EP1322281A2 - Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen - Google Patents

Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen

Info

Publication number
EP1322281A2
EP1322281A2 EP01986594A EP01986594A EP1322281A2 EP 1322281 A2 EP1322281 A2 EP 1322281A2 EP 01986594 A EP01986594 A EP 01986594A EP 01986594 A EP01986594 A EP 01986594A EP 1322281 A2 EP1322281 A2 EP 1322281A2
Authority
EP
European Patent Office
Prior art keywords
acid
compounds
preferred
alcohol
hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01986594A
Other languages
English (en)
French (fr)
Inventor
Astrid Kleen
Horst Höffkes
Doris Oberkobusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1322281A2 publication Critical patent/EP1322281A2/de
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen

Definitions

  • the invention relates to the use of short-chain aldehydes and or formaldehyde-releasing compounds for the color stabilization of dyeings of keratin fibers, corresponding preparations and methods for the care and dyeing and care of colored fibers.
  • oxidation dyes are used for permanent, intensive dyeings with appropriate fastness properties.
  • Such colorants usually contain oxidation dye products, so-called developer components and coupler components.
  • the developer components form the actual dyes under the influence of oxidizing agents or atmospheric oxygen with one another or under coupling with one or more coupler components.
  • the oxidation coloring agents are characterized by excellent, long-lasting coloring results.
  • a mixture of a large number of oxidation dye precursors usually has to be used; in many cases direct dyes are still used for shading. Do the in the course of color dyes that are formed or used directly have different fastness properties (e.g.
  • Coloring agents or tinting agents which contain so-called direct draws as the coloring component are usually used for temporary dyeings. These are dye molecules that attach directly to the hair and do not require an oxidative process to form the color. These dyes include, for example, henna, which is known from antiquity for coloring body and hair. These dyeings are generally significantly more sensitive to shampooing than the oxidative dyeings, so that a much undesired shift in nuances or even a visible "discoloration" occurs much more quickly.
  • Color stability in the sense of the invention is to be understood to mean the preservation of the original coloring with regard to nuance and / or intensity when the keratinic fiber is exposed to the repeated influence of aqueous agents, in particular surfactant-containing agents such as shampoos.
  • the present invention therefore firstly relates to cosmetic compositions containing short-chain aldehydes and / or formaldehyde-releasing compounds (A) as active ingredients for color stabilization of the dyeing of fibers.
  • keratin fibers are understood to mean furs, wool, feathers and in particular human hair.
  • short-chain aldehydes are understood to mean aldehydes which can be saturated or unsaturated and / or straight-chain or branched or cyclic and / or aromatic and / or heterocyclic and have a molecular weight of less than 500.
  • the short-chain aldehydes for the purposes of the invention can have one, two or three formyl groups. All or part of the formyl groups can be present as hemiacetals, acetals, oximes, hydrazones, semicarbazones or imines.
  • the active compounds according to the invention also include all compounds which Can release formaldehyde so that it is available as an active ingredient in a cosmetic agent for color stabilization.
  • Aldehydes in general and compounds which release formaldehyde and formaldehyde have been known for a long time and are widely used in cosmetic compositions for preservation, ie for stabilizing the compositions against microbial attack. It is also known that formaldehyde and formaldehyde-releasing substances can stabilize the hair structure by crosslinking.
  • active substances according to the invention include formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, acrolein, crotonaldehyde, benzaldehyde, cinnamaldehyde, o-, m- and p-anisaldehyde, nicotinaldehyde, furfural, glyceraldehyde, glycolaldehyde, citral , Piperonal, glyoxal, methylglyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipaldehyde, phthalaldehyde, isophthalaldehyde, terephthalaldehyde, 5-bromo-5-nitro-l, 3-dioxane, 2-bromo-2-nitropropane-l, 3-di
  • the active compounds according to the invention are in the compositions in concentrations of 0.01% by weight to 10% by weight, preferably from 0.05% by weight to 7.5% by weight and very particularly preferably in amounts of 0.1% by weight .% contain up to 5% by weight.
  • the color-retaining active ingredient (A) directly into the coloring or tinting agent, which means that the active ingredient (A) according to the invention in combination with Use oxidation dye precursors (B). It may be advantageous to add the active ingredient (A) to the coloring or tinting agent immediately before use.
  • Oxidation dye precursors of developer (B1) and coupler type (B2), natural and synthetic direct dyes (C) and precursors of nature-analogous dyes, such as indole and indoline derivatives, and mixtures of representatives of one or more of these groups can be used as dye precursors ,
  • Oxidation dye precursors of the developer type (B1) are usually primary aromatic amines with a further free or substituted hydroxy or amino group in the para or ortho position, diaminopyridine derivatives, heterocyclic hydrazones, 4-aminopyrazole derivatives and 2,4, 5,6-tetraaminopyrimidine and its derivatives used.
  • Suitable developer components are, for example, p-phenylenediamine, p-toluenediamine, p-aminophenol, o-aminophenol, 1- (2'-hydroxyethyl) -2,5-diaminobenzene, N, N-bis (2-hydroxyethyl) -p-phenylenediamine, 2- (2,5-diamino-phenoxy) -ethanol, 4-amino-3-methylphenol, 2,4,5,6-tetraaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 4 -Hydroxy-2,5,6-triaminopyrimidine, 2,4-dihydroxy-5,6-diaminopyrimidine, 2-dimethylamino-4,5,6-triaminopyrimidine, 2-hydroxymethylamino-4-aminophenol, bis- (4- aminophenyl) amine, 4-amino-3-fluorophenol, 2-aminomethyl-4-a
  • B. 4,5-diamino-l- (2'-hydroxyethyl) pyrazole Particularly advantageous developer components are p-phenylenediamine, p-toluenediamine, p-aminophenol, l- (2'-hydroxyethyl) -2,5-diaminobenzene, 4-amino-3-methylphenol, 2-aminomethyl-4-aminophenol, 2 , 4,5,6-tetraaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 4-hydroxy-2,5,6-triaminopyrimidine.
  • M-Phenylenediamine derivatives, naphthols, resorcinol and resorcinol derivatives, pyrazolones and m-aminophenol derivatives are generally used as oxidation dye precursors of the coupler type (B2).
  • coupler components are m-aminophenol and its derivatives such as 5-amino-2-methylphenol, 5- (3-hydroxypropylamino) -2-methylphenol, 3-amino-2-chloro-6-methylphenol, 2-hydroxy-4-aminophenoxyethanol, 2 , 6-Dimethyl-3-aminophenol, 3-trifluoroacetylamino-2-chloro-6-methylphenol, 5 - amino-4-chloro-2-methylphenol, 5-amino-4-methoxy-2-methylphenol, 5- (2nd '-Hydroxyethyl) amino-2-methylphenol, 3 - (diethylamino) phenol, N-cyclopentyl-3-aminophenol, 1, 3-dihydroxy-5- (methylamino) benzene, 3- (ethylamino) -4- methylphenol and 2,4-dichloro-3-aminophenol, o-aminophenol and its derivatives, m-diaminobenzene and
  • Pyridine derivatives such as 2,6-dihydroxypyridine, 2-amino-3-hydroxypyridine, 2-amino-5-chloro-3-hydroxypyridine, 3-amino-2-methylamino-6-methoxypyridine, 2,6-dihydroxy-3 , 4-dimethylpyridine, 2,6-dihydroxy-4-methylpyridine, 2,6-diaminopyridine, 2,3-diamino-6-methoxypyridine and 3,5-diamino-2,6-dimethoxypyridine, naphthalene derivatives such as 1-naphthol, 2-methyl-l-naphthol, 2-hydroxymethyl-1-naphthol, 2-hydroxyethyl-l-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxy-naphthalene, 1,7-dihydroxynaphthalene, 1,8- Dihydroxynaphthalene, 2,7-dihydroxynaphthalene and 2,3-di
  • coupler components are 1-naphthol, 1,5-, 2,7- and 1,7-dihydroxy-naphthalene, 3-aminophenol, 5-amino-2-methylphenol, 2-amino-3-hydroxypyridine, re- sorcin, 4-chlororesorcinol, 2-chloro-6-methyl-3-aminophenol, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol and 2,6-dihydroxy-3,4-dimethylpyridine.
