EP1351600A1 - Implantat zur bestimmung des augeninnendrucks - Google Patents

Implantat zur bestimmung des augeninnendrucks

Info

Publication number
EP1351600A1
EP1351600A1 EP02715406A EP02715406A EP1351600A1 EP 1351600 A1 EP1351600 A1 EP 1351600A1 EP 02715406 A EP02715406 A EP 02715406A EP 02715406 A EP02715406 A EP 02715406A EP 1351600 A1 EP1351600 A1 EP 1351600A1
Authority
EP
European Patent Office
Prior art keywords
pressure sensor
pressure
implant according
data
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02715406A
Other languages
English (en)
French (fr)
Inventor
Arthur Messner
Tim Use
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Humanoptics AG
Original Assignee
Humanoptics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Humanoptics AG filed Critical Humanoptics AG
Publication of EP1351600A1 publication Critical patent/EP1351600A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers

Definitions

  • the invention relates to an implant for determining the pressure of the aqueous humor in an eye.
  • Previous options for capturing intraocular pressure non-invasively are based on applanation tonometry.
  • the cornea is deformed from the outside and the force required for this is correlated with the intraocular pressure.
  • This method has several disadvantages: First, the measurement result is influenced by inaccessible and individually fluctuating disturbance variables, such as the strength of the cornea.
  • the second disadvantage is the handling of the tonometer.
  • the intraocular pressure can usually only be recorded by trained personnel and this only discontinuously. To record a series of measurements that represent the course of the intraocular pressure over one or more days, it is normally necessary for the patient to stay in a clinic. As a result, the course of the intraocular pressure is hardly accessible under normal everyday living conditions. It is also not possible to record the course of the intraocular pressure with very short time intervals over a longer period of time.
  • the invention is therefore based on the object of providing an implant which enables the pressure of the aqueous humor to be recorded continuously.
  • the object is solved by the features of claim 1.
  • the essence of the invention is to provide at least one pressure sensor element on an implant. This pressure sensor element measures the internal pressure of the aqueous humor.
  • a second pressure sensor is provided which measures the ambient pressure. This can be provided on the implant or outside the eye. The pressure of the aqueous humor is determined using the data from the two pressure sensors.
  • FIG. 1 shows an implant according to the invention inserted into an eye according to a first embodiment
  • FIG. 3 shows a cross section through the implant according to section line III-III in FIG. 2, 4 shows a schematic circuit diagram of the implant according to FIG. 1,
  • FIG. 5 shows a schematic circuit diagram of an implant according to a second embodiment
  • FIG. 6 is a top view of an implant according to a third embodiment.
  • FIG. 7 shows a cross section through the implant according to section line VII-VII in FIG. 6.
  • An implant 1 for measuring the pressure of the aqueous humor in the anterior chamber of an eye has a cannula 2 which surrounds a supply channel 3.
  • the supply channel 3 is open to the environment at one end 4 of the cannula 2.
  • the pressure sensor unit 5 has a housing 6 with a circular base 7 designed as a supporting body and with a cylindrical wall 8 projecting upwards therefrom.
  • the bottom 7 has an opening 9 in the center, along the circumference of which the cannula 2 is connected to the bottom 7.
  • the channel 3 thus opens into the interior 10 of the housing 6.
  • the housing 6 is closed from above with a cover 11 which has a ring-cylindrical edge 12 which surrounds the wall 8 in a sealing manner and is connected to it by gluing or latching.
  • the cover 11 has an opening 13 in the center through which the atmospheric pressure acts on the interior 10.
  • a first pressure sensor element 14 and a second pressure sensor element 15 connected flatly to the latter, both of which are embedded in a plastic matrix 16.
  • the plastic matrix 16 is essentially in the form of a flat cylinder.
  • the plastic matrix 16 is supported on a flat sealing ring 17 on the bottom 7 of the housing 6, a measuring space 18 being delimited on the circumference by the sealing ring 17 and being connected to the channel 3 being formed between the matrix 16 and the bottom 7.
  • the diameter D M of the measuring chamber 18 is larger than the inner diameter D ⁇ of the cannula 2.
  • the structure of the pressure sensor elements 14 and 15 is described in more detail below.
  • the pressure sensor element 14 has a circular substrate
  • micromechanical pressure sensors 20 are commercially available micromechanical absolute pressure sensors that measure the pressure capacitively or piezoresistively. Adjacent to the membranes
  • the membranes 20 measure the ambient pressure absolutely, ie against a known pressure prevailing behind the membranes 20.
  • a further disk-shaped substrate 25 which has a plurality of sensor membranes 26, which are also designed as micromechanical absolute pressure sensors, for measuring the pressure of a liquid supplied through the channel 3. Because the diameter D M of the measuring space 18 is larger than the diameter D K of the channel 3, a comparatively large number of sensor Membranes 26 are arranged while the cannula 2 remains as thin as possible.
  • the sensor membranes 26 also measure the pressure against a known pressure prevailing behind them, ie the absolute pressure.
  • the absolute pressures measured by the membranes 20 and 26 are subtracted from one another by the CPU 23, so that the pressure of the liquid in the cannula 2 is determined in relation to the ambient pressure, ie the excess pressure of the aqueous humor.
  • an external control device 27 which has a program transmission unit 28, an energy transmission unit 29 and a measurement data transmission unit 30, which are connected to a transmitter coil 32 via a controller 31.
  • the transmitter coil 24 assigned to the transmitter coil 32 for the telemetric transmission of data and energy is connected to the controller 22, which in turn is connected to a program transmission unit 33, an energy transmission unit 34 and a measurement data transmission unit 35.
  • the energy transmission unit 34 is connected via lines 36 via an energy storage unit 37 to the CPU 23 for the energy supply thereof.
  • the program transmission unit 33 is connected via a line 38 to the measurement program memory 39 and the measurement control unit 40, which receive data from the sensor signal unit 41 at time intervals ⁇ t and determine the relative pressure ⁇ p therefrom in a downstream measurement data processing unit 42 and in a measured value Store memory 43 or 21, which in turn is connected to measurement data transmission unit 35 via line 44.
  • the implantation of the implant 1 into the eye is described below with reference to FIG. 1.
  • the area between the cornea 45 or cornea and the iris plane is referred to as the anterior chamber 48, in which aqueous humor is located.
