EP1325269B1 - Vehicle air conditioning device using a supercritical cycle - Google Patents

Vehicle air conditioning device using a supercritical cycle Download PDF

Info

Publication number
EP1325269B1
EP1325269B1 EP01980592A EP01980592A EP1325269B1 EP 1325269 B1 EP1325269 B1 EP 1325269B1 EP 01980592 A EP01980592 A EP 01980592A EP 01980592 A EP01980592 A EP 01980592A EP 1325269 B1 EP1325269 B1 EP 1325269B1
Authority
EP
European Patent Office
Prior art keywords
fluid
compressor
evaporator
flow
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01980592A
Other languages
German (de)
French (fr)
Other versions
EP1325269A1 (en
Inventor
Mohamed Ben Yahia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP1325269A1 publication Critical patent/EP1325269A1/en
Application granted granted Critical
Publication of EP1325269B1 publication Critical patent/EP1325269B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • F25B2700/1352Mass flow of refrigerants through the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Definitions

  • the invention relates to an air conditioning device, particularly to the passenger compartment of a vehicle, and to a method for controlling a refrigerant fluid loop in such a device, said loop containing a compressor capable of receiving the fluid in the state. gaseous and compressed, a fluid cooler adapted to cool the compressed fluid by the compressor, at substantially constant pressure, by transferring heat to a first medium, a pressure regulator adapted to lower the pressure of the fluid exiting the fluid cooler into causing it to be at least partly in the liquid state and an evaporator capable of bringing the fluid in the liquid state coming from the expander, at substantially constant pressure, into the gaseous state by taking heat from a second medium to cool the space to be conditioned, the fluid thus vaporized then being sucked by the compressor, the loop also containing an internal heat exchanger allowing the fluid to circulate in a first path of the internal exchanger, between the fluid cooler and the expander, to give heat to the fluid flowing in a second path of the internal exchanger, between the evaporator and the compressor.
  • This compound has a relatively low critical pressure, which is exceeded during compression of the fluid by the compressor, so that the fluid is then cooled without phase change by the fluid cooler which replaces the condenser of the traditional loop.
  • the fluid cooler which replaces the condenser of the traditional loop.
  • the internal heat exchanger is used to heat the fluid as it flows between the evaporator and the cooler and to cool it as it circulates between the cooler and the regulator as disclosed in EP1014013A1.
  • the object of the invention is to optimize the operation of the loop so as to avoid this disadvantage.
  • the evaporator in order for the air stream cooled by the evaporator to be at a uniform temperature, the evaporator must not have an overheating zone, ie the fluid vaporizes until the end of the evaporator. its course in the evaporator.
  • Another object of the invention is to satisfy this condition.
  • the invention aims in particular at a method of the kind defined in the introduction, and provides for monitoring a first condition capable of revealing the presence of fluid in the liquid state in said first path, and reducing the flow rate of the fluid in the loop when said first condition is satisfied.
  • This mode of regulation based on a thermodynamic principle, allows a fast stabilization of the regime of the loop, without oscillation. In particular, it avoids the appearance of a peak of cold in case of acceleration of the vehicle.
  • the subject of the invention is also an air-conditioning device, in particular of the passenger compartment of a vehicle, suitable for carrying out the method as defined above, comprising a refrigerant loop as defined, means for monitoring to monitor a first condition capable of revealing the presence of fluid in the liquid state in said second path, and optionally a second condition capable of revealing the existence of an overheating zone in the evaporator, and means for controlling the flow rate of the fluid in the loop depending on the result of this monitoring.
  • FIG. 1 is a graph showing the variation of the efficiency ⁇ as a function of the flow rate Q of the fluid, for a heat exchanger typical internal heat used in the method and in the device according to the invention.
  • Figure 2 is a circuit diagram of a refrigerant fluid loop belonging to a device according to the invention.
  • Figure 3 is a block diagram illustrating the method and the device according to the invention.
  • Figure 2 shows the known structure of an air conditioning loop of the passenger compartment of a motor vehicle using as a refrigerant carbon dioxide in a supercritical thermodynamic cycle.
  • a compressor 1 compresses the fluid to bring it to the supercritical state, after which the fluid passes through a fluid cooler 2.
  • the fluid leaving the cooler 2 travels a path 3-1 of an internal heat exchanger 3, then passes through a pressure reducer 4 to reach an evaporator 5.
  • the fluid Downstream of the evaporator, the fluid passes through a reservoir 6 and travels a 3-2 path of the internal exchanger 3 before returning to the compressor 1.
  • the paths 3-1 and 3-2 are located side by side and counter-current, that is to say that the entrance el and the output s1 of the path 3-1 are respectively adjacent to the output s2 and to the input e2 of the path 3-2.
  • the efficiency ⁇ is a decreasing function of the mass flow Q of the fluid in the loop, according to a curve of which an example is represented by the curve C 1 of Figure 1.
  • This curve extends from one point A at a point B corresponding respectively to the minimum and maximum rates that can be obtained in the loop. Between them, it depends only on the geometrical characteristics of the internal exchanger and the nature of the fluid.
  • FIG. 3 which represents an air conditioning device according to the invention
  • a flow sensor 7 placed upstream of the evaporator 5 of FIG. in order to measure the mass flow rate of the fluid passing through it in the liquid state
  • two temperature sensors 10 and 11 associated with respective reading blocks 12 and 13, for measuring the temperature of the fluid respectively between the outlet of the cooler fluid 2 and the inlet el of the path 3-1 of the internal exchanger 3, and between the output s2 of the path 3-2 of the latter and the inlet of the compressor 1.
  • Another sensor 14, associated with a block reading 15 measures the temperature of an air flow F after it has passed through the evaporator 5 under the action of a blower 16, this air flow being intended to be sent into the passenger compartment of the vehicle to adjust the temperature prevailing in it.
  • the temperature T sr at the outlet of the cooler 2 (or at the inlet e1) and the temperature of the cooled air are sent by the blocks 12 and 15 respectively to a treatment block 17 also connected to the sensor of flow rate 7, which calculates from these measured values - if necessary a correction to account for the difference between the temperature of the cooled air and the temperature T se at the outlet of the evaporator 2 (or at the input e2) - a set value T ec_cons that should have the temperature T ec of the fluid at the inlet of the compressor 1 (or at the outlet s2) so that the efficiency ⁇ of the internal exchanger 3, calculated according to the equation [1], take a reference value ⁇ p equal to the ordinate of the point P of the curve C 1 which has the abscissa the flow rate Q p measured by the sensor 7.
  • T ec The actual value of T ec , provided by the block 13, is compared to this setpoint value by a comparator 18. If T ec ⁇ T ec_cons , this means that the actual efficiency is lower than the reference value, and therefore that the representative point of the efficiency on the graph of Figure 11 is below the curve C 1 , so on one of the sections C 2 and C 3 , indicating the presence of liquid in the internal exchanger.
  • the comparator 18 then generates an error signal 19 which is transmitted to a regulator 20, which acts on a control block 21 which controls the expander 4, so as to reduce the flow rate.
  • the mass flow rate of the fluid can be determined by means other than the sensor 7.
  • the volume flow rate of the fluid in the compressor can be determined from the cubic capacity and the speed of the latter, and the mass flow is deduced taking into account the density of the fluid, which is a function of the nature of the fluid, the temperature and the pressure.
  • the flow rate of the fluid is not taken into account, and the efficiency ⁇ is compared with a reference value ⁇ m equal to the ordinate of the point B.
  • the inequality ⁇ ⁇ m then means that the point representative of the efficiency is on one of the sections C 2 and C 3 , below the point K of the section C 2 having abscissa ⁇ m , requiring a reduction of the flow rate. If, here again, it is desired to avoid or minimize the overheating zone of the evaporator, the regulator will be controlled in such a way as to maintain the efficiency at the value ⁇ m , thus realizing a regulation around the point K, or bringing the point of operation at point B.
  • the flow rate corresponding to point K is very close to that corresponding to point L.
  • the invention is not limited to monitoring the efficiency of the internal heat exchanger as an indicator of the presence of fluid in the liquid state in the first path or the existence of a overheating zone in the evaporator. These phenomena can be detected by other means, for example by means of specific sensors assigned to the internal exchanger and / or the evaporator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

