EP1357345B1 - Corrugated heat exchange element - Google Patents

Corrugated heat exchange element Download PDF

Info

Publication number
EP1357345B1
EP1357345B1 EP03004778A EP03004778A EP1357345B1 EP 1357345 B1 EP1357345 B1 EP 1357345B1 EP 03004778 A EP03004778 A EP 03004778A EP 03004778 A EP03004778 A EP 03004778A EP 1357345 B1 EP1357345 B1 EP 1357345B1
Authority
EP
European Patent Office
Prior art keywords
corrugations
arrangement
heat exchanger
edge
corrugated heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03004778A
Other languages
German (de)
French (fr)
Other versions
EP1357345A2 (en
EP1357345A3 (en
Inventor
Jens Dipl.-Ing. Nies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Publication of EP1357345A2 publication Critical patent/EP1357345A2/en
Publication of EP1357345A3 publication Critical patent/EP1357345A3/en
Application granted granted Critical
Publication of EP1357345B1 publication Critical patent/EP1357345B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements

Definitions

  • the invention relates to a corrugated heat exchange body according to the preamble of claim 1.
  • Corrugated heat exchange bodies in the present sense should be, for example, so-called corrugated fins, which are inserted in air-cooled coolers between the flat tubes arranged in series to ensure heat exchange between the medium in the flat tubes and the cooling air flowing through the corrugated fins.
  • the heat exchanger walls mentioned are in this case the broad sides of the flat tubes.
  • the vertices are arcuate.
  • corrugated heat exchange bodies are often referred to as fins or internal inserts and are located within tubes or plate-formed channels, for example plate heat exchangers found as oil coolers or the like.
  • the heat exchanger walls are the individual nested plates.
  • the vertices are usually bent in a U - shape.
  • corrugated fins are from the US Pat. No. 3,298,432 known.
  • the structures in the flanks are in the US script very fine ribs, which run obliquely in the manner of a herringbone pattern.
  • the pattern is impressed in the metal strip, and then the corrugation of the corrugated fin is made so that the arrangement direction of the structures in one flank intersects with the arrangement direction of the structures in the following flank. Since the structures in the US document are to be very fine, improved heat exchange efficiency is obtained in the region close to the wall, but the intersection of the same will barely produce a noticeable additional effect.
  • the pattern is embossed flat in the entire metal strip, it is also in the vertices of the corrugated fin, whereby the heat-conducting connection with the heat exchanger walls could be affected. In addition, this very fine structuring could lead to a poorer soldering result
  • the corrugated ribs have a similar herringbone structure, where there, because of the greater width of the metal strip, several herringbone structures are arranged one behind the other, so that there are parallel zig-zag lines.
  • the herringbone pattern is much coarser than that of the former document. An intersection of the arrangement direction from edge to edge is not provided in the DE document.
  • a plate radiator is known.
  • a Konvektorblech which is designed as a corrugated heat exchange body.
  • the heat exchange bodies described should be developed according to the task of the present invention such that they promise a further improvement in terms of their heat exchange efficiency.
  • the elements of the structures are waves of the flanks, which provide the flow channel with consequent constrictions and extensions.
  • the flanks can additionally have cuts, which harbors the same arrangement direction of the waves and connect the adjacent flow channels fluidly with each other. Such intersecting from edge to edge in their arrangement direction cuts can make a contribution to the improved heat transfer.
  • the cuts themselves are of a known nature and are bent out of the surface of the flank, resulting in openings in the flank which connect adjacent flow channels.
  • the cuts may be in the troughs or on the crests or anywhere within the waves.
  • the cuts are known to be provided with an angle of attack to the flank surface to create a turbulent flow.
  • the cuts of the invention have equal angles of attack within a flank and also in adjacent flanks.
  • the waves of the flanks and the cuts have the same arrangement direction, so that, seen in a cross section, the cuts and the waves are arranged in the flanks parallel to each other. The directions of arrangement of the cuts and waves in adjacent flanks intersect.
  • flanks are either without structure or, if necessary, can have stiffening elements.
  • the length of the elements of the structures is shorter at their beginning and at their end than in the adjoining main structure region in order to make optimum use of the surface of the flanks.
  • the length of the elements in the main structure region should preferably be the same size and amount to at least 70% of the wave height.
  • the angle of inclination of the oblique structures with respect to the vertical is preferably not greater than 45 °.
  • the illustrated heat exchange bodies have been made from an aluminum strip. However, they could also be made of another suitable metal.
  • the production takes place in such a way that first the structures 5 are embossed into the metal strip, wherein the structures 5 are spaced from each other in the strip longitudinal direction.
  • the size of the distance corresponds in the embodiment of the Fig. 1 to 6 about the later vertices 2 , which are subsequently created by bending the tape in the transverse direction. It has been shown in the embodiments, only a single wave, but it is absolutely clear that the heat exchange body 1 consists of any number of waves, so that a first and a second plane, formed from the vertices 2 , are present.
  • Fig. 1 to 6 shows a blade which is arranged as an inner liner in a channel of an oil cooler, which has not been shown in detail, however, because the arrangement of fins in plate-stacked heat exchangers is a well-known measure.
  • Fig. 1 also include frontal views on the image left and right end of the lamella.
  • On the right side of the picture Fig. 1 was only above and below each indicated a heat exchanger wall 3 , which belongs to the already mentioned plates and which are arranged in said first and second plane. Between the two heat exchanger walls 3 , said channel is formed, in which the oil flows in an oil cooler. In the not shown upwardly or downwardly adjacent channel, which may be identical, the coolant flows.
  • the oblique structures 5 in the flanks 4 of the heat exchange body 1 are in waves 6.
  • the waves 6 in a flank 4 have a length 16, wherein the length 16 in all flanks 4 should preferably be the same size. In terms of amount, the length 16 is in the range of about 10 mm and will be larger or smaller in other applications. Again, this is not a very fine ribbing, as in the US 3,298,432 which merely produces a surface roughness. From the Fig. 1 It can be seen that the shaft 6 are inclined in the front edge 4 to the vertical 14 to the left.
  • the waves 6 are inclined to the right, whereby the arrangement direction 15 of the waves 6 on the front edge 4 intersects with the arrangement direction 15 of the waves 6 on the trailing edge 4 .
  • the inclination angle ⁇ of the waves 6 to the vertical 14 in the front and in the trailing edge 4 are approximately equal.
  • an intersection of the arrangement direction 15 results, for example, even if the waves 6 are tilted in only one of the flanks 4 by the inclination angle ⁇ and are arranged in the other flank 4 in the direction of the vertical 14 . Also, therefore, this is only a preferred embodiment. How out Fig.
  • corrugated fin which is flowed through by cooling air and is arranged between the flat tubes of an air-cooled heat exchanger.
  • the distance between the structures 5 ( FIG. 7) in the strip longitudinal direction mentioned at the beginning, which is present in the prefabrication stage, is significantly greater than the radians of the vertices 2, which are approximately semicircular. Therefore, for example, in the Fig. 7 and 10 to see that the structures 5 (7) do not reach up to the top and bottom directly to the vertices 2 , but end clearly before.
  • Fig. 10 two heat exchanger walls 3 were indicated, which are each intended to represent a broad side of the flat tubes, not shown. Between adjacent flanks 4 is in each case a flow channel 20th
  • the corrugated rib is provided in its flanks 4 with cuts 7 , wherein the arrangement direction 15 of the cuts 7 intersects in an edge 4 with the arrangement direction 15 of the cuts 7 in the adjacent flank 4 .
  • two groups A , B of sections 7 were provided in this exemplary embodiment, without the number of groups being restricted to two.
  • the cuts 7 have an equal inclination angle ⁇ , but are inclined in opposite directions.
  • the sections 7 within the groups A and B in the flanks 4 are arranged parallel to each other, ie, they have been exposed in the same direction from the surface of the flanks 4 . Furthermore, all sections 7 have a same large angle ⁇ . However, the cuts 7 have been exposed in the group A to the right r and in the group B to the left I , so that an entering into the flow channel 20 air jet (arrow) in the group A to a substantial extent upwards in the not shown subsequent Flow channel 20 is passed and in the group B down in the local flow channel 20 , also not shown.
  • the length L of the cuts 7 at the beginning and at the end of the group A and B is shorter than in the main structure area 55 , which begins here with the third section 7 .
  • the cuts 7 should be before the area 21 before derseitlichen Edge 22 of the edge 4 ends to achieve sufficient rigidity of the corrugated fin.
  • a lamella in a second embodiment (see Fig. 11 a and 11 b) is a lamella as described in the first embodiment.
  • You can be traversed by cooling air or oil.
  • the lamella is inserted in a channel of a heat exchange body.
  • the special feature of these slats is that they also have cuts 7 in addition to the corrugations 6 . Due to the resulting turbulence, the heat exchange efficiency could be further improved.
  • These sections 7 are all issued at the same angle ⁇ from the lamella, so that the medium flowing through can pass from a flow channel 20 into the adjacent flow channels 20 .
  • the height h of the cuts 7 is smaller than the wave height h of the lamella in order to ensure sufficient stability of the lamella.
  • the distance 17 of the cuts 7 should preferably be the same size as half the wavelength 16 of the corrugation 6 .
  • the cuts 7 are in the individual shafts 6 , but they can also be located at other positions on the flank 4 . Which was omitted to show this in detail.
  • the cuts 7 should not extend in contrast to the waves 6 , so that the last cuts 7 are shorter than the cuts 7 in the main structure area 55 .