  • Direct dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones or indophenols.
  • Particularly suitable direct dyes are those with the international names or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 and Basic Brown 17 known compounds as well as 1,4-bis- (ß- hydroxyethyl) amino-2-nitrobenzene, 4-amino-2-nitrodiphenylamine-2'-carboxylic acid, 6-nitro-l, 2,3,4-tetrahydroquinoxaline, hydroxyethyl-2-nitro-toluidine, picramic acid, 2- Amino-6-chloro-4-nitrophenol, 4-ethylamino-3-nitro
  • Directly occurring dyes found in nature include, for example, henna red, henna neutral, chamomile flowers, sandalwood, black tea, sapwood, sage, blue wood, madder root, catechu, sedre and alkanna root.
  • the hair colorants according to the invention may contain minor components in minor amounts, provided that these do not adversely affect the coloring result or for other reasons, e.g. B. toxicological, must be excluded.
  • the dyes which can be used in the hair dyeing and tinting agents according to the invention reference is also expressly made to the monograph Ch. Zviak, The Science of Hair Care, chapter 7 (pages 248-250; direct dyes) and chapter 8, pages 264-267; Oxidation dye precursors), published as Volume 7 of the "Dermatology" series (ed .: Ch., Culnan and H.
  • indoles and indolines and their physiologically tolerable salts are used as precursors of nature-analogous dyes.
  • Those indoles and indolines are preferably used which have at least one hydroxyl or amino group, preferably as a substituent on the six-membered ring.
  • These groups can carry further substituents, e.g. B. in the form of etherification or esterification of the hydroxy group or an alkylation of the amino group.
  • N-methyl-5,6-dihydroxyindoline N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6-dihydroxyindoline and especially that 5,6-dihydroxyindoline and N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole and in particular the 5 6-dihydroxyindole.
  • indoline and indole derivatives in the colorants used in the process according to the invention both as free bases and in the form of their physiologically salts in question with inorganic or organic acids, e.g. B. the hydrochlorides, sulfates and hydrobromides, are used.
  • amino acids are aminocarboxylic acids, in particular aminocarboxylic acids and ⁇ -aminocarboxylic acids.
  • Arginine, lysine, ornithine and histidine are again particularly preferred among the ⁇ -aminocarboxylic acids.
  • a very particularly preferred amino acid is arginine, in particular in free form, but also used as the hydrochloride.
  • Both the oxidation dye precursors and the substantive dyes are contained in the agents according to the invention preferably in amounts of 0.01 to 20% by weight, preferably 0.1 to 5% by weight, in each case based on the total agent.
  • Hair dyes especially if the coloring is oxidative, be it with atmospheric oxygen or other oxidizing agents such as hydrogen peroxide, are usually weakly acidic to alkaline, i.e. H. adjusted to pH values in the range from about 5 to 11.
  • the colorants contain alkalizing agents, usually alkali or alkaline earth metal hydroxides, ammonia or organic amines.
  • Preferred alkalizing agents are monoethanolamine, monoisopropanolamine, 2-amino-2-methyl-propanol, 2-amino-2-methyl-l, 3-propanediol, 2-amino-2-ethyl-l, 3-propanediol, 2-amino-2 -methylbutanol and triethanolamine as well as alkali and alkaline earth metal hydroxides.
  • Monoethanolamine, triethanolamine and 2-amino-2-methyl-propanol and 2-amino-2-methyl-1,3-propanediol are particularly preferred in this group.
  • the use of ⁇ -amino acids such as ⁇ -aminocaproic acid as an alkalizing agent is also possible.
  • customary oxidizing agents such as in particular hydrogen peroxide or its adducts with urea, melamine or sodium borate, can be used.
  • oxidation with atmospheric oxygen as the only oxidizing agent can be preferred.
  • enzymes where the enzymes are used both to produce oxidizing per compounds and to enhance the effect of a small amount of oxidizing agents present, or also enzymes are used which transfer electrons from suitable developer components (reducing agents) to atmospheric oxygen.
  • Oxidases such as tyrosinase, ascorbate oxidase and laccase are preferred, but also glucose oxidase, uricase or pyruvate oxidase. Furthermore, the procedure should be mentioned to increase the effect of small amounts (e.g. 1% and less, based on the total agent) of hydrogen peroxide by peroxidases.
  • the preparation of the oxidizing agent is then expediently mixed with the preparation with the dye precursors immediately before dyeing the hair.
  • the resulting ready-to-use hair dye preparation should preferably have a pH in the range from 6 to 10. It is particularly preferred to use the hair dye in a weakly alkaline environment.
  • the application temperatures can be in a range between 15 and 40 ° C., preferably at the temperature of the scalp. After an exposure time of approximately 5 to 45, in particular 15 to 30, minutes, the hair dye is rinsed off the hair to be colored. Washing with a shampoo is not necessary if a carrier with a high tenside content, e.g. B. a coloring shampoo was used.
  • the preparation with the dye precursors can be applied to the hair without prior mixing with the oxidation component. After an exposure time of 20 to 30 minutes, the oxidation component is then applied, if necessary after an intermediate rinse. After a further exposure time of 10 to 20 minutes, rinsing is carried out and, if desired, re-shampooed.
  • the corresponding agent is adjusted to a pH of about 4 to 7.
  • air oxidation is initially aimed for, the agent applied preferably having a pH of 7 to 10.
  • the use of acidic peroxidisulfate solutions as the oxidizing agent can be preferred.
  • the formation of the color can be supported and increased by adding certain metal ions to the agent.
  • metal ions are, for example, Zn + , Cu 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Mn 4+ , Li + , Mg 2+ , Ca 2+ and Al 3+ .
  • Zn 2+ , Cu 2+ and Mn 2+ are particularly suitable.
  • the metal ions can be used in the form of any physiologically acceptable salt.
  • Preferred salts are the acetates, sulfates, halides, lactates and tartrates.
  • the action of the active ingredient (A) according to the invention can be further improved by fatty substances (D).
  • Fat substances are to be understood as meaning fatty acids, fatty alcohols, natural and synthetic waxes, which can be present both in solid form and in liquid form in aqueous dispersion, and natural and synthetic cosmetic oil components.
  • Linear and / or branched, saturated and / or unsaturated fatty acids having 6 to 30 carbon atoms can be used as fatty acids.
  • Fatty acids with 10-22 carbon atoms are preferred.
  • isostearic as the commercial products Emersol ® 871 and Emersol ® 875
  • isopalmitic acids such as the commercial product Edenor ® IP 95, and all other products sold under the trade names Edenor ® (Cognis) fatty acids.
  • fatty acids are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, aelaeoleinic acid , Behenic acid and erucic acid and their technical mixtures, which are obtained, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from Roelen's oxosynthesis or in the dimerization of unsaturated fatty acids.
  • the fatty acid cuts which are obtainable from coconut oil or palm oil are usually particularly preferred; the use of stearic acid is generally particularly preferred.
  • the amount used is 0.1-15% by weight, based on the total agent. In a preferred embodiment, the amount is 0.5-10% by weight, with amounts of 1-5% by weight being very particularly advantageous.
  • Saturated, mono- or polyunsaturated, branched or unbranched fatty alcohols with C 6 -C 30 , preferably C 10 -C 22 and very particularly preferably C 12 -C 22 carbon atoms can be used as fatty alcohols.
  • the fatty alcohols are derived from preferably natural fatty acids, and it can usually be assumed that they are obtained from the esters of the fatty acids by reduction.