L'invention concerne un dispositif de climatisation, notamment de l'habitacle d'un véhicule, et un procédé de commande d'une boucle de fluide réfrigérant dans un tel dispositif, ladite boucle contenant un compresseur propre à recevoir le fluide à l'état gazeux et à le comprimer, un refroidisseur de fluide propre à refroidir le fluide comprimé par le compresseur, à pression sensiblement constante, en transférant de la chaleur à un premier milieu, un détendeur propre à abaisser la pression du fluide sortant du refroidisseur de fluide en l'amenant au moins en partie à l'état liquide et un évaporateur propre à faire passer à l'état gazeux le fluide à l'état liquide provenant du détendeur, à pression sensiblement constante, en prélevant de la chaleur d'un second milieu pour refroidir l'espace à climatiser, le fluide ainsi vaporisé étant ensuite aspiré par le compresseur, la boucle contenant en outre un échangeur de chaleur interne permettant au fluide circulant dans un premier trajet de l'échangeur interne, entre le refroidisseur de fluide et le détendeur, de céder de la chaleur au fluide circulant dans un second trajet de l'échangeur interne, entre l'évaporateur et le compresseur.The invention relates to an air conditioning device, particularly to the passenger compartment of a vehicle, and to a method for controlling a refrigerant fluid loop in such a device, said loop containing a compressor capable of receiving the fluid in the state. gaseous and compressed, a fluid cooler adapted to cool the compressed fluid by the compressor, at substantially constant pressure, by transferring heat to a first medium, a pressure regulator adapted to lower the pressure of the fluid exiting the fluid cooler into causing it to be at least partly in the liquid state and an evaporator capable of bringing the fluid in the liquid state coming from the expander, at substantially constant pressure, into the gaseous state by taking heat from a second medium to cool the space to be conditioned, the fluid thus vaporized then being sucked by the compressor, the loop also containing an internal heat exchanger allowing the fluid to circulate in a first path of the internal exchanger, between the fluid cooler and the expander, to give heat to the fluid flowing in a second path of the internal exchanger, between the evaporator and the compressor.

Pour éviter les effets néfastes sur l'environnement des composés fluorés utilisés traditionnellement comme fluides réfrigérants dans la climatisation des véhicules automobiles, on préconise l'utilisation du dioxyde de carbone CO2.To avoid the harmful effects on the environment of fluorinated compounds traditionally used as coolants in the air conditioning of motor vehicles, the use of carbon dioxide CO 2 is recommended.

Ce composé présente une pression critique relativement basse, qui est dépassée lors de la compression du fluide par le compresseur, de sorte que le fluide est ensuite refroidi sans changement de phase par le refroidisseur de fluide qui remplace le condenseur de la boucle traditionnelle. En l'absence de changement de phase, seul l'abaissement de la température du fluide dans le refroidisseur permet une dissipation d'énergie thermique. Cette dissipation s'effectuant généralement dans un flux d'air atmosphérique, il est nécessaire que la température du fluide pénétrant dans le refroidisseur soit sensiblement supérieure à la température atmosphérique. C'est pourquoi on a recours à l'échangeur de chaleur interne, qui permet de réchauffer le fluide lorsqu'il circule entre l'évaporateur et le refroidisseur et de le refroidir lorsqu'il circule entre le refroidisseur et le détendeur tel que divulgué dans le document EP1014013A1.This compound has a relatively low critical pressure, which is exceeded during compression of the fluid by the compressor, so that the fluid is then cooled without phase change by the fluid cooler which replaces the condenser of the traditional loop. In the absence of a phase change, only the lowering of the temperature of the fluid in the cooler allows a dissipation of thermal energy. Since this dissipation generally takes place in an atmospheric air flow, it is necessary that the temperature of the fluid entering the cooler is substantially greater than the atmospheric temperature. For this reason, the internal heat exchanger is used to heat the fluid as it flows between the evaporator and the cooler and to cool it as it circulates between the cooler and the regulator as disclosed in EP1014013A1.

L'efficacité η de l'échangeur de chaleur interne, représentée par l'équation [1] η= (Tec - T) / (Tsr - T) dans laquelle Tec, T et Tsr sont respectivement les températures à l'entrée du compresseur, à la sortie de l'évaporateur et à la sortie du refroidisseur, est une fonction décroissante du débit de fluide qui le traverse, selon l' équation [2] η = a.Qb, a et b étant des constantes caractéristiques de l'échangeur interne.The efficiency η of the internal heat exchanger, represented by the equation [1] η = (T ec - T se ) / (T sr - T se ) in which T ec , T and T sr are respectively the temperatures at the inlet of the compressor, at the evaporator outlet and at the outlet of the cooler, is a decreasing function of the flow of fluid passing through it, according to equation [2] η = aQ b , a and b being characteristic constants of the internal exchanger.

