EP1337739B1 - Variable geometry turbocharger with sliding piston - Google Patents

Variable geometry turbocharger with sliding piston Download PDF

Info

Publication number
EP1337739B1
EP1337739B1 EP00985372A EP00985372A EP1337739B1 EP 1337739 B1 EP1337739 B1 EP 1337739B1 EP 00985372 A EP00985372 A EP 00985372A EP 00985372 A EP00985372 A EP 00985372A EP 1337739 B1 EP1337739 B1 EP 1337739B1
Authority
EP
European Patent Office
Prior art keywords
piston
turbine
housing
vanes
turbine wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00985372A
Other languages
German (de)
French (fr)
Other versions
EP1337739A1 (en
Inventor
Jean-Luc Hubert Honeywell Garrett SA PERRIN
Olivier Honeywell Garrett SA ESPASA
Marylène Honeywell Garrett SA RUFFINONI
Alain René Honeywell Garrett SA LOMBARD
Philippe Joseph Honeywell Garrett SA MULLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Garrett Motion France SAS
Original Assignee
Honeywell Garrett SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Garrett SA filed Critical Honeywell Garrett SA
Publication of EP1337739A1 publication Critical patent/EP1337739A1/en
Application granted granted Critical
Publication of EP1337739B1 publication Critical patent/EP1337739B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/143Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path the shiftable member being a wall, or part thereof of a radial diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the present invention generally relates to variable geometry turbochargers. More particularly, it relates to a turbocharger having a sliding piston which creates a variable nozzle turbine inlet with fins extending across the nozzle in a closed position of the piston.
  • High efficiency turbochargers employ variable geometry systems for the turbine inlet nozzles to increase performance and aerodynamic efficiency.
  • the variable geometry systems for turbochargers are of two types, namely with pivoting vanes and piston.
  • the swivel wing type illustrated for example by US Patent No. 5,947,681 entitled “Pressure Balanced Dual Axle Variable Nozzle Turbocharger”
  • the piston type which is illustrated for example by US Pat. Nos. 5,214,920 and 5,231,831 both entitled “Turbocharger Apparatus” and US Patent No.
  • 5,441,383 entitled “Variable Exhaust Driven Turbochargers” employs a piston. or a cylindrical wall that is concentrically movable to the axis rotation of the turbine to reduce the section of the nozzle inlet.
  • the piston-type variable geometry turbocharger includes fins having a fixed angle of attack relative to the airflow, which are mounted on the piston or on a fixed nozzle wall opposite of the piston and which are received in grooves in the opposite surface during the movement of the piston.
  • a turbocharger utilizing the present invention comprises a turbine nozzle variable geometry turbocharger comprising a turbine body which receives the exhaust gas from an exhaust manifold of an internal combustion engine at an inlet and which has a discharge outlet, a compressor body having an air inlet and a first volute, and a central body placed between the turbine body and the compressor body; a turbine wheel mounted in the turbine body for extracting energy from the exhaust gas, said turbine wheel coupled to a shaft extending from the turbine body and passing through a shaft bore of the central body; a bearing mounted in the shaft bore of the central body, said bearing supporting the shaft for rotational movement; a compressor wheel coupled to the shaft, opposite the turbine wheel, and contained in the body of compressor; a substantially cylindrical piston concentric with the turbine wheel and movable parallel to the axis of rotation of the turbine wheel; the piston having a radial surface; a thermal shield taken at its outer circumference between the turbine body and the central body and extending radially inwards towards the axis of rotation, the said heat shield further having
  • FIG. 1 shows an embodiment of the invention for a turbocharger 10 which comprises a turbine body 12, a central body 14 and a compressor body 16.
  • a turbine wheel 18 is coupled by a shaft 20 to a wheel
  • the turbine wheel converts the energy of the exhaust gases of an internal combustion engine fed through an exhaust manifold (not shown) to a volute 24 in the turbine body.
  • the exhaust gas expands in the turbine and exits the turbine body through an outlet 26.
  • the compressor body includes an inlet 28 and an outlet volute 30.
  • a backplate 30 is connected by bolts 34 to the compressor body.
  • the back plate is itself fixed to the central body by means of bolts (not shown) or integrally cast from the central body.
  • a V-clamp 40 and alignment pins 42 connect the turbine body to the central body.
  • a bearing 50 mounted in the bore 52 of the central body supports the rotating shaft.
  • a sleeve 58 is held between the abutment surface and the compressor wheel.
  • a rotary seal 60 such as a piston ring, provides a seal between the sleeve and the back plate.
  • the variable geometry mechanism of the present invention comprises a substantially cylindrical piston 70 received in the turbine body concentrically aligned with the axis of rotation of the turbine.
  • the piston is longitudinally displaceable via a spider 72, having three branches in the embodiment shown, which is attached to the piston and attached to an operating rod 74.
  • the operating rod is received in a sleeve 76 which crosses the turbine body and is connected to an actuator 77.
  • the actuator is mounted on bosses of the turbine body via a support 78.
  • the piston slides in the turbine body via a low-friction insert 82.
  • a cylindrical seal 84 is inserted between the piston and the insert.
  • the piston is movable from a closed position shown in Fig. 1, wherein the section of the turbine inlet nozzle from the volute 24 is substantially reduced. In a fully open position, a radial projection 86 of the piston abuts against a face 88 of the insert to limit the displacement of the piston.
  • Jet vanes 90 extend from a heat shield 92. In the closed position of the piston, the vanes are in contact with the face of the radial projection of the piston.
  • the outer periphery of the heat shield is held between the turbine body and the central body.
  • the shield is configured to enter the turbine body cavity from the interface between the central body and the turbine body and constitutes an interior wall for the inlet nozzle of the turbine.
  • Figure 2 shows the turbocharger of Figure 1 when the piston 70 is in the open position.
  • An open annular channel 94 is created between the fins and the face of the radial projection.
  • the flow of exhaust gas through the fins and the annular channel which constitutes the open nozzle is stabilized in the direction by the fins. Modulation of the nozzle flow can be effected by positioning the piston at desired points between the fully open position and the fully closed position.
  • the piston operating system in the embodiment shown, is a pneumatic actuator 77 fixed to a support 78 as shown in FIGS. 1 and 2.
  • Fig. 3 shows a second embodiment of the invention incorporating a piston 70a which is made from a sheet of metal or by casting a thin wall having a substantially U-shaped cross-section so as to comprise an outer ring. 94 parallel to the direction of translation of the piston and an inner ring 96 extending to an attachment to a plate 98 for connection to the operating rod 74.
  • the outer ring of the piston is received in a groove 100 of the turbine body, and the ring The interior is closely received by the inner circumferential wall of the outlet of the turbine body, which creates a seal with offset seals for the piston.
  • the U-shaped piston core contacts the fins to define the minimum section nozzle.
  • FIG. 4 represents the embodiment of FIG. 3, the piston being in the open position and the U core being remote from the fins to obtain the free annular space (94) previously described for the open nozzle producing a maximum section. nozzle inlet.
  • the contact of the edge of the outer ring 84 with the end of the groove 100 or, alternatively, the contact of the core of the U with the adjacent face 88a of the turbine body limits the stroke of the piston.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Description