Description

Die Erfindung betrifft einen gewellten Wärmetauschkörper gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a corrugated heat exchange body according to the preamble of claim 1.

Gewellte Wärmetauschkörper im vorliegenden Sinn sollen beispielsweise sogenannte Wellrippen sein, die bei luftgekühlten Kühlern zwischen den in Reihe angeordneten Flachrohren eingefügt sind, um den Wärmeaustausch zwischen dem Medium in den Flachrohren und der durch die Wellrippen strömenden Kühlluft zu gewährleisten. Die erwähnten Wärmetauscherwände sind in dem Fall die Breitseiten der Flachrohre. Die Scheitelpunkte sind bogenförmig ausgebildet.Corrugated heat exchange bodies in the present sense should be, for example, so-called corrugated fins, which are inserted in air-cooled coolers between the flat tubes arranged in series to ensure heat exchange between the medium in the flat tubes and the cooling air flowing through the corrugated fins. The heat exchanger walls mentioned are in this case the broad sides of the flat tubes. The vertices are arcuate.

Andere gewellte Wärmetauschkörper werden oft als Lamellen oder auch als Inneneinsätze bezeichnet und befinden sich innerhalb von Rohren oder in mittels Platten gebildeten Kanälen, beispielsweise bei Plattenwärmetauschern, die als Ölkühler oder dergleichen anzutreffen sind. In solchen Fällen sind die Wärmetauscherwände die einzelnen ineinander gestapelten Platten. Die Scheitelpunkte sind meist u - förmig gebogen.Other corrugated heat exchange bodies are often referred to as fins or internal inserts and are located within tubes or plate-formed channels, for example plate heat exchangers found as oil coolers or the like. In such cases, the heat exchanger walls are the individual nested plates. The vertices are usually bent in a U - shape.

Die im Oberbegriff definierten Wärmetauschkörper (Wellrippen) sind aus der US - PS - 3 298 432 bekannt. Die Strukturen in den Flanken sind in der US - Schrift sehr feine Rippen, die in der Art eines Fischgrätenmusters schräg verlaufen. Das Muster wird in das Metallband eingeprägt und anschließend wird die Wellenform der Wellrippe hergestellt, so dass die Anordnungsrichtung der Strukturen in einer Flanke sich kreuzt mit der Anordnungsrichtung der Strukturen in der folgenden Flanke. Da die Strukturen in der US - Schrift sehr fein sein sollen, ergibt sich im wandnahen Bereich zwar eine verbesserte Effizienz des Wärmetausches, jedoch wird sich durch die Kreuzung derselben kaum eine spürbare zusätzliche Wirkung einstellen. Weil das Muster in das gesamte Metallband flächig eingeprägt wird, befindet es sich auch in den Scheitelpunkten der Wellrippe, wodurch die wärmeleitende Verbindung mit den Wärmetauscherwänden beeinträchtigt werden könnte. Zudem könnte diese sehr feine Strukturierung zu einem schlechteren Lötergebnis führenThe defined in the preamble heat exchange body (corrugated fins) are from the US Pat. No. 3,298,432 known. The structures in the flanks are in the US script very fine ribs, which run obliquely in the manner of a herringbone pattern. The pattern is impressed in the metal strip, and then the corrugation of the corrugated fin is made so that the arrangement direction of the structures in one flank intersects with the arrangement direction of the structures in the following flank. Since the structures in the US document are to be very fine, improved heat exchange efficiency is obtained in the region close to the wall, but the intersection of the same will barely produce a noticeable additional effect. Because the pattern is embossed flat in the entire metal strip, it is also in the vertices of the corrugated fin, whereby the heat-conducting connection with the heat exchanger walls could be affected. In addition, this very fine structuring could lead to a poorer soldering result

In der DE 195 03 766 C2 besitzen die Wellrippen eine ähnliche Fischgrätenstruktur, wobei dort, wegen der größeren Breite des Metallbandes, mehrere Fischgrätenstrukturen hintereinander angeordnet sind, so dass sich parallele Zick - Zack - Linien ergeben. Das Fischgrätenmuster ist wesentlich gröber als das aus dem erstgenannten Dokument. Eine Kreuzung der Anordnungsrichtung von Flanke zu Flanke ist in der DE - Schrift nicht vorgesehen.In the DE 195 03 766 C2 The corrugated ribs have a similar herringbone structure, where there, because of the greater width of the metal strip, several herringbone structures are arranged one behind the other, so that there are parallel zig-zag lines. The herringbone pattern is much coarser than that of the former document. An intersection of the arrangement direction from edge to edge is not provided in the DE document.

Aus AT 380 104 ist ein Plattenradiator bekannt. Dieser enthält ein Konvektorblech, das als gewellter Wärmetauschkörper ausgebildet ist. In den Flanken des gewellten Konvektorbleches sind Ausschnitte vorhanden, die benachbarte Strömungskanäle strömungstechnisch miteinander verbinden.Out AT 380 104 a plate radiator is known. This contains a Konvektorblech, which is designed as a corrugated heat exchange body. In the flanks of the corrugated convector sheet are cutouts that connect adjacent flow channels fluidically.

Die beschriebenen Wärmetauschkörper sollen gemäß der Aufgabenstellung der vorliegenden Erfindung derart fortgebildet werden, dass sie hinsichtlich ihrer Wärmetauscheffizienz eine weitere Verbesserung versprechen.The heat exchange bodies described should be developed according to the task of the present invention such that they promise a further improvement in terms of their heat exchange efficiency.

Diese Aufgabe wird erfindungsgemäß durch den kennzeichnenden Teil des Anspruchs 1 gelöst. Der Lösungsvorschlag erfüllt in Verbindung mit dem Oberbegriff die gestellte Aufgabe.This object is achieved by the characterizing part of claim 1. The proposed solution fulfills the task in connection with the generic term.

Gemäß dem Kennzeichen des Anspruchs 1 ist vorgesehen, dass die Elemente der Strukturen Wellen der Flanken sind, die den Strömungskanal mit im Wechsel folgenden Einschnürungen und Erweiterungen versehen.According to the characterizing part of claim 1 it is provided that the elements of the structures are waves of the flanks, which provide the flow channel with consequent constrictions and extensions.

Es wurde festgestellt, dass so ausgebildete Wärmetauschkörper einen besseren Wärmeübergang aufweisen. Dies könnte darauf zurückzuführen sein, dass die durch den Strömungskanal zwischen den Flanken hindurchgehende Strömung zumindest ansatzweise in Rotation versetzt wird, wodurch sich der Austausch mit der wandnahen Strömung verbessert.It has been found that heat exchange bodies formed in this way have a better heat transfer. This could be due to the fact that the flowing through the flow channel between the flanks flow is at least rudimentary in rotation, whereby the exchange with the near-wall flow improves.

Durch die Wellen der Flanken, die in den Strömungskanal hinein weisen, stellen sich, wie aus in verschiedenen Höhen vorgenommenen Querschnitten ersichtlich ist, durch den Strömungskanal, in Strömungsrichtung gesehen, im Wechsel Einschnürungen und Erweiterungen des Strömungskanals ein, denen ein günstiger Effekt zugeordnet werden kann.Due to the waves of the flanks, which point into the flow channel, as shown in different heights cross sections, seen through the flow channel, seen in the flow direction, in alternation constrictions and extensions of the flow channel, which can be assigned a favorable effect ,

Gemäß eines aus der US 6 073 686 bekannten Merkmals können die Flanken zusätzlich Schnitte aufweisen, die die gleiche Anordnungsrichtung der Wellen horben und die benachbarte Strömungskanäle strömungstechnisch miteinander verbinden. Solche von Flanke zu Flanke in ihrer Anordnungsrichtung sich kreuzenden Schnitte können einen Beitrag zum verbesserten Wärmeübergang leisten. Die Schnitte selbst sind an sich bekannter Natur und aus der Oberfläche der Flanke herausgebogen, wodurch sich Öffnungen in der Flanke ergeben, die benachbarte Strömungskanäle miteinander verbinden.According to one of the US Pat. No. 6,073,686 Known feature, the flanks can additionally have cuts, which harbors the same arrangement direction of the waves and connect the adjacent flow channels fluidly with each other. Such intersecting from edge to edge in their arrangement direction cuts can make a contribution to the improved heat transfer. The cuts themselves are of a known nature and are bent out of the surface of the flank, resulting in openings in the flank which connect adjacent flow channels.

Die Schnitte können sich in den Wellentälern oder auf den Wellenbergen oder an beliebigen Stellen innerhalb der Wellen befinden.The cuts may be in the troughs or on the crests or anywhere within the waves.

Die Schnitte werden bekanntermaßen mit einem Anstellwinkel zur Flankenfläche versehen um eine turbulente Strömung zu erzeugen. Vorzugsweise besitzen die Schnitte der Erfindung innerhalb einer Flanke und auch in benachbarten Flanken gleiche Anstellwinkel. Die Wellen der Flanken und die Schnitte haben die gleiche Anordnungsrichtung, so dass, in einem Querschnitt gesehen, die Schnitte und die Wellen in den Flanken parallel zueinander angeordnet sind. Die Anordnungsrichtungen der Schnitte und Wellen in benachbarten Flanken kreuzen sich.The cuts are known to be provided with an angle of attack to the flank surface to create a turbulent flow. Preferably, the cuts of the invention have equal angles of attack within a flank and also in adjacent flanks. The waves of the flanks and the cuts have the same arrangement direction, so that, seen in a cross section, the cuts and the waves are arranged in the flanks parallel to each other. The directions of arrangement of the cuts and waves in adjacent flanks intersect.

Als vorteilhaft wird ferner angesehen, dass bei mehreren Gruppen von schrägen Strukturen in einer Flanke entgegengesetzte Neigungswinkel der schrägen Strukturen von einer Gruppe zur nächsten Gruppe vorgesehen sind, wobei zwischen den Gruppen, die Flanken entweder ohne Struktur ausgebildet sind oder im Bedarfsfall Versteifungselemente aufweisen können.It is also considered advantageous that in the case of several groups of oblique structures in one flank opposite inclination angles of the oblique structures are provided from one group to the next group, wherein between the groups, the flanks are either without structure or, if necessary, can have stiffening elements.

Die Länge der Elemente der Strukturen ist an ihrem Anfang und an ihrem Ende kürzer als in dem daran anschließenden Hauptstrukturenbereich, um die Fläche der Flanken möglichst optimal auszunutzen.The length of the elements of the structures is shorter at their beginning and at their end than in the adjoining main structure region in order to make optimum use of the surface of the flanks.

Die Länge der Elemente im Hauptstrukturenbereich soll vorzugsweise gleich groß sein und mindestens 70% der Wellenhöhe betragen.The length of the elements in the main structure region should preferably be the same size and amount to at least 70% of the wave height.

Der Neigungswinkel der schrägen Strukturen gegenüber der Vertikalen ist vorzugsweise nicht größer als 45°. Durch diese Merkmale wird ebenfalls auf die möglichst umfassende Ausnutzung der Fläche der Flanken zur Anordnung von Strukturen gezielt.The angle of inclination of the oblique structures with respect to the vertical is preferably not greater than 45 °. By these features is also targeted to the widest possible utilization of the surface of the flanks for the arrangement of structures.

Die Erfindung wird nachfolgend in drei Ausführungsbeispielen beschrieben.The invention will be described below in three embodiments.

Die beiliegenden Figuren zeigen in

Fig.1
Seitenansicht einer erfindungsgemäßen Lamelle;
Fig. 2
Draufsicht auf die Lamelle aus Fig. 1;
Fig. 3
Schnitt A-A aus Fig. 1;
Fig. 4
Schnitt C-C aus Fig. 1;
Fig. 5
Schnitt D-D aus Fig. 1;
Fig. 6
Perspektivischer Blick auf diese Lamelle;
Fig. 7
Seitenansicht einer nicht erfindungsgemäßen Wellrippe;
Fig. 8
Draufsicht;
Fig. 9
Schnitt A-A aus Fig. 7;
Fig.10
Perspektivischer Blick auf die Wellrippe;
Fig.11
Seitenansicht (a) und Draufsicht (b) auf eine erfindungsgemäße Lamelle mit Wellen und Schnitten.
The attached figures show in
Fig.1
Side view of a blade according to the invention;
Fig. 2
Top view of the slat Fig. 1 ;
Fig. 3
Cut AA off Fig. 1 ;
Fig. 4
Cut CC off Fig. 1 ;
Fig. 5
Cut DD off Fig. 1 ;
Fig. 6
Perspective view of this lamella;
Fig. 7
Side view of a corrugated fin not according to the invention;
Fig. 8
Top view;
Fig. 9
Cut AA off Fig. 7 ;
Figure 10
Perspective view of the corrugated rib;
fig.11
Side view (a) and top view (b) on a blade according to the invention with waves and cuts.

Die abgebildeten Wärmetauschkörper sind aus einem Aluminiumband hergestellt worden. Sie könnten jedoch auch aus einem anderen geeigneten Metall bestehen.The illustrated heat exchange bodies have been made from an aluminum strip. However, they could also be made of another suitable metal.

Die Herstellung geschieht so, dass zunächst die Strukturen 5 in das Metallband eingeprägt werden, wobei die Strukturen 5 in Bandlängsrichtung einen Abstand voneinander haben. Die Größe des Abstandes entspricht im Ausführungsbeispiel aus den Fig. 1 bis 6 etwa den späteren Scheitelpunkten 2, die im Anschluß daran durch Biegung des Bandes in Querrichtung geschaffen werden. Es wurde in den Ausführungsbeispielen lediglich eine einzige Welle dargestellt, wobei jedoch absolut klar ist, dass der Wärmetauschkörper 1 aus einer beliebigen Anzahl von Wellen besteht, so dass eine erste und eine zweite Ebene, gebildet aus den Scheitelpunkten 2, vorhanden sind.The production takes place in such a way that first the structures 5 are embossed into the metal strip, wherein the structures 5 are spaced from each other in the strip longitudinal direction. The size of the distance corresponds in the embodiment of the Fig. 1 to 6 about the later vertices 2 , which are subsequently created by bending the tape in the transverse direction. It has been shown in the embodiments, only a single wave, but it is absolutely clear that the heat exchange body 1 consists of any number of waves, so that a first and a second plane, formed from the vertices 2 , are present.

Das Ausführungsbeispiel aus den Fig. 1 bis 6 zeigt eine Lamelle, die als Inneneinsatz in einem Kanal eines Ölkühlers angeordnet ist, was jedoch nicht ausführlich gezeigt wurde, weil die Anordnung von Lamellen in aus Platten gestapelten Wärmetauschern eine gut bekannte Maßnahme darstellt. Zur Fig. 1 gehören auch stirnseitige Ansichten auf das im Bild linke und rechte Ende der Lamelle. Auf der im Bild rechten Ansicht der Fig. 1 wurde lediglich oben und unten je eine Wärmetauscherwand 3 angedeutet, die zu den bereits erwähnten Platten gehört und die in der erwähnten ersten und zweiten Ebene angeordnet sind. Zwischen den beiden Wärmetauscherwänden 3 ist der genannte Kanal ausgebildet, in dem bei einem Ölkühler das Öl fließt. Im nicht gezeigten nach oben oder nach unten benachbarten Kanal, der identisch sein kann, fließt das Kühlmittel. Die schrägen Strukturen 5 in den Flanken 4 des Wärmetauschkörpers 1 sind in Wellen 6. Die Wellen 6 in einer Flanke 4 besitzen eine Länge 16, wobei die Länge 16 in allen Flanken 4 vorzugsweise gleich groß sein sollte. Betragsmäßig liegt die Länge 16 im Bereich von etwa 10 mm und wird in anderen Einsatzfällen auch größer oder etwas kleiner sein. Jedenfalls handelt es sich hier nicht um eine sehr feine Rippung, wie die in der US 3 298 432 , die lediglich eine Oberflächenrauhigkeit erzeugt. Aus der Fig. 1 ist zu sehen, dass die Welle 6 in der vorderen Flanke 4 zur Vertikalen 14 nach links geneigt sind. In der hinteren Flanke 4, die nur teilweise sichtbar ist, sind die Wellen 6 nach rechts geneigt, wodurch die Anordnungsrichtung 15 der Wellen 6 auf der vorderen Flanke 4 sich mit der Anordnungsrichtung 15 der Wellen 6 auf der hinteren Flanke 4 kreuzt. Im Ausführungsbeispiel sind die Neigungswinkel α der Wellen 6 zur Vertikalen 14 in der vorderen und in der hinteren Flanke 4 etwa gleich groß. Eine Kreuzung der Anordnungsrichtung 15 ergibt sich jedoch beispielsweise auch dann, wenn die Wellen 6 in nur einer der Flanken 4 um den Neigungswinkel α gekippt sind und in der anderen Flanke 4 in Richtung der Vertikalen 14 angeordnet sind. Auch deshalb handelt es sich vorliegend lediglich um ein bevorzugtes Ausführungsbeispiel. Wie aus Fig. 3 zu sehen ist, ergeben sich durch die beschriebene Anordnung der Wellen 6 zwischen den beiden Flanken 4, die einen Strömungskanal 20 begrenzen, in Strömungsrichtung Erweiterungen 10 und Einschnürungen 11 des Strömungskanals 20. Dies kann auch durch Vergleich der linken mit der rechten stirnseitigen Ansicht auf die Enden der Lamelle in Fig. 1 erkannt werden. In der linken Ansicht ist eine Erweiterung 10 zu sehen, während in der rechten Ansicht eine Einschnürung 11 erkennbar ist. Der auffälligste größenmäßige Unterschied zwischen den Erweiterungen 10 und den Einschnürungen 11 stellt sich etwa in der halben Wellenhöhe h ein, in der sich der in Fig. 3 gezeigte Schnitt A-A befindet. Wie die Fig. 4 und 5 (Schnitte D-D und C-C) deutlich zeigen, ist oben und unten weniger Unterschied zwischen den Einschnürungen 11 und den weiterungen 10 festzustellen, so dass dort eher ein gewellter Strömungskanal 20 mit fast parallelen Flanken 4 zu sehen ist. Die Wellen 6 reichen über den gesamten Abstand zwischen der ersten und zweiten Ebene gebildet aus den Scheitelpunkten 2. Die Breite der Wellen 6 ist jedoch wegen ihrer Schräglage größer als die erwähnte Wellenhöhe h zwischen diesen Ebenen. Die Scheitelpunkte 2 haben etwa einen u - förmigen Querschnitt und sind nicht gesickt, wie aus der Draufsicht in Fig. 2 zu erkennen ist.The embodiment of the Fig. 1 to 6 shows a blade which is arranged as an inner liner in a channel of an oil cooler, which has not been shown in detail, however, because the arrangement of fins in plate-stacked heat exchangers is a well-known measure. to Fig. 1 also include frontal views on the image left and right end of the lamella. On the right side of the picture Fig. 1 was only above and below each indicated a heat exchanger wall 3 , which belongs to the already mentioned plates and which are arranged in said first and second plane. Between the two heat exchanger walls 3 , said channel is formed, in which the oil flows in an oil cooler. In the not shown upwardly or downwardly adjacent channel, which may be identical, the coolant flows. The oblique structures 5 in the flanks 4 of the heat exchange body 1 are in waves 6. The waves 6 in a flank 4 have a length 16, wherein the length 16 in all flanks 4 should preferably be the same size. In terms of amount, the length 16 is in the range of about 10 mm and will be larger or smaller in other applications. Anyway, this is not a very fine ribbing, as in the US 3,298,432 which merely produces a surface roughness. From the Fig. 1 It can be seen that the shaft 6 are inclined in the front edge 4 to the vertical 14 to the left. In the back flank 4, which is only partially visible, the waves 6 are inclined to the right, whereby the arrangement direction 15 of the waves 6 on the front edge 4 intersects with the arrangement direction 15 of the waves 6 on the trailing edge 4 . In the exemplary embodiment, the inclination angle α of the waves 6 to the vertical 14 in the front and in the trailing edge 4 are approximately equal. However, an intersection of the arrangement direction 15 results, for example, even if the waves 6 are tilted in only one of the flanks 4 by the inclination angle α and are arranged in the other flank 4 in the direction of the vertical 14 . Also, therefore, this is only a preferred embodiment. How out Fig. 3 can be seen, resulting from the described arrangement of the shafts 6 between the two edges 4 , which define a flow channel 20 , in the flow direction extensions 10 and constrictions 11 of the flow channel 20th This can also be done by comparing the left with the right frontal view on the ends of the slat in Fig. 1 be recognized. In the left view, an extension 10 can be seen, while in the right view a constriction 11 can be seen. The most striking difference in size between the extensions 10 and the constrictions 11 is approximately at half the wave height h , in which the in Fig. 3 section AA is located. As the 4 and 5 (Sections DD and CC) clearly show less difference between the constrictions 11 and the extensions 10 at the top and bottom, so that a corrugated flow channel 20 with almost parallel flanks 4 can be seen there. The waves 6 extend over the entire distance between the first and second planes formed by the vertices 2 . However, the width of the shafts 6 is greater than said corrugation height h between these levels because of their inclined position. The vertices 2 have approximately a U - shaped cross section and are not beaded, as seen from the top view in FIG Fig. 2 can be seen.

Ein zum Stand der Technik gehörendes Beispiel ist in den Fig. 7 bis 10 abgebildet.One of the prior art example is in the Fig. 7 to 10 displayed.

Dabei handelt es sich um eine Wellrippe, die von Kühlluft durchströmt wird und zwischen den Flachrohren eines luftgekühlten Wärmetauschers angeordnet ist.It is a corrugated fin, which is flowed through by cooling air and is arranged between the flat tubes of an air-cooled heat exchanger.

In diesem Beispiel ist der eingangs erwähnte, im Vorfertigungsstadium der Wellrippe vorhandene Abstand zwischen den Strukturen 5 (7) in Bandlängsrichtung deutlich größer als das Bogenmaß der Scheitelpunkte 2, die etwa halbkreisförmig ausgebildet sind. Deshalb ist beispielsweise in den Fig. 7 und 10 zu sehen, dass die Strukturen 5 (7) oben und unten nicht unmittelbar bis an die Scheitelpunkte 2 heranreichen, sondem deutlich vorher enden.In this example, the distance between the structures 5 ( FIG. 7) in the strip longitudinal direction mentioned at the beginning, which is present in the prefabrication stage, is significantly greater than the radians of the vertices 2, which are approximately semicircular. Therefore, for example, in the Fig. 7 and 10 to see that the structures 5 (7) do not reach up to the top and bottom directly to the vertices 2 , but end clearly before.

In Fig. 10 wurden zwei Wärmetauscherwände 3 angedeutet, die jeweils eine Breitseite der nicht gezeigten Flachrohre darstellen sollen. Zwischen benachbarten Flanken 4 befindet sich jeweils ein Strömungskanal 20. Die Wellrippe ist in ihren Flanken 4 mit Schnitten 7 versehen, wobei sich die Anordnungsrichtung 15 der Schnitte 7 in einer Flanke 4 mit der Anordnungsrichtung 15 der Schnitte 7 in der benachbarten Flanke 4 schneidet. Wie aus den genannten Figuren erkennbar ist, wurden in diesem Ausführungsbeispiel zwei Gruppen A, B von Schnitten 7 vorgesehen, ohne dass die Anzahl der Gruppen auf zwei beschränkt ist. In den beiden Gruppen A und B haben die Schnitte 7 einen gleich großen Neigungswinkel α, sind aber entgegengesetzt geneigt. Die vorstehende Beschreibung geht insbesondere aus der Fig. 7 hervor, die auf der rechten Seite in einem Ausschnitt auch die im Bild hintere Flanke 4 zeigt. In der A - Gruppe sind die Schnitte 7 nach rechts geneigt und in der B - Gruppe nach links. Zwischen den beiden Gruppen A, B ist ein Bereich 13 vorhanden, in dem die Flanken 4 ohne Struktur ausgebildet sind. In nicht gezeigten Ausführungsbeispielen befindet sich im Bereich 13 eine Versteifungssicke. In anderen nicht gezeigten Ausführungsbeispielen kann dieser Bereich 13 ausgeschnitten sein, um die beiden Gruppen A und B thermisch voneinander besser zu trennen. In solchen Fällen handelt es sich dann um zwei verschiedene Wärmetauscher, wobei die Gruppe A zum ersten Wärmetauscher und die Gruppe B zum zweiten Wärmetauscher gehört. Wie die Fig. 9 besonders deutlich macht, sind die Schnitte 7 innerhalb der Gruppen A und B in den Flanken 4 parallel zueinander angeordnet, d. h., sie sind in gleicher Richtung aus der Oberfläche der Flanken 4 herausgestellt worden. Ferner haben alle Schnitte 7 einen gleich großen Anstellwinkel β. Jedoch sind die Schnitte 7 in der Gruppe A nach rechts r herausgestellt worden und in der Gruppe B nach links I, so dass ein in den Strömungskanal 20 eintretender Luftstrahl (Pfeil) in der Gruppe A zu einem wesentlichen Teil nach oben in den nicht gezeigten anschließenden Strömungskanal 20 geleitet wird und in der Gruppe B nach unten in den dortigen ebenfalls nicht gezeigten Strömungskanal 20.In Fig. 10 two heat exchanger walls 3 were indicated, which are each intended to represent a broad side of the flat tubes, not shown. Between adjacent flanks 4 is in each case a flow channel 20th The corrugated rib is provided in its flanks 4 with cuts 7 , wherein the arrangement direction 15 of the cuts 7 intersects in an edge 4 with the arrangement direction 15 of the cuts 7 in the adjacent flank 4 . As can be seen from the figures mentioned, two groups A , B of sections 7 were provided in this exemplary embodiment, without the number of groups being restricted to two. In the two groups A and B , the cuts 7 have an equal inclination angle α, but are inclined in opposite directions. The above description is in particular from the Fig. 7 which shows on the right side in a section also the rear edge 4 in the picture. In the A group, the cuts 7 are inclined to the right and in the B group to the left. Between the two groups A , B , a region 13 is present, in which the flanks 4 are formed without structure. In embodiments not shown, a stiffening bead is located in region 13 . In other embodiments, not shown, this area 13 may be cut out to better separate the two groups A and B from each other better. In such cases it is, two different heat exchanger, wherein the group A to the first heat exchanger and the group B belongs to the second heat exchanger. As the Fig. 9 makes particularly clear, the sections 7 within the groups A and B in the flanks 4 are arranged parallel to each other, ie, they have been exposed in the same direction from the surface of the flanks 4 . Furthermore, all sections 7 have a same large angle β. However, the cuts 7 have been exposed in the group A to the right r and in the group B to the left I , so that an entering into the flow channel 20 air jet (arrow) in the group A to a substantial extent upwards in the not shown subsequent Flow channel 20 is passed and in the group B down in the local flow channel 20 , also not shown.

Wie insbesondere aus Fig. 7 erkennbar ist, ist die Länge L der Schnitte 7 am Anfang und am Ende der Gruppe A und B kürzer als im Hauptstrukturenbereich 55, der hier mit dem dritten Schnitt 7 beginnt. Die Schnitte 7 sollten vor dem Bereich 21 vor derseitlichen Kante 22 der Flanke 4 enden um eine ausreichende Steifigkeit der Wellrippe zu erreichen.As in particular from Fig. 7 can be seen, the length L of the cuts 7 at the beginning and at the end of the group A and B is shorter than in the main structure area 55 , which begins here with the third section 7 . The cuts 7 should be before the area 21 before derseitlichen Edge 22 of the edge 4 ends to achieve sufficient rigidity of the corrugated fin.

In einem zweiten Ausführungsbeispiel (siehe Fig. 11 a und 11 b) handelt es sich um eine Lamelle wie sie im ersten Ausführungsbeispiel beschrieben wurde. Sie kann von Kühlluft oder auch von Öl durchströmt werden. Die Lamelle ist in einem Kanal eines Wärmetauschkörpers eingesetzt. Das Besondere dieser Lamellen ist, dass sie zusätzlich zu den Wellungen 6 auch noch Schnitte 7 besitzen. Durch die dadurch entstehende Turbulenz konnte die Wärmetauscheffizienz weiter verbessert werden. Diese Schnitte 7 sind alle um den gleichen Winkel δ aus der Lamelle ausgestellt, so dass das sie durchströmende Medium von einem Strömungskanal 20 in die benachbarten Strömungskanäle 20 gelangen kann. Die Höhe h der Schnitte 7 ist kleiner als die Wellenhöhe h der Lamelle, um eine ausreichende Stabilität der Lamelle zu gewährleisten. Der Abstand 17 der Schnitte 7 sollte vorzugsweise gleich groß sein wie die halbe Wellenlänge 16 der Wellung 6. Die Schnitte 7 liegen in den einzelnen Wellen 6, sie können sich jedoch auch an anderen Positionen auf der Flanke 4 befinden. Wobei darauf verzichtet wurde dies im Einzelnen zu zeigen. In den Bereich 21 vor der Kante 22 sollten die Schnitte 7 im Gegensatz zu den Wellen 6 nicht hineinreichen, so dass die letzten Schnitte 7 kürzer als die Schnitte 7 im Hauptstrukturenbereich 55 sind.In a second embodiment (see Fig. 11 a and 11 b) is a lamella as described in the first embodiment. You can be traversed by cooling air or oil. The lamella is inserted in a channel of a heat exchange body. The special feature of these slats is that they also have cuts 7 in addition to the corrugations 6 . Due to the resulting turbulence, the heat exchange efficiency could be further improved. These sections 7 are all issued at the same angle δ from the lamella, so that the medium flowing through can pass from a flow channel 20 into the adjacent flow channels 20 . The height h of the cuts 7 is smaller than the wave height h of the lamella in order to ensure sufficient stability of the lamella. The distance 17 of the cuts 7 should preferably be the same size as half the wavelength 16 of the corrugation 6 . The cuts 7 are in the individual shafts 6 , but they can also be located at other positions on the flank 4 . Which was omitted to show this in detail. In the area 21 in front of the edge 22 , the cuts 7 should not extend in contrast to the waves 6 , so that the last cuts 7 are shorter than the cuts 7 in the main structure area 55 .

Claims (7)

  1. Corrugated heat exchanger element (1) which can be manufactured from a metal strip and has a corrugation height (h) which is between the apex points (2) of the corrugations, wherein the apex points (2) form a first and a second plane, which planes are composed of a plurality of apex points (2), wherein at least a number of the apex points (2) of each plane are to be connected to heat exchanger walls (3), and wherein each apex point (2) of the first plane is connected to the following apex point (2) of the second plane by means of edges (4), and in each case a flow duct (20) is formed between adjacent edges (4), and structures (5) whose direction (15) of arrangement in an edge (4) intersects with the direction (15) of arrangement in the following edge (4) are located in the edges (4),
    characterized in that the structures (5) are a corrugation of the edges (4) and they provide the flow duct (20) with constrictions (11) and widened portions (10) which follow one another alternately, wherein the direction of arrangement of the corrugations (6) in one edge (4) intersects with the direction of arrangement of the corrugations (6) in the adjacent edge (4), wherein adjacent flow ducts (20) are either separated from one another in terms of flow or the edges (4) have incisions (7) which are in the same direction of arrangement as the corrugations (6), with the result that the incisions (7) and the corrugations (6) are arranged parallel to one another, and the incisions (7) connect adjacent flow ducts (20) to one another in terms of flow.
  2. Corrugated heat exchanger element according to Claim 1, characterized in that the direction (15) of arrangement of the corrugations (6) corresponds to the vertical (14), and the direction (15) of arrangement of the corrugations (6) in the following edge (4) has an angle (α) of incline with respect to the vertical (14).
  3. Corrugated heat exchanger element according to Claim 1, characterized in that the direction (15) of arrangement of the corrugations (6) in one edge (4) has an angle (α) of incline with respect to the vertical (14), and the direction (15) of arrangement of the corrugations (6) in the following edge (4) has an angle (α) of incline which is opposed but is preferably of the same size.
  4. Corrugated heat exchanger element according to one of the preceding claims, characterized in that the width of the corrugations at their start and at their end is shorter than in the adjoining main structure region.
  5. Corrugated heat exchanger element according to one of the preceding claims, characterized in that the width of the corrugations in the main structure region is at least 70% of the corrugation height (h).
  6. Corrugated heat exchanger element according to one of the preceding claims, characterized in that the angle (α) of incline of the corrugations (6) with respect to the vertical (14) is preferably not greater than 45°.
  7. Corrugated heat exchanger element according to one of the preceding claims, characterized in that the two planes which are formed by means of the apex points (2) are either arranged parallel to one another or at a decreasing or increasing distance from one another (corrugation height h).
EP03004778A 2002-04-27 2003-03-05 Corrugated heat exchange element Expired - Fee Related EP1357345B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10218912A DE10218912A1 (en) 2002-04-27 2002-04-27 Corrugated heat exchanger body
DE10218912 2002-04-27

Publications (3)

Publication Number Publication Date
EP1357345A2 EP1357345A2 (en) 2003-10-29
EP1357345A3 EP1357345A3 (en) 2007-05-09
EP1357345B1 true EP1357345B1 (en) 2009-09-09

Family

ID=28685319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03004778A Expired - Fee Related EP1357345B1 (en) 2002-04-27 2003-03-05 Corrugated heat exchange element

Country Status (3)

Country Link
US (1) US6942024B2 (en)
EP (1) EP1357345B1 (en)
DE (2) DE10218912A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10342241A1 (en) * 2003-09-11 2005-04-07 Behr Gmbh & Co. Kg heat exchangers
US7862011B2 (en) * 2004-12-23 2011-01-04 Az Evap, Llc Non uniform water distribution system for an evaporative cooler
DE202005009948U1 (en) * 2005-06-23 2006-11-16 Autokühler GmbH & Co. KG Heat exchange element and thus produced heat exchanger
JP4881583B2 (en) * 2005-06-27 2012-02-22 株式会社豊田自動織機 Power module heat sink
US7510174B2 (en) * 2006-04-14 2009-03-31 Kammerzell Larry L Dew point cooling tower, adhesive bonded heat exchanger, and other heat transfer apparatus
EP2108911B1 (en) * 2007-01-25 2019-08-21 The University of Tokyo Heat exchanger
DE102007049116A1 (en) 2007-10-12 2009-04-16 Modine Manufacturing Co., Racine Corrugated expanded metal manufacturing method for heat exchanger, involves transporting endless metal band through rolling route, where band is transformed by roller pairs, and inserting set of slots arranged at distances into metal band
DE102007049474B4 (en) 2007-10-16 2023-02-09 Innerio Heat Exchanger GmbH Method of manufacturing corrugated heat exchanger elements
US8376036B2 (en) 2007-11-02 2013-02-19 Az Evap, Llc Air to air heat exchanger
DE202008016603U1 (en) 2008-12-15 2010-04-29 Autokühler GmbH & Co. KG Corrugated rib for heat exchanger
JP5156773B2 (en) * 2010-02-25 2013-03-06 株式会社小松製作所 Corrugated fin and heat exchanger provided with the same
DE102011004306A1 (en) * 2011-02-17 2012-08-23 Behr Gmbh & Co. Kg Rib for a heat exchanger
US9538693B2 (en) * 2013-03-15 2017-01-03 A.K. Stamping Company, Inc. Aluminum EMI / RF shield
CN103256850A (en) * 2013-05-24 2013-08-21 南京北大工道软件技术有限公司 Sweepback-type louver fin
CN116498885B (en) * 2023-06-29 2023-09-12 中太海事技术(上海)有限公司 Corrugated plate and storage container with smooth top surface and draw beads

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298432A (en) * 1964-05-22 1967-01-17 Przyborowski Stanislaus Radiators
FR2468404A1 (en) * 1979-10-26 1981-05-08 Hamon Sobelco Sa RUNOFF SHEET FOR LIQUID AND GAS CONTACT PLANT FILLING DEVICE
AT380104B (en) * 1982-10-15 1986-04-10 Stelrad Radiatoren & Kessel DISK RADIATOR
DD245247A1 (en) * 1985-12-24 1987-04-29 Kyffhaeuserhuette Maschf WAERMEUEBERTRAGUNGSPLATTEN
CA1313183C (en) * 1989-02-24 1993-01-26 Allan K. So Embossed plate heat exchanger
FR2648220B1 (en) * 1989-06-12 1991-12-20 Commissariat Energie Atomique HEAT EXCHANGER IN THE FORM OF CORRUGATED AND SUPERIMPOSED PLATES
JP2786702B2 (en) * 1989-12-07 1998-08-13 昭和アルミニウム株式会社 Double integrated heat exchanger
US5029636A (en) * 1990-11-05 1991-07-09 General Motors Corporation Oil cooler with louvered center
FR2690503B1 (en) * 1992-04-23 1994-06-03 Commissariat Energie Atomique HIGH THERMAL PERFORMANCE PLATE EVAPORATOR OPERATING IN NUCLEATED BOILING CONDITIONS.
FR2704635B1 (en) * 1993-04-28 1995-06-02 Commissariat Energie Atomique Automobile radiator and manufacturing process.
FR2714456B1 (en) * 1993-12-29 1996-01-12 Commissariat Energie Atomique Improved plate heat exchanger.
US5616289A (en) * 1994-01-12 1997-04-01 Mitsubishi Corporation Substance and/or heat exchanging tower
DE19503766C2 (en) 1994-03-03 1996-05-15 Gea Luftkuehler Happel Gmbh Finned tube heat exchanger
US5476140A (en) * 1995-02-21 1995-12-19 Behr Heat Transfer Systems, Inc. Alternately staggered louvered heat exchanger fin
DE19652999C2 (en) * 1996-12-19 1999-06-24 Steag Ag Heat storage block for regenerative heat exchangers
DE19840912A1 (en) * 1998-09-08 2000-03-16 D.D.C. Planungs-, Entwicklungs- Und Management Ag Production of a heat exchanger in sandwich construction uses forming process to connect two cover parts and intermediate distance pieces
KR100297189B1 (en) * 1998-11-20 2001-11-26 황해웅 High efficiency modular OEL heat exchanger with heat transfer promoting effect
JP4482991B2 (en) * 1999-12-14 2010-06-16 株式会社デンソー Double heat exchanger
DE19963373A1 (en) * 1999-12-28 2001-07-12 Abb Alstom Power Ch Ag Device for cooling a flow channel wall surrounding a flow channel with at least one rib train
DE10102088A1 (en) * 2000-01-28 2001-08-16 Behr Gmbh & Co Intake cooler for motor vehicle supercharger has matrix of finned tubes with internal fins and turbulators
DE10041919C1 (en) * 2000-08-25 2001-10-31 Wieland Werke Ag Internally finned heat exchange tube has fins in individual zones arranged so that adjacent zones have fins offset at zone transition
JP4605925B2 (en) * 2001-03-08 2011-01-05 サンデン株式会社 Laminate heat exchanger
US20030075307A1 (en) * 2001-10-22 2003-04-24 Heatcraft, Inc. Exchanger of thermal energy with multiple cores and a thermal barrier
FR2834783B1 (en) * 2002-01-17 2004-06-11 Air Liquide THERMAL EXCHANGE FIN, METHOD FOR MANUFACTURING SAME, AND CORRESPONDING HEAT EXCHANGER

Also Published As

Publication number Publication date
EP1357345A2 (en) 2003-10-29
US20030213588A1 (en) 2003-11-20
EP1357345A3 (en) 2007-05-09
DE50311879D1 (en) 2009-10-22
DE10218912A1 (en) 2003-11-06
US6942024B2 (en) 2005-09-13

Similar Documents

Publication Publication Date Title
DE60219538T2 (en) heat exchangers
DE60022847T2 (en) Combined endless rib for heat exchangers
DE202005009948U1 (en) Heat exchange element and thus produced heat exchanger
DE102006048305B4 (en) Plate heat exchanger
DE102004033459B4 (en) Heat exchanger fin for a vehicle air conditioning system with parallel stratification of flat heat exchanger tubes
DE60021509T3 (en) Evaporator with improved condensate drain
EP1357345B1 (en) Corrugated heat exchange element
EP1445570B1 (en) Heat exchanger tube with corrugated insert and manufacturing method therefore
EP1910764B2 (en) Plate element for a plate cooler
DE112006001071B4 (en) Heat exchangers with turbulators with turns of varying heights
DE60118029T2 (en) HEAT EXCHANGER WITH BRAZED PLATES
DE112014002091B4 (en) heat exchanger
DE3536325A1 (en) HEAT EXCHANGER
DE112011100691T5 (en) Corrugated fin and heat exchanger comprising a corrugated fin
DE10118625A1 (en) Corrugated lamella with partial offset for plate heat exchanger; has adjacent rows of wave shapes, with each row offset transversely to wave direction, where legs of waves have recesses at edges
DE112014003247T5 (en) Rib for heat exchanger
DE102013204946A1 (en) Rib and heat exchanger, which uses the same
DE3606253A1 (en) Heat exchanger
DE112018006027T5 (en) IMPROVED HEAT TRANSFER AREA
DE112009000983T5 (en) Heat exchanger with expanded metal vortex generator
EP1640684A1 (en) heat exchanger with flat tubes and corrugated fins
DE19531383A1 (en) Heat exchanger with axially spaced external plates fitted to tubes
DE202008013351U1 (en) Heat exchanger network and thus equipped heat exchanger
DE10342241A1 (en) heat exchangers
DE602006000675T2 (en) Corrugated rib for integral heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20071109

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50311879

Country of ref document: DE

Date of ref document: 20091022

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140410

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150305

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160331

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50311879

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003