Ce qui précède n'est vrai que lorsque l'échangeur de chaleur interne reçoit de l'évaporateur du fluide entièrement à l'état gazeux. Si au contraire il reçoit du fluide à l'état liquide, son efficacité est fortement réduite.The foregoing is only true when the internal heat exchanger receives evaporator fluid completely in the gaseous state. If, on the contrary, it receives fluid in the liquid state, its efficiency is greatly reduced.

Le but de l'invention est d'optimiser le fonctionnement de la boucle de manière à éviter cet inconvénient.The object of the invention is to optimize the operation of the loop so as to avoid this disadvantage.

D'autre part, pour que le flux d'air refroidi par l'évaporateur soit à une température homogène, il faut que l'évaporateur ne comporte pas de zone de surchauffe, autrement dit que le fluide se vaporise jusqu'à la fin de son trajet dans l'évaporateur.On the other hand, in order for the air stream cooled by the evaporator to be at a uniform temperature, the evaporator must not have an overheating zone, ie the fluid vaporizes until the end of the evaporator. its course in the evaporator.

Un autre but de l'invention est de satisfaire à cette condition.Another object of the invention is to satisfy this condition.

L'invention vise notamment un procédé du genre défini en introduction, et prévoit qu'on surveille une première condition susceptible de révéler la présence de fluide à l'état liquide dans ledit premier trajet, et qu'on réduit le débit du fluide dans la boucle lorsque ladite première condition est satisfaite.The invention aims in particular at a method of the kind defined in the introduction, and provides for monitoring a first condition capable of revealing the presence of fluid in the liquid state in said first path, and reducing the flow rate of the fluid in the loop when said first condition is satisfied.

Ce mode de régulation, basé sur un principe thermodynamique, permet une stabilisation rapide du régime de la boucle, sans oscillation. Il évite en particulier l'apparition d'un pic de froid en cas d'accélération du véhicule.This mode of regulation, based on a thermodynamic principle, allows a fast stabilization of the regime of the loop, without oscillation. In particular, it avoids the appearance of a peak of cold in case of acceleration of the vehicle.

Des caractéristiques optionnelles de l'invention, complémentaires ou alternatives, sont énoncées ci-après:

  • Ladite première condition consiste en ce que l'efficacité η de l'échangeur de chaleur interne, représentée par l' équation [1] η = T ec T T sr T
    Figure imgb0001

    dans laquelle Tec, T et Tsr sont respectivement les températures à l'entrée du compresseur, à la sortie de l'évaporateur et à la sortie du refroidisseur, est inférieure à une valeur de référence η0.
  • On surveille en outre une seconde condition susceptible de révéler l'existence d'une zone de surchauffe dans l'évaporateur, et on augmente le débit du fluide dans la boucle lorsque ladite seconde condition est satisfaite.
  • Ladite seconde condition consiste en ce que l'efficacité η telle que définie dans la revendication 2 est supérieure ou égale à une valeur de référence η0
  • On règle le débit du fluide sensiblement à la valeur maximale compatible avec une efficacité η non inférieure à la valeur de référence.
  • On adopte comme valeur de référence, quelle que soit la valeur du débit, la valeur ηm prise par l'efficacité η lorsque le débit est maximal et que ledit second trajet ne contient pas de fluide à l'état liquide.
  • On adopte comme valeur de référence, pour une valeur déterminée Qp du débit, la valeur ηp prise par l'efficacité η lorsque ledit second trajet ne contient pas de fluide à l'état liquide.
  • On règle le débit en agissant sur le détendeur.
  • Pour évaluer η sur la base de l'équation [1], on utilise pour l'une au moins desdites températures une valeur mesurée au moyen d'un capteur en contact thermique avec le fluide.
  • Pour évaluer η sur la base de l'équation [1] , on utilise pour représenter T la température d'un flux d'air ayant balayé l'évàporateur et constituant ledit second milieu.
  • On compare Tec à une valeur de consigne Tec_cons telle que η 0 = T ec cons T T sr T
    Figure imgb0002
    et on considère que η est inférieure et supérieure à la valeur de référence lorsque Tec est inférieure et supérieure à ladite valeur de consigne respectivement.
  • Le compresseur est du type à cylindrée variable à commande externe.
  • Le compresseur comprime le fluide jusqu'à une pression supercritique.
Optional features of the invention, complementary or alternative, are set out below:
  • Said first condition is that the efficiency η of the internal heat exchanger, represented by equation [1] η = T ec - T T sr - T
    Figure imgb0001

    in which T ec , T se and T sr are respectively the temperatures at the inlet of the compressor, at the evaporator outlet and at the outlet of the cooler, is less than a reference value η 0 .
  • In addition, a second condition which can reveal the existence of an overheating zone in the evaporator is monitored, and the flow rate of the fluid in the loop is increased when said second condition is satisfied.
  • Said second condition is that the efficiency η as defined in claim 2 is greater than or equal to a reference value η 0
  • The flow rate of the fluid is adjusted substantially to the maximum value compatible with an efficiency η which is not less than the reference value.
  • As the reference value, irrespective of the value of the flow rate, the value η m taken by the efficiency η when the flow rate is maximum and said second path does not contain fluid in the liquid state is adopted.
  • The value η p taken by the efficiency η when the said second path does not contain fluid in the liquid state is adopted as the reference value for a determined value Q p of the flow rate.
  • The flow rate is regulated by acting on the expander.
  • To evaluate η on the basis of equation [1], at least one of said temperatures uses a value measured by means of a sensor in thermal contact with the fluid.
  • To evaluate η on the basis of equation [1], the temperature of an air stream having swept the evaporator and constituting said second medium is used to represent T se .
  • We compare T ec with a set value T ec_cons such that η 0 = T ec cunts - T T sr - T
    Figure imgb0002
    and it is considered that η is smaller than and greater than the reference value when T ec is smaller than and greater than said setpoint respectively.
  • The compressor is of the externally controlled variable displacement type.
  • The compressor compresses the fluid to supercritical pressure.