  • those fatty alcohol cuts which are produced by reducing naturally occurring triglycerides such as beef tallow, palm oil, peanut oil, rapeseed oil, cottonseed oil, soybean oil, sunflower oil and linseed oil or fatty acid esters formed from their transesterification products with corresponding alcohols, and thus represent a mixture of different fatty alcohols.
  • Such substances are, for example, under the names Stenol ® , for example Stenol ® 1618 or Lanette ® , for example Lanette ® O or Lorol ® , for example Lorol ® C8, Lorol ® C14, Lorol ® Cl 8, Lorol ® C8-18, HD-Ocenol ® , Crodacol ® , for example Crodacol ® CS, Novol ® , Eutanol ® G, Guerbitol ® 16, Guerbitol ® 18, Guerbitol ® 20, Isofol ® 12, Isofol ® 16, Isofol ® 24, Isofol ® 36, Isocarb ® 12, Isocarb ® 16 or Isocarb ® 24 are available for purchase.
  • the invention also wool wax alcohols, as are commercially available, for example under the names of Corona ®, White Swan ®, Coronet ® or Fluilan ® can be used.
  • the fatty alcohols are used in amounts of 0.1-30% by weight, based on the entire preparation, preferably in amounts of 0.1-20% by weight.
  • Solid paraffins or isoparaffins, carnauba waxes, beeswaxes, candelilla waxes, ozokerites, ceresine, walnut, sunflower wax, fruit waxes such as apple wax or, for example, can be used according to the invention as natural or synthetic waxes Citrus wax, micro waxes made of PE or PP.
  • Such waxes are available, for example, from Kahl & Co., Trittau.
  • the amount used is 0.1-50% by weight, based on the total agent, preferably 0.1
  • the natural and synthetic cosmetic oil bodies which can increase the effect of the active ingredient according to the invention include, for example:
  • oils examples include sunflower oil, olive oil, soybean oil, rapeseed oil, almond oil, jojoba oil, orange oil, wheat germ oil, peach seed oil and the liquid components of coconut oil.
  • triglyceride oils such as the liquid portions of beef tallow and synthetic triglyceride oils are also suitable.
  • the compounds are available as commercial products l, 3-di- (2-ethyl-hexyl) -cyclohexane (Cetiol ® S), and di-n-octyl ether (Cetiol ® OE) may be preferred.
  • Ester oils are understood to be the esters of C 6 -C 30 fatty acids with C 2 -C 30 fatty alcohols.
  • the monoesters of fatty acids with alcohols having 2 to 24 carbon atoms are preferred.
  • Examples of fatty acid constituents used in the esters are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, arenoleic acid, elaoleic acid, elaoleic acid, elaoleic acid Gadoleic acid, behenic acid and erucic acid as well as their technical mixtures which occur, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from Roele
  • fatty alcohol components in the ester oils are isopropyl alcohol, capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol alcohol, palmoleyl, stearyl, isostearyl, oleyl, Elaidylalko- hol, petroselinyl, linolyl alcohol, linolenyl, elaeostearyl, arachyl, gadoleyl, behenyl alcohol, erucyl alcohol and brassidyl alcohol and technical mixtures thereof, for example, in the high-pressure hydrogenation of technical Methylestern based on fats and oils or aldehydes from Roelen's oxosynthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols.
  • iso-propyl myristate IPM Rilanit ®
  • isononanoic acid C16-18 alkyl ester Cetiol ® SN
  • 2-ethylhexyl palmitate Cegesoft ® 24
  • stearic acid-2-ethylhexyl ester Cetiol ® 868
  • Ce tyloleat glycerol tricaprylate
  • cocofatty alcohol-caprinatV caprylate Cetiol ® LC
  • n-butyl tylstearat oleyl erucate
  • isopropyl palmitate Rosanit ® IPP
  • oleyl Oleate Cetiol ®
  • hexyl laurate Cetiol ® A
  • di- n-butyl adipate Cetiol ® B
  • Dicarboxylic acid esters such as di-n-butyl adipate, di- (2-ethylhexyl) adipate, di- (2-ethylhexyl) succinate and di-isotridecylacelate as well as diol esters such as ethylene glycol dioleate, ethylene glycol di-isotridecanoate, propylene glycol di (2 -ethylhexanoate), propylene glycol di-isostearate, propylene glycol di-pelargonate, butanediol di-isostearate, neopentyl glycol dicaprylate,
  • Partialglyceri.de preferably follow formula (I), CH ⁇ CH.CH.O ⁇ R 1
  • R 1 , R 2 and R 3 independently of one another represent hydrogen or a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22, preferably 12 to 18, carbon atoms, with the proviso that at least one of these groups represents a Acyl radical and at least one of these groups represents hydrogen.
  • the sum (m + n + q) represents 0 or numbers from 1 to 100, preferably 0 or 5 to 25.
  • R 1 preferably represents an acyl radical and R 2 and R 3 represents hydrogen and the sum (m + n + q) is 0.
  • Typical examples are mono- and / or diglycerides based on caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linoleic acid , Elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures. Oleic acid monoglycerides are preferably used.
  • the amount of natural and synthetic cosmetic oil bodies used in the agents used according to the invention is usually 0.1-30% by weight, based on the total agent, preferably 0.1-20% by weight, and in particular 0.1-15% by weight. -%.
  • the total amount of oil and fat components in the agents according to the invention is usually 0.5-75% by weight, based on the total agent. Quantities of 0.5-35% by weight are preferred according to the invention.
  • hydroxycarboxylic acid esters are full esters of glycolic acid, lactic acid, malic acid, tartaric acid or citric acid.
  • Other basically suitable hydroxycarboxylic acid esters are esters of ⁇ -hydroxypropionic acid, tartronic acid, D-gluconic acid, sugar acid, Mucic acid or glucuronic acid.
  • Suitable alcohol components of these esters are primary, linear or branched aliphatic alcohols with 8-22 carbon atoms, for example fatty alcohols or synthetic fatty alcohols.
  • the esters of C ⁇ -C 15 fatty alcohols are particularly preferred.
  • Esters of this type are commercially available, eg under the trademark Cosmacol® ® EniChem, Augusta Industriale.
  • the amount of hydroxycarboxylic acid esters used is 0.1-15% by weight, based on the composition, preferably 0.1-10% by weight and very particularly preferably 0.1-5% by weight.
  • the agents used according to the invention therefore contain surfactants.
  • surfactants is understood to mean surface-active substances that form adsorption layers on surfaces and interfaces or that can aggregate in volume phases to form micelloidal or lyotropic mesophases.
  • anionic surfactants consisting of a hydrophobic residue and a negatively charged hydrophilic head group
  • amphoteric surfactants which carry both a negative and a compensating positive charge
  • cationic surfactants which in addition to a hydrophobic residue have a positively charged hydrophilic group
  • nonionic surfactants which have no charges but strong dipole moments and are highly hydrated in aqueous solution.
  • anionic surfactants suitable for use on the human body are suitable as anionic surfactants (E1) in preparations according to the invention. These are characterized by a water-solubilizing, anionic group such as. B. a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 8 to 30 carbon atoms.
  • anionic group such as. B. a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 8 to 30 carbon atoms.
  • the molecule can contain glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups.