ARRIERE-PLAN DE L'INVENTIONBACKGROUND OF THE INVENTION Domaine de l'InventionField of the Invention

La présente invention concerne d'une manière générale des turbocompresseurs à géométrie variable. Plus particulièrement, elle vise un turbocompresseur comportant un piston coulissant qui crée une entrée de turbine à tuyère variable avec des ailettes s'étendant en travers de la tuyère dans une position fermée du piston.The present invention generally relates to variable geometry turbochargers. More particularly, it relates to a turbocharger having a sliding piston which creates a variable nozzle turbine inlet with fins extending across the nozzle in a closed position of the piston.

Description de l'Art AntérieurDescription of the Prior Art

Les turbocompresseurs à haut rendement emploient des systèmes à géométrie variable pour les tuyères d'entrée de la turbine afin d'augmenter les performances et le rendement aérodynamique. De façon typique, les systèmes à géométrie variable pour turbocompresseurs sont de deux types, à savoir à ailettes pivotantes et à piston. Le type à ailettes pivotantes, illustré par exemple par le brevet US N°5 947 681 intitulé "Pressure Balanced Dual Axle Variable Nozzle Turbocharger", comporte une pluralité d'ailettes individuelles placées dans la tuyère d'entrée de turbine et qu'on peut faire pivoter pour diminuer ou augmenter la section de tuyère et le volume de fluide. Le type à piston, qui est illustré par exemple par les brevets US N°5 214 920 et 5 231 831 tous deux intitulés "Turbocharger Apparatus" et le brevet US N°5 441 383 intitulé "Variable Exhaust Driven Turbochargers", emploie un piston ou une paroi cylindrique qui est déplaçable concentriquement à l'axe de rotation de la turbine pour réduire la section de l'entrée de tuyère. Dans la plupart des cas, le turbocompresseur à géométrie variable du type à piston comprend des ailettes ayant un angle d'attaque fixe par rapport au flux d'air, qui sont montées sur le piston ou sur une paroi de tuyère fixe à l'opposé du piston et qui sont reçues dans des rainures ménagées dans la surface opposée pendant le mouvement du piston.High efficiency turbochargers employ variable geometry systems for the turbine inlet nozzles to increase performance and aerodynamic efficiency. Typically, the variable geometry systems for turbochargers are of two types, namely with pivoting vanes and piston. The swivel wing type, illustrated for example by US Patent No. 5,947,681 entitled "Pressure Balanced Dual Axle Variable Nozzle Turbocharger", has a plurality of individual vanes placed in the turbine inlet nozzle and can be rotate to decrease or increase the nozzle section and fluid volume. The piston type, which is illustrated for example by US Pat. Nos. 5,214,920 and 5,231,831 both entitled "Turbocharger Apparatus" and US Patent No. 5,441,383 entitled "Variable Exhaust Driven Turbochargers", employs a piston. or a cylindrical wall that is concentrically movable to the axis rotation of the turbine to reduce the section of the nozzle inlet. In most cases, the piston-type variable geometry turbocharger includes fins having a fixed angle of attack relative to the airflow, which are mounted on the piston or on a fixed nozzle wall opposite of the piston and which are received in grooves in the opposite surface during the movement of the piston.