L'invention a également pour objet un dispositif de climatisation, notamment de l'habitacle d'un véhicule, propre à la mise en oeuvre du procédé tel que défini ci-dessus, comprenant une boucle de fluide réfrigérant telle que définie, des moyens de surveillance pour surveiller une première condition susceptible de révéler la présence de fluide à l'état liquide dans ledit second trajet, et optionnellement une seconde condition susceptible de révéler l'existence d'une zone de surchauffe dans l'évaporateur, et des moyens pour commander le débit du fluide dans la boucle en fonction du résultat de cette surveillance.The subject of the invention is also an air-conditioning device, in particular of the passenger compartment of a vehicle, suitable for carrying out the method as defined above, comprising a refrigerant loop as defined, means for monitoring to monitor a first condition capable of revealing the presence of fluid in the liquid state in said second path, and optionally a second condition capable of revealing the existence of an overheating zone in the evaporator, and means for controlling the flow rate of the fluid in the loop depending on the result of this monitoring.

Le dispositif selon l'invention peut comporter au moins certaines des particularités suivantes:

  • Les moyens de surveillance comprennent des moyens pour évaluer les températures Tec, T et Tsr respectivement à l'entrée du compresseur, à la sortie de l'évaporateur et à la sortie du refroidisseur, des moyens pour calculer à partir de celles-ci l'efficacité η de l'échangeur de chaleur interne, sur-la base de l'équation [1] η = T ec T T sr T
    Figure imgb0003
    et des moyens pour comparer l'efficacité η à une valeur de référence.
  • Boucle et pour définir à partir de celui-ci ladite valeur de référence.
  • Les moyens pour évaluer lesdites températures comprennent au moins un capteur de température en contact thermique avec le fluide.
  • Les moyens pour évaluer la température T comprennent un capteur de température en contact thermique avec un flux d'air ayant balayé l'évaporateur.
The device according to the invention may comprise at least some of the following features:
  • The monitoring means comprise means for evaluating the temperatures T ec , T se and T sr respectively at the inlet of the compressor, at the outlet of the evaporator and at the outlet of the cooler, means for calculating from these ci the efficiency η of the internal heat exchanger, on the basis of the equation [1] η = T ec - T T sr - T
    Figure imgb0003
    and means for comparing the efficiency η with a reference value.
  • Loop and to define therefrom said reference value.
  • The means for evaluating said temperatures comprise at least one temperature sensor in thermal contact with the fluid.
  • The means for evaluating the temperature T se comprise a temperature sensor in thermal contact with a stream of air having swept the evaporator.

Les caractéristiques et avantages de l'invention seront exposés plus en détail dans la description ci-après, en se référant aux dessins annexés.The features and advantages of the invention will be set forth in more detail in the description below, with reference to the accompanying drawings.

La figure 1 est un graphique montant la variation de l'efficacité η en fonction du débit Q du fluide, pour un échangeur de chaleur interne typique utilisable dans le procédé et dans le dispositif selon l'invention.FIG. 1 is a graph showing the variation of the efficiency η as a function of the flow rate Q of the fluid, for a heat exchanger typical internal heat used in the method and in the device according to the invention.

La figure 2 est un schéma de circuit d'une boucle de fluide réfrigérant appartenant à un dispositif selon l'invention.Figure 2 is a circuit diagram of a refrigerant fluid loop belonging to a device according to the invention.

La figure 3 est un schéma fonctionnel illustrant le procédé et le dispositif selon l'invention.Figure 3 is a block diagram illustrating the method and the device according to the invention.

La figure 2 montre la structure connue d'une boucle de climatisation de l'habitacle d'un véhicule automobile utilisant comme fluide réfrigérant le dioxyde de carbone dans un cycle thermodynamique supercritique. Un compresseur 1 comprime le fluide pour l'amener à l'état supercritique, après quoi le fluide traverse un refroidisseur de fluide 2 . Le fluide sortant du refroidisseur 2 parcourt un trajet 3-1 d'un échangeur de: chaleur interne 3, puis passe par un détendeur 4 pour parvenir à un évaporateur 5. En aval de l'évaporateur, le fluide passe par un réservoir 6 puis parcourt un trajet 3-2 de l'échangeur interne 3 avant de revenir au compresseur 1. Les trajets 3-1 et 3-2 sont situés côte à côte et à contre-courant, c'est-à-dire que l'entrée el et la sortie s1 du trajet 3-1 sont adjacentes respectivement à la sortie s2 et à l'entrée e2 du trajet 3-2. Dans ces conditions, on définit pour l'échangeur interne une efficacité η donnée par l'équation [1] η = T ec T T sr T

Figure imgb0004

dans laquelle Tec, T et Tsr sont respectivement les températures du fluide à l'entrée du compresseur 1 (ou à la sortie s2), à la sortie de l'évaporateur 5 (ou à l'entrée e2) et à la sortie du refroidisseur 2 (ou à l'entrée e1).Figure 2 shows the known structure of an air conditioning loop of the passenger compartment of a motor vehicle using as a refrigerant carbon dioxide in a supercritical thermodynamic cycle. A compressor 1 compresses the fluid to bring it to the supercritical state, after which the fluid passes through a fluid cooler 2. The fluid leaving the cooler 2 travels a path 3-1 of an internal heat exchanger 3, then passes through a pressure reducer 4 to reach an evaporator 5. Downstream of the evaporator, the fluid passes through a reservoir 6 and travels a 3-2 path of the internal exchanger 3 before returning to the compressor 1. The paths 3-1 and 3-2 are located side by side and counter-current, that is to say that the entrance el and the output s1 of the path 3-1 are respectively adjacent to the output s2 and to the input e2 of the path 3-2. Under these conditions, for the internal exchanger, an efficiency η given by equation [1] is defined η = T ec - T T sr - T
Figure imgb0004

in which T ec , T se and T sr are respectively the temperatures of the fluid at the inlet of the compressor 1 (or at the outlet s2), at the outlet of the evaporator 5 (or at the inlet e2) and at the outlet of the cooler 2 (or at the entrance e1).