  • anionic surfactants are, in each case in the form of the sodium, potassium and ammonium as well as the mono-, di- and trialkanolammonium salts with 2 to 4 carbon atoms in the alkanol group, - linear and branched fatty acids with 8 to 30 carbon atoms (soaps),
  • Alkyl group with 8 to 30 carbon atoms and x 0 or 1 to 16,
  • Alkyl sulfates and alkyl polyglycol ether sulfates of the formula RO (CH 2 -CH 2 O) X -OSO 3 H, in which R is a preferably linear alkyl group with 8 to 30 C atoms and x 0 or 1 to 12,
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols having 8 to 22 carbon atoms,
  • R 4 is preferably an aliphatic hydrocarbon radical having 8 to 30 carbon atoms
  • R 5 is hydrogen, a radical (CH 2 CH 2 O) n R 18 or X
  • n is a number of 1 to 10
  • X is hydrogen, an alkali or alkaline earth metal or NR 6 R 7 R 8 R 9 , with R 6 to R 9 independently of one another being hydrogen or a C to C 4 hydrocarbon radical
  • Alk stands for CH 2 CH 2 , CHCH 3 CH 2 and / or CH 2 CHCH 3
  • n stands for numbers from 0.5 to 5
  • M stands for a cation as described in DE-OS 197 36 906.5
  • R n CO stands for a linear or branched acyl radical with 6 to 22 carbon atoms, x, y and z in total for 0 or for numbers from 1 to 30, preferably 2 to 10, and X stands for an alkali or alkaline earth metal
  • Typical examples of monoglyceride (ether) sulfates which are suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride and their ethylene oxide adducts or their form of sulfuric acid with sulfuric acid trioxide.
  • Monoglyceride sulfates of the formula (IV) are preferably used, in which R 25 CO represents a linear acyl radical having 8 to 18 carbon atoms, as described, for example, in EP-Bl 0 561 825, EP-Bl 0 561 999, DE-Al '42 04 700 or from AKBiswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) and FUAhmed in J.Am.Oil.Chem.Soc. 67, 8 (1990),
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids with 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule, sulfosuccinic acid and dialkyl esters with 8 to 18 carbon atoms in the alkyl group and sulfosuccinic acid mono-alkyl polyoxyethyl ester with 8 up to 18 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups, monoglycer disulfates, alkyl and alkenyl ether phosphates as well as protein fatty acid condensates.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one - COO _) - or -SO group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as the N-alkyl-N, N-dimethylammonium glycinate, for example the cocoalkyl-dimethylammonium glycinate, N-acyl-aminopropyl-N, N-dimethylammonium glycinate, for example the cocoacylaminopropyl-dimethylammonium glycinate, and 2-alkyl -3-carboxymethyl-3-hydroxyethyl-imidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • a preferred zwitterionic surfactant is the fatty acid
  • Ampholytic surfactants (E3) are understood to mean those surface-active compounds which, in addition to a C s - C 24 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO 3 H group in the molecule and for the formation of internal ones Salts are capable.
  • ampholytic surfactants are N-alkylglycine, N-alkylpropionic acid, N-alkylaminobutyric acid, N-alkyliminodipropionic acid, N-hydroxyethyl-N-alkylamidopropylglycine, N-alkyltaurine, N-alkyl sarcosine, 2-alkylaminopropionic acid and alkylaminoacetic acid each with about 8 to 24 C. Atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethyl aminopropionate and C 12 _ C lg - sarcosine.
  • Nonionic surfactants (E4) contain, for example, a polyol group, a polyalkylene glycol ether group or a combination of polyol and polyglycol ether groups as the hydrophilic group.
  • Such connections are, for example - Adducts of 2 to 50 moles of ethylene oxide and / or 0 to 5 moles of propylene oxide with linear and branched fatty alcohols with 8 to 30 C atoms, with fatty acids with 8 to 30 C atoms and with alkylphenols with 8 to 15 C atoms in the alkyl group,
  • Adducts of 5 to 60 moles of ethylene oxide with castor oil and hardened castor oil Adducts of 5 to 60 moles of ethylene oxide with castor oil and hardened castor oil
  • Sorbitan fatty acid esters and addition products of ethylene oxide with sorbitan fatty acid esters such as, for example, the polysorbates
  • the alkyl and alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably from glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • the index number p in the general formula (VI) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
  • the value p for a certain alkyl oligoglycoside is an analytically determined arithmetic parameter, which usually represents a fractional number.
  • Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R 1 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, capronic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 15 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol, and the like technical mixtures which can be obtained as described above.
  • Alkyl oligoglucosides based on hardened C 12/14 coco alcohol with a DP of 1 to 3 are preferred.
  • R ! 6 CO for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 12 carbon atoms and 3 to 10 hydroxyl groups stands.
  • the fatty acid N-alkyl polyhydroxyalkylamides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • a reducing sugar with ammonia, an alkylamine or an alkanolamine
  • subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride With regard to the processes for their production, reference is made to US Pat. Nos. 1,985,424, 2,016,962 and 2,703,798 and international patent application WO 92/06984. An overview of this topic by H. Kelkenberg can be found in Tens. Surf. Det. 25, 8 (1988).
  • the fatty acid N-alkylpolyhydroxyalkylamides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the preferred fatty acid N-alkylpolyhydroxyalkylamides are therefore fatty acid N-alkylglucamides as represented by the formula (III):
  • the fatty acid N-alkylpolyhydroxyalkylamides used are preferably glucamides of the formula (VIII) in which R 17 is hydrogen or an alkyl group and R 16 CO is the acyl radical of caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, Isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, arachic acid, gadoleic acid, behenic acid or erucic acid or their technical mixtures.
  • R 17 is hydrogen or an alkyl group
  • R 16 CO is the acyl radical of caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, Isostearic acid, oleic acid, elaidic acid,
  • Fatty acid N-alkylglucamides of the formula (III) which are obtained by reductive amination of glucose with methylamine and subsequent acylation with lauric acid or C 12/14 coconut fatty acid or a corresponding derivative are particularly preferred.
  • the polyhydroxyalkylamides can also be derived from maltose and palatinose.
  • alkylene oxide adducts with saturated linear fatty alcohols and fatty acids, each with 2 to 30 moles of ethylene oxide per mole of fatty alcohol or fatty acid, have proven to be preferred nonionic surfactants. Preparations with excellent properties are also obtained if they contain fatty acid esters of ethoxylated glycerol as nonionic surfactants.
  • the alkyl radical R contains 6 to 22 carbon atoms and can be either linear or branched. Primary linear and methyl-branched aliphatic radicals in the 2-position are preferred. Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. 1-Octyl, 1-decyl, 1-lauryl, 1-myristyl are particularly preferred. When using so-called "oxo alcohols" as starting materials, compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • nonionic surfactants are the sugar surfactants. These can be contained in the agents used according to the invention preferably in amounts of 0.1-20% by weight, based on the total agent. Amounts of 0.5-15% by weight are preferred, and amounts of 0.5-7.5% by weight are very particularly preferred.
  • the compounds with alkyl groups used as surfactant can each be uniform substances. However, it is generally preferred to start from natural vegetable or animal raw materials in the production of these substances, so that substance mixtures with different alkyl chain lengths depending on the respective raw material are obtained.
  • both products with a "normal” homolog distribution and those with a narrowed homolog distribution can be used.
  • “Normal” homolog distribution is understood to mean mixtures of homologs which are obtained as catalysts from the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates.
  • narrow homolog distributions are obtained if, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alcoholates are used as catalysts. The use of products with a narrow homolog distribution can be preferred.
  • the surfactants (E) are used in amounts of 0.1-45% by weight, preferably 0.5-30% by weight and very particularly preferably 0.5-25% by weight, based on the total agent used according to the invention ,
  • Cationic surfactants (E6) of the quaternary ammonium compound type, the esterquat type and the amidoamine type can also be used according to the invention.
  • Preferred quaternary ammonium compounds are ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, e.g. B.
  • cetyltrimemylammonium chloride stearyltrimethylammomum chloride, distearyldimemylammonium chloride, lauryldimethylammonium chloride, lauiyldimethylbenzylammonium chloride and tricetylmethylammonium chloride, as well as the compounds known under the INCI names Quate ⁇ ium-27 and Quateridazium-83 compounds.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are sold, for example, under the trademarks Stepantex ® , Dehyquart ® and Armocare ® .
  • alkylamidoamines are usually produced by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group is that available under the name Tegoamid ® S 18 commercially stearamidopropyl dimethylamine.
  • the cationic surfactants (E6) are preferably present in the agents used according to the invention in amounts of 0.05 to 10% by weight, based on the total agent. Amounts of 0.1 to 5% by weight are particularly preferred.