Dans les turbocompresseurs à géométrie variable du type à piston de l'art antérieur, tel que, par exemple, les documents EP 0 678 657 ou US 4 557 665, le problème a été d'obtenir les performances aérodynamiques maximales tout en admettant des tolérances pour les surfaces coopérantes, en particulier pour les ailettes et les rainures de réception, ménagées dans une surface radiale du piston, qui sont employées dans la plupart des réalisations et qui sont soumises à des variations de température et des contraintes mécaniques très élevées, et également de prévoir des moyens de commande du piston dans une configuration facile à fabriquer.In the piston-type variable geometry turbochargers of the prior art, such as, for example, EP 0 678 657 or US Pat. No. 4,557,665, the problem has been to obtain the maximum aerodynamic performance while admitting tolerances. for the cooperating surfaces, in particular for the fins and the receiving grooves, formed in a radial surface of the piston, which are used in most embodiments and which are subject to very high temperature variations and mechanical stresses, and also provide means for controlling the piston in a configuration easy to manufacture.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

Un turbocompresseur utilisant la présente invention comprend un turbocompresseur à géométrie variable de tuyère de turbine, comprenant
un corps de turbine qui reçoit les gaz d'échappement d'un collecteur d'échappement d'un moteur à combustion interne à une entrée et qui comporte une sortie d'évacuation, un corps de compresseur ayant une entrée d'air et une première volute, et un corps central placé entre le corps de turbine et le corps de compresseur ;
une roue de turbine montée dans le corps de turbine pour extraire l'énergie du gaz d'échappement, la dite roue de turbine accouplée à un arbre qui sort du corps de turbine et passe dans un alésage d'arbre du corps central ;
un palier monté dans l'alésage d'arbre du corps central, le dit palier supportant l'arbre pour un mouvement de rotation ;
une roue de compresseur accouplée à l'arbre, à l'opposé de la roue de turbine, et contenue dans le corps de compresseur ;
un piston sensiblement cylindrique, concentrique à la roue de turbine et déplaçable parallèlement à l'axe de rotation de la roue de turbine ; le piston ayant une surface radiale;
un bouclier thermique pris à sa circonférence extérieure entre le corps de turbine et le corps central et s'étendant radialement vers l'intérieur, vers l'axe de rotation, le dit bouclier thermique ayant en outre une pluralité d'ailettes qui sont sensiblement parallèles à l'axe de rotation ; et
des moyens pour déplacer le piston d'une première position dans laquelle la surface radial du piston est en contact avec l'extrémité des ailettes à une deuxième position éloignée du bouclier thermique, dans laquelle la surface radiale est espacée de l'extrémité des ailettes de façon à créer un canal annulaire ouvert entre l'extrémité des ailettes et la surface radiale du piston, permettant un écoulement partiel des gaz d'échappement venant de l'entrée de gaz de turbine à travers le canal annulaire ouvert directement sur la roue de turbine.
A turbocharger utilizing the present invention comprises a turbine nozzle variable geometry turbocharger comprising
a turbine body which receives the exhaust gas from an exhaust manifold of an internal combustion engine at an inlet and which has a discharge outlet, a compressor body having an air inlet and a first volute, and a central body placed between the turbine body and the compressor body;
a turbine wheel mounted in the turbine body for extracting energy from the exhaust gas, said turbine wheel coupled to a shaft extending from the turbine body and passing through a shaft bore of the central body;
a bearing mounted in the shaft bore of the central body, said bearing supporting the shaft for rotational movement;
a compressor wheel coupled to the shaft, opposite the turbine wheel, and contained in the body of compressor;
a substantially cylindrical piston concentric with the turbine wheel and movable parallel to the axis of rotation of the turbine wheel; the piston having a radial surface;
a thermal shield taken at its outer circumference between the turbine body and the central body and extending radially inwards towards the axis of rotation, the said heat shield further having a plurality of fins which are substantially parallel to the axis of rotation; and
means for moving the piston from a first position in which the radial surface of the piston is in contact with the end of the fins at a second position remote from the heat shield, wherein the radial surface is spaced from the end of the fins of the to create an open annular channel between the end of the fins and the radial surface of the piston, allowing a partial flow of the exhaust gas from the turbine gas inlet through the annular channel open directly on the turbine wheel .

BREVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

Les détails et aspects de la présente invention seront mieux compris à la lumière de la description détaillée ci-après et des dessins dans lesquels

  • la figure 1 est une vue en élévation et en coupe d'un turbocompresseur employant un mode de réalisation de l'invention, le piston étant dans la position fermée ;
  • la figure 2 est une vue en élévation et en coupe du turbocompresseur de la figure 1, le piston étant dans la position ouverte ;
  • la figure 3 est une vue en élévation et en coupe partielle d'un deuxième mode de réalisation de l'invention avec une étanchéité à joints décalés pour le piston, le piston étant dans la position fermée ; et
  • la figure 4 est une vue en élévation et en coupe partielle du mode de réalisation de la figure 3, le piston étant dans la position ouverte.
The details and aspects of the present invention will be better understood in the light of the detailed description below and the drawings in which
  • Figure 1 is an elevational view in section of a turbocharger employing an embodiment of the invention, the piston being in the closed position;
  • Figure 2 is an elevational view in section of the turbocharger of Figure 1, the piston being in the open position;
  • Figure 3 is an elevational view in partial section of a second embodiment of the invention with a seal with offset seals for the piston, the piston being in the closed position; and
  • Figure 4 is an elevational view in partial section of the embodiment of Figure 3, the piston being in the open position.

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

On se reporte aux dessins. La figure 1 représente un mode de réalisation de l'invention pour un turbocompresseur 10 qui comprend un corps de turbine 12, un corps central 14 et un corps de compresseur 16. Une roue de turbine 18 est accouplée par un arbre 20 à une roue de compresseur 22. La roue de turbine convertit l'énergie des gaz d'échappement d'un moteur à combustion interne amenés par un collecteur d'échappement (non représenté) à une volute 24 dans le corps de turbine. Les gaz d'échappement se détendent dans la turbine et sortent du corps de turbine par une sortie 26.We refer to the drawings. FIG. 1 shows an embodiment of the invention for a turbocharger 10 which comprises a turbine body 12, a central body 14 and a compressor body 16. A turbine wheel 18 is coupled by a shaft 20 to a wheel The turbine wheel converts the energy of the exhaust gases of an internal combustion engine fed through an exhaust manifold (not shown) to a volute 24 in the turbine body. The exhaust gas expands in the turbine and exits the turbine body through an outlet 26.

Le corps de compresseur comprend une entrée 28 et une volute de sortie 30. Une plaque arrière 30 est reliée par des boulons 34 au corps de compresseur. La plaque arrière est elle-même fixée au corps central au moyen de boulons (non représentés) ou coulée solidairement du corps central. Un collier de serrage en V 40 et des broches d'alignement 42 relient le corps de turbine au corps central.The compressor body includes an inlet 28 and an outlet volute 30. A backplate 30 is connected by bolts 34 to the compressor body. The back plate is itself fixed to the central body by means of bolts (not shown) or integrally cast from the central body. A V-clamp 40 and alignment pins 42 connect the turbine body to the central body.

Un palier 50 monté dans l'alésage 52 du corps central supporte l'arbre en rotation. Un manchon 58 est tenu entre la surface de butée et la roue de compresseur. Une garniture rotative 60, telle qu'un anneau de piston, assure une étanchéité entre le manchon et la plaque arrière.A bearing 50 mounted in the bore 52 of the central body supports the rotating shaft. A sleeve 58 is held between the abutment surface and the compressor wheel. A rotary seal 60, such as a piston ring, provides a seal between the sleeve and the back plate.

Le mécanisme à géométrie variable de la présente invention comprend un piston sensiblement cylindrique 70 reçu dans le corps de turbine en alignement concentrique avec l'axe de rotation de la turbine. Le piston est déplaçable longitudinalement par l'intermédiaire d'un croisillon 72, comportant trois branches dans le mode de réalisation représenté, qui est attaché au piston et attaché à une tige de manoeuvre 74. La tige de manoeuvre est reçue dans un manchon 76 qui traverse le corps de turbine et elle est reliée à un actionneur 77. Dans le mode de réalisation représenté, l'actionneur est monté sur des bossages du corps de turbine par l'intermédiaire d'un support 78.The variable geometry mechanism of the present invention comprises a substantially cylindrical piston 70 received in the turbine body concentrically aligned with the axis of rotation of the turbine. The piston is longitudinally displaceable via a spider 72, having three branches in the embodiment shown, which is attached to the piston and attached to an operating rod 74. The operating rod is received in a sleeve 76 which crosses the turbine body and is connected to an actuator 77. In the embodiment shown, the actuator is mounted on bosses of the turbine body via a support 78.

Le piston coulisse dans le corps de turbine par l'intermédiaire d'un insert à faible frottement 82. Une garniture d'étanchéité cylindrique 84 est insérée entre le piston et l'insert. Le piston est déplaçable à partir d'une position fermée représentée sur la figure 1, dans laquelle la section de la tuyère d'entrée à la turbine à partir de la volute 24 est sensiblement réduite. Dans une position d'ouverture totale, une saillie radiale 86 du piston bute contre une face 88 de l'insert pour limiter le déplacement du piston.The piston slides in the turbine body via a low-friction insert 82. A cylindrical seal 84 is inserted between the piston and the insert. The piston is movable from a closed position shown in Fig. 1, wherein the section of the turbine inlet nozzle from the volute 24 is substantially reduced. In a fully open position, a radial projection 86 of the piston abuts against a face 88 of the insert to limit the displacement of the piston.

Des ailettes de tuyère 90 s'étendent à partir d'un bouclier thermique 92. Dans la position fermée du piston, les ailettes sont en contact avec la face de la saillie radiale du piston. La périphérie extérieure du bouclier thermique est tenue entre le corps de turbine et le corps central. Le bouclier est configuré de manière à pénétrer dans la cavité du corps de turbine à partir de l'interface entre le corps central et le corps de turbine et il constitue une paroi intérieure pour la tuyère d'entrée de la turbine.Jet vanes 90 extend from a heat shield 92. In the closed position of the piston, the vanes are in contact with the face of the radial projection of the piston. The outer periphery of the heat shield is held between the turbine body and the central body. The shield is configured to enter the turbine body cavity from the interface between the central body and the turbine body and constitutes an interior wall for the inlet nozzle of the turbine.

La figure 2 représente le turbocompresseur de la figure 1 lorsque le piston 70 est dans la position ouverte. Un canal annulaire ouvert 94 est créé entre les ailettes et la face de la saillie radiale. Le flux de gaz d'échappement à travers les ailettes et le canal annulaire qui constitue la tuyère ouverte est stabilisé en direction par les ailettes. La modulation du flux de tuyère peut être effectuée par positionnement du piston à des points désirés entre la position d'ouverture totale et la position de fermeture totale.Figure 2 shows the turbocharger of Figure 1 when the piston 70 is in the open position. An open annular channel 94 is created between the fins and the face of the radial projection. The flow of exhaust gas through the fins and the annular channel which constitutes the open nozzle is stabilized in the direction by the fins. Modulation of the nozzle flow can be effected by positioning the piston at desired points between the fully open position and the fully closed position.

Le système de manoeuvre du piston, dans le mode de réalisation représenté, est un actionneur pneumatique 77 fixé à un support 78 comme représenté sur les figures 1 et 2.The piston operating system, in the embodiment shown, is a pneumatic actuator 77 fixed to a support 78 as shown in FIGS. 1 and 2.

La figure 3 représente un deuxième mode de réalisation de l'invention incorporant un piston 70a qui est fabriqué à partir d'une feuille de métal ou par coulée d'une paroi mince ayant une section transversale sensiblement en U de manière à comprendre un anneau extérieur 94 parallèle au direction de translation du piston et un anneau intérieur 96 s'étendant jusqu'à une fixation à une plaque 98 pour connexion à la tige de manoeuvre 74. L'anneau extérieur du piston est reçu dans une rainure 100 du corps de turbine, et l'anneau intérieur est reçu étroitement par la paroi circonférentielle intérieure de la sortie du corps de turbine, ce qui crée une étanchéité à joints décalés pour le piston. Dans la position fermée, l'âme du piston en U vient en contact avec les ailettes pour définir la tuyère de section minimale.Fig. 3 shows a second embodiment of the invention incorporating a piston 70a which is made from a sheet of metal or by casting a thin wall having a substantially U-shaped cross-section so as to comprise an outer ring. 94 parallel to the direction of translation of the piston and an inner ring 96 extending to an attachment to a plate 98 for connection to the operating rod 74. The outer ring of the piston is received in a groove 100 of the turbine body, and the ring The interior is closely received by the inner circumferential wall of the outlet of the turbine body, which creates a seal with offset seals for the piston. In the closed position, the U-shaped piston core contacts the fins to define the minimum section nozzle.

La figure 4 représente le mode de réalisation de la figure 3, le piston étant dans la position ouverte et l'âme du U étant éloignée des ailettes pour obtenir l'espace annulaire libre (94) précédemment décrit pour la tuyère ouverte produisant une section maximale d'entrée de tuyère. Le contact du bord de l'anneau extérieur 84 avec l'extrémité de la rainure 100 ou, en variante, le contact de l'âme du U avec la face adjacente 88a du corps de turbine limite la course du piston.FIG. 4 represents the embodiment of FIG. 3, the piston being in the open position and the U core being remote from the fins to obtain the free annular space (94) previously described for the open nozzle producing a maximum section. nozzle inlet. The contact of the edge of the outer ring 84 with the end of the groove 100 or, alternatively, the contact of the core of the U with the adjacent face 88a of the turbine body limits the stroke of the piston.

L'invention ayant été décrite en détail comme requis par les règles de protection, des modifications et des substitutions aux modes de réalisation spécifiques décrits ici apparaîtront aux hommes de l'art. Ces modifications et substitutions entrent dans le cadre de la présente invention comme défini dans les revendications annexées.Since the invention has been described in detail as required by the protection rules, modifications and substitutions to the specific embodiments described herein will be apparent to those skilled in the art. Such modifications and substitutions fall within the scope of the present invention as defined in the appended claims.