On constate que, lorsque l'échangeur interne est parcouru exclusivement par du fluide à l'état gazeux, l'efficacité η est fonction décroissante du débit massique Q du fluide dans la boucle, selon une courbe dont un exemple est représenté par la courbe C1 de la figure 1. Cette courbe s'étend d'un point A à un point B correspondant respectivement aux débits minimal et maximal pouvant être obtenus dans la boucle. Entre ceux-ci, elle dépend uniquement des caractéristiques géométriques de l'échangeur interne et de la nature du fluide.It can be seen that, when the internal exchanger is traversed exclusively by fluid in the gaseous state, the efficiency η is a decreasing function of the mass flow Q of the fluid in the loop, according to a curve of which an example is represented by the curve C 1 of Figure 1. This curve extends from one point A at a point B corresponding respectively to the minimum and maximum rates that can be obtained in the loop. Between them, it depends only on the geometrical characteristics of the internal exchanger and the nature of the fluid.

La condition ci-dessus n'est satisfaite que si la charge thermique de la boucle est suffisante pour permettre à l'évaporateur de vaporiser intégralement le fluide jusqu'à son débit maximal. Dans le cas contraire, l'efficacité ne suit la courbe C1 que jusqu'à un point L correspondant au débit limite pouvant être vaporisé dans l'évaporateur. Au-delà de ce débit limite, l'échangeur interne reçoit de l'évaporateur du fluide à l'état liquide, ce qui fait décroître brutalement l'efficacité selon le tronçon de courbe C2 approximativement vertical, suivi d'un tronçon C3 sensiblement horizontal pour lequel l'efficacité est pratiquement nulle.The above condition is satisfied only if the heat load of the loop is sufficient to allow the evaporator to fully vaporize the fluid to its maximum flow rate. In the opposite case, the efficiency follows the curve C 1 only up to a point L corresponding to the flow rate that can be vaporized in the evaporator. Beyond this limit flow, the internal heat exchanger receives fluid from the evaporator in the liquid state, which decreases the efficiency abruptly along the approximately vertical section of curve C 2 , followed by a section C 3 substantially horizontal for which the efficiency is practically zero.

Sur la figure 3, qui représente un dispositif de climatisation selon l'invention, on retrouve la boucle de la figure 1, composée des éléments 1 à 6, auxquels s'ajoutent un capteur de débit 7 placé en amont de l'évaporateur 5 de manière à mesurer le débit massique du fluide qui le traverse à l'état liquide, ainsi que deux capteurs de température 10 et 11 associés à des blocs de lecture respectifs 12 et 13, destinés à mesurer la température du fluide respectivement entre la sortie du refroidisseur de fluide 2 et l'entrée el du trajet 3-1 de l'échangeur interne 3, et entre la sortie s2 du trajet 3-2 de ce dernier et l'entrée du compresseur 1. Un autre capteur 14, associé à un bloc de lecture 15, mesure la température d'un flux d'air F après qu'il a traversé l'évaporateur 5 sous l'action d'un pulseur 16, ce flux d'air étant destiné à être envoyé dans l'habitacle du véhicule pour régler la température régnant dans celui-ci.In FIG. 3, which represents an air conditioning device according to the invention, there is the loop of FIG. 1, made up of elements 1 to 6, to which is added a flow sensor 7 placed upstream of the evaporator 5 of FIG. in order to measure the mass flow rate of the fluid passing through it in the liquid state, as well as two temperature sensors 10 and 11 associated with respective reading blocks 12 and 13, for measuring the temperature of the fluid respectively between the outlet of the cooler fluid 2 and the inlet el of the path 3-1 of the internal exchanger 3, and between the output s2 of the path 3-2 of the latter and the inlet of the compressor 1. Another sensor 14, associated with a block reading 15, measures the temperature of an air flow F after it has passed through the evaporator 5 under the action of a blower 16, this air flow being intended to be sent into the passenger compartment of the vehicle to adjust the temperature prevailing in it.

Selon l'invention, la température Tsr à la sortie du refroidisseur 2 (ou à l'entrée e1) et la température de l'air refroidi sont envoyées par les blocs 12 et 15 respectivement à un bloc de traitement 17 également relié au capteur de débit 7, qui calcule à partir de ces valeurs mesurées - avec si nécessaire une correction pour tenir compte de l'écart entre la température de l'air refroidi et la température T à la sortie de l'évaporateur 2 (ou à l'entrée e2) - une valeur de consigne Tec_cons que devrait avoir la température Tec du fluide à l'entrée du compresseur 1 (ou à la sortie s2) pour que l'efficacité η de l'échangeur interne 3, calculée selon l'équation [1], prenne une valeur de référence ηp égale à l'ordonnée du point P de la courbe C1 qui a pour abscisse le débit Qp mesuré par le capteur 7. La valeur réelle de Tec, fournie par le bloc 13, est comparée à cette valeur de consigne par un comparateur 18. Si Tec < Tec_cons, ceci signifie que l'efficacité réelle est inférieure à la valeur de référence, et par conséquent que le point représentatif de l'efficacité sur le graphique de la figure 11 se trouve au-dessous de la courbe C1, donc sur l'un des tronçons C2 et C3, indiquant la présence de liquide dans l'échangeur interne. Le comparateur 18 élabore alors un signal d'erreur 19 qui est transmis à un régulateur 20, lequel agit sur un bloc de commande 21 qui pilote le détendeur 4, de manière à réduire le débit.According to the invention, the temperature T sr at the outlet of the cooler 2 (or at the inlet e1) and the temperature of the cooled air are sent by the blocks 12 and 15 respectively to a treatment block 17 also connected to the sensor of flow rate 7, which calculates from these measured values - if necessary a correction to account for the difference between the temperature of the cooled air and the temperature T se at the outlet of the evaporator 2 (or at the input e2) - a set value T ec_cons that should have the temperature T ec of the fluid at the inlet of the compressor 1 (or at the outlet s2) so that the efficiency η of the internal exchanger 3, calculated according to the equation [1], take a reference value η p equal to the ordinate of the point P of the curve C 1 which has the abscissa the flow rate Q p measured by the sensor 7. The actual value of T ec , provided by the block 13, is compared to this setpoint value by a comparator 18. If T ec <T ec_cons , this means that the actual efficiency is lower than the reference value, and therefore that the representative point of the efficiency on the graph of Figure 11 is below the curve C 1 , so on one of the sections C 2 and C 3 , indicating the presence of liquid in the internal exchanger. The comparator 18 then generates an error signal 19 which is transmitted to a regulator 20, which acts on a control block 21 which controls the expander 4, so as to reduce the flow rate.