  • Anionic, nonionic, zwitterionic and / or amphoteric surfactants and mixtures thereof can be preferred according to the invention.
  • the action of the active ingredient according to the invention can be increased by emulsifiers (F).
  • Emulsifiers cause water or oil-stable adsorption layers to form at the phase interface, which protect the dispersed droplets against coalescence and thus stabilize the emulsion.
  • emulsifiers are therefore made up of a hydrophobic and a hydrophilic part of the molecule. Hydrophilic emulsifiers preferably form O / W emulsions and hydrophobic emulsifiers preferably form W / O emulsions.
  • emulsifiers Under an emulsion is a droplet-like distribution (dispersion) of a liquid in another liquid with the expenditure of energy to create stabilizing phase boundary to understand surfaces by means of surfactants.
  • the selection of these emulsifying surfactants or emulsifiers is based on the substances to be dispersed and the particular external phase as well as the fine particle size of the emulsion. Further definitions and properties of emulsifiers can be found in "H.-D. Dörfler, interfacial and colloid chemistry, VCH Verlagsgesellschaft mbH. Weinheim, 1994 ".
  • Emulsifiers which can be used according to the invention are, for example
  • alkyl (oligo) glucosides for example the commercially available product Montanov ® 68,
  • Adducts of 5 to 60 moles of ethylene oxide with castor oil and hardened castor oil Adducts of 5 to 60 moles of ethylene oxide with castor oil and hardened castor oil
  • Sterols are understood to be a group of steroids which carry a hydroxyl group on the C atom 3 of the steroid structure and which are isolated both from animal tissue (zoosterols) and from vegetable fats (phytosterols). Examples of zoosterols are cholesterol and lanosterol. Examples of suitable phytosterols are ergosterol, stigmasterol and sitosterol. Sterols, the so-called mycosterols, are also isolated from fungi and yeasts.
  • glucose phospholipids include primarily the glucose phospholipids, e.g. as lecithins or phosphatidylcholines from e.g. Egg yolks or plant seeds (e.g. soybeans) are understood.
  • Fatty acid esters of sugars and sugar alcohols such as sorbitol, - polyglycerols and polyglycerol such as polyglycerol poly-12-hydroxystearate (commercial product Dehymuls® ® PGPH)
  • compositions according to the invention preferably contain the emulsifiers in amounts of 0.1-25% by weight, in particular 0.5-15% by weight, based on the total composition.
  • compositions according to the invention can preferably contain at least one nonionic emulsifier with an HLB value of 8 to 18, according to the 10th edition, Georg Thieme Verlag Stuttgart, New in the Rompp-Lexikon Chemie (Ed. J. Falbe, M. Regitz) York, (1997), page 1764.
  • Nonionic emulsifiers with an HLB value of 10-15 can be particularly preferred according to the invention.
  • polymers (G) can support the color-preserving action of the active ingredient according to the invention.
  • polymers are therefore added to the agents used according to the invention, both cationic, anionic, amphoteric and nonionic polymers having proven effective.
  • Cationic polymers (G1) are understood to mean polymers which have a group in the main and / or side chain which can be “temporary” or “permanent” cationic.
  • “permanently cationic” refers to those polymers which have a cationic group regardless of the pH of the agent. These are generally polymers which contain a quaternary nitrogen atom, for example in the form of an ammonium group.
  • Preferred cationic groups are quaternary ammo
  • those polymers in which the quaternary ammonium group is bonded via a C 1-4 hydrocarbon group to a polymer main chain composed of acrylic acid, methacrylic acid or their derivatives have proven to be particularly suitable.
  • R 18 -H or -CH 3
  • R 19 , R 20 and R 21 are independently selected from C 1-4 - alkyl, alkenyl or hydroxyalkyl groups
  • m 1, 2, 3 or 4 "n is a natural number
  • X is a physiologically compatible organic or inorganic anion
  • copolymers consisting essentially of the monomer units listed in formula (IX) and nonionic monomer units are particularly preferred cationic polymers.
  • those are preferred according to the invention , for which at least one of the following conditions applies:
  • R 18 stands for a methyl group
  • R 20 and R 21 stand for methyl groups
  • m has the value 2.
  • Suitable physiologically compatible counterions X " are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions.
  • halide ions in particular chloride, are preferred.
  • a particularly suitable homopolymer is, if desired crosslinked, poly (methacryloyloxyemylfrimemylammonium chloride) with the INCI name Polyquaternium-37.
  • the crosslinking can be carried out with the aid of polyolefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylene bisacrylamide, diallyl ether, polyallyl polyglyceryl ether, or allyl ethers of sugars or sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose.
  • Methylene bisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a non-aqueous polymer dispersion which should not have a polymer content below 30% by weight.
  • a non-aqueous polymer dispersion which should not have a polymer content below 30% by weight.
  • Such polymer dispersions are available under the names Salcare ® SC 95 (approx. 50% polymer content, further components: mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene ether (INCI name: PPG-1-Trideceth- 6)) and Salcare ® SC 96 (approx.
  • Copolymers with monomer units according to formula (IX) preferably contain acrylamide, methacrylamide, acrylic acid-C, as non-ionic monomer units. 4- alkyl esters and methacrylic acid-Cj- 4- alkyl esters. Among these nonionic monomers, acrylamide is particularly preferred. As in the case of the homopolymers described above, these copolymers can also be crosslinked. A preferred copolymer according to the invention is the crosslinked acrylamide-memacryloyloxyethyltrimethylammomum chloride copolymer. Such copolymers in which the monomers are present in a weight ratio of about 20:80, commercially available as about 50% non-aqueous polymer dispersion under the name Salcare ® SC 92nd
  • Celquat ® and Polymer JR ® Quaternized cellulose derivatives, as are commercially available under the names Celquat ® and Polymer JR ® .
  • the compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives,
  • honey for example the commercial product Honeyquat ® 50,
  • cationic guar derivatives such as, in particular, the products marketed under the trade names Cosmedia ® Guar and Jaguar ® ,
  • - polysiloxanes with quaternary groups such as the commercially available products Q2-7224 (manufacturer: Dow Corning; a stabilized trimethyl silylamodimethicon), Dow Corning ® 929 Emulsion (containing a hydroxylamino-modified silicone which is also known as amodimethicone ), SM-2059 (Manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer: Th. G ⁇ ldschmidt), diquaternary polydimethylsiloxanes, quaterium-80),
  • Vinylpyrrolidone-vinylimidazolium methochloride copolymers as are offered under the names Luviquat ® FC 370, FC 550, FC 905 and HM 552,
  • cationic polymers of the invention are the "temporarily cationic" polymers. These polymers usually contain an amino group present at certain pH values as a quaternary ammonium group and thus cationic are preferred, for example, chitosan and its derivatives, such as, for example, under the trade designations Hydagen ®. CMF, Hydagen ® HCMF, Kytamer ® PC and Chitolam ® NB / 101 are commercially available.
  • preferred cationic polymers are cationic cellulose derivatives and chitosan and its derivatives, in particular the commercial products Polymer ® JR 400, Hydagen ® HCMF and Kytamer ® PC, cationic guar derivatives, cationic honey derivatives, in particular the commercial product Honeyquat ® 50, cationic alkyl polyglycosides according to DE-PS 44 13 686 and polymers of the type Polyquaternium-37.
  • cationized protein hydrolyzates are to be counted among the cationic polymers, the underlying protein hydrolyzate being derived from animals, for example from collagen, milk or keratin, from plants, for example from wheat, corn, rice, potatoes, soy or almonds, from marine life forms, for example from fish collagen or algae, or biotechnologically obtained protein hydrolyzates.
  • the protein hydrolysates on which the cationic derivatives according to the invention are based can be obtained from the corresponding proteins by chemical, in particular alkaline or acidic hydrolysis, by enzymatic hydrolysis and / or a combination of both types of hydrolysis.