  • the rear chamber is located between the iris plane and the vitreous body 49, which is located behind the lens 47.
  • In the back chamber is also filled with aqueous humor.
  • the lens 47 is connected to the zillary body 51 via zonular fibers 50.
  • the implant 1 is inserted in the edge area of the eye or limbal area 52, the cannula 2 being guided through the limbus from the outside, so that aqueous humor can pass from the anterior chamber 48 through the channel 3 to the membranes 26.
  • the pressure sensor unit 5 is located outside the anterior chamber 45 in the episcleral tissue under the conjunctiva.
  • the mode of operation of the implant 1 is described below.
  • the aqueous humor of the anterior chamber 48 passes through the channel 3 to the membranes 26.
  • the pressure is measured compared to a known pressure.
  • the ambient pressure is measured by the membranes 20 compared to a known pressure.
  • the medically relevant differential pressure is calculated in the measurement data processing unit 42 from the signals.
  • the implant 1 is a long-term implant.
  • the control device 27 is brought up to the implant 1. This can be done, for example, by accommodating the control device 27 in glasses.
  • the energy store 37 is charged by the energy transmission unit 29, the controller 31, the transmitter coils 32 and 24, the controller 22 and the energy transmission unit 34.
  • the capacity of the Energy store 37 is designed so that the energy supply to the implant is ensured over a longer period of time and the time interval for recharging the energy store can be kept as large as possible.
  • the program program memory 39 can be changed by the program transmission unit 28, the controller 31, the transmitter coils 32 and 24, the controller 22 and the program transmission unit 33. In this way, the time interval .DELTA.t in which the measured values are recorded can be changed from the outside.
  • the differential pressure determined by the measurement data processing unit 42 is stored in the measurement value memory 43.
  • the data are transmitted from the measurement value memory 43 via the measurement data transmission unit 35, the controller 22, the transmitter coils 24 and 32, the controller 31 to the measurement data transmission unit 30 where they can be read out and used for medical purposes.
  • the measured value memory 43 is selected such that when the memory overflows, the data that were stored first are also deleted first. In the event that the time interval for reading out is exceeded, the most recent course of the intraocular pressure is retained.
  • the use of an optical or acoustic signal transmitter enables the patient to be informed of a pathological increase in intraocular pressure, so that suitable therapeutic measures can be initiated immediately.
  • a second embodiment of the invention is described below with reference to FIG. 5. Identical parts are given the same reference numerals as in the first embodiment, to the description of which reference is hereby made. Functionally similar but structurally different parts are given the same reference numerals with a th line.
  • the main difference from the first embodiment is that the units 33, 34 and 35 are not connected to the transmitter coil 24 via a common controller 22, but that each unit has its own transmitter coil.
  • the telemetric program is transmitted from an external programming device 54 to the measurement program memory 39.
  • the telemetric transmission of energy from an external energy supply 56 to the energy store 37 takes place.
  • a third exemplary embodiment of the invention is described below with reference to FIGS. 6 and 7. Structurally identical parts are given the same reference numerals as in the first exemplary embodiment, to the description of which reference is hereby made. Parts that are structurally different but functionally the same are given the same reference numbers with two prime lines.
  • the main difference compared to the first exemplary embodiment is the design of the housing 6 ′′ and in particular the fact that all electronic components are provided on a conductor film 59.
  • the implant 1 ′′ has a conductor film 59 as a supporting body, which consists of a flat surface , essentially rounded rectangular main section 60 and a web-shaped outwardly projecting front chamber section 61.
  • the conductor foil 59 is in a one-piece plastic housing 6 "made of biocompatible material. poured rial.
  • the housing 6 ′′ consists of a main housing 64 enclosing the main section 60 of the conductor foil 59 and a housing arm 65 with a pointed tip, which extends downward at an angle a of approximately 120 ° and encloses the section 61 of the conductor foil 59 outer end 62.
  • Arm 65 tapers toward outer end 62 to facilitate pushing arm 65 through the skin of the eye 63.
  • the length L H of the main housing 64 corresponds substantially to the length L A of the housing - Poor 65. However, it is also possible to provide other dimensions.
  • Various electronic elements are formed on the conductor foil 59 by means of a conventional microtechnical structure, for example the so-called flip-chip technology.
  • the measuring section 21, the controller 22, the central data processing unit 23 and a first pressure sensor element 14 ′′ with sensor membranes 20 ′′ are provided on the main section 60.
  • the transmitter coil 24" is located on the opposite side of the conductor foil 59.
  • the housing 6 ′′ has an area 66 of reduced thickness.
  • This area for forwarding the ambient pressure to the sensor membranes 20 " is selected such that the membranes 20" are adequately protected from the tissue and the tissue fluid of the surroundings and, on the other hand, the ambient pressure is passed on to the membranes 20 "essentially unchanged and there It is also possible to provide the further electronic elements known from the first and second exemplary embodiments on the conductor film 59.
  • the second pressure sensor element 15 "with the associated sensor membranes 26” is provided on section 61 of the conductor film 59 Here too is adjacent to the membranes 26 "a pressure transmission area 67 of reduced thickness is provided in the housing 6" so that the membranes 26 "are adequately protected from the tissue and the aqueous humor on the one hand and on the other hand the internal pressure of the aqueous humor can be measured as error-free as possible.
  • the pressure sensor element 15" and the other elements 20 ′′, 21, 22, 23 on the main section 60 of the conductor foil 59 are connected to one another via conductor tracks 68 on the conductor foil 59 for the transmission of data and for the voltage supply.
  • the length L A of the housing arm 65 is selected in this way that the outer third in the anterior chamber 48 is surrounded by aqueous humor.
  • the arm 65 has a thickness DM in the region of its middle third, which is greater than the thickness D A of the arm 65 in the region of the main housing 64. In this way, the arm 65 is prevented from slipping out of the anterior chamber 48 of the eye.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Pathology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Eye Examination Apparatus (AREA)
  • Prostheses (AREA)

Abstract

Implantat zur Bestimmung des Drucks des Kammerwassers in einem Auge mit einem Trag-Körper, mit einer auf dem Trag-Körper angeordneten Drucksensor-Einheit (5; 5"), welche aufweist ein erstes Druck-sensor-Element (14; 14") zur Messung des Drucks des Kammerwassers und zur Erzeugung von ersten Drucksensor-Daten, mit einer auf dem Trag-Körper angeordneten, mit der Drucksensor-Einheit (5; 5") in datenübertragender Weise verbundenen Datenverarbeitungs-Einheit (23) zur Verarbeitung der ersten Drucksensor-Daten und zur Erzeugung von ersten Übertragungs-Daten und mit einer auf dem Trag-Körper ange-ordneten, mit der Datenverarbeitungs-Einheit (23) in datenübertragender Weise verbundenen ersten Sende-Empfangs-Einheit zur Übertragung der ersten Übertragungs-Daten an und zum Empfang von zweiten Übertragungs-Daten von einer ausserhalb des Auges angeordneten zweiten Sende-Empfangs-Einheit.

Description

Implantat zur Bestimmung des Augeninnendrucks
Die Erfindung betrifft ein Implantat zur Bestimmung des Drucks des Kammerwassers in einem Auge.
Eine der häufigsten Erblindungsursachen weltweit ist der Grüne Star. Ursächlich hierfür ist ein erhöhter Augeninnendruck, der meistens aus einem verminderten Abfluß des Kammerwassers resultiert. Zur gezielten Medikation oder zur Indikation einer Operation ist es nötig, den Augeninnendruck, der über den Tag verteilt starken Schwankungen unterworfen sein kann, kontinuierlich zu erfassen.
Bisherige Möglichkeiten, den Augeninnendruck nicht-invasiv zu erfassen, beruhen auf der Applanationstonometrie. Dabei wird die Hornhaut von au- ßen verformt und die dafür notwendige Kraft mit dem Augeninnendruck korreliert. Nachteilig sind bei diesem Verfahren mehrere Faktoren: Zum einen wird das Meßergebnis von nicht zugänglichen und individuell schwankenden Störgrößen, wie zum Beispiel der Festigkeit der Hornhaut, beeinflußt. Der zweite Nachteil liegt in der Handhabung der Tonometer. Der Augeninnendruck kann meist nur von eingewiesenem Personal aufgenommen werden und dies auch nur diskontinuierlich. Für die Erfassung von Meßwertreihen, die den Verlauf des Augeninnendrucks über einen oder mehrere Tage darstellen, ist normalerweise ein stationärer Aufenthalt des Patienten in einer Klinik nötig. Dadurch ist der Augeninnendruckverlauf unter den gewöhnlichen täglichen Lebensbedingungen kaum zugänglich. Auch ist eine Erfassung des Augeninnendruckverlaufs mit sehr kurzen Zeitintervallen über einen längeren Zeitraum ebenfalls nicht möglich. Der Erfindung liegt daher die Aufgabe zugrunde, ein Implantat zu schaffen, das eine kontinuierliche Erfassung des Drucks des Kammerwassers ermöglicht.
Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Der Kern der Erfindung besteht darin, auf einem Implantat mindestens ein Drucksensor-Element vorzusehen. Dieses Drucksensor-Element mißt den Innendruck des Kammerwassers.
Gemäß Anspruch 2 ist ein zweiter Drucksensor vorgesehen, der den Umgebungsdruck mißt. Dieser kann auf dem Implantat oder außerhalb des Auges vorgesehen sein. Mit den Daten der beiden Drucksensoren wird der Überdruck des Kammerwassers ermittelt.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Zusätzliche Vorteile und Einzelheiten der Erfindung ergeben sich aus der Beschreibung dreier Ausführungsbeispiele anhand der Zeichnung. Es zei- gen
Fig. 1 ein in ein Auge eingesetztes erfindungsgemäßes Implantat gemäß einer ersten Ausfuhrungsform,
Fig. 2 einen Querschnitt durch das Implantat,
Fig. 3 einen Querschnitt durch das Implantat gemäß der Schnittlinie III-III in Fig. 2, Fig. 4 ein schematisches Schaltbild des Implantats gemäß Fig. 1,
Fig. 5 ein schematisches Schaltbild eines Implantats gemäß einer zweiten Ausführungsform,
Fig. 6 eine Draufsicht eines Implantats gemäß einer dritten Ausführungsform, und
Fig. 7 einen Querschnitt durch das Implantat gemäß der Schnittlinie VII- VII in Fig. 6.
Im folgenden wird unter Bezugnahme auf die Fig. 1 bis 4 eine erste Ausführungsform der Erfindung beschrieben. Ein Implantat 1 zur Messung des Druckes des Kammerwassers in der Augenvorderkammer eines Auges weist eine Kanüle 2 auf, die einen Zuführ-Kanal 3 umschließt. Der Zufuhr- Kanal 3 ist an einem Ende 4 der Kanüle 2 gegenüber der Umgebung offen. Am entgegengesetzten Ende der Kanüle 2 ist diese mit einer Drucksensor- Einheit 5 verbunden. Die Drucksensor-Einheit 5 weist ein Gehäuse 6 mit einem als Trag-Körper ausgebildeten kreisförmigen Boden 7 und einer von diesem nach oben abstehenden rmgzylindrischen Wand 8 auf. Der Boden 7 weist mittig eine Öffnung 9 auf, entlang deren Umfang die Kanüle 2 mit dem Boden 7 verbunden ist. Der Kanal 3 mündet somit in den Innenraum 10 des Gehäuses 6. Das Gehäuse 6 ist von oben mit einem Deckel 11 ver- schlössen, der einen ringzylindrischen Rand 12 aufweist, der die Wand 8 dichtend umgreift und mit dieser durch Verkleben oder Verrastung verbunden ist. Der Deckel 11 weist mittig eine Öffnung 13 auf, durch die der Atmosphärendruck auf den Innenraum 10 wirkt. In dem Innenraum 10 ist ein erstes Drucksensor-Element 14 und ein flächig mit diesem verbundenes zweites Drucksensor-Element 15 angeordnet, die beide in eine Kunststoff- Matrix 16 eingebettet sind. Die Kunststoff-Matrix 16 hat im wesentlichen die Form eines flachen Zylinders. Die Kunststoff-Matrix 16 ist auf einem flachen Dichtungsring 17 auf dem Boden 7 des Gehäuses 6 abgestützt, wobei zwischen der Matrix 16 und dem Boden 7 ein durch den Dichtungsring 17 umfangsseitig begrenzter Meßraum 18 gebildet ist, der mit dem Kanal 3 verbunden ist. Der Durchmesser DM des Meßraumes 18 ist größer als der Innendurchmesser Dκ der Kanüle 2.
Im folgenden wir der Aufbau der Drucksensor-Elemente 14 und 15 genauer beschrieben. Das Drucksensor-Element 14 weist ein kreisförmiges Substrat
19 auf, auf dem mittig ein Feld von ein oder mehreren, z.B. drei mal drei, mikromechanischen Drucksensoren 20 vorgesehen ist. Hierbei handelt es sich um marktübliche mikromechanische Absolutdrucksensoren, die den Druck kapazitiv oder piezoresistiv erfassen. Benachbart zu den Membranen
20 und mit diesen elektrisch verbunden sind zwei Meßspeicher 21, ein Controller 22 sowie eine zentrale Datenverarbeitungseinheit bzw. CPU 23 vorgesehen. Entlang des Randes des Substrats 19 ist eine ringförmige Transmitterspule 24 vorgesehen, die in den Controller 22 mündet. Die Membranen 20 messen den Umgebungsdruck absolut, d. h. gegenüber einem hinter den Membranen 20 vorherrschenden bekannten Druck. Unterhalb des Substrats 19 ist ein weiteres scheibenförmiges Substrat 25 vorgesehen, das mittig, nach unten vorstehend mehrere ebenfalls als mikrome- chanische Absolutdrucksensoren ausgebildete Sensor-Membranen 26 zur Messung des Drucks einer durch den Kanal 3 zugeführten Flüssigkeit aufweist. Dadurch, daß der Durchmesser DM des Meßraumes 18 größer ist als der Durchmesser DK des Kanals 3, können vergleichsweise viele Sensor- Membranen 26 angeordnet werden, während die Kanüle 2 weiterhin möglichst dünn bleibt. Die Sensor-Membranen 26 messen den Druck ebenfalls gegenüber einem hinter diesen vorherrschenden bekannten Druck, d. h. den absoluten Druck. Durch die CPU 23 werden die von den Membranen 20 und 26 gemessenen absoluten Drücke voneinander subtrahiert, so daß der Druck der Flüssigkeit in der Kanüle 2 gegenüber dem Umgebungsdruck, d. h. der Überdruck des Kammerwassers, ermittelt wird.
Im folgenden wird unter Bezugnahme auf Fig. 4 die Datenverarbeitung in der Drucksensor-Einheit 5 sowie die Kommunikation mit der Umgebung genauer beschrieben. Außerhalb des Implantats 1 befindet sich ein externes Steuerungsgerät 27, das eine Programmübertragungs-Einheit 28, eine Energieübertragungs-Einheit 29 und eine Meßdatenübertragungs-Einheit 30 aufweist, die über einen Controller 31 mit einer Transmitterspule 32 ver- bunden sind. Innerhalb des Implantats 1 ist die der Transmitterspule 32 zur telemetrischen Übertragungen von Daten und Energie zugeordnete Transmitterspule 24 mit dem Controller 22 verbunden, der seinerseits mit einer Programmübertragungs-Einheit 33, eine Energieübertragungs-Einheit 34 und einer Meßdatenübertragungs-Einheit 35 verbunden ist. Die Energie- Übertragungs-Einheit 34 ist über Leitungen 36 über eine Energiespeicher- Einheit 37 mit der CPU 23 zur Energieversorgung derselben verbunden. Die Programmübertragungs-Einheit 33 ist über eine Leitung 38 mit dem Meßprogrammspeicher 39 und der Meßsteuereinheit 40 verbunden, welche in Zeitabständen Δt Daten von der Sensorsignal-Einheit 41 aufnehmen und daraus in einer nachgeschalteten Meßdatenverarbeitungs-Einheit 42 den Relativdruck Δp bestimmen und in einem Meßwert- Speicher 43 bzw. 21 abspeichern, welcher seinerseits über eine Leitung 44 mit der Meßdatenübertragungs-Einheit 35 verbunden ist. Im folgenden wird unter Bezugnahme auf Fig. 1 die Implantation des Implantats 1 in das Auge beschrieben. Im Auge wird der Bereich zwischen der Hornhaut 45 bzw. Cornea und der Iris-Ebene als Vorderkammer 48 be- zeichnet, in der sich Kammerwasser befindet. Die Hinterkammer befindet sich zwischen Iris-Ebene und Glaskörper 49, der sich hinter der Linse 47 befindet. In der Hinterkammer ist ebenfalls mit Kammerwasser gefüllt. Die Linse 47 ist über Zonulafasern 50 mit dem Zilliarkörper 51 verbunden. Das Implantat 1 wird im Randbereich des Auges bzw. Limbalbereich 52 einge- setzt, wobei die Kanüle 2 von außen durch den Limbus geführt wird, so daß Kammerwasser aus der Augenvorderkammer 48 durch den Kanal 3 zu den Membranen 26 gelangen kann. Die Drucksensor-Einheit 5 befindet sich außerhalb der Vorderkammer 45 im Episkleralgewebe unter der Konjunkti- va.
Im folgenden wir die Funktionsweise des Implantats 1 beschrieben. Das Kammerwasser der Augenvorderkammer 48 gelangt durch den Kanal 3 zu den Membranen 26. Dort wird der Druck gegenüber einem bekannten Druck gemessen. Gleichzeitig wird durch die Membranen 20 der Umge- bungsdruck gegenüber einem bekannten Druck gemessen. Aus den Signalen wird in der Meßdatenverarbeitungs-Einheit 42 der medizinisch relevante Differenzdruck berechnet. Bei dem Implantat 1 handelt es sich um ein Langzeitimplantat. Zur Energieversorgung und Datenübertragung wird das Steuerungsgerät 27 an das Implantat 1 herangeführt. Dieses kann zum Bei- spiel durch Unterbringung des Steuerungsgerätes 27 in einer Brille geschehen. Durch die Energieübertragungs-Einheit 29, den Controller 31, die Transmitterspulen 32 und 24, den Controller 22 und die Energieübertragungs-Einheit 34 wird der Energiespeicher 37 geladen. Die Kapazität des Energiespeichers 37 ist so ausgelegt, daß die Energieversorgung des Implantats über einen längeren Zeitraum sichergestellt ist und das zeitliche Intervall zur Wiederaufladung des Energiespeichers möglichst groß gehalten werden kann. Durch die Programmübertragungs-Einheit 28, den Con- troller 31, die Transmitterspulen 32 und 24, den Controller 22 und die Programmübertragungs-Einheit 33 kann der Meßprogrammspeicher 39 verändert werden. Auf diese Weise ist von außen der Zeitabstand Δt, in dem die Meßwerte erfaßt werden, veränderbar. Der von der Meßdatenverarbei- tungs-Einheit 42 ermittelte Differenzdruck wird im Meßwertspeicher 43 gespeichert. Wenn zwischen dem Steuerungsgerät 27 und dem Implantat 1 eine telemetrische Verbindung hergestellt wird, so werden die Daten vom Meßwertspeicher 43 über die Meßdatenübertragungs-Einheit 35, den Controller 22, die Transmitterspulen 24 und 32, den Controller 31 zur Meßdatenübertragungs-Einheit 30 übertragen, von wo sie ausgelesen und medizi- nisch verwertet werden können. Der Meßwertspeicher 43 ist derart gewählt, daß bei einem Overflow des Speichers die Daten, die zuerst gespeichert wurden, auch zuerst wieder gelöscht werden. Für den Fall, daß das Zeitintervall für das Auslesen überschritten wird, bleibt der aktuellste Verlauf des Augeninnendrucks erhalten. Durch den Einsatz eines optischen oder akustischen Signalgebers ergibt sich die Möglichkeit, den Patienten auf eine pathologische Erhöhung des Augeninnendrucks hinzuweisen, so daß umgehend geeignete Therapiemaßnahmen eingeleitet werden können.
Im folgenden wird unter Bezugnahme auf Fig. 5 eine zweite Ausführungs- form der Erfindung beschrieben. Identische Teile erhalten dieselben Bezugszeichen wie bei der ersten Ausführungsform, auf deren Beschreibung hiermit verwiesen wird. Funktioneil gleichartige, jedoch konstruktiv unterschiedliche Teile erhalten dieselben Bezugszeichen mit einem hochgesetz- ten Strich. Der zentrale Unterschied gegenüber der ersten Ausführungsform besteht darin, daß die Einheiten 33, 34 und 35 nicht über einen gemeinsamen Controller 22 mit der Transmitterspule 24 verbunden sind, sondern daß jede Einheit eine eigene Transmitterspule aufweist. Im Bereich einer ersten Spulen-Einheit 53 erfolgt die telemetrische Programmübertragung von einem externen Programmiergerät 54 zum Meßprogrammspeicher 39. Im Bereich einer zweiten Spulen-Einheit 55 erfolgt die telemetrische Übertragung von Energie von einer externen Energieversorgung 56 zum Energiespeicher 37. Bei einer dritten Spulen-Einheit 57 erfolgt das Auslesen von Daten vom Meßwertspeicher 43 und die Übertragung der Daten zu einer externen Meßdatenerfassungs-Einheit 58. Vorteilhaft an dieser Anordnung ist, daß gegenüber der ersten Ausführungsform kein Controller 22 erforderlich ist. Nachteilig ist, daß mehrere Transmitterspulen 32' im Implantat erforderlich sind, wodurch das Implantat größer wird.
Im folgenden wird unter Bezugnahme auf die Fig. 6 und 7 ein drittes Aus- führungsbeispiel der Erfindung beschrieben. Konstruktiv identische Teile erhalten dieselben Bezugszeichen wie bei dem ersten Ausführungsbeispiel, auf dessen Beschreibung hiermit verwiesen wird. Konstruktiv unterschied- liehe, jedoch funktionelle gleichartige Teile erhalten dieselben Bezugszeichen mit zwei hochgesetzten Strichen. Der wesentliche Unterschied gegenüber dem ersten Ausführungsbeispiel besteht in der Gestaltung des Gehäuses 6" und insbesondere in der Tatsache, daß alle elektronischen Bauteile auf einer Leiterfolie 59 vorgesehen sind. Das Implantat 1" weist als Trag- Körper eine Leiterfolie 59 auf, die aus einem flächigen, im wesentlichen abgerundet rechteckigen Haupt-Abschnitt 60 sowie einem stegformig nach außen vorspringenden Vorderkammer- Abschnitt 61 besteht. Die Leiterfolie 59 ist in ein einteiliges Kunststoff-Gehäuse 6" aus biokompatiblem Mate- rial eingegossen. Das Gehäuse 6" besteht aus einem den Haupt- Abschnitt 60 der Leiterfolie 59 umschließenden Haupt-Gehäuse 64 sowie einem sich davon unter einem Winkel a von ungefähr 120° nach unten erstreckenden, den Abschnitt 61 der Leiterfolie 59 umschließenden Gehäuse- Arm 65 mit einem spitzen äußeren Ende 62. Der Arm 65 läuft zu dem äußeren Ende 62 hin spitz zu, um ein Schieben des Arms 65 durch die Lederhaut 63 des Auges zu erleichtern. Die Länge LH des Haupt-Gehäuses 64 entspricht im wesentlichen der Länge LA des Gehäuse- Armes 65. Es ist jedoch auch möglich, andere Dimensionierungen vorzusehen.
Auf der Leiterfolie 59 sind durch herkömmlichen mikrotechnischen Aufbau, beispielsweise die sogenannte Flip-Chip-Technik, verschiedene elektronische Elemente ausgebildet. Auf dem Hauptabschnitt 60 sind der Meßspeicher 21, der Controller 22, die zentrale Datenverarbeitungs-Einheit 23 sowie ein erstes Drucksensor-Element 14" mit Sensor-Membranen 20" vorgesehen. Bei den Elementen 20", 21, 22 und 23 befindet sich auf der gegenüberliegenden Seite der Leiterfolie 59 die Transmitterspule 24". Unmittelbar oberhalb der Sensor-Membranen 20" weist das Gehäuse 6" einen Bereich 66 geringerer Dicke auf. Dieser Bereich zur Weiterleitung des Umgebungsdrucks an die Sensor-Membranen 20" ist so gewählt, daß die Membranen 20" ausreichend von dem Gewebe und der Gewebsflüssig- keit der Umgebung geschützt sind und andererseits der Umgebungsdruck im wesentlichen unverändert an die Membranen 20" weitergeleitet und dort gemessen werden kann. Es ist auch möglich, auf der Leiterfolie 59 die weiteren aus dem ersten und zweiten Ausführungsbeispiel bekannten elektronischen Elemente vorzusehen. Auf dem Abschnitt 61 der Leiterfolie 59 ist das zweite Drucksensor-Element 15" mit den zugehörigen Sensor- Membranen 26" vorgesehen. Auch hier ist benachbart zu den Membranen 26" ein Druckübertragungs-Bereich 67 geringerer Dicke im Gehäuse 6" vorgesehen, so daß die Membranen 26" einerseits ausreichend vor dem Gewebe und dem Kammerwasser geschützt sind und andererseits der Innendruck des Kammerwassers möglichst fehlerfrei gemessen werden kann. Das Drucksensor-Element 15" und die anderen Elemente 20 " , 21 , 22, 23 auf dem Haupt- Abschnitt 60 der Leiterfolie 59 sind über Leiterbahnen 68 auf der Leiterfolie 59 zur Übertragung von Daten und zur Spannungsversorgung miteinander verbunden. Die Länge LA des Gehäuse-Armes 65 ist so gewählt, daß das äußere Drittel in der Augenvorderkammer 48 von Kammerwasser umgeben ist. In diesem äußeren Drittel befindet sich das Drucksensor-Element 15". Der Arm 65 weist im Bereich seines mittleren Drittels eine Dicke DM auf, die größer ist als die Dicke DA des Armes 65 im Bereich des Haupt-Gehäuses 64. Auf diese Weise wird ein Herausrutschen des Armes 65 aus der Augenvorderkammer 48 verhindert.
Besonders vorteilhaft an der Ausgestaltung des dritten Ausführungsbeispieles ist die Tatsache, daß alle elektronischen Elemente auf einer Leiterfolie 59 vorgesehen sind. Eine Miniaturisierung und Massenfertigung ist somit problemlos möglich, da auf bekannte Techniken der Mikroelektronik und insbesondere der Flip-Chip-Technik zurückgegriffen werden kann. Es können Drücke in zwei verschiedenen Bereichen, nämlich in der Augenvorderkammer 48 und im Limbalbereich 52 gemessen werden. Durch eine Differenzbildung kann der physiologisch relevante Überdruck des Kammerwassers in der Augenvorderkammer gegenüber der Umgebung der Augenvor- derkammer ermittelt werden.

Claims

Patentansprüche
1. Implantat zur Bestimmung des Drucks des Kammerwassers in einem Auge a. mit einem Trag-Körper, b. mit einer auf dem Trag-Körper angeordneten Drucksensor- Einheit (5; 5"), welche ein erstes Drucksensor-Element (14; 14") zur Messung des Drucks des Kammerwassers und zur Erzeugung von ersten Dracksensor-Daten aufweist, c. mit einer auf dem Trag-Körper angeordneten, mit der Drucksensor-Einheit (5; 5") in datenübertragender Weise verbundenen Datenverarbeitungs-Einheit (23) zur Erzeugung von ersten Übertragungs-Daten und d. mit einer auf dem Trag-Körper angeordneten, mit der Daten- verarbeitungs-Einheit (23) in datenübertragender Weise verbundenen ersten Sende-Empfangs-Einheit zur Übertragung der ersten Übertragungs-Daten an und zum Empfang von zweiten Übertragungs-Daten von einer außerhalb des Auges angeordneten zweiten Sende-Empfangs-Einheit.
2. Implantat gemäß Anspruch 1, dadurch gekennzeichnet, daß die
Drucksensor-Einheit (5; 5") ein zweites Drucksensor-Element (15; 15") zur Messung des Umgebungsdrucks und zur Erzeugung von zweiten Drucksensor-Daten aufweist.
3. Implantat gemäß Anspruch 2, dadurch gekennzeichnet, daß die Datenverarbeitungs-Einheit zur Verarbeitung der zweiten Drucksensor-Daten und zur Ermittlung des Überdrucks des Kammerwassers gegenüber der Umgebung ausgebildet ist.
4. Implantat gemäß Anspruch 2, dadurch gekennzeichnet, daß die Drucksensor-Elemente (14, 15; 14", 15") mindestens einen mikro- mechanischen Drucksensor (20, 26; 20", 26") aufweisen.
5. Implantat gemäß Ansprach 1, dadurch gekennzeichnet, daß der Trag-Körper mindestens eine Kanüle (2) mit einem ersten Ende (4) zur Aufnahme des Kammerwassers und mit einem zweiten Ende, welches mit der Drucksensor-Einheit (5) verbunden ist, aufweist.
6. Implantat gemäß Anspruch 5, dadurch gekennzeichnet, daß die Drucksensor-Einheit (5) ein mit der mindestens einen Kanüle (2) verbundenes Gehäuse (6, 11) aufweist.
7. Implantat gemäß Ansprach 2, dadurch gekennzeichnet, daß das erste Drucksensor-Element (14) und/oder das zweite Drucksensor- Element (15) in eine Kunststoff-Matrix (16) eingebettet sind.
8. Implantat gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Drucksensor-Einheit (5; 5") einen Energiespeicher (37) aufweist.
9. Implantat gemäß Anspruch 8, dadurch gekennzeichnet, daß der Energiespeicher (37) von außen drahtlos mit Energie versorgbar ist.
10. Implantat gemäß Ansprach 1, dadurch gekennzeichnet, daß die zentrale Datenverarbeitungs-Einheit (23) derart ausgebildet ist, daß sie Speicherungen des Innendracks des Kammerwassers in vorbestimmbaren Zeitabständen Δt veranlaßt.
11. Implantat gemäß Ansprach 1, dadurch gekennzeichnet, daß die Drucksensor-Einheit (5 ' ') auf einer Leiterfolie (59) vorgesehen ist.
12. Implantat gemäß Ansprach 11, dadurch gekennzeichnet, daß die Leiterfolie (59) aus einem Haupt- Abschnitt (60) und einem seitlich, stegartig vorspringenden Vorderkammer-Abschnitt (61) besteht.
13. Implantat gemäß Ansprach 12, dadurch gekennzeichnet, daß das erste Drucksensor-Element (14") auf dem Vorderkammer- Abschnitt (61) angeordnet ist.
EP02715406A 2001-01-17 2002-01-10 Implantat zur bestimmung des augeninnendrucks Withdrawn EP1351600A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10101780 2001-01-17
DE10101780 2001-01-17
PCT/EP2002/000160 WO2002056758A1 (de) 2001-01-17 2002-01-10 Implantat zur bestimmung des augeninnendrucks

Publications (1)

Publication Number Publication Date
EP1351600A1 true EP1351600A1 (de) 2003-10-15

Family

ID=7670733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02715406A Withdrawn EP1351600A1 (de) 2001-01-17 2002-01-10 Implantat zur bestimmung des augeninnendrucks

Country Status (6)

Country Link
US (1) US20040059248A1 (de)
EP (1) EP1351600A1 (de)
JP (1) JP2004520119A (de)
CN (1) CN1486158A (de)
DE (1) DE10200617A1 (de)
WO (1) WO2002056758A1 (de)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703721B2 (ja) 1999-04-26 2005-10-05 ジーエムピー ヴィジョン ソルーションズ インコーポレイテッド 緑内障を治療するためのシャント装置
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
WO2002080811A2 (en) 2001-04-07 2002-10-17 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US6976998B2 (en) 2002-01-17 2005-12-20 Massachusetts Institute Of Technology Minimally invasive retinal prosthesis
AU2003219932A1 (en) 2002-02-28 2003-09-16 Gmp Vision Solutions, Inc. Device and method for monitoring aqueous flow within the eye
DE102004056756B4 (de) * 2004-11-24 2015-12-31 Implandata Ophthalmic Products Gmbh Vorrichtung zur Intraokulardruckmessung
WO2008150890A1 (en) 2007-05-29 2008-12-11 Dell Steven J Accommodative intraocular lens having a haptic plate
FR2924913B1 (fr) * 2007-12-18 2010-02-05 Alain Telandro Systeme de mesure de la pression oculaire
US8182435B2 (en) * 2009-05-04 2012-05-22 Alcon Research, Ltd. Intraocular pressure sensor
US8123687B2 (en) 2009-05-07 2012-02-28 Alcon Research, Ltd. Intraocular pressure sensor
JP2013505076A (ja) 2009-09-18 2013-02-14 オーソメムス, インコーポレイテッド 緑内障監視のための埋込式mems眼圧センサデバイスおよび方法
US8257295B2 (en) * 2009-09-21 2012-09-04 Alcon Research, Ltd. Intraocular pressure sensor with external pressure compensation
US20110071454A1 (en) * 2009-09-21 2011-03-24 Alcon Research, Ltd. Power Generator For Glaucoma Drainage Device
US8419673B2 (en) * 2009-09-21 2013-04-16 Alcon Research, Ltd. Glaucoma drainage device with pump
US8721580B2 (en) * 2009-09-21 2014-05-13 Alcon Research, Ltd. Power saving glaucoma drainage device
US8545431B2 (en) * 2009-09-21 2013-10-01 Alcon Research, Ltd. Lumen clearing valve for glaucoma drainage device
EP2519141B1 (de) 2009-12-30 2018-09-05 Brockman Holdings LLC System, vorrichtung und verfahren zur bestimmung des augeninnendrucks
US11363951B2 (en) 2011-09-13 2022-06-21 Glaukos Corporation Intraocular physiological sensor
US9072588B2 (en) 2011-10-03 2015-07-07 Alcon Research, Ltd. Selectable varied control valve systems for IOP control systems
US8585631B2 (en) 2011-10-18 2013-11-19 Alcon Research, Ltd. Active bimodal valve system for real-time IOP control
US8753305B2 (en) 2011-12-06 2014-06-17 Alcon Research, Ltd. Bubble-driven IOP control system
US8579848B2 (en) 2011-12-09 2013-11-12 Alcon Research, Ltd. Active drainage systems with pressure-driven valves and electronically-driven pump
US8840578B2 (en) 2011-12-09 2014-09-23 Alcon Research, Ltd. Multilayer membrane actuators
WO2013090197A1 (en) 2011-12-12 2013-06-20 Alcon Research, Ltd. Active drainage systems with dual-input pressure-driven valves
US8603024B2 (en) 2011-12-12 2013-12-10 Alcon Research, Ltd. Glaucoma drainage devices including vario-stable valves and associated systems and methods
US9125721B2 (en) 2011-12-13 2015-09-08 Alcon Research, Ltd. Active drainage systems with dual-input pressure-driven valves
US9339187B2 (en) 2011-12-15 2016-05-17 Alcon Research, Ltd. External pressure measurement system and method for an intraocular implant
US9155653B2 (en) 2012-02-14 2015-10-13 Alcon Research, Ltd. Pressure-driven membrane valve for pressure control system
US8986240B2 (en) 2012-02-14 2015-03-24 Alcon Research, Ltd. Corrugated membrane actuators
EP3342380A3 (de) 2012-03-26 2018-11-14 Glaukos Corporation System und verfahren zum einführen mehrerer augenimplantate
US8998838B2 (en) 2012-03-29 2015-04-07 Alcon Research, Ltd. Adjustable valve for IOP control with reed valve
US20130317412A1 (en) * 2012-05-23 2013-11-28 Bruno Dacquay Flow Control For Treating A Medical Condition
US8652085B2 (en) 2012-07-02 2014-02-18 Alcon Research, Ltd. Reduction of gas escape in membrane actuators
US9572712B2 (en) 2012-12-17 2017-02-21 Novartis Ag Osmotically actuated fluidic valve
US9528633B2 (en) 2012-12-17 2016-12-27 Novartis Ag MEMS check valve
US9295389B2 (en) 2012-12-17 2016-03-29 Novartis Ag Systems and methods for priming an intraocular pressure sensor in an intraocular implant
US9730638B2 (en) * 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US10517759B2 (en) 2013-03-15 2019-12-31 Glaukos Corporation Glaucoma stent and methods thereof for glaucoma treatment
US9226851B2 (en) 2013-08-24 2016-01-05 Novartis Ag MEMS check valve chip and methods
US9289324B2 (en) 2013-08-26 2016-03-22 Novartis Ag Externally adjustable passive drainage device
US9283115B2 (en) 2013-08-26 2016-03-15 Novartis Ag Passive to active staged drainage device
US9681983B2 (en) 2014-03-13 2017-06-20 Novartis Ag Debris clearance system for an ocular implant
US9603742B2 (en) 2014-03-13 2017-03-28 Novartis Ag Remote magnetic driven flow system
JP6655610B2 (ja) 2014-05-29 2020-02-26 グローコス コーポレーション 制御された薬物送達機能を備えるインプラント及びそれを使用する方法
DE102014212457A1 (de) * 2014-06-27 2015-12-31 Implandata Ophthalmic Products Gmbh Implantat zur Bestimmung des Augeninnendrucks
US9655777B2 (en) 2015-04-07 2017-05-23 Novartis Ag System and method for diagphragm pumping using heating element
US11925578B2 (en) 2015-09-02 2024-03-12 Glaukos Corporation Drug delivery implants with bi-directional delivery capacity
EP3463044A4 (de) 2016-05-31 2020-07-29 Qura, Inc. Implantierbare intraokulare drucksensoren und verfahren zur verwendung
US11116625B2 (en) 2017-09-28 2021-09-14 Glaukos Corporation Apparatus and method for controlling placement of intraocular implants
CN108634929B (zh) * 2018-05-16 2020-06-26 沈阳工业大学 一种植入式眼压连续监测与控制***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686958A (en) * 1971-02-22 1972-08-29 Ladd Res Ind Fiber optic pressure detector
US3789667A (en) * 1972-02-14 1974-02-05 Ladd Res Ind Inc Fiber optic pressure detector
US5005577A (en) * 1988-08-23 1991-04-09 Frenkel Ronald E P Intraocular lens pressure monitoring device
US4875135A (en) * 1988-12-02 1989-10-17 Texas Instruments Incorporated Pressure sensor
US5179953A (en) * 1991-08-27 1993-01-19 Jermik Systems, Ltd. Portable diurnal intraocular pressure recording system
US5891795A (en) * 1996-03-18 1999-04-06 Motorola, Inc. High density interconnect substrate
DE19728069C1 (de) * 1997-07-01 1999-02-11 Acritec Gmbh Vorrichtung zur Messung des Augeninnendrucks
US6033366A (en) * 1997-10-14 2000-03-07 Data Sciences International, Inc. Pressure measurement device
DE19858172A1 (de) * 1998-12-16 2000-06-21 Campus Micro Technologies Gmbh Implantat zur Messung des Augeninnendrucks
US6193656B1 (en) * 1999-02-08 2001-02-27 Robert E. Jeffries Intraocular pressure monitoring/measuring apparatus and method
AU3949800A (en) * 2000-04-20 2001-11-07 Cochlear Limited Transcutaneous power optimization circuit for cochlear implant
US7184202B2 (en) * 2004-09-27 2007-02-27 Idc, Llc Method and system for packaging a MEMS device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02056758A1 *

Also Published As

Publication number Publication date
DE10200617A1 (de) 2002-07-18
CN1486158A (zh) 2004-03-31
JP2004520119A (ja) 2004-07-08
WO2002056758A1 (de) 2002-07-25
US20040059248A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
EP1351600A1 (de) Implantat zur bestimmung des augeninnendrucks
DE60110024T2 (de) Implantierbarer telemetrischer medizinischer Sensor
DE69917429T2 (de) Intraokularlinse mit trägerelement für ein teleskop
DE69924290T2 (de) Verfahren und sensoren zur drahtlosen messung physiologischer variablen
DE60001961T2 (de) Intraokularlinse mit akkomodationseigenschaften
DE68904925T2 (de) Intraokulares optisches system.
DE60206837T2 (de) Implantierbare medizinische Vorrichtung mit Verankerungselementen
EP1658021B1 (de) Ciliarmuskel-betätigtes, akkomodationsfähiges linsenimplantat
DE4438201C2 (de) Gerät zur langzeitigen Normalisierung des Kammerwasserabflusses aus dem menschlichen Auge
DE19858172A1 (de) Implantat zur Messung des Augeninnendrucks
DE10346024B4 (de) Ciliarmuskel-betätigtes, akkommodationsfähiges Linsenimplantat
WO1999001063A1 (de) Vorrichtung zur messung des augeninnendrucks
DE3032144C2 (de) Intraokulare Linsenanordnung
EP1148846A1 (de) Akkommodative intraokularlinse
DE102014212457A1 (de) Implantat zur Bestimmung des Augeninnendrucks
DE102017117657A1 (de) Vorrichtung zur Beeinflussung eines Augeninnendrucks
DE102016221371A1 (de) Ringimplantat
EP2057940A1 (de) Applanationstonometer
DE102012221350A1 (de) Instrumentiertes Augenimplantat mit autonomer Druckregelung zur Behandlung der Glaukomkrankheit
EP3682795A1 (de) Implantatvorrichtung, sensormodul, einweginjektor mit einer implantatvorrichtung und verfahren zum herstellen einer implantatvorrichtung
DE60011783T2 (de) Verfahren und gerät zur bestimmung des augendruckes durch messung der änderung des frequenzverhaltens
DE102004056757A1 (de) Vorrichtung zur Intraokulardruckmessung
DE3800076C2 (de)
DE2714667C3 (de) Sehgerät
DE102004056756B4 (de) Vorrichtung zur Intraokulardruckmessung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: USE, TIM

Inventor name: MESSNER, ARTHUR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041207