Si au contraire Tec = Tec_cons, ceci signifie que l'échangeur interne contient du fluide entièrement à l'état gazeux, et que le point représentatif de l'efficacité sur le graphique de la figure 1 se trouve sur la courbe C1. Cependant, cette égalité ne permet pas de distinguer entre les trois cas suivants : soit le point représentatif est le point L défini précédemment, soit le point représentatif est situé à gauche du point L, soit le point L n'existe pas, la charge thermique de la boucle étant suffisante pour que l'échangeur interne ne reçoive pas de liquide quel que soit le débit du fluide. Si on souhaite que l'évaporateur ne comporte pas de zone de surchauffe, ou que sa zone de surchauffe soit minimale, on peut alors commander le détendeur 4 de manière à augmenter le débit d'un petit incrément. On réalisera ainsi une régulation autour du point L s'il existe, et dans le cas contraire on stabilisera le débit à sa valeur maximale correspondant au point B, assurant une zone de surchauffe minimale.If on the contrary T ec = T ec_cons , this means that the internal exchanger contains fluid completely in the gaseous state, and that the representative point of the efficiency on the graph of Figure 1 is on the curve C 1 . However, this equality does not make it possible to distinguish between the three following cases: either the representative point is the point L defined above, or the representative point is located to the left of the point L, or the point L does not exist, the thermal load of the loop being sufficient so that the internal heat exchanger does not receive any liquid whatever the flow of the fluid. If it is desired that the evaporator does not have an overheating zone, or that its superheating zone is minimal, then the expansion valve 4 can be controlled so as to increase the flow by a small increment. Thus, a regulation will be made around the point L if it exists, and in the opposite case the flow will be stabilized at its maximum value corresponding to the point B, ensuring a minimum superheating zone.

En variante, le débit massique du fluide peut être déterminé par d'autres moyens que le capteur 7. Par exemple, le débit volumique du fluide dans le compresseur peut être déterminé à partir de la cylindrée et de la vitesse de celui-ci, et le débit massique s'en déduit en tenant compte de la masse volumique du fluide, laquelle est fonction de la nature de celui-ci, de la température et de la pression.As a variant, the mass flow rate of the fluid can be determined by means other than the sensor 7. For example, the volume flow rate of the fluid in the compressor can be determined from the cubic capacity and the speed of the latter, and the mass flow is deduced taking into account the density of the fluid, which is a function of the nature of the fluid, the temperature and the pressure.

Dans une autre variante, on ne tient pas compte du débit du fluide, et on compare l'efficacité η à une valeur de référence ηm égale à l'ordonnée du point B. L'inégalité η <ηm signifie alors que le point représentatif de l'efficacité se trouve sur l'un des tronçons C2 et C3, au-dessous du point K du tronçon C2 ayant pour abscisse ηm, nécessitant une réduction du débit. Si, ici encore, on souhaite éviter ou minimiser la zone de surchauffe de l'évaporateur, on commandera le détendeur de manière à maintenir l'efficacité à la valeur ηm, réalisant ainsi une régulation autour du point K, ou amenant le point de fonctionnement au point B. Le débit correspondant au point K est très voisin de celui correspondant au point L.In another variant, the flow rate of the fluid is not taken into account, and the efficiency η is compared with a reference value η m equal to the ordinate of the point B. The inequality η <η m then means that the point representative of the efficiency is on one of the sections C 2 and C 3 , below the point K of the section C 2 having abscissa η m , requiring a reduction of the flow rate. If, here again, it is desired to avoid or minimize the overheating zone of the evaporator, the regulator will be controlled in such a way as to maintain the efficiency at the value η m , thus realizing a regulation around the point K, or bringing the point of operation at point B. The flow rate corresponding to point K is very close to that corresponding to point L.

Bien entendu, au lieu de calculer une valeur de consigne Tec_cons en utilisant la valeur de référence de l'efficacité de l'échangeur interne, on pourrait comparer directement l'efficacité réelle η à la valeur de référence, et produire le signal d'erreur sur la base de cette comparaison. Ces deux procédures sont strictement équivalentes.Of course, instead of calculating a set value T ec_cons using the reference value of the efficiency of the internal exchanger, the actual efficiency η could be directly compared with the reference value, and the signal of error based on this comparison. These two procedures are strictly equivalent.

En outre, l'invention n'est pas limitée à la surveillance de l'efficacité de l'échangeur interne en tant qu'indicateur de la présence de fluide à l'état liquide dans le premier trajet ou de l'existence d'une zone de surchauffe dans l'évaporateur. Ces phénomènes peuvent être détectés par d'autres moyens, par exemple grâce à des capteurs spécifiques affectés à l'échangeur interne et/ou à l'évaporateur.In addition, the invention is not limited to monitoring the efficiency of the internal heat exchanger as an indicator of the presence of fluid in the liquid state in the first path or the existence of a overheating zone in the evaporator. These phenomena can be detected by other means, for example by means of specific sensors assigned to the internal exchanger and / or the evaporator.

Bien que l'invention ait été décrite en détail en relation avec l'utilisation de dioxyde de carbone, elle trouve une application avantageuse avec tout fluide réfrigérant, notamment fonctionnant selon un cycle supercritique et nécessitant un échangeur de chaleur interne.Although the invention has been described in detail in connection with the use of carbon dioxide, it finds a advantageous application with any refrigerant, in particular operating in a supercritical cycle and requiring an internal heat exchanger.

Claims (16)

  1. Method for controlling a coolant loop in an air conditioning device, in particular for a vehicle passenger compartment, wherein said loop contains a compressor (1) suitable for receiving the fluid in the gaseous state and compressing it, a fluid cooler (2) suitable for cooling the fluid compressed by the compressor, at a substantially constant pressure, by transferring heat to a first environment, an expansion valve (4) suitable for lowering the pressure of the fluid leaving the fluid cooler by bringing it at least partially to the liquid state and an evaporator (5) suitable for changing, to the gaseous state, the fluid in the liquid state coming from the expansion valve, at a substantially constant pressure, by taking the heat from a second environment to cool the space to be air conditioned, wherein the fluid thus vaporised is then suctioned by the compressor, and the loop also contains an internal heat exchanger (3) enabling the fluid circulating in a first path (3-1) of the internal exchanger, between the fluid cooler and the expansion valve, to transfer heat to the fluid circulating in a second path (3-2) of the internal exchanger, between the evaporator and the compressor, which method involves monitoring a first condition capable of revealing the presence of fluid in the liquid state in said second path and reducing the flow of fluid in the loop when said first condition is satisfied, characterised in that said first condition consists of the efficiency of the internal heat exchanger, represented by equation [1] η = (Tec - Tse) / (Tsr - Tse) in which Tec, Tse and Tsr are respectively the temperatures at the inlet of the compressor, at the outlet of the evaporator and at the outlet of the cooler, being lower than a reference value η0.
  2. Method according to claim 1, in which a second condition is also monitored, which condition is capable of revealing the existence of a hot zone in the evaporator, and the flow of fluid in the loop is increased when said second condition is satisfied.
  3. Method according to claim 2, in which said second condition consists of the efficiency η as defined in claim 2 being greater than or equal to a reference value η0.
  4. Method according to one of claims 1 and 3, in which the fluid flow is set substantially to the maximum value compatible with an efficiency η not lower than the reference value.
  5. Method according to one of claims 1, 3 and 4, consisting of adopting, as a reference value, regardless of the value of the flow, the value ηm taken by the efficiency η when the flow is maximum and said second path does not contain fluid in the liquid state.
  6. Method according to one of claims 1, 3 and 4, consisting of adopting, as the reference value, for a predetermined value Qp of the flow, the value ηp taken by the efficiency η when said second path does not contain fluid in the liquid state.
  7. Method according to one of claims 1 and 3 to 6, in which the flow is adjusted by acting on the expansion valve.
  8. Method according to one of claims 1 and 3 to 7, in which, to evaluate η on the basis of equation [1], for at least one of said temperatures, a value measured by means of a sensor (10, 11) in thermal contact with the fluid is used.
  9. Method according to one of claims 1 and 3 to 8, in which, to evaluate η on the basis of equation [1], to represent Tse, the temperature of an air flow (F) having passed over the evaporator and constituting said second environment is used.
  10. Method according to one of claims 1 and 3 to 9, in which Toc is compared to a set value Tec-cons such that η0 = (Tec-cons - Tse) / (Tsr - Tse) and η is considered to be lower and higher than the reference value when Tec is lower and higher, respectively, than said set value.
  11. Method according to one of the previous claims, in which the compressor is an externally-controlled variable-displacement compressor.
  12. Method according to one of the previous claims, in which the compressor compresses the fluid until it reaches a supercritical pressure.
  13. Air conditioning device, in particular for a vehicle passenger compartment, suitable for implementation of the method according to one of the previous claims, including a coolant loop, said loop containing a compressor (1) suitable for receiving the fluid in the gaseous state and compressing it, a fluid cooler (2) suitable for cooling the fluid compressed by the compressor, at a substantially constant pressure, by transferring heat to a first environment, a expansion valve (4) suitable for lowering the pressure of the fluid leaving the fluid cooler by bringing it at least partially to the liquid state and an evaporator (5) suitable for changing, to the gaseous state, the fluid in the liquid state coming from the expansion valve, at a substantially constant pressure, by taking the heat from a second environment to cool the space to be air conditioned, wherein the fluid thus vaporised is then suctioned by the compressor, and the loop also contains an internal heat exchanger (3) enabling the fluid circulating in a first path (3-1) of the internal exchanger, between the fluid cooler and the expansion valve, to transfer heat to the fluid circulating in a second path (3-2) of the internal exchanger, between the evaporator and the compressor, monitoring means (10-15, 17) for monitoring a first condition capable of revealing the presence of fluid in the liquid state in said second path, and optionally a second condition capable of revealing the existence of a hot zone in the evaporator, and means (19, 20, 21) for controlling the flow of fluid in the loop according to the result of this monitoring characterised in that the monitoring means include means (10-15) for evaluating the temperatures Tec, Tse and Tsr respectively at the inlet of the compressor, at the outlet of the evaporator and at the outlet of the cooler, means (17) for calculating, from the latter, the efficiency η of the internal heat exchanger, on the basis of equation [1] η = (Tec - Tse) /(Tsr - Tse) and means for comparing the efficiency η to a reference value.
  14. Device according to claim 13, also including means (7) for determining the flow of fluid in the loop and for defining, on the basis of said flow, said reference value.
  15. Device according to one of claims 13 and 14, in which the means for evaluating said temperatures include at least one temperature sensor (10, 11) in thermal contact with the fluid.
  16. Device according to one of claims 13 to 15, in which the means for evaluating the temperature Tse include a temperature sensor (14) in thermal contact with an air flow (F) that has passed over the evaporator.
EP01980592A 2000-10-12 2001-10-09 Vehicle air conditioning device using a supercritical cycle Expired - Lifetime EP1325269B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0013074 2000-10-12
FR0013074A FR2815397B1 (en) 2000-10-12 2000-10-12 VEHICLE AIR CONDITIONING DEVICE USING A SUPERCRITICAL CYCLE
PCT/FR2001/003115 WO2002031416A1 (en) 2000-10-12 2001-10-09 Vehicle air conditioning device using a supercritical cycle

Publications (2)

Publication Number Publication Date
EP1325269A1 EP1325269A1 (en) 2003-07-09
EP1325269B1 true EP1325269B1 (en) 2006-04-05

Family

ID=8855277

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01980592A Expired - Lifetime EP1325269B1 (en) 2000-10-12 2001-10-09 Vehicle air conditioning device using a supercritical cycle

Country Status (8)