  • the hydrolysis of proteins usually results in a protein hydrolyzate with a molecular weight distribution of approximately 100 daltons up to several thousand daltons.
  • Preferred cationic protein hydrolyzates are those whose underlying protein content has a molecular weight of 100 to 25,000 Daltons, preferably 250 to 5000 Daltons.
  • Cationic protein hydrolyzates also include quaternized amino acids and their mixtures. The quaternization of the protein hydrolyzates or the amino acids is frequently carried out using quaternary ammonium salts such as, for example, N, N-dimethyl-N- (n-alkyl) -N- (2-hydroxy-3-chloro-n-propyl) ammonium halides.
  • the cationic protein hydrolyzates can also be further derivatized.
  • Typical examples of the cationic protein hydrolyzates and derivatives according to the invention are those under the INCI names in the "International Cosmetic Ingredient Dictionary and Handbook" (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 * Street, NW, Suite 300 , Washington, DC 20036-4702) and commercially available products: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropy Hydrolyzed - propyl hydrolyzed silk, cocodimonium hydroxypropyl hydrolyzed soy protein, cocodimonium hydroxypropyl hydrolyzed wheat protein, cocodimonium
  • the plant-based cationic protein hydrolyzates and derivatives are very particularly preferred.
  • the anionic polymers (G2) which can support the color-preserving action of the active ingredient according to the invention, are anionic polymers which have carboxylate and / or sulfonate groups.
  • anionic monomers from which such polymers can consist are acrylic acid, methacrylic acid, Crotonic acid, maleic anhydride and 2-acrylamido-2-methylpropanesulfonic acid.
  • the acidic groups can be present in whole or in part as sodium, potassium, ammonium, mono- or triethanolammonium salt.
  • Preferred monomers are 2-acrylamido-2-methylpropanesulfonic acid and acrylic acid.
  • Anionic polymers which contain 2-acrylamido-2-methylpropanesulfonic acid as the sole or co-monomer have proven to be very particularly effective, the sulfonic acid group being able to be present in whole or in part as the sodium, potassium, ammonium, mono- or triethanolammonium salt ,
  • the homopolymer of 2-acrylamido-2-methyl propane sulfonic acid which is available for example under the name Rheothik ® l 1-80 is commercially.
  • copolymers of at least one anionic monomer and at least one nonionic monomer are preferred.
  • anionic monomers reference is made to the substances listed above.
  • Preferred nonionic monomers are acrylamide, methacrylamide, acrylic acid ester, methacrylic acid ester, vinyl pyrrolidone, vinyl ether and vinyl ester.
  • Preferred anionic copolymers are acrylic acid-acrylamide copolymers and in particular polyacrylamide copolymers with monomers containing sulfonic acid groups.
  • a particularly preferred anionic copolymer consists of 70 to 55 mol% of acrylamide and 30 to 45 mol% of 2-acrylamido-2-methylpropanesulfonic acid, the sulfonic acid group being wholly or partly as sodium, potassium, ammonium, mono- or triethanolammonium Salt is present.
  • This copolymer can also be crosslinked, the crosslinking agents used preferably being polyolefinically unsaturated compounds such as tetraallyloxyethane, allyl sucrose, allylpentaerythritol and methylene bisacrylamide.
  • Such a polymer is contained in the commercial product Sepigel ® 305 from SEPPIC.
  • the use of this compound, which in addition to the polymer component contains a hydrocarbon mixture (C, 3 -C 4 -isoparaffin) and a nonionic emulsifier (Laureth-7), has proven to be particularly advantageous in the context of the teaching according to the invention.
  • Also known as compound with isohexadecane and poly sold under the name Simulgel® ® 600 sorbate-80 sodium acryloyldimethyltaurate copolymers have proven effective as inventively particularly.
  • anionic homopolymers are uncrosslinked and crosslinked polyacrylic acids. Allyl ethers of pentaerythritol, sucrose and propylene can be preferred crosslinking agents. Such compounds are for example available under the trademark Carbopol ® commercially.
  • Copolymers of maleic anhydride and methyl vinyl ether are also color-preserving polymers.
  • a cross-linked with 1,9-decadiene painting einklare-methyl vinyl ether copolymer is available under the name Stabileze® ® QM.
  • amphoteric polymers can be used as polymers to increase the effect of the active ingredient combination according to the invention.
  • amphoteric polymers includes both those polymers which contain both free amino groups and free -COOH or SO 3 H groups in the molecule and are capable of forming internal salts, and also zwitterionic polymers which contain quaternary ammonium groups and -COO " - or -SO 3 " groups, and summarized those polymers which contain -COOH or SO 3 H groups and quaternary ammonium groups.
  • amphopolymer suitable is that available under the name Amphomer ® acrylic resin which is a copolymer of ethyl methacrylate tert-butylamino, N- (1J, 3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Methacrylic acid and its simple esters.
  • Amphomer ® acrylic resin which is a copolymer of ethyl methacrylate tert-butylamino, N- (1J, 3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Methacrylic acid and its simple esters.
  • Amphoteric polymers which are preferably used are those polymers which essentially consist of one another
  • A is the anion of an organic or inorganic acid
  • these compounds can be used both directly and in salt form, which is obtained by neutralizing the polymers, for example with an alkali metal hydroxide.
  • an alkali metal hydroxide for example, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium sulfate, sodium sulfate ion ;
  • Acrylamido-propyl-trimethyl-a-ammonium chloride is a particularly preferred monomer (a).
  • Acrylic acid is preferably used as monomer (b) for the polymers mentioned.
  • the agents according to the invention can contain nonionic polymers (G4).
  • Suitable nonionic polymers are, for example:
  • Vinylpyrrolidone / Vinylester copolymers as are marketed, for example under the trademark Luviskol ® (BASF). Luviskol ® VA 64 and Luviskol ® VA 73, each vinylpyrrolidone / vinyl acetate copolymers are also preferred nonionic polymers.
  • Cellulose ethers such as hydroxypropyl cellulose, hydroxyethyl cellulose and hydroxypropylcellulose Methylhy- as they are for example sold under the trademark Culminal® ® and Benecel ® (AQUALON).
  • Siloxanes These siloxanes can be both water-soluble and water-insoluble. Both volatile and non-volatile siloxanes are suitable, non-volatile siloxanes being understood to mean those compounds whose boiling point at normal pressure is above 200 ° C.
  • Preferred siloxanes are polydialkylsiloxanes, such as, for example, polydimethylsiloxane, polyalkylarylsiloxanes, such as, for example, polyphenylmethylsiloxane, ethoxylated polydialkylsiloxanes and polydialkylsiloxanes which contain amine and / or hydroxyl groups.
  • the preparations used contain several, in particular two different polymers of the same charge and / or each contain an ionic and an amphoteric and / or non-ionic polymer.
  • the polymers (G) are preferably present in the agents used according to the invention in amounts of 0.05 to 10% by weight, based on the total agent. Amounts from 0.1 to 5, in particular from 0.1 to 3% by weight are particularly preferred.
  • Protein hydrolyzates and / or amino acids and their derivatives (H) may also be present in the preparations used according to the invention.
  • Protein hydrolyzates are product mixtures that are obtained by acidic, basic or enzymatically catalyzed breakdown of proteins (proteins).
  • protein hydrolyzates of both vegetable and animal origin can be used.
  • Animal protein hydrolyzates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolyzates, which can also be in the form of salts.
  • Such products are, for example, under the trademarks Dehylan ® (Cognis), Promois ® (Interorgana), Collapuron ® (Cognis), Nutrilan ® (Cognis), Gelita-Sol ® (Deutsche Gelatine Fabriken Stoess & Co), Lexein ® (Inolex) and Kerasol ® (Croda) sold.
  • protein hydrolysates of plant origin e.g. B. soy, almond, pea, potato and wheat protein hydrolyzates.
