EP1357297B1 - Electric motor driven centrifugal pump unit - Google Patents

Electric motor driven centrifugal pump unit Download PDF

Info

Publication number
EP1357297B1
EP1357297B1 EP20020009096 EP02009096A EP1357297B1 EP 1357297 B1 EP1357297 B1 EP 1357297B1 EP 20020009096 EP20020009096 EP 20020009096 EP 02009096 A EP02009096 A EP 02009096A EP 1357297 B1 EP1357297 B1 EP 1357297B1
Authority
EP
European Patent Office
Prior art keywords
rotor
shaft
circulation pump
heating circulation
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020009096
Other languages
German (de)
French (fr)
Other versions
EP1357297A1 (en
Inventor
Jesper Buchreitz
Tom E. Larsen
Jorgen Schmidt
Erik Bundesen Svarre
Oluf Kjaer
Lars Ostergaard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos AS
Original Assignee
Grundfos AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos AS filed Critical Grundfos AS
Priority to EP20020009096 priority Critical patent/EP1357297B1/en
Publication of EP1357297A1 publication Critical patent/EP1357297A1/en
Application granted granted Critical
Publication of EP1357297B1 publication Critical patent/EP1357297B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/022Units comprising pumps and their driving means containing a coupling a coupling allowing slip, e.g. torque converter

Definitions

  • the invention relates to a heating circulation pump.
  • US 6,217,452 discloses a direction-dependent coupling for driving a centrifugal pump. Whereby this is not a heating circulation pump.
  • the coupling is arranged in the axial direction between the rotor and the impeller and has an elastic stop element, which comes depending on the direction of rotation with a wedge-shaped projection or a projecting projection on a driving cam of the impeller to the plant.
  • the wedge-shaped projection causes a braking effect, while in the reverse direction of the projection is taken and the impeller is driven.
  • the clutch has a circumferential clearance of almost 180 °.
  • the heating circulation pump according to the invention is designed as a centrifugal pump unit and has an electric motor and an impeller driven by this.
  • the impeller is connected to the rotor of the electric motor via a shaft.
  • Between the impeller and the rotor at least one elastic element is arranged in the power flow. This elastic element serves to dampen vibrations or torque shocks caused by the rotor, so that these vibrations and torque shocks are not transmitted in full to the impeller.
  • the elastic member is formed to have elastic hysteresis.
  • the elastic element is not completely elastic, but absorbs part of the introduced energy or converts it into heat.
  • the elastic element is suitably adapted to the natural frequency of the shaft and rotor in order to absorb corresponding vibrations can. In this way, disturbing vibrations and torque surges can be reduced, since the absorbed by the elastic element forces or pulses are no longer completely discharged in relaxation of the elastic member.
  • the elastic member may thus act as a very effective damper between the rotor and the impeller to dampen or absorb vibrations generated by the engine.
  • the elastic element is arranged between rotor and shaft. This makes it possible to dampen vibrations generated by the rotor or electric motor directly at the location of their occurrence, so that the drive shaft is also kept free from any vibrations. Furthermore, a larger space is available in the region of the rotor in order to arrange an elastic element as a vibration damper.
  • an elastic element between the shaft and impeller can be arranged.
  • the vibrations generated by the engine and the shaft can be damped so that they are not transmitted to the impeller and thus not to the medium to be conveyed. In this way, the noise of the circulation pump can be significantly reduced in a heating system.
  • the elastic element is preferably an elastomeric or metallic spring element.
  • An elastomeric element can be made for example of rubber or plastic in a known manner. Also spring elements in various designs are suitable for vibration damping or eradication in a circulating pump according to the invention.
  • an elastomeric element in particular an elastomeric sleeve, is arranged inside the rotor, which connects the rotor to the shaft in order to transmit the torque of the rotor to the shaft.
  • This arrangement also causes an elastic element for vibration damping or absorption in the force or torque flow between the rotor and shaft, so that generated by the rotor vibrations and torque surges are not transmitted to the shaft.
  • radially extending and circumferentially elastically deflectable webs for centering the rotor are arranged on the shaft between the shaft and the rotor and the elastic element is arranged between the shaft and the rotor in the force flow.
  • the elastically deflectable webs connect the rotor and the shaft with each other in the radial direction.
  • the webs are designed so that they can not transmit the torque to be transmitted alone, but in the circumferential direction allow a deflection or rotation of the rotor relative to the shaft due to their elasticity. This means that the webs are loaded only in the radial direction to pressure or train to center the rotor on the shaft.
  • the torque transmission from the rotor to the shaft takes place through the elastomer elements arranged between the rotor and the shaft.
  • the elastomer elements can damp or absorb vibrations, since the rotor can rotate relative to the shaft due to the elasticity of the webs by a certain predetermined amount. This possible rotation can be very small, it corresponds to the maximum amplitude of the vibrations to be damped or torque surges.
  • the arrangement of the webs between the shaft and rotor, despite the intermediate elastic element or elastomer element allows precise centering of the rotor on the shaft, since the rotor relative to the shaft due to the arranged webs has no radial play. This means that the occurring radial forces are absorbed completely by the webs and not by the elastomer elements arranged between the rotor and the shaft.
  • an elastic element can be arranged within the shaft. Even in this way you can Vibrations which occur in the rotor of the electric motor are absorbed or damped on the way to the impeller in the power flow, so that the impeller transmits no vibrations to the medium to be conveyed.
  • the shaft may for example be hollow, wherein a torsion bar is arranged in the interior of the shaft, the rotor rotatably connected to the shaft and the impeller rotatably connected to the torsion bar.
  • the torsion bar acts as an elastic element between the rotor and the impeller, in order to enable vibration damping or absorption.
  • This embodiment allows a very compact design, since the elastic element is arranged in the form of the torsion bar in the interior of the shaft.
  • the electric motor in the centrifugal pump unit is preferably a wet-running motor.
  • Such wet-running motors are often used in circulation pumps for heaters.
  • the engine is not tight from the medium to be delivered, such. As water, separated, but the medium to be pumped flows around the engine.
  • the electric motor has an externally and internally encapsulated permanent magnet rotor.
  • This encapsulation is necessary in wet-running engines, since the rotor is surrounded by the medium to be conveyed, ie water. If the rotor is not firmly connected to the shaft, ie if an elastic element is arranged between the rotor and the shaft, it is necessary to completely encapsulate the rotor also on the inside, ie the side facing the shaft. In this way, a rotor is provided which is completely sealed at the inner and outer circumference, so that no water can penetrate into the interior of the rotor.
  • the rotor is preferably a permanent magnet rotor, as used in modern heating circulation pumps.
  • a liquid passage is formed between the rotor and the shaft.
  • Such a fluid passage between the rotor and the shaft is required in order to completely vent the engine compartment of the centrifugal pump assembly.
  • the arrangement of the liquid passage between the rotor and shaft simplifies the manufacture of the pump, since it is no longer necessary to drill the shaft in order to create a corresponding fluid passage.
  • Fig. 1 shows a first preferred embodiment according to the invention.
  • the essential parts of a heating circulating pump are shown in section. Shown are the rotor 2 of the pump driving electric motor, the shaft 4 and the impeller 6, which is connected via the shaft 4 to the rotor 2. Also shown is the bearing plate 8, which carries the bearing 10 for supporting the shaft 4. The impeller 6 is fixedly connected to the shaft 4. Between rotor 2 and shaft 4, an elastic sleeve 12 is arranged. In this way, rotor 2 and shaft 4 are not directly connected to each other, but via the elastic sleeve 12, which transmits the torque from the rotor 2 to the shaft 4.
  • the elastic sleeve 12 is formed for example of an elastomeric material.
  • the material is preferably selected such that it has a sufficient hysteresis in order to be able to absorb the energy of vibrations occurring.
  • the elastomeric material is selected and used so that it can absorb in particular vibrations in the range of the natural frequency of the shaft and rotor.
  • the elastomeric material or the elastic sleeve 12 can absorb or damp vibrations or torque surges generated by the rotor 2, so that they are not transmitted to the shaft 4 and further to the impeller 6.
  • the impeller 6 is kept substantially free from torque surges and vibrations that would be transmitted to the fluid to be conveyed, which could lead to unwanted noise in a heating system.
  • Fig. 2 shows a further preferred embodiment similar to the embodiment according to FIG Fig. 1 , Also in Fig. 2 only the essential parts of a centrifugal pump, namely the rotor 2, the shaft 4 and the impeller 6 are shown. Furthermore, parts of the bearing plate 8 with the shaft 4 bearing bearing 10 are also shown here.
  • a coil spring 14 is arranged, which lies in the power flow between the rotor 2 and shaft 4.
  • the torque is thus transmitted from the rotor 2 to the shaft 4 via the coil spring 14, which damps or absorbs vibrations or torque shocks generated by the rotor 2.
  • the shaft 4 and the impeller 6 kept substantially free of vibrations, so that less vibrations are transmitted to the fluid to be pumped and noise in a heating system can be minimized.
  • Fig. 3 shows a third preferred embodiment according to the invention.
  • Fig. 3 again shows the essential parts of a centrifugal pump, namely the rotor 2 of the motor, not shown otherwise, the shaft 4, the impeller 6 and the bearing plate 8 with the bearing 10.
  • the shaft 4 is formed as a hollow shaft.
  • the shaft 4 is firmly connected to the rotor 2.
  • a torsion bar 16 is arranged, which is fixedly connected to the end of the shaft 4 adjacent to the rotor 2.
  • the torsion bar 16 extends in the longitudinal direction of the shaft 4 therethrough up to the impeller 6. At this end, the torsion bar 16 is not fixedly connected to the shaft 4.
  • the impeller 6 is rotatably mounted on the torsion bar 16. This causes the torsion bar 16 is in the power flow and transmits the torque from the shaft 4 to the impeller 6.
  • the torsion bar 16 acts as an elastic element for vibration damping or absorption between the rotor 2 and impeller 6. In this way, vibrations and torque surges generated by the rotor 2 can be kept away from the impeller 6 and the fluid to be delivered, so that no unwanted vibration transmission takes place on the fluid to be delivered.
  • Fig. 4 shows an exploded view of the shaft and rotor of a centrifugal pump with the associated components, in which case damping elements 28 are provided, which are arranged contrary to the invention not within the rotor, but at its axial ends.
  • the rotor 2 is shown disassembled into its individual parts.
  • the rotor 2 is composed of an iron part 18, a magnet 20, an outer shell 22, an inner shell 24 and two axial-side seals 26.
  • the rotor is a permanent magnet rotor, as used in modern heating circulation pumps.
  • the inner jacket 24, the outer jacket 22 and the two axial covers 26 the rotor 2 is completely encapsulated and formed watertight. This is necessary for use of the rotor 2 in a wet-running motor.
  • Such wet-running motors are preferably used in heating circulation pumps, for which the invention is particularly applicable.
  • a fluid passage for example in the form of a gap can be formed between the inner shell 24 and the shaft 4.
  • Such a fluid passage is required in wet-running engines to fully vent the engine compartment and fill it with liquid, such as water.
  • the arrangement of the fluid passage between the rotor 2 and shaft 4 allows cost-effective production, as can be dispensed with an elaborate boring of the shaft 4.
  • a gap or, for example, grooves in the inner shell 24 and / or the surface of the shaft 4 may be formed as a fluid passage.
  • the rotor 2 is not connected directly to the shaft 4, but via two damping elements 28, which are provided against the invention at the two axial end faces of the rotor 2.
  • the two damping elements 28 are identical constructed of the same components and arranged mirror-inverted to each other.
  • the damping elements 28 each consist of a carrier element 30 and a elastic element 32. The structure of the damping elements 28 will be described in detail with reference to FIG Fig. 5 described.
  • Fig. 5 shows a plan view of one of the damping elements 28.
  • the damping element 28 consists of an outer star 34 and an inner star 36.
  • the outer star 34 has three uniformly distributed over the circumference recesses 38, in which the inner star with projections 40 engages.
  • a bore 42 is provided, in which the shaft 4 is used.
  • the inner star 36 is rotatably connected to the shaft 4.
  • the inner star 36 is connected to the outer star 34 via three evenly distributed over the circumference, radially extending webs 44.
  • the webs 44 extend radially from the inner star 36 to the outside and protrude into recesses in the outer star 34, which are provided distributed uniformly between the recesses 38 over the circumference.
  • the webs 44 are fixedly connected to the inner star 36 and the outer star 34, preferably formed integrally therewith.
  • the outer star 34 is fixedly connected to one of the end faces or the covers 26 of the rotor 2.
  • the webs 44 are dimensioned so that they can transmit all acting between the rotor 2 and shaft 4 radial forces. They thus serve to center the rotor 2 on the shaft 4, since the rotor 2 can be fixed on the shaft 4 via the webs 44 in the radial direction without play.
  • the webs 44 are dimensioned so that they yield elastically in the circumferential direction, so that they are not able to transmit the torque acting on the rotor 2 to the shaft 4.
  • the elastic member 32 is preferably an elastomeric element or rubber element, which has a sufficient hysteresis and thus the desired damping properties.
  • the elastic element 32 is shaped such that U-shaped projections project into the free spaces between the outer star 34 and the inner star 36 in the region of the recesses 38. That way that can Torque from the rotor 2 via the recesses 38, the elastic member 32 are transmitted to the projections 40 of the inner star 36 and thus to the shaft 4.
  • the outer star 34 and the inner star 36 and the webs 44 may be made of metal or plastic.
  • the U-shaped projections of the elastic element 32 are arranged in all three existing recesses 38.
  • corresponding elastic elements in only one or only in two of the recesses 38.
  • the elastic element 32 is integrally formed.
  • the damping properties should be matched to the natural frequency of the shaft and the rotor, so that in the range of the natural frequency of shaft and rotor, the required damping is ensured.
  • the high oscillation amplitudes occurring at the natural frequency cause noises in the heating system so that these amplitude peaks in the power flow between rotor 2 and impeller 6 are intended to be damped or absorbed in a targeted manner.
  • Fig. 6 shows a further possible embodiment according to the invention.
  • Fig. 6 is shown in perspective view, the shaft 4 with the rotor 2.
  • the detailed structure of the embodiment according to Fig. 6 is based on the exploded view in Fig. 7 described in more detail.
  • the construction of the rotor 2 essentially corresponds to the structure of the rotor 2 according to FIG Fig. 4 ,
  • the rotor is composed of an iron part 18, a magnet 20, an outer casing 22, an inner casing 24 and two axial seals 26.
  • the rotor according to Fig. 7 according to the rotor according to Fig. 4 a fully sealed permanent magnet rotor.
  • the projections 52 on the inner star 50 be dimensioned in the radial direction so that they come to rest with the end faces of the grooves 46 and thus center the inner star 50 in the inner shell 24.
  • a fluid passage between the shaft 4 and the rotor 2 can be formed.
  • Such a fluid passage is preferably achieved in that the inner shell 24 has a larger inner diameter than the outer diameter of the inner star 50. This results between the projections 52 of the inner star 50 in the longitudinal direction of the shaft 4 over the entire length of the rotor 2 extending column, which can serve as fluid passages.
  • the damping properties of the damping element are preferably matched to the natural frequency of shaft 4 and rotor 2 in order to attenuate or absorb specific amplitude peaks in certain frequency ranges, in order to minimize unwanted noise in the fluid circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Heizungsumwälzpumpe.The invention relates to a heating circulation pump.

Als Heizungsumwälzpumpen werden meist elektromotorisch angetriebene Kreiselpumpenaggregate eingesetzt. Problematisch bei diesen Heizungsumwälzpumpen sind Strömungs- oder Resonanzgeräusche, welche diese Pumpen in dem zugehörigen Heizungssystem erzeugen. Dies führt zu unangenehmen Geräuschentwicklungen in den von dem Heizungssystem beheizten Räumen.As Heizungsumwälzpumpen usually electric motor driven centrifugal pump units are used. The problem with these heating circulation pumps are flow or resonance noises which generate these pumps in the associated heating system. This leads to unpleasant noise in the rooms heated by the heating system.

US 6,217,452 offenbart eine drehrichtungsabhängige Kupplung zum Antrieb einer Zentrifugalpumpe. Wobei es sich bei dieser nicht um eine Heizungsumwälzpumpe handelt. Die Kupplung ist in axialer Richtung gesehen zwischen Rotor und Laufrad angeordnet und weist ein elastisches Anschlagelement auf, welches je nach Drehrichtung mit einem keilförmigen Vorsprung oder einem planen Vorsprung an einem Mitnehmemocken des Laufrades zur Anlage kommt. Der keilförmige Vorsprung verursacht eine Bremswirkung, während bei umgekehrter Drehrichtung der Vorsprung mitgenommen wird und das Laufrad angetrieben wird. Bei einem Drehrichtungswechsel weist die Kupplung ein umfängliches Spiel von nahezu 180° auf. US 6,217,452 discloses a direction-dependent coupling for driving a centrifugal pump. Whereby this is not a heating circulation pump. The coupling is arranged in the axial direction between the rotor and the impeller and has an elastic stop element, which comes depending on the direction of rotation with a wedge-shaped projection or a projecting projection on a driving cam of the impeller to the plant. The wedge-shaped projection causes a braking effect, while in the reverse direction of the projection is taken and the impeller is driven. When a change of direction, the clutch has a circumferential clearance of almost 180 °.

Es ist Aufgabe der Erfindung, eine Heizungsumwälzpumpe, zu schaffen, welche eine möglichst geringe Geräuschentwicklung in einem Heizungssystem verursacht. Diese Aufgabe wird durch eine Heizungsumwälzpumpe mit den im Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen. Die erfindungsgemäße Heizungsumwälzpumpe ist als Kreiselpumpenaggregat ausgebildet und weist einen Elektromotor und ein von diesem angetriebenes Laufrad auf. Das Laufrad ist mit dem Rotor des Elektromotors über eine Welle verbunden. Zwischen dem Laufrad und dem Rotor ist zumindest ein elastisches Element im Kraftfluss angeordnet. Dieses elastische Element dient dazu, von dem Rotor verursachte Schwingungen oder Drehmomentstöße zu dämpfen, so dass diese Schwingungen und Drehmomentstöße nicht in vollem Umfang auf das Laufrad übertragen werden. Auf diese Weise wird verhindert, dass von dem Laufrad Schwingungen, welche durch den Motor verursacht werden, auf das zu fördernde Medium und weiter in das gesamte Heizungssystem übertragen werden können. Auf diese Weise können Schwingungen bzw. Impulse im Wasserkreislauf eines Heizungssystems, welche von üblichen Kreiselpumpen erzeugt werden können, verhindert werden. Auf diese Weise werden ebenfalls unerwünschte Geräusche, welche beim Einsatz von Kreiselpumpen in Heizungssystemen auftreten, verringert.It is an object of the invention to provide a heating circulation pump, which causes the lowest possible noise in a heating system. This object is achieved by a heating circulation pump having the features specified in claim 1. Preferred embodiments will be apparent from the dependent claims. The heating circulation pump according to the invention is designed as a centrifugal pump unit and has an electric motor and an impeller driven by this. The impeller is connected to the rotor of the electric motor via a shaft. Between the impeller and the rotor at least one elastic element is arranged in the power flow. This elastic element serves to dampen vibrations or torque shocks caused by the rotor, so that these vibrations and torque shocks are not transmitted in full to the impeller. In this way, it is possible to prevent vibrations which are caused by the motor being transmitted from the impeller to the medium to be conveyed and further into the entire heating system. In this way, vibrations or pulses in the water cycle of a heating system, which can be generated by conventional centrifugal pumps, can be prevented. In this way, unwanted noise, which occur when using centrifugal pumps in heating systems, also reduced.

Vorzugsweise ist das elastische Element so ausgebildet, dass es eine elastische Hysterese aufweist. Dies bedeutet, das elastische Element ist nicht vollständig elastisch, sondern absorbiert einen Teil der eingebrachten Energie bzw. wandelt ihn in Wärme um. Dazu wird das elastische Element zweckmäßigerweise auf die Eigenfrequenz von Welle und Rotor abgestimmt, um entsprechende Schwingungen absorbieren zu können. Auf diese Weise können störende Schwingungen und Drehmomentstöße vermindert werden, da die von dem elastischen Element aufgenommenen Kräfte bzw. Impulse bei Entspannung des elastischen Elements nicht mehr vollständig abgegeben werden. Das elastische Element kann so als sehr effektiver Dämpfer zwischen dem Rotor und dem Laufrad wirken, um von dem Motor erzeugte Schwingungen zu dämpfen bzw. zu absorbieren.Preferably, the elastic member is formed to have elastic hysteresis. This means that the elastic element is not completely elastic, but absorbs part of the introduced energy or converts it into heat. For this purpose, the elastic element is suitably adapted to the natural frequency of the shaft and rotor in order to absorb corresponding vibrations can. In this way, disturbing vibrations and torque surges can be reduced, since the absorbed by the elastic element forces or pulses are no longer completely discharged in relaxation of the elastic member. The elastic member may thus act as a very effective damper between the rotor and the impeller to dampen or absorb vibrations generated by the engine.

Das elastische Element ist zwischen Rotor und Welle angeordnet. Dies ermöglicht, vom Rotor bzw. Elektromotor erzeugte Schwingungen direkt am Ort ihres Auftretens zu dämpfen, so dass auch die Antriebswelle von etwaigen Schwingungen freigehalten wird. Ferner ist im Bereich des Rotors ein größerer Bauraum vorhanden, um ein elastisches Element als Schwingungsdämpfer anzuordnen.The elastic element is arranged between rotor and shaft. This makes it possible to dampen vibrations generated by the rotor or electric motor directly at the location of their occurrence, so that the drive shaft is also kept free from any vibrations. Furthermore, a larger space is available in the region of the rotor in order to arrange an elastic element as a vibration damper.

Zusätzlich kann ein elastisches Element zwischen Welle und Laufrad angeordnet werden. Dadurch können die von dem Motor und der Welle erzeugten Schwingungen so gedämpft werden, dass sie nicht auf das Laufrad und somit nicht auf das zu fördernde Medium übertragen werden. Auch auf diese Weise kann die Geräuschentwicklung der Umwälzpumpe in einem Heizungssystem deutlich verringert werden.In addition, an elastic element between the shaft and impeller can be arranged. As a result, the vibrations generated by the engine and the shaft can be damped so that they are not transmitted to the impeller and thus not to the medium to be conveyed. In this way, the noise of the circulation pump can be significantly reduced in a heating system.

Das elastische Element ist vorzugsweise ein Elastomer- oder ein metallisches Federelement. Ein Elastomerelement kann beispielsweise aus Gummi oder Kunststoff in bekannter Weise gefertigt werden. Auch Federelemente in verschiedenster Ausgestaltung eignen sich zur Schwingungsdämpfung bzw. -tilgung in einer Umwälzpumpe gemäß der Erfindung.The elastic element is preferably an elastomeric or metallic spring element. An elastomeric element can be made for example of rubber or plastic in a known manner. Also spring elements in various designs are suitable for vibration damping or eradication in a circulating pump according to the invention.

Gemäß einer weiteren Ausführungsform ist im Inneren des Rotors ein Elastomerelement, insbesondere eine Elastomerhülse, angeordnet, welche den Rotor mit der Welle verbindet, um das Drehmoment des Rotors auf die Welle zu übertragen. Auch diese Anordnung bewirkt, dass ein elastisches Element zur Schwingungsdämpfung bzw. - absorption im Kraft- bzw. Drehmomentfluss zwischen Rotor und Welle liegt, so dass von dem Rotor erzeugte Schwingungen und Drehmomentstöße nicht auf die Welle übertragen werden.According to a further embodiment, an elastomeric element, in particular an elastomeric sleeve, is arranged inside the rotor, which connects the rotor to the shaft in order to transmit the torque of the rotor to the shaft. This arrangement also causes an elastic element for vibration damping or absorption in the force or torque flow between the rotor and shaft, so that generated by the rotor vibrations and torque surges are not transmitted to the shaft.

Weiter bevorzugt sind zwischen der Welle und dem Rotor radial verlaufende und in Umfangsrichtung elastisch auslenkbare Stege zur Zentrierung des Rotors an der Welle angeordnet und das elastische Element ist zwischen der Welle und dem Rotor im Kraftfluss angeordnet. Die elastisch auslenkbaren Stege verbinden den Rotor und die Welle miteinander in radialer Richtung. Die Stege sind jedoch so ausgebildet, dass sie das zu übertragende Drehmoment nicht allein übertragen können, sondern in Umfangsrichtung eine Auslenkung bzw. Verdrehung des Rotors gegenüber der Welle aufgrund ihrer Elastizität ermöglichen. Das bedeutet, die Stege werden lediglich in radialer Richtung auf Druck oder Zug zur Zentrierung des Rotors an der Welle belastet. Die Drehmomentübertragung von dem Rotor auf die Welle erfolgt durch die zwischen Rotor und Welle angeordneten Elastomerelemente. Dabei können die Elastomerelemente Schwingungen dämpfen bzw. absorbieren, da sich der Rotor gegenüber der Welle aufgrund der Elastizität der Stege um ein gewisses vorbestimmtes Maß verdrehen kann. Diese mögliche Verdrehung kann sehr klein sein, sie entspricht der maximalen Amplitude der zu dämpfenden Schwingungen bzw. Drehmomentstöße. Die Anordnung der Stege zwischen Welle und Rotor ermöglicht trotz des zwischengeordneten elastischen Elementes bzw. Elastomerelementes eine genaue Zentrierung des Rotors auf der Welle, da der Rotor gegenüber der Welle aufgrund der angeordneten Stege kein radiales Spiel aufweist. Das bedeutet, die auftretenden Radialkräfte werden vollständig von den Stegen und nicht von den zwischen Rotor und Welle angeordneten Elastomerelementen aufgenommen.More preferably, radially extending and circumferentially elastically deflectable webs for centering the rotor are arranged on the shaft between the shaft and the rotor and the elastic element is arranged between the shaft and the rotor in the force flow. The elastically deflectable webs connect the rotor and the shaft with each other in the radial direction. However, the webs are designed so that they can not transmit the torque to be transmitted alone, but in the circumferential direction allow a deflection or rotation of the rotor relative to the shaft due to their elasticity. This means that the webs are loaded only in the radial direction to pressure or train to center the rotor on the shaft. The torque transmission from the rotor to the shaft takes place through the elastomer elements arranged between the rotor and the shaft. In this case, the elastomer elements can damp or absorb vibrations, since the rotor can rotate relative to the shaft due to the elasticity of the webs by a certain predetermined amount. This possible rotation can be very small, it corresponds to the maximum amplitude of the vibrations to be damped or torque surges. The arrangement of the webs between the shaft and rotor, despite the intermediate elastic element or elastomer element allows precise centering of the rotor on the shaft, since the rotor relative to the shaft due to the arranged webs has no radial play. This means that the occurring radial forces are absorbed completely by the webs and not by the elastomer elements arranged between the rotor and the shaft.

Gemäß einer weiteren Ausführungsform kann alternativ oder zusätzlich innerhalb der Welle ein elastisches Element angeordnet sein. Auch auf diese Weise können Schwingungen, welche im Rotor des Elektromotors auftreten, auf dem Weg zum Laufrad im Kraftfluss absorbiert bzw. gedämpft werden, so dass das Laufrad keine Schwingungen auf das zu fördernde Medium überträgt.According to a further embodiment, alternatively or additionally, an elastic element can be arranged within the shaft. Even in this way you can Vibrations which occur in the rotor of the electric motor are absorbed or damped on the way to the impeller in the power flow, so that the impeller transmits no vibrations to the medium to be conveyed.

Dazu kann die Welle beispielsweise hohl ausgebildet sein, wobei im Inneren der Welle ein Drehstab angeordnet ist, der Rotor drehfest mit der Welle und das Laufrad drehfest mit dem Drehstab verbunden ist. Bei dieser Ausführungsform wirkt der Drehstab als elastisches Element zwischen Rotor und Laufrad, um eine Schwingungsdämpfung bzw. - absorption zu ermöglichen. Diese Ausführungsform ermöglicht eine sehr kompakte Ausgestaltung, da das elastische Element in Form des Drehstabes im Inneren der Welle angeordnet ist.For this purpose, the shaft may for example be hollow, wherein a torsion bar is arranged in the interior of the shaft, the rotor rotatably connected to the shaft and the impeller rotatably connected to the torsion bar. In this embodiment, the torsion bar acts as an elastic element between the rotor and the impeller, in order to enable vibration damping or absorption. This embodiment allows a very compact design, since the elastic element is arranged in the form of the torsion bar in the interior of the shaft.

Der Elektromotor in dem Kreiselpumpenaggregat ist vorzugsweise ein Nasslaufmotor. Derartige Nasslaufmotoren werden häufig in Umwälzpumpen für Heizungen eingesetzt. Dabei ist der Motor nicht dicht von dem zu fördernden Medium, wie z. B. Wasser, getrennt, vielmehr umspült das zu fördernde Medium den Motor.The electric motor in the centrifugal pump unit is preferably a wet-running motor. Such wet-running motors are often used in circulation pumps for heaters. The engine is not tight from the medium to be delivered, such. As water, separated, but the medium to be pumped flows around the engine.

Weiter bevorzugt weist der Elektromotor einen außen und innen gekapselten Permanentmagnetrotor auf. Diese Kapselung ist bei Nasslaufmotoren notwendig, da der Rotor von dem zu fördernden Medium, d. h. Wasser, umgeben ist. Wenn der Rotor nicht fest mit der Welle verbunden ist, d. h. wenn zwischen Rotor und Welle ein elastisches Element angeordnet ist, ist es erforderlich, den Rotor auch auf der Innenseite, d.h. der der Welle zugewandten Seite, vollständig zu kapseln. Auf diese Weise wird ein Rotor geschaffen, welcher am Innen- und Außenumfang vollständig dicht gekapselt ist, so dass kein Wasser in das Innere des Rotors eindringen kann. Dabei ist der Rotor bevorzugt ein Permanentmagnetrotor, wie er in modernen Heizungsumwälzpumpen eingesetzt wird. Zweckmäßigerweise ist zwischen Rotor und Welle eine Flüssigkeitspassage ausgebildet. Eine solche Flüssigkeitspassage zwischen Rotor und Welle ist erforderlich, um den Motorraum des Kreiselpumpenaggregates vollständig entlüften zu können. Dabei vereinfacht die Anordnung der Flüssigkeitspassage zwischen Rotor und Welle die Herstellung der Pumpe, da es nicht mehr erforderlich ist, die Welle aufzubohren, um einen entsprechenden Flüssigkeitsdurchgang zu schaffen.More preferably, the electric motor has an externally and internally encapsulated permanent magnet rotor. This encapsulation is necessary in wet-running engines, since the rotor is surrounded by the medium to be conveyed, ie water. If the rotor is not firmly connected to the shaft, ie if an elastic element is arranged between the rotor and the shaft, it is necessary to completely encapsulate the rotor also on the inside, ie the side facing the shaft. In this way, a rotor is provided which is completely sealed at the inner and outer circumference, so that no water can penetrate into the interior of the rotor. The rotor is preferably a permanent magnet rotor, as used in modern heating circulation pumps. Conveniently, a liquid passage is formed between the rotor and the shaft. Such a fluid passage between the rotor and the shaft is required in order to completely vent the engine compartment of the centrifugal pump assembly. The arrangement of the liquid passage between the rotor and shaft simplifies the manufacture of the pump, since it is no longer necessary to drill the shaft in order to create a corresponding fluid passage.

Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:

Fig. 1
eine geschnittene Teilansicht eines Kreiselpumpenaggre- gats gemäß einer ersten Ausführungsform der Erfindung,
Fig. 2
eine geschnittene Teilansicht eines Kreiselpumpenaggre- gats gemäß einer zweiten Ausführungsform der Erfindung,
Fig. 3
eine geschnittene Teilansicht eines Kreiselpumpenaggre- gats gemäß einer dritten Ausführungsform der Erfindung,
Fig. 4
eine Explosionsansicht einer Welle und eines Rotor mit ei- ner nicht erfindungsgemäßen Anordnung eines Dämp- fungselements,
Fig. 5
eine Draufsicht auf ein Dämpfungselement gemäß Fig. 4,
Fig. 6
Rotor und Welle gemäß einer weiteren Ausführungsform und
Fig. 7
eine Explosionsansicht von Rotor und Welle gemäß Fig. 4.
The invention will now be described by way of example with reference to the accompanying drawings. In these shows:
Fig. 1
4 is a partial sectional view of a centrifugal pump unit according to a first embodiment of the invention,
Fig. 2
4 is a partial sectional view of a centrifugal pump unit according to a second embodiment of the invention;
Fig. 3
3 is a partial sectional view of a centrifugal pump unit according to a third embodiment of the invention,
Fig. 4
6 is an exploded view of a shaft and a rotor with a non-inventive arrangement of a damping element,
Fig. 5
a plan view of a damping element according to Fig. 4 .
Fig. 6
Rotor and shaft according to another embodiment and
Fig. 7
an exploded view of the rotor and shaft according to Fig. 4 ,

Fig. 1 zeigt eine erste bevorzugte Ausführungsform gemäß der Erfindung. In Fig. 1 sind die wesentlichen Teile einer Heizungsumwälzpumpe im Schnitt dargestellt. Dargestellt sind der Rotor 2 des die Pumpe antreibenden Elektromotors, die Welle 4 und das Laufrad 6, welches über die Welle 4 mit dem Rotor 2 verbunden ist. Weiter dargestellt ist der Lagerschild 8, welcher das Lager 10 zur Lagerung der Welle 4 trägt. Das Laufrad 6 ist fest mit der Welle 4 verbunden. Zwischen Rotor 2 und Welle 4 ist ein elastische Hülse 12 angeordnet. Auf diese Weise sind Rotor 2 und Welle 4 nicht direkt miteinander verbunden, sondern über die elastische Hülse 12, welche das Drehmoment von dem Rotor 2 auf die Welle 4 überträgt. Die elastische Hülse 12 ist beispielsweise aus einem Elastomermaterial ausgebildet. Dabei ist das Material vorzugsweise so gewählt, dass es eine ausreichende Hysterese aufweist, um die Energie von auftretenden Schwingungen absorbieren zu können. Dabei wird das Elastomermaterial so ausgewählt und eingesetzt, dass es insbesondere Schwingungen im Bereich der Eigenfrequenz von Welle und Rotor absorbieren kann. Auf diese Weise kann das Elastomermaterial bzw. die elastische Hülse 12 von dem Rotor 2 erzeugte Schwingungen oder Drehmomentstöße absorbieren oder dämpfen, so dass diese nicht auf die Welle 4 und weiter auf das Laufrad 6 übertragen werden. Dadurch wird das Laufrad 6 im Wesentlichen freigehalten von Drehmomentstößen und Schwingungen, welche sich auf das zu fördernde Fluid übertragen würden, was zu unerwünschten Geräuschen in einem Heizungssystem führen könnte. Fig. 1 shows a first preferred embodiment according to the invention. In Fig. 1 the essential parts of a heating circulating pump are shown in section. Shown are the rotor 2 of the pump driving electric motor, the shaft 4 and the impeller 6, which is connected via the shaft 4 to the rotor 2. Also shown is the bearing plate 8, which carries the bearing 10 for supporting the shaft 4. The impeller 6 is fixedly connected to the shaft 4. Between rotor 2 and shaft 4, an elastic sleeve 12 is arranged. In this way, rotor 2 and shaft 4 are not directly connected to each other, but via the elastic sleeve 12, which transmits the torque from the rotor 2 to the shaft 4. The elastic sleeve 12 is formed for example of an elastomeric material. In this case, the material is preferably selected such that it has a sufficient hysteresis in order to be able to absorb the energy of vibrations occurring. In this case, the elastomeric material is selected and used so that it can absorb in particular vibrations in the range of the natural frequency of the shaft and rotor. In this way, the elastomeric material or the elastic sleeve 12 can absorb or damp vibrations or torque surges generated by the rotor 2, so that they are not transmitted to the shaft 4 and further to the impeller 6. As a result, the impeller 6 is kept substantially free from torque surges and vibrations that would be transmitted to the fluid to be conveyed, which could lead to unwanted noise in a heating system.

Fig. 2 zeigt eine weitere bevorzugte Ausführungsform ähnlich zu der Ausführungsform gemäß Fig. 1. Auch in Fig. 2 sind nur die wesentlichen Teile einer Kreiselpumpe, nämlich der Rotor 2, die Welle 4 und das Laufrad 6 dargestellt. Ferner sind auch hier Teile des Lagerschildes 8 mit dem die Welle 4 tragenden Lager 10 gezeigt. In der Ausführungsform gemäß Fig. 2 ist anstelle der elastischen Hülse 12 zwischen dem Rotor 2 und der Welle 4 eine Schraubenfeder 14 angeordnet, welche im Kraftfluss zwischen Rotor 2 und Welle 4 liegt. Bei dieser Ausführungsform wird somit das Drehmoment von dem Rotor 2 auf die Welle 4 über die Schraubenfeder 14 übertragen, welche von dem Rotor 2 erzeugte Schwingungen oder Drehmomentstöße dämpft bzw. absorbiert. Auf diese Weise werden auch bei der Ausführungsform gemäß Fig. 2 die Welle 4 und das Laufrad 6 im Wesentlichen frei von Schwingungen gehalten, so dass weniger Schwingungen auf das zu fördernde Fluid übertragen werden und Geräusche in einem Heizungssystem minimiert werden können. Fig. 2 shows a further preferred embodiment similar to the embodiment according to FIG Fig. 1 , Also in Fig. 2 only the essential parts of a centrifugal pump, namely the rotor 2, the shaft 4 and the impeller 6 are shown. Furthermore, parts of the bearing plate 8 with the shaft 4 bearing bearing 10 are also shown here. In the embodiment according to Fig. 2 is instead of the elastic sleeve 12 between the rotor 2 and the shaft 4, a coil spring 14 is arranged, which lies in the power flow between the rotor 2 and shaft 4. In this embodiment, the torque is thus transmitted from the rotor 2 to the shaft 4 via the coil spring 14, which damps or absorbs vibrations or torque shocks generated by the rotor 2. In this way, also in the embodiment according to Fig. 2 the shaft 4 and the impeller 6 kept substantially free of vibrations, so that less vibrations are transmitted to the fluid to be pumped and noise in a heating system can be minimized.

Fig. 3 zeigt eine dritte bevorzugte Ausführungsform gemäß der Erfindung. Fig. 3 zeigt wiederum die wesentlichen Teile einer Kreiselpumpe, nämlich den Rotor 2 des ansonsten nicht gezeigten Motors, die Welle 4, das Laufrad 6 sowie den Lagerschild 8 mit dem Lager 10. Bei der Ausführungsform gemäß Fig. 3 ist die Welle 4 als Hohlwelle ausgebildet. Die Welle 4 ist fest mit dem Rotor 2 verbunden. Im Inneren der hohl ausgebildeten Welle ist ein Drehstab 16 angeordnet, welcher an dem zu dem Rotor 2 benachbarten Ende der Welle 4 mit dieser fest verbunden ist. Der Drehstab 16 erstreckt sich in Längsrichtung der Welle 4 durch diese hindurch bis zu dem Laufrad 6. An diesem Ende ist der Drehstab 16 nicht fest mit der Welle 4 verbunden. Das Laufrad 6 ist drehfest an dem Drehstab 16 angebracht. Dies bewirkt, dass der Drehstab 16 im Kraftfluss liegt und das Drehmoment von der Welle 4 auf das Laufrad 6 überträgt. Dabei fungiert der Drehstab 16 als elastisches Element zur Schwingungsdämpfung bzw. -absorption zwischen Rotor 2 und Laufrad 6. Auf diese Weise können von dem Rotor 2 erzeugte Schwingungen und Drehmomentstöße von dem Laufrad 6 und dem zu fördernden Fluid ferngehalten werden, so dass keine unerwünschte Schwingungsübertragung auf das zu fördernde Fluid erfolgt. Fig. 3 shows a third preferred embodiment according to the invention. Fig. 3 again shows the essential parts of a centrifugal pump, namely the rotor 2 of the motor, not shown otherwise, the shaft 4, the impeller 6 and the bearing plate 8 with the bearing 10. In the embodiment according to Fig. 3 the shaft 4 is formed as a hollow shaft. The shaft 4 is firmly connected to the rotor 2. In the interior of the hollow shaft, a torsion bar 16 is arranged, which is fixedly connected to the end of the shaft 4 adjacent to the rotor 2. The torsion bar 16 extends in the longitudinal direction of the shaft 4 therethrough up to the impeller 6. At this end, the torsion bar 16 is not fixedly connected to the shaft 4. The impeller 6 is rotatably mounted on the torsion bar 16. This causes the torsion bar 16 is in the power flow and transmits the torque from the shaft 4 to the impeller 6. In this case, the torsion bar 16 acts as an elastic element for vibration damping or absorption between the rotor 2 and impeller 6. In this way, vibrations and torque surges generated by the rotor 2 can be kept away from the impeller 6 and the fluid to be delivered, so that no unwanted vibration transmission takes place on the fluid to be delivered.

Fig. 4 zeigt eine Explosionsansicht von Welle und Rotor einer Kreiselpumpe mit den zugehörigen Bauteilen, wobei hier Dämpfungselemente 28 vorgesehen sind, welche entgegen der Erfindung nicht innerhalb des Rotors, sondern an dessen Axialenden angeordnet sind. In Fig. 4 ist der Rotor 2 in seine Einzelteile zerlegt dargestellt. Der Rotor 2 setzt sich zusammen aus einem Eisenteil 18, einem Magnet 20, einem Außenmantel 22, einem Innenmantel 24 sowie zwei axialseitigen Abdichtungen 26. Bei dem Rotor handelt es sich um einen Permanentmagnetrotor, wie er in modernen Heizungsumwälzpumpen eingesetzt wird. Durch den Innenmantel 24, den Außenmantel 22 sowie die beiden axialen Abdeckungen 26 ist der Rotor 2 vollständig gekapselt und wasserdicht ausgebildet. Dies ist erforderlich zum Einsatz des Rotors 2 in einem Nasslaufmotor. Derartige Nasslaufmotoren werden in Heizungsumwälzpumpen, für welche die Erfindung insbesondere anwendbar ist, bevorzugt eingesetzt. Dadurch, dass der Rotor 2 durch den Innenmantel 24 an der der Welle 4 zugewandten Seite vollständig gekapselt ist, kann zwischen dem Innenmantel 24 und der Welle 4 ein Flüssigkeitsdurchgang beispielsweise in Form eines Spaltes ausgebildet werden. Ein solcher Flüssigkeitsdurchgang ist in Nasslaufmotoren erforderlich, um den Motorraum vollständig entlüften und mit Flüssigkeit, beispielsweise Wasser, füllen zu können. Die Anordnung des Flüssigkeitsdurchganges zwischen Rotor 2 und Welle 4 ermöglicht eine kostengünstige Fertigung, da auf ein aufwändiges Aufbohren der Welle 4 verzichtet werden kann. Stattdessen können zwischen dem Innenmantel 24 und der Welle 4 ein Spalt oder beispielsweise Nuten in dem Innenmantel 24 und/oder der Oberfläche der Welle 4 als Flüssigkeitsdurchgang ausgebildet werden. Der Rotor 2 ist nicht direkt mit der Welle 4 verbunden, sondern über zwei Dämpfungselemente 28, welche entgegen der Erfindung an den beiden axialen Stirnseiten des Rotors 2 vorgesehen sind. Dabei sind die beiden Dämpfungselemente 28 identisch aus gleichen Bauteilen aufgebaut und spiegelverkehrt zueinander angeordnet. Die Dämpfungselemente 28 bestehen jeweils aus einem Trägerelement 30 sowie einem elastischen Element 32. Der Aufbau der Dämpfungselemente 28 wird näher anhand von Fig. 5 beschrieben. Fig. 4 shows an exploded view of the shaft and rotor of a centrifugal pump with the associated components, in which case damping elements 28 are provided, which are arranged contrary to the invention not within the rotor, but at its axial ends. In Fig. 4 the rotor 2 is shown disassembled into its individual parts. The rotor 2 is composed of an iron part 18, a magnet 20, an outer shell 22, an inner shell 24 and two axial-side seals 26. The rotor is a permanent magnet rotor, as used in modern heating circulation pumps. Through the inner jacket 24, the outer jacket 22 and the two axial covers 26, the rotor 2 is completely encapsulated and formed watertight. This is necessary for use of the rotor 2 in a wet-running motor. Such wet-running motors are preferably used in heating circulation pumps, for which the invention is particularly applicable. Characterized in that the rotor 2 is completely encapsulated by the inner shell 24 on the side facing the shaft 4, a fluid passage, for example in the form of a gap can be formed between the inner shell 24 and the shaft 4. Such a fluid passage is required in wet-running engines to fully vent the engine compartment and fill it with liquid, such as water. The arrangement of the fluid passage between the rotor 2 and shaft 4 allows cost-effective production, as can be dispensed with an elaborate boring of the shaft 4. Instead, between the inner shell 24 and the shaft 4, a gap or, for example, grooves in the inner shell 24 and / or the surface of the shaft 4 may be formed as a fluid passage. The rotor 2 is not connected directly to the shaft 4, but via two damping elements 28, which are provided against the invention at the two axial end faces of the rotor 2. The two damping elements 28 are identical constructed of the same components and arranged mirror-inverted to each other. The damping elements 28 each consist of a carrier element 30 and a elastic element 32. The structure of the damping elements 28 will be described in detail with reference to FIG Fig. 5 described.

Fig. 5 zeigt eine Draufsicht auf eines der Dämpfungselemente 28. Das Dämpfungselement 28 besteht aus einem Außenstern 34 und einem Innenstern 36. Im gezeigten Beispiels weist der Außenstern 34 drei gleichmäßig über den Umfang verteilte Ausnehmungen 38 auf, in welche der Innenstern mit Vorsprüngen 40 eingreift. Im Inneren des Innensterns 36 ist eine Bohrung 42 vorgesehen, in welche die Welle 4 eingesetzt wird. Der Innenstern 36 wird drehfest mit der Welle 4 verbunden. Ferner ist der Innenstern 36 mit dem Außenstern 34 über drei gleichmäßig über den Umfang verteilte, sich radial erstreckende Stege 44 verbunden. Die Stege 44 erstrecken sich radial von dem Innenstern 36 nach außen und ragen in Ausnehmungen in dem Außenstern 34 herein, welche zwischen den Ausnehmungen 38 gleichmäßig über den Umfang verteilt vorgesehen sind. Die Stege 44 sind fest mit dem Innenstern 36 und dem Außenstern 34 verbunden, vorzugsweise mit diesen einstückig ausgebildet. Der Außenstern 34 ist fest mit einer der Stirnseiten bzw. den Abdeckungen 26 des Rotors 2 verbunden. Die Stege 44 sind so dimensioniert, dass sie sämtliche zwischen Rotor 2 und Welle 4 wirkenden Radialkräfte übertragen können. Sie dienen damit zur Zentrierung des Rotors 2 auf der Welle 4, da der Rotor 2 über die Stege 44 in radialer Richtung spielfrei an der Welle 4 fixiert werden kann. Fig. 5 shows a plan view of one of the damping elements 28. The damping element 28 consists of an outer star 34 and an inner star 36. In the example shown, the outer star 34 has three uniformly distributed over the circumference recesses 38, in which the inner star with projections 40 engages. Inside the inner star 36, a bore 42 is provided, in which the shaft 4 is used. The inner star 36 is rotatably connected to the shaft 4. Furthermore, the inner star 36 is connected to the outer star 34 via three evenly distributed over the circumference, radially extending webs 44. The webs 44 extend radially from the inner star 36 to the outside and protrude into recesses in the outer star 34, which are provided distributed uniformly between the recesses 38 over the circumference. The webs 44 are fixedly connected to the inner star 36 and the outer star 34, preferably formed integrally therewith. The outer star 34 is fixedly connected to one of the end faces or the covers 26 of the rotor 2. The webs 44 are dimensioned so that they can transmit all acting between the rotor 2 and shaft 4 radial forces. They thus serve to center the rotor 2 on the shaft 4, since the rotor 2 can be fixed on the shaft 4 via the webs 44 in the radial direction without play.

Ferner sind die Stege 44 jedoch so dimensioniert, dass sie in Umfangsrichtung elastisch nachgeben, so dass sie nicht in der Lage sind, das auf den Rotor 2 wirkende Moment auf die Welle 4 zu übertragen. Die Drehmomentübertragung von Rotor 2 auf die Welle 4 erfolgt über das elastische Element 32. Das elastische Element 32 ist vorzugsweise ein Elastomerelement oder Gummielement, welches eine ausreichende Hysterese und damit die gewünschten Dämpfungseigenschaften aufweist. Das elastische Element 32 ist so geformt, dass u-förmige Vorsprünge in die Freiräume zwischen Außenstern 34 und Innenstern 36 im Bereich der Ausnehmungen 38 hineinragen. Auf diese Weise kann das Drehmoment von dem Rotor 2 über die Ausnehmungen 38, das elastische Element 32 auf die Vorsprünge 40 des Innensterns 36 und damit auf die Welle 4 übertragen werden. Da die Stege 44 in Umfangsrichtung nachgiebig dimensioniert sind, ist eine geringfügige Bewegung des Außensterns 34 relativ zu dem Innenstern 36 in Umfangsrichtung möglich, so dass die zwischen Außenstern 34 und Innenstern 36 angeordneten elastischen Elemente 32 die gewünschten Dämpfungseigenschaften bewirken können. Der Außenstern 34 und der Innenstern 36 sowie die Stege 44 können aus Metall oder Kunststoff bestehen.Furthermore, however, the webs 44 are dimensioned so that they yield elastically in the circumferential direction, so that they are not able to transmit the torque acting on the rotor 2 to the shaft 4. The torque transmission from the rotor 2 to the shaft 4 via the elastic member 32. The elastic member 32 is preferably an elastomeric element or rubber element, which has a sufficient hysteresis and thus the desired damping properties. The elastic element 32 is shaped such that U-shaped projections project into the free spaces between the outer star 34 and the inner star 36 in the region of the recesses 38. That way that can Torque from the rotor 2 via the recesses 38, the elastic member 32 are transmitted to the projections 40 of the inner star 36 and thus to the shaft 4. Since the webs 44 are dimensioned yielding in the circumferential direction, a slight movement of the outer star 34 relative to the inner star 36 in the circumferential direction is possible, so that the arranged between the outer star 34 and inner star 36 elastic elements 32 can cause the desired damping properties. The outer star 34 and the inner star 36 and the webs 44 may be made of metal or plastic.

Im gezeigten Beispiel sind in allen drei vorhandenen Ausnehmungen 38 die u-förmigen Vorsprünge des elastischen Elementes 32 angeordnet. Je nach gewünschten Dämpfungseigenschaften ist es jedoch auch möglich, beispielsweise nur in einer oder nur in zweien der Ausnehmungen 38 entsprechende elastische Elemente anzuordnen. Ferner ist es denkbar, mehr als drei Ausnehmungen 38 vorzusehen. Ferner ist im gezeigten Beispiel das elastische Element 32 einstückig ausgebildet. Es ist jedoch auch möglich, in jede der Ausnehmungen 38 ein separates elastisches Element zwischen Innenstern 36 und Außenstern 34 anzuordnen. Die Anzahl, die Anordnung und die Wahl des Materials der elastischen Elemente werden entsprechend der gewünschten Dämpfungseigenschaften eingestellt. Die Dämpfungseigenschaften sollten auf die Eigenfrequenz der Welle und des Rotors abgestimmt werden, so dass im Bereich der Eigenfrequenz von Welle und Rotor die erforderliche Dämpfung gewährleistet ist. Insbesondere die bei der Eigenfrequenz auftretenden hohen Schwingungsamplituden verursachen in Heizungssystem Geräusche, so dass gezielt diese Amplitudenspitzen im Kraftfluss zwischen Rotor 2 und Laufrad 6 gedämpft bzw. absorbiert werden sollen.In the example shown, the U-shaped projections of the elastic element 32 are arranged in all three existing recesses 38. Depending on the desired damping properties, however, it is also possible, for example, to arrange corresponding elastic elements in only one or only in two of the recesses 38. Furthermore, it is conceivable to provide more than three recesses 38. Furthermore, in the example shown, the elastic element 32 is integrally formed. However, it is also possible to arrange a separate elastic element between inner star 36 and outer star 34 in each of the recesses 38. The number, arrangement and choice of material of the elastic members are adjusted according to the desired damping characteristics. The damping properties should be matched to the natural frequency of the shaft and the rotor, so that in the range of the natural frequency of shaft and rotor, the required damping is ensured. In particular, the high oscillation amplitudes occurring at the natural frequency cause noises in the heating system so that these amplitude peaks in the power flow between rotor 2 and impeller 6 are intended to be damped or absorbed in a targeted manner.

Fig. 6 zeigt eine weitere mögliche Ausführungsform gemäß der Erfindung. In Fig. 6 ist in perspektivischer Ansicht die Welle 4 mit dem Rotor 2 dargestellt. Der detaillierte Aufbau der Ausführungsform gemäß Fig. 6 wird anhand der Explosionsansicht in Fig. 7 näher beschrieben. Der Aufbau des Rotors 2 entspricht im Wesentlichen dem Aufbau des Rotors 2 gemäß Fig. 4. Der Rotor setzt sich zusammen aus einem Eisenteil 18, einem Magnet 20, einem Außenmantel 22, einem Innenmantel 24 und zwei axialen Abdichtungen 26. Somit ist auch der Rotor gemäß Fig. 7 entsprechend dem Rotor gemäß Fig. 4 ein vollständig gedichteter Permanentmagnetrotor. Im Unterschied zu der Ausführungsform gemäß Fig. 4 ist der Innenmantel 24 des Rotors 2 gemäß Fig. 7 hülsenförmig ausgebildet und weist an seiner Innenseite 4 sich in axialer Richtung erstreckende Nuten 46 auf. In diese Nuten 46 greift ein sternförmig ausgebildetes elastisches Element 48 ein, welches im Inneren des Innenmantels 24 angeordnet wird. Im Inneren des sternförmigen elastischen Elementes 48 wird wiederum ein fester Innenstern 50 angeordnet, welcher mit der Welle 4 fest verbunden wird. Der Innenstern 50 greift mit Vorsprüngen in das elastische Element 48 derart ein, dass die Vorsprünge 52 des Innensterns 50 in die Nuten 46 in dem Innenmantel 24 hineinragen. Dabei kommen jedoch die Vorsprünge 52 nicht direkt mit den Seitenflächen der Nuten 46 in Kontakt, da zwischen den Vorsprüngen 52 und den Seitenflächen der Nuten 46 die Vorsprünge des elastischen Elementes 48 angeordnet sind. Somit liegt auch bei dieser Ausführungsform das elastische Element 48 im Kraftfluss zwischen Rotor 2 und Welle 4 und überträgt das Drehmoment von dem Rotor 2 auf die Welle 4. Um eine Zentrierung des Rotors 2 auf der Welle zu erreichen, können die Vorsprünge 52 an dem Innenstern 50 in radialer Richtung so dimensioniert sein, dass sie mit den Stirnflächen der Nuten 46 zur Anlage kommen und somit den Innenstern 50 in dem Innenmantel 24 zentrieren. Fig. 6 shows a further possible embodiment according to the invention. In Fig. 6 is shown in perspective view, the shaft 4 with the rotor 2. The detailed structure of the embodiment according to Fig. 6 is based on the exploded view in Fig. 7 described in more detail. The construction of the rotor 2 essentially corresponds to the structure of the rotor 2 according to FIG Fig. 4 , The rotor is composed of an iron part 18, a magnet 20, an outer casing 22, an inner casing 24 and two axial seals 26. Thus, the rotor according to Fig. 7 according to the rotor according to Fig. 4 a fully sealed permanent magnet rotor. Unlike the embodiment according to Fig. 4 is the inner shell 24 of the rotor 2 according to Fig. 7 sleeve-shaped and has on its inner side 4 in the axial direction extending grooves 46. In these grooves 46 engages a star-shaped elastic element 48, which is arranged in the interior of the inner shell 24. Inside the star-shaped elastic element 48, in turn, a fixed inner star 50 is arranged, which is firmly connected to the shaft 4. The inner star 50 engages with projections in the elastic element 48 such that the projections 52 of the inner star 50 protrude into the grooves 46 in the inner shell 24. However, the protrusions 52 do not come into direct contact with the side surfaces of the grooves 46 because the protrusions of the elastic member 48 are disposed between the protrusions 52 and the side surfaces of the grooves 46. Thus, also in this embodiment, the elastic member 48 in the power flow between the rotor 2 and shaft 4 and transmits the torque from the rotor 2 to the shaft 4. In order to achieve a centering of the rotor 2 on the shaft, the projections 52 on the inner star 50 be dimensioned in the radial direction so that they come to rest with the end faces of the grooves 46 and thus center the inner star 50 in the inner shell 24.

Auch bei dieser Ausführungsform kann ein Flüssigkeitsdurchgang zwischen Welle 4 und Rotor 2 ausgebildet werden. Ein solcher Flüssigkeitsdurchgang wird vorzugsweise dadurch erreicht, dass der Innenmantel 24 einen größeren Innendurchmesser aufweist als der Außendurchmesser des Innensterns 50. Dadurch entstehen zwischen den Vorsprüngen 52 des Innensterns 50 sich in Längsrichtung der Welle 4 über die gesamte Länge des Rotors 2 erstreckende Spalte, welche als Flüssigkeitsdurchgänge dienen können.Also in this embodiment, a fluid passage between the shaft 4 and the rotor 2 can be formed. Such a fluid passage is preferably achieved in that the inner shell 24 has a larger inner diameter than the outer diameter of the inner star 50. This results between the projections 52 of the inner star 50 in the longitudinal direction of the shaft 4 over the entire length of the rotor 2 extending column, which can serve as fluid passages.

Bei den vorangehenden Ausführungsformen werden die Dämpfungseigenschaften des Dämpfungselementes bevorzugt auf die Eigenfrequenz von Welle 4 und Rotor 2 abgestimmt, um gezielt Amplitudenspitzen in bestimmten Frequenzbereichen dämpfen bzw. absorbieren zu können, um auf diese Weise unerwünschte Geräuschentwicklungen im Fluidkreislauf zu minimieren.In the preceding embodiments, the damping properties of the damping element are preferably matched to the natural frequency of shaft 4 and rotor 2 in order to attenuate or absorb specific amplitude peaks in certain frequency ranges, in order to minimize unwanted noise in the fluid circuit.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

2 -2 -
Rotorrotor
4 -4 -
Wellewave
6 -6 -
LaufradWheel
8 -8th -
Lagerschildend shield
10 -10 -
Lagercamp
12 -12 -
elastische Hülseelastic sleeve
14 -14 -
Schraubenfedercoil spring
16 -16 -
Drehstabtorsion bar
18 -18 -
Eisenteiliron part
20 -20 -
Magnetmagnet
22 -22 -
Außenmantelouter sheath
24 -24 -
Innenmantelinner sheath
26 -26 -
axiale Abdeckungaxial cover
28 -28 -
Dämpfungselementdamping element
30 -30 -
Trägerelementsupport element
32 -32 -
elastisches Elementelastic element
34 -34 -
Außensternoutside star
36 -36 -
Innensterninside star
38 -38 -
Ausnehmungrecess
40 -40 -
Vorsprunghead Start
42 -42 -
Bohrungdrilling
44 -44 -
Stegweb
46 -46 -
Nutgroove
48 -48 -
elastisches Elementelastic element
50 -50 -
Innensterninside star
52 -52 -
Vorsprüngeprojections
54 -54 -
Vorsprüngeprojections
56 -56 -
elastisches Elementelastic element
58 -58 -
Nutengroove
60 -60 -
Ausnehmungenrecesses
62 -62 -
Verbindungssternstar connection

Claims (9)

  1. A heating circulation pump designed as centrifugal pump unit, with an electric motor and an impeller (6), which is connected to the rotor (2) of the electric motor via a shaft (4), wherein in the force flow between the impeller (6) and the rotor (2) at least one elastic element (12; 14; 16; 32; 48; 56) is arranged, wherein the elastic element between rotor and shaft is arranged within the rotor or within the shaft.
  2. The heating circulation pump according to claim 1, characterized in that the elastic element (12; 14; 16; 32; 48; 56) has an elastic hysteresis.
  3. The heating circulation pump according to any one of the preceding claims, characterized in that the elastic element (12; 14; 16; 32; 48; 56) is an elastomer element or a metal spring element.
  4. The heating circulation pump according to any one of the preceding claims, characterized in that in the interior of the rotor (2) an elastomer element (12; 48) particularly an elastomer sleeve (12), is arranged, which connects the rotor (2) to the shaft (4) in order to transmit the torque of the rotor (2) to the shaft (4).
  5. The heating circulation pump according to any one of the preceding claims, characterized in that between the shaft (4) and the rotor (2) webs (44) orientated radially and elastically deflectable in circumferential direction are arranged on the shaft (4) for centring the rotor (2) and between the shaft (4) and the rotor (2) the elastic element (32) is arranged in the force flow.
  6. The heating circulation pump according to any one of the preceding claims, characterized in that the shaft (4) is designed hollow, wherein in the interior of the shaft a torsion bar (16) is arranged, the rotor (2) being connected to the shaft (4) in a rotationally fixed manner and the impeller (6) being connected to the torsion bar (16) in a rotationally fixed manner.
  7. The heating circulation pump according to any one of the preceding claims, characterized in that the electric motor is a wet operation motor.
  8. The heating circulation pump according to any one of the preceding claims, characterized in that the electric motor comprises a permanent magnet rotor encapsulated outside and inside.
  9. The heating circulation pump according to any one of the preceding claims, characterized in that between rotor (2) and shaft (4) a liquid passage is formed.
EP20020009096 2002-04-24 2002-04-24 Electric motor driven centrifugal pump unit Expired - Lifetime EP1357297B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20020009096 EP1357297B1 (en) 2002-04-24 2002-04-24 Electric motor driven centrifugal pump unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20020009096 EP1357297B1 (en) 2002-04-24 2002-04-24 Electric motor driven centrifugal pump unit

Publications (2)

Publication Number Publication Date
EP1357297A1 EP1357297A1 (en) 2003-10-29
EP1357297B1 true EP1357297B1 (en) 2011-07-20

Family

ID=28685889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020009096 Expired - Lifetime EP1357297B1 (en) 2002-04-24 2002-04-24 Electric motor driven centrifugal pump unit

Country Status (1)

Country Link
EP (1) EP1357297B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3345323A1 (en) * 1983-12-15 1985-06-27 Gunther Eheim Fabrik Elektromechanischer Erzeugnisse, 7301 Deizisau ENGINE PUMP UNIT
DE3683962D1 (en) * 1985-07-01 1992-04-02 Easthorpe Investments Ltd CENTRIFUGAL PUMP.
US5411378A (en) * 1992-09-08 1995-05-02 Sipin; Anatole J. Orbiting fluid pump
ITPD980003A1 (en) * 1998-01-08 1999-07-08 Askoll Holding Srl ONE-WAY DRIVING JOINT BETWEEN THE ROTOR OF A PERMANENT MAGNET SYNCHRONOUS MOTOR AND THE OPERATING ORGAN
IT245149Y1 (en) * 1998-03-27 2002-03-19 Tecnocomponenti Srl SYNCHRONOUS ELECTRIC PUMP EQUIPPED WITH SOUNDPROOFING DEVICE

Also Published As

Publication number Publication date
EP1357297A1 (en) 2003-10-29

Similar Documents

Publication Publication Date Title
DE102008011058B4 (en) Engine for an electric power steering device
DE112011100661B4 (en) Fluid transmission device
DE69828132T2 (en) Ultra low-noise electric motor for use in motor vehicles.
WO2006021523A1 (en) Electric machine comprising an axial spring-loaded element
DE102013106291B4 (en) vibration absorber
DE8504809U1 (en) Split flywheel with slip clutch
DE102017208464A1 (en) SPEED SUSPENSION FOR A VEHICLE
DE102013208980A1 (en) retarder
WO2014016071A1 (en) Start-up element with torsional vibration damper and vibration damper
EP2212587A2 (en) Hydrodynamic coupler
WO2003081064A1 (en) Device for coupling a housing arrangement of a coupling device to a rotor arrangement of an electric machine
EP0474004B1 (en) Synchronous motor having a starting device
DE102007051988A1 (en) Turbo molecular pump
DE4416449A1 (en) Unit consisting of a hydraulic machine (hydraulic pump or hydraulic motor) and a carrier
WO2019096569A1 (en) Rotor for an electrical machine
EP2141383B1 (en) Hydrodynamic coupling device
EP1357297B1 (en) Electric motor driven centrifugal pump unit
DE102015216256A1 (en) Torsional vibration damping arrangement
EP1209799B1 (en) Rotor of an electric machine and method for manufacturing the same
EP2657575A1 (en) V-pulley and drive device
DE19943049B4 (en) drive system
DE10221625A1 (en) Device for coupling a housing arrangement of a coupling device with a rotor arrangement of an electric machine
EP0854307B1 (en) Sealing arrangement between the rotor and the housing of a pump comprising a mechanical seal
DE102011017655A1 (en) Friction clutch, particularly wet running friction clutch for use in drive train of vehicle, has clutch housing and friction surface formation coupling at driving end for common rotation with drive element around rotational axis
EP0259714B1 (en) Bearing plate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20080626

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215127

Country of ref document: DE

Effective date: 20110908

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120423

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215127

Country of ref document: DE

Effective date: 20120423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170224

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170314

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170308

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210422

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50215127

Country of ref document: DE