Country Link
US (1) US6786057B2 (en)
EP (1) EP1325269B1 (en)
JP (1) JP2004511747A (en)
AU (1) AU2002212405A1 (en)
DE (1) DE60118588T2 (en)
ES (1) ES2261492T3 (en)
FR (1) FR2815397B1 (en)
WO (1) WO2002031416A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505475B1 (en) 1999-08-20 2003-01-14 Hudson Technologies Inc. Method and apparatus for measuring and improving efficiency in refrigeration systems
NO20014258D0 (en) * 2001-09-03 2001-09-03 Sinvent As Cooling and heating system
US6694763B2 (en) * 2002-05-30 2004-02-24 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
CH695464A5 (en) * 2002-06-12 2006-05-31 Felix Kalberer Carnot cycle control system comprises additional inner multi-pass evaporator to take condensed working medium in flow through it, to be used more fully with immediate heat exchange
EP1369648A3 (en) * 2002-06-04 2004-02-04 Sanyo Electric Co., Ltd. Supercritical refrigerant cycle system
JP4114471B2 (en) * 2002-12-06 2008-07-09 株式会社デンソー Refrigeration cycle equipment
EP1570215B1 (en) * 2002-12-11 2007-12-05 BMS-Energietechnik AG Evaporation process control for use in refrigeration technology
JP4143434B2 (en) * 2003-02-03 2008-09-03 カルソニックカンセイ株式会社 Vehicle air conditioner using supercritical refrigerant
US7089760B2 (en) * 2003-05-27 2006-08-15 Calsonic Kansei Corporation Air-conditioner
FR2862573B1 (en) * 2003-11-25 2006-01-13 Valeo Climatisation AIR CONDITIONING INSTALLATION OF VEHICLE
JP2006183950A (en) * 2004-12-28 2006-07-13 Sanyo Electric Co Ltd Refrigeration apparatus and refrigerator
KR101261046B1 (en) * 2005-09-21 2013-05-06 한라비스테온공조 주식회사 Control Device and the Same Method of Supercritical Refrigants System for Air Conditioner
FR2913102B1 (en) * 2007-02-28 2012-11-16 Valeo Systemes Thermiques AIR CONDITIONING INSTALLATION EQUIPPED WITH AN ELECTRICAL RELIEF VALVE
DE102007035110A1 (en) * 2007-07-20 2009-01-22 Visteon Global Technologies Inc., Van Buren Automotive air conditioning and method of operation
EP2215412A1 (en) * 2007-11-21 2010-08-11 Remo Meister System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems
US9696074B2 (en) * 2014-01-03 2017-07-04 Woodward, Inc. Controlling refrigeration compression systems
DE102020115274A1 (en) 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Method for operating a compression refrigeration system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3442169A1 (en) * 1984-11-17 1986-05-28 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Method for regulating a refrigeration circuit process for a heat pump or a refrigerating machine and a heat pump or refrigerating machine for this
DE4432272C2 (en) * 1994-09-09 1997-05-15 Daimler Benz Ag Method for operating a refrigeration system for air conditioning vehicles and a refrigeration system for performing the same
JPH11193967A (en) * 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
DE19829335C2 (en) * 1998-07-01 2000-06-08 Kki Klima-, Kaelte- Und Industrieanlagen Schmitt Kg Refrigeration system
JP2000179960A (en) * 1998-12-18 2000-06-30 Sanden Corp Vapor compression type refrigeration cycle
JP4202505B2 (en) * 1999-01-11 2008-12-24 サンデン株式会社 Vapor compression refrigeration cycle
DE19925744A1 (en) * 1999-06-05 2000-12-07 Mannesmann Vdo Ag Electrically driven compression refrigeration system with supercritical process
JP2002130849A (en) * 2000-10-30 2002-05-09 Calsonic Kansei Corp Cooling cycle and its control method

Also Published As

Publication number Publication date
DE60118588D1 (en) 2006-05-18
US20030159452A1 (en) 2003-08-28
EP1325269A1 (en) 2003-07-09
WO2002031416A1 (en) 2002-04-18
FR2815397B1 (en) 2004-06-25
AU2002212405A1 (en) 2002-04-22
US6786057B2 (en) 2004-09-07
ES2261492T3 (en) 2006-11-16
DE60118588T2 (en) 2007-04-26
FR2815397A1 (en) 2002-04-19
JP2004511747A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
EP1325269B1 (en) Vehicle air conditioning device using a supercritical cycle
EP1965156B1 (en) Air conditioning device equipped with an electric expansion valve
FR2779216A1 (en) VEHICLE AIR CONDITIONING DEVICE USING A SUPERCRITICAL REFRIGERANT FLUID
EP1456045B1 (en) Motor vehicle air-conditioning installation equipped with an electronic control device
EP1817190A1 (en) Gas cooler for a motor vehicle air-conditioning system
EP1687161B1 (en) Vehicle air-conditioning assembly
EP2179875A1 (en) Air conditioning system having a thermal storage module in a secondary circuit
EP1509417B1 (en) Vehicle air-conditioner unit with an electronic control device
FR3077377A1 (en) METHOD FOR CONTROLLING A SYSTEM FOR THERMALLY PROCESSING AN ELEMENT OF A VEHICLE ELECTRICAL DRIVE CHAIN
EP1403107B1 (en) Air conditioner with an electronic control device
WO2006070079A1 (en) System for controlling the thermal energy of a motor vehicle engine by adjusting the fluid actuators of said system
EP2301778B1 (en) Control method for a heating power in the thermodynamic loop of an air conditioning device
EP2699434B1 (en) Method for controlling an air-conditioning system of the passenger compartment of a vehicle
WO2003099597A2 (en) System and method for regulating an air-conditioning unit
EP1493979A1 (en) Car air-conditioner with a supercritical cycle
EP1482259A1 (en) Expansion device for air conditioning system
EP3747080B1 (en) Method for cooling an electrical storage device equipping a vehicle
EP3658832A1 (en) Method for managing an air-conditioning circuit of a motor vehicle
FR2959005A1 (en) White frost detecting method for exchanger of air-conditioning loop of motor vehicle, involves delivering absence information of white frost on exchanger when measured intensity of motor is not greater than threshold intensity
FR3073935A1 (en) REFRIGERANT FLUID CIRCUIT FOR VEHICLE
EP0911622B1 (en) Procedure and device for the determination of the power transfered from an engine to an air conditioning system and their applications
FR3077429A1 (en) METHOD FOR COOLING AN ELECTRICAL STORAGE DEVICE EQUIPPED WITH A VEHICLE
EP2400240B1 (en) Method for controlling a storage device in a coolant circuit
EP1459920A1 (en) Motor vehicle air conditioning for a supercritical refrigerant
FR3020320A1 (en) SYSTEM AND METHOD FOR CONTROLLING A HEATING AND / OR AIR CONDITIONING SYSTEM OF A MOTOR VEHICLE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020527

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES IT LI

17Q First examination report despatched

Effective date: 20050218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE ES IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO SYSTEMES THERMIQUES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060405

REF Corresponds to:

Ref document number: 60118588

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2261492

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131011

Year of fee payment: 13

Ref country code: ES

Payment date: 20131018

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141009

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201009

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60118588

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528