  • Such products are available, for example, under the trademarks Gluadin ® (Cognis), DiaMin ® (Diamalt), Lexein ® (Inolex) and Crotein ® (Croda).
  • amino acid mixtures obtained in some other way can optionally be used in their place. It is also possible to use derivatives of the protein hydrolyzates, for example in the form of their fatty acid condensation products. Such products are sold for example under the names Lamepon® ® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda) or crotein ® (Croda).
  • the protein hydrolyzates or their derivatives are contained in the agents used according to the invention preferably in amounts of 0.1 to 10% by weight, based on the total agent. Amounts of 0.1 to 5% by weight are particularly preferred.
  • the action of the active ingredients (A) can be increased by UV filters (I).
  • the structure and physical properties of the UV filters to be used according to the invention are not subject to any general restrictions. Rather, all UV filters that can be used in the cosmetics sector are suitable, the absorption maximum of which lies in the UV A (315-400 nm), in the UVB (280-315 nm or in the UVC ( ⁇ 280 nm) range. UV filters with an absorption maximum in the UVB Range, especially in the range from about 280 to about 300 nm, are particularly preferred.
  • the UV filters used according to the invention can be selected, for example, from substituted benzophenones, p-aminobenzoic acid esters, diphenylacrylic acid esters, cinnamic acid esters, salicylic acid esters, benzimidazoles and o-aminobenzoic acid esters.
  • UV filters which can be used according to the invention are 4-amino-benzoic acid, N, N, N-trimethyl-4- (2-oxobom-3-ylidenemethyl) aniline-methylsulfate, 3,3,5-trimethyl-cyclohexyl-salicylate (homosalates ), 2-Hydroxy-4-methoxy-benzophenone (Benzophenone-3; UvinuI ® M 40, Uvasorb ® MET, Neo Heliopan ® BB, Eusolex ® 4360), 2-phenylbenzimidazole-5-sulfonic acid and its potassium, sodium - and triethanolamine salts (phenylbenzimidazole sulfonic acid; Parsol ® HS; Neo Helio ⁇ an ® Hydro), 3,3 '- (1,4-phenylenedimethylene) -bis (7,7-dimethyl-2-oxo-bicyclo- [2.2J] hept -l-yl-methane
  • 4-Amino-benzoic acid, N, N, N-trimethyl-4- (2-oxobom-3-ylidene methyl) aniline methyl sulfate are preferred, 3,3,5-trimethyl-cyclohexyisalicylate, 2-hydroxy-4-methoxy-benzophenone, 2-phenylbenzimidazole-5-sulfonic acid and its potassium, sodium and triethanolamine salts, 3,3 '- (1,4-phenylenedimethylene ) -bis (7,7-dimethyl-2-oxobicyclo- [2.2.1] hept-1-yl-methanesulfonic acid) and their salts, l- (4-tert-butylphenyl) -3- (4-methoxyphenyl) propane-1,3-dione, ⁇ - (2-oxobom-3-ylidene) toluene-4-sulfonic acid and its salts, ethyl ethoxylated 4-amino
  • 2-hydroxy-4-methoxy-benzophenone, 2-phenylbenzimidazole-5-sulfonic acid and their potassium, sodium and triethanolamine salts, l- (4-tert-butylphenyl) -3- (4-methoxyphenyl) are very particularly preferred -propan-l, 3-dione, 4-methoxycinnamic acid-2-ethylhexyl ester and 3- (4'-methylbenzylidene) -D, L-camphor.
  • Preferred UV filters are those whose molar extinction coefficient at the absorption maximum is above 15,000, in particular above 20,000.
  • the water-insoluble compound has, in the context of the teaching according to the invention, the higher activity than those water-soluble compounds which differ from it by one or more additional ionic grapples.
  • water-insoluble are UV filters which do not dissolve in water at 20 ° C. by more than 1% by weight, in particular not more than 0.1% by weight.
  • these compounds should be at least 0.1, in particular at least 1% by weight soluble in conventional cosmetic oil components at room temperature). The use of water-insoluble UV filters can therefore be preferred according to the invention.
  • those UV filters are preferred which have a cationic group, in particular a quaternary ammonium group.
  • These UV filters have the general structure U - Q.
  • the structural part U stands for a group that absorbs UV rays.
  • this group can be derived from the known UV filters mentioned above, which can be used in the cosmetics sector, in which a group, usually a hydrogen atom, of the UV filter is replaced by a cationic group Q, in particular with a quaternary amino function , Connections from which the structural part U can be derived are, for example
  • Structural parts U which are derived from cinnamic acid amide or from N, N-dimethylamino-benzoic acid amide are preferred according to the invention.
  • the component parts U can be selected so that the absorption maximum of the UV filter can be both in the UVA (315-400 nm) and in the UVB (280-315 nm) or in the UVC ( ⁇ 280 nm) range.
  • UV filters with an absorption maximum in the UVB range in particular in the range from approximately 280 to approximately 300 nm, are particularly preferred.
  • the structural part U is preferably chosen such that the molar extinction coefficient of the UV filter at the absorption maximum is above 15,000, in particular above 20,000.
  • the structural part Q preferably contains a quaternary ammonium group as the cationic group.
  • this quaternary ammonium group can be directly connected to the structural part U, so that the structural part U represents one of the four substituents of the positively charged nitrogen atom.
  • one of the four substituents is preferred on positively charged nitrogen atom is a group, in particular an alkylene group having 2 to 6 carbon atoms, which functions as a connection between the structural part U and the positively charged nitrogen atom.
  • the Grappe Q advantageously has the general structure - (CH 2 ) X -N + R 1 R 2 R 3 X " , in which x stands for an integer from 1 to 4, R 1 and R 2 independently of one another stand for C M - Alkylgrappen, R 3 stands for a C,. 22 -Alkylrarappe or a Benzylgrappe and X " for a physiologically compatible anion.
  • x preferably represents the number 3, R 1 and R 2 each for a methyl group and R 3 either for a methyl group or a saturated or unsaturated, linear or branched hydrocarbon chain with 8 to 22, in particular 10 to 18, carbon atoms.
  • Physiologically acceptable anions are, for example, inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions, and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions
  • organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • Two preferred UV filters with cationic groups are the commercially available compounds cinnamic acid-trimethylammonium chloride (quat Incro- ® UV-283), and dodecyl-dimethylammobenzamidopropyl dimemylammoniumtosylat (Escalol ® HP 610).
  • the teaching of the invention also includes the use of a combination of several UV filters.
  • the combination of at least one water-insoluble UV filter with at least one UV filter with a cationic group is preferred.
  • the UV filters (I) are usually contained in the agents used according to the invention in amounts of 0.1-5% by weight, based on the total agent. Amounts of 0.4-2.5% by weight are preferred.
  • the color-preserving action of the active ingredient according to the invention can be further increased by a 2-pyrrolidinone-5-carboxylic acid and its derivatives (J).
  • Another The object of the invention is therefore the use of the color-retaining active ingredient in combination with derivatives of 2-pyrrolidinone-5-carboxylic acid.
  • Preferred are the sodium, potassium, calcium, magnesium or ammonium salts in which the ammonium ion carries one to three C r to C 4 alkyl groups in addition to hydrogen.
  • the sodium salt is very particularly preferred.
  • the amounts used in the agents according to the invention are 0.05 to 10% by weight, based on the total agent, particularly preferably 0.1 to 5 and in particular 0.1 to 3% by weight.
  • Vitamins, pro-vitamins and vitamin precursors which are usually assigned to groups A, B, C, E, F and H are preferred according to the invention.
  • vitamin A and 3,4-didehydroretinol belong to the group of substances referred to as vitamin A.
  • ⁇ -carotene is the provitamin of retinol.
  • vitamin A contains, for example, vitamin A component Acid and its esters, vitamin A aldehyde and vitamin A alcohol as well as its esters such as palmitate and acetate.
  • the preparations used according to the invention preferably contain the vitamin A component in amounts of 0.05-1% by weight, based on the entire preparation.
  • the vitamin B group or the vitamin B complex include u. a.
  • Vitamin B 2 (riboflavin)
  • nicotinic acid and nicotinamide are often listed under this name.
  • Preferred according to the invention is the nicotinic acid amide, which is contained in the agents used according to the invention preferably in amounts of 0.05 to 1% by weight, based on the total agent.
  • panthenol and / or pantolactone is preferably used.
  • Derivatives of panthenol which can be used according to the invention are in particular the esters and ethers of Panthenols and cationically derivatized panthenols. Individual representatives are, for example, panthenol triacetate, panthenol monoethyl ether and its monoacetate and the cationic panthenol derivatives disclosed in WO 92/13829.
  • the compounds of the vitamin B 5 type mentioned are preferably present in the agents used according to the invention in amounts of 0.05-10% by weight, based on the total agent. Amounts of 0.1-5% by weight are particularly preferred.
  • - Vitamin B 6 pyridoxine as well as pyridoxamine and pyridoxal).
  • Vitamin C (ascorbic acid). Vitamin C is used in the agents used according to the invention preferably in amounts of 0.1 to 3% by weight, based on the total agent. Use in the form of the palmitic acid ester, the glucosides or phosphates can be preferred. Use in combination with tocopherols may also be preferred.
  • Vitamin E tocopherols, especially ⁇ -tocopherol.
  • Tocopherol and its derivatives which include in particular the esters such as acetate, nicotinate, phosphate and succinate, are preferably present in the agents used according to the invention in amounts of 0.05-1% by weight, based on the total agent ,
  • Vitamin F usually means essential fatty acids, in particular linoleic acid, linolenic acid and arachidonic acid.
  • Vitamin H is the compound (3aS, 4S, 6ai?) - 2-oxohexahydrotMenol [3,4-d] -imidazole-4-valeric acid, for which the trivial name biotin has now become established.
  • Biotin is contained in the agents used according to the invention preferably in amounts of 0.0001 to 1.0% by weight, in particular in amounts of 0.001 to 0.01% by weight.
  • the agents used according to the invention preferably contain vitamins, provitamins and vitamin precursors from grappa A, B, E and H. Panthenol, pantolactone, pyridoxine and its derivatives as well as nicotinamide and biotin are particularly preferred.
  • extracts are usually produced by extracting the entire plant. In individual cases, however, it may also be preferred to produce the extracts exclusively from flowers and / or leaves of the plant.
  • the extracts from green tea, almond, aloe vera, coconut, mango, apricot, lime, wheat, kiwi and melon are particularly suitable for the use according to the invention.
  • Water, alcohols and mixtures thereof can be used as extractants for the production of the plant extracts mentioned.
  • the alcohols lower alcohols such as ethanol and isopropanol, but in particular polyhydric alcohols such as ethylene glycol and propylene glycol, are preferred, both as the sole extracting agent and in a mixture with water.
  • Plant extracts based on water / propylene glycol in a ratio of 1:10 to 10: 1 have proven to be particularly suitable.
  • the plant extracts can be used both in pure and in diluted form. If they are used in dilute form, they usually contain about 2 to 80% by weight of active substance and, as a solvent, the extractant or mixture of extractants used in their extraction.
  • mixtures of several, in particular two, different plant extracts in the agents according to the invention may be preferred.
  • the color-preserving active ingredient according to the invention can in principle be added directly to the colorant.
  • the application of the color-preserving active ingredient to the dyed ceramic fiber can, however, also take place in a separate step, either before or after the actual dyeing process. Separate treatments, possibly also days or weeks before or after the dyeing process, are encompassed by the teaching according to the invention. However, it is preferred to use the active ingredient according to the invention after coloring and in particular in the colorant.
  • the term dyeing process includes all processes known to the person skilled in the art, in which a dye is applied to the optionally moistened hair and either left on the hair for a time between a few minutes and about 45 minutes and then with water or a surfactant-containing agent is rinsed out or left entirely on the hair.
  • a dye is applied to the optionally moistened hair and either left on the hair for a time between a few minutes and about 45 minutes and then with water or a surfactant-containing agent is rinsed out or left entirely on the hair.
  • monographs e.g. BKH Schrader, Fundamentals and Recipes of Cosmetics, 2nd edition, Hüthig Buch Verlag, Heidelberg, 1989, referring to the corresponding knowledge of the expert.
  • the color-preserving active ingredient combination according to the invention is applied to the keratin fiber, in particular human hair.
  • the formulations of these preparations include, for example, creams, lotions, solutions, water, emulsions such as W / O, O / W, PIT emulsions (emulsions based on the teaching of phase inversion, PIT), microemulsions and multiple emulsions, gels, Sprays, aerosols and foam aerosols are suitable.
  • the pH of these preparations can in principle be between 2 and 11. It is preferably between 5 and 11, values from 6 to 10 being particularly preferred. Virtually any acid or base that can be used for cosmetic purposes can be used to adjust this pH.
  • Food acids are usually used as acids.
  • Edible acids are those acids that are ingested as part of normal food intake and have positive effects on the human organism.
  • Edible acids are, for example, acetic acid, lactic acid, tartaric acid, citric acid, malic acid, ascorbic acid and gluconic acid.
  • citric acid and lactic acid is particularly preferred.
  • Preferred bases are ammonia, alkali metal hydroxides, monoethanolamine, triethanolamine and N, N, N ', N'-tetrakis (2-hydroxypropyl) ethylenediamine.
  • Preparations remaining on the hair have proven to be particularly effective and can therefore represent preferred embodiments of the teaching according to the invention.
  • “remaining on the hair” is understood to mean those preparations which are not rinsed out of the hair again after a period of a few seconds to an hour using water or an aqueous solution. Rather, the preparations remain until the next hair wash, i.e. usually more than 12 hours on the hair.
  • these preparations are formulated as a hair treatment or hair conditioner.
  • the preparations according to the invention in accordance with this embodiment can be rinsed out with water or an at least predominantly water-containing agent after this exposure time has expired; however, as stated above, they can be left on the hair. It may be preferred to prepare the preparation according to the invention before using a cleaning agent, one Apply waving or other hair treatment agents to the hair. In this case, the preparation according to the invention serves as color protection for the subsequent applications.
  • the agents according to the invention can also be, for example, cleaning agents such as shampoos, conditioning agents such as rinses, setting agents such as hair setting agents, foam setting agents, styling gels and hair dryer shafts, permanent shaping agents such as permanent waving and fixing agents, and in particular as part of a permanent waving process pretreatment agents or rinses used in the dyeing process.
  • cleaning agents such as shampoos
  • conditioning agents such as rinses
  • setting agents such as hair setting agents, foam setting agents, styling gels and hair dryer shafts
  • permanent shaping agents such as permanent waving and fixing agents, and in particular as part of a permanent waving process pretreatment agents or rinses used in the dyeing process.
  • these preparations can in principle contain all further components known to the person skilled in the art for such cosmetic compositions.
  • non-ionic polymers such as, for example, vinyl pyrrolidone / vinyl acrylate copolymers, polyvinyl pyrrolidone and vinyl pyrrolidone / vinyl acetate copolymers and polysiloxanes,
  • - Thickeners such as agar agar, guar gum, alginates, xanthan gum, gum arabic, karaya gum, locust bean gum, linseed gums, dextrans, cellulose derivatives, for.
  • methyl cellulose, hydroxyalkyl cellulose and carboxy methyl cellulose starch fractions and derivatives such as amylose, amylopectin and dextrins, clays such as.
  • B. bentonite or fully synthetic hydrocolloids such.
  • Structurants such as maleic acid and lactic acid
  • hair-conditioning compounds such as phospholipids, for example soy lecithin, egg lecithin and cephalins, and silicone oils,
  • Solvents and intermediates such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerol and diethylene glycol, - Symmetrical and asymmetