-09 Intel Corporation Transient tolerant power supply method and apparatus
FR2759460B1 (en) * 1997-02-13 1999-04-16 Schlumberger Ind Sa ELECTRONIC COMPONENT SUPPLY CIRCUIT IN A TEST MACHINE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02061518A1 *

Also Published As

Publication number Publication date
FR2820213B1 (en) 2004-10-22
US6979994B2 (en) 2005-12-27
WO2002061518A1 (en) 2002-08-08
US20040085058A1 (en) 2004-05-06
FR2820213A1 (en) 2002-08-02
TWI223077B (en) 2004-11-01

Similar Documents

Publication Publication Date Title
CA2594826C (en) Method for the balanced charging of a lithium-ion or lithium-polymer battery
US7653101B2 (en) Excessive current input suppressing semiconductor laser light emitting circuit
EP1685622B3 (en) Equilibrated charging method for a lithium-ion or lithium-polymer battery
EP3297118B1 (en) Supply voltage management method and system of a usb type c source device
EP0847124B1 (en) Emergency power system for providing temporary power in case of failure of a principal power source
FR2750507A1 (en) METHOD FOR PREDICTING THE BATTERY CAPACITY, BATTERY UNIT, AND APPARATUS USING THE BATTERY UNIT
EP1148405A1 (en) Linear regulator with low over-voltage in transient-state
FR2942352B1 (en) IDENTIFICATION AND PROTECTION OF A C.A-C.C AEROSPATIAL CURRENT SYSTEM IN THE PRESENCE OF CURRENT CONTENT C.C DUE TO DEFECTIVE LOADS
EP2600462B1 (en) Method for balancing the voltages of electrochemical cells arranged in a plurality of parallel arms
US20120146597A1 (en) Power supply apparatus
FR3070774A1 (en) VOLTAGE DROP COMPENSATION METHOD ON USB TYPE C CABLE AND CORRESPONDING CIRCUIT
EP1358524A1 (en) Power supply device for a component testing installation
EP2538229A1 (en) Phase-comparing device with dual terminal connection
FR3072519A1 (en) ENERGY CONVERSION METHOD BETWEEN TWO USB TYPE C DEVICES AND CORRESPONDING DEVICE
EP1139361B1 (en) Electrical circuit for the transmitting the status information, particularly for railway material, and system incorporating such a circuit
FR2962877A1 (en) METHOD FOR CONTROLLING LIGHT EMITTING DIODES
WO2006058970A1 (en) Method for assessing the state of charge of an electric battery
EP3831050B1 (en) Improved sampling device
FR2547131A1 (en) HIGH VOLTAGE AMPLIFIER FOR CAPACITIVE LOAD
EP2396665B1 (en) Method of detecting a short circuit and power supply module implementing same
WO2019229341A1 (en) Self-powered switching device and method for operating such a device
EP4298707A1 (en) Device for the concomitant storage and generation of at least one voltage, and associated management method
JP2004179304A (en) Semiconductor-laser drive unit
FR2947974A1 (en) METHOD FOR PROTECTING AN ELECTRONIC SWITCH INTEGRATED IN A MOTOR VEHICLE AND CONTROLLING THE POWER SUPPLY OF AN ELECTRICAL CHARGE
FR2823034A1 (en) DEVICE FOR DIAGNOSING A POWER STAGE CIRCUIT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHLUMBERGER MALCO, INC.

Owner name: AXALTO S.A.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHLUMBERGER MALCO, INC.

Owner name: SCHLUMBERGER SYSTEMES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHLUMBERGER SYSTEMES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050607