Claims (2)

  1. A turbocharger (10) having variable turbine nozzle geometry comprising:
    a turbine housing (12) receiving exhaust gas from an exhaust manifold of an internal combustion engine at an inlet (24) and having an exhaust outlet (26), a compressor housing (16) having an air inlet (28) and a first volute (30), and a center housing (14) intermediate the turbine housing and compressor housing;
    a turbine wheel (18) carried within the turbine housing and extracting energy from the exhaust gas, said turbine wheel connected to a shaft (20) extending from the turbine housing through a shaft bore (52) in the center housing;
    a bearing (50) carried in the shaft bore of the center housing, said bearing supporting the shaft for rotational motion;
    a compressor wheel (22) connected to the shaft opposite the turbine wheel and enclosed within the compressor housing;
    a substantially cylindrical piston (70), concentric with the turbine wheel (18), movable parallel to the axis of rotation of the turbine wheel; the piston having a radial face;
    a heat shield (92) engaged at its outer circumference between the turbine housing and center housing and extending radially inward toward the axis of rotation, said heat shield further having a plurality of vanes (90) extending substantially parallel to the axis of rotation; and
    means for moving the piston (70) from a first position, in which the radial face of the piston is in contact with the end of the vanes, to a second position, distal from the heat shield, in which the radial face is spaced from the end of the vanes creating an open annular channel (94) intermediate the end of the vanes and the radial face of the piston, allowing partial flow of exhaust gas from the turbine gas inlet (24) through the open annular channel (94) directly onto the turbine wheel (18).
  2. A turbocharger as defined in claim 1 wherein the piston (70a) has a thin walled U-shaped cross section forming an outer ring (94) and an inner ring (96) joined by a web, said outer ring closely received in a cylindrical slot (100) in the turbine housing (12) and said inner ring closely contacting an inner circumferential surface of the exhaust outlet, said inner and outer rings acting as staggered seals, and said web contacting the vanes (90) with the piston in the first position.
EP00985372A 2000-11-30 2000-11-30 Variable geometry turbocharger with sliding piston Expired - Lifetime EP1337739B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2000/003350 WO2002044527A1 (en) 2000-11-30 2000-11-30 Variable geometry turbocharger with sliding piston

Publications (2)

Publication Number Publication Date
EP1337739A1 EP1337739A1 (en) 2003-08-27
EP1337739B1 true EP1337739B1 (en) 2006-12-20

Family

ID=8848140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00985372A Expired - Lifetime EP1337739B1 (en) 2000-11-30 2000-11-30 Variable geometry turbocharger with sliding piston

Country Status (11)

Country Link
US (1) US7024855B2 (en)
EP (1) EP1337739B1 (en)
JP (1) JP2004514840A (en)
KR (1) KR100737377B1 (en)
CN (1) CN100340742C (en)
AU (1) AU2001221812A1 (en)
CA (1) CA2423755C (en)
DE (1) DE60032523T2 (en)
HU (1) HU225776B1 (en)
MX (1) MXPA03004873A (en)
WO (1) WO2002044527A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408779B (en) * 2001-09-10 2005-10-19 Malcolm George Leavesley Turbocharger apparatus
GB0121864D0 (en) * 2001-09-10 2001-10-31 Leavesley Malcolm G Turbocharger apparatus
US8550775B2 (en) 2002-08-13 2013-10-08 Honeywell International Inc. Compressor
DE60226784D1 (en) * 2002-09-05 2008-07-03 Honeywell Int Inc TURBOCHARGER WITH ADJUSTABLE RODS
EP1925784B1 (en) * 2002-09-05 2011-07-20 Honeywell International Inc. Turbocharger comprising a variable nozzle device
EP1549826B1 (en) * 2002-09-18 2008-09-17 Honeywell International Inc. Variable nozzle device for a turbocharger and method for operating the same
GB0227473D0 (en) * 2002-11-25 2002-12-31 Leavesley Malcolm G Variable turbocharger apparatus with bypass apertures
WO2004074642A1 (en) * 2003-02-19 2004-09-02 Honeywell International Inc. Turbine having variable throat
AU2003206001A1 (en) * 2003-02-19 2004-09-09 Honeywell International Inc. Nozzle device for a turbocharger and associated control method
EP1700005B1 (en) * 2003-12-10 2014-12-03 Honeywell International Inc. Variable nozzle device for a turbocharger
WO2006046892A1 (en) * 2004-10-28 2006-05-04 Volvo Lastvagnar Ab Turbo charger unit for an internal combustion engine comprising a heat shield
US7407364B2 (en) * 2005-03-01 2008-08-05 Honeywell International, Inc. Turbocharger compressor having ported second-stage shroud, and associated method
GB0521354D0 (en) * 2005-10-20 2005-11-30 Holset Engineering Co Variable geometry turbine
JP4468286B2 (en) * 2005-10-21 2010-05-26 三菱重工業株式会社 Exhaust turbocharger
EP1957757B1 (en) * 2005-11-16 2013-02-13 Honeywell International Inc. Turbocharger having an axially sliding piston cartridge
EP1816317B1 (en) * 2006-02-02 2013-06-12 IHI Corporation Turbocharger with variable nozzle
GB0615495D0 (en) 2006-08-04 2006-09-13 Cummins Turbo Tech Ltd Variable geometry turbine
JP2008215083A (en) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd Mounting structure for variable nozzle mechanism in variable geometry exhaust turbocharger
US7712311B2 (en) 2007-03-14 2010-05-11 Gm Global Technology Operations, Inc. Turbocharger assembly with catalyst coating
US20080271449A1 (en) * 2007-05-01 2008-11-06 Quentin Roberts Turbocharger with sliding piston, having overlapping fixed and moving vanes
US7762067B2 (en) * 2007-08-21 2010-07-27 Honeywell International, Inc. Turbocharger with sliding piston assembly
GB0801846D0 (en) * 2008-02-01 2008-03-05 Cummins Turbo Tech Ltd A variable geometry turbine with wastegate
DE102008009604A1 (en) * 2008-02-15 2009-08-20 Rolls-Royce Deutschland Ltd & Co Kg Housing structuring for stabilizing flow in a fluid power machine
US8070425B2 (en) * 2008-03-28 2011-12-06 Honeywell International Inc. Turbocharger with sliding piston, and having vanes and leakage dams
GB2461720B (en) * 2008-07-10 2012-09-05 Cummins Turbo Tech Ltd A variable geometry turbine
KR101645518B1 (en) 2009-04-20 2016-08-05 보르그워너 인코퍼레이티드 Simplified variable geometry turbocharger with variable volute flow volumes
GB2473274B (en) 2009-09-08 2016-01-06 Cummins Turbo Tech Ltd Variable geometry turbine
WO2012018554A2 (en) * 2010-08-05 2012-02-09 Borgwarner Inc. Exhaust-gas turbocharger
US8992165B2 (en) 2010-09-22 2015-03-31 Cummins Turbo Technologies Limited Variable geometry turbine
CN102297016B (en) 2011-08-15 2012-12-12 无锡凯迪增压器配件有限公司 Turbocharger for double-vane nozzle systems
DE112013001514T5 (en) * 2012-04-24 2014-12-04 Borgwarner Inc. Vane pack assembly for VTG turbocharger
DE102013210990A1 (en) * 2013-06-13 2014-12-18 Continental Automotive Gmbh Exhaust gas turbocharger with a radial-axial turbine wheel
US9200518B2 (en) * 2013-10-24 2015-12-01 Honeywell International Inc. Axial turbine wheel with curved leading edge
GB201408087D0 (en) 2014-05-07 2014-06-18 Cummins Ltd Variable geometry turbine assembly
US9932888B2 (en) 2016-03-24 2018-04-03 Borgwarner Inc. Variable geometry turbocharger
US9964010B2 (en) 2016-05-11 2018-05-08 GM Global Technology Operations LLC Turbocharger actuation shaft exhaust leakage containment method
US20190195122A1 (en) * 2016-09-02 2019-06-27 Borgwarner Inc. Turbocharger having variable compressor trim
DE102017108057A1 (en) * 2017-04-13 2018-10-18 Abb Turbo Systems Ag NOZZLE RING FOR AN ABGASTURBOLADER
CN109098780B (en) * 2018-05-24 2024-05-14 中车大连机车研究所有限公司 Gas exhaust casing of turbocharger
CN108930586A (en) * 2018-06-29 2018-12-04 大连海事大学 A kind of variable geometry turbine and nozzle ring arrangement
DE102018211094A1 (en) * 2018-07-05 2020-01-09 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine, internal combustion engine and motor vehicle
US10487681B1 (en) 2018-08-07 2019-11-26 Eyal Ezra Variable geometry turbocharger adjustment device
DE112019006752T5 (en) * 2019-03-14 2021-11-04 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. COMPRESSOR WHEEL DEVICE AND LOADER
CN112780410A (en) * 2021-01-29 2021-05-11 安徽应流航空科技有限公司 Compact type turbine compressor structure

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2431398A (en) * 1944-08-22 1947-11-25 United Aircraft Corp Supercharger with controllable inlet
FR1054895A (en) 1951-02-17 1954-02-15 Garrett Corp Gas turbine engine
US2874642A (en) * 1955-10-05 1959-02-24 Allis Chalmers Mfg Co Adjustable bypass valve
US3079127A (en) * 1956-11-23 1963-02-26 Garrett Corp Temperature responsive variable means for controlling flow in turbomachines
US4265592A (en) * 1979-05-09 1981-05-05 Carlini Gerardo P V Centrifugal fan
EP0034915A1 (en) * 1980-02-22 1981-09-02 Holset Engineering Company Limited Radially inward flow turbine
DE3278214D1 (en) * 1981-11-14 1988-04-14 Holset Engineering Co A variable inlet area turbine
DE3375419D1 (en) * 1982-04-29 1988-02-25 Bbc Brown Boveri & Cie Turbo charger with a sliding ring valve
EP0095853B1 (en) * 1982-05-28 1988-08-03 Holset Engineering Company Limited A variable inlet area turbine
ATE135440T1 (en) 1988-05-27 1996-03-15 Malcolm George Leavesley TURBOCHARGER
US5214920A (en) * 1990-11-27 1993-06-01 Leavesley Malcolm G Turbocharger apparatus
DE69308377T2 (en) 1992-05-21 1997-06-19 Alliedsignal Ltd Adjustable turbocharger
US5231831A (en) * 1992-07-28 1993-08-03 Leavesley Malcolm G Turbocharger apparatus
DE4303520C1 (en) * 1993-02-06 1994-09-22 Daimler Benz Ag Adjustable flow baffle device for an exhaust gas turbine
DE19615237C2 (en) * 1996-04-18 1999-10-28 Daimler Chrysler Ag Exhaust gas turbocharger for an internal combustion engine
US5947681A (en) * 1997-03-17 1999-09-07 Alliedsignal Inc. Pressure balanced dual axle variable nozzle turbocharger
US6158956A (en) * 1998-10-05 2000-12-12 Allied Signal Inc. Actuating mechanism for sliding vane variable geometry turbine
US6715288B1 (en) * 1999-05-27 2004-04-06 Borgwarner, Inc. Controllable exhaust gas turbocharger with a double-fluted turbine housing
DE10048105A1 (en) * 2000-09-28 2002-04-11 Daimler Chrysler Ag Angle turbocharger for an internal combustion engine with variable turbine geometry
GB0121864D0 (en) * 2001-09-10 2001-10-31 Leavesley Malcolm G Turbocharger apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use

Also Published As

Publication number Publication date
CN1454285A (en) 2003-11-05
DE60032523D1 (en) 2007-02-01
CA2423755C (en) 2009-02-03
CN100340742C (en) 2007-10-03
HU225776B1 (en) 2007-08-28
KR100737377B1 (en) 2007-07-09
US20040025504A1 (en) 2004-02-12
HUP0302896A2 (en) 2003-12-29
MXPA03004873A (en) 2005-02-14
US7024855B2 (en) 2006-04-11
KR20030076979A (en) 2003-09-29
CA2423755A1 (en) 2002-06-06
AU2001221812A1 (en) 2002-06-11
WO2002044527A1 (en) 2002-06-06
EP1337739A1 (en) 2003-08-27
JP2004514840A (en) 2004-05-20
DE60032523T2 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
EP1337739B1 (en) Variable geometry turbocharger with sliding piston
EP1301689B1 (en) Sliding vane turbocharger with graduated vanes
EP1247012B1 (en) Turbocharger with sliding blades having combined dynamic surfaces and heat screen and uncoupled axial actuating device
EP1303683B1 (en) Variable nozzle turbocharger with sheet metal shroud
EP0967364B1 (en) Stator ring for the high-pressure turbine of a turbomachine
FR2654774A1 (en) DEVICE FOR CONTROLLING THE PLAY AT THE END OF AUBES USING AN ELBOW LEVER MECHANISM.
FR2745604A1 (en) FUEL TURBOCHARGER
JP2017515051A (en) Variable geometry turbine assembly
EP1519009A1 (en) Turbomachine with cabin bleed air through a tube with ball joint
EP0698739A1 (en) Bleed air apparatus for turbomachine
FR3012846A1 (en) INTERMEDIATE CASTER HUB FOR AIRCRAFT TURBOJET AIRBORNE COMPRISING A DEFORMABLE CONDUIT OF AIR AND DEBRIS CANALIZATION
GB2183302A (en) Turbocharger with variable guide vanes
CA2874841C (en) Fan having a variable setting by means of differential rotation of the fan disks
WO2021148739A1 (en) Turbomachine stator assembly comprising an inner shroud having upstream and downstream portions assembled by axial translation
EP3963202A1 (en) Confluence structure of a primary stream and a secondary stream in a bypass turbine engine
CN217002047U (en) Turbine bypass valve and turbocharger
EP3803062A1 (en) Device for cooling a turbomachine housing
FR2877397A1 (en) Variable geometry turbocharger for internal combustion engine of motor vehicle, has two half-casings, where one half-casing plane reference side against which valves are supported and supports rotating mechanism and rotating axles of valves
FR3039225A1 (en) TURBOMACHINE, SUCH AS A TURBO AIRCRAFT
WO2022208018A1 (en) Device for sealing and reinjecting a bypass flow for a turbine nozzle
FR3085405A1 (en) PRESSURIZATION OF THE INTER-LECHETTES CAVITY BY BYPASSING THE BYPASS FLOW
FR2755179A1 (en) Housing for exhaust gas driven turbo-compressor
WO2020240118A1 (en) Sealing ring for a wheel of a turbomachine turbine
FR2945589A1 (en) DIFFUSER.
FR3071865A1 (en) ASSEMBLY FOR A TURBOMACHINE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030226

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Extension state: RO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061220

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUFFINONI, MARYLENE,HONEYWELL GARRETT SA

Inventor name: LOMBARD, ALAIN, RENE,HONEYWELL GARRETT SA

Inventor name: PERRIN, JEAN-LUC, HUBERT,HONEYWELL GARRETT SA

Inventor name: ESPASA, OLIVIER,HONEYWELL GARRETT SA

Inventor name: MULLER, PHILIPPE, JOSEPH,HONEYWELL GARRETT SA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061220

REF Corresponds to:

Ref document number: 60032523

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131028

Year of fee payment: 14

Ref country code: FR

Payment date: 20131025

Year of fee payment: 14

Ref country code: DE

Payment date: 20131129

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131121

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60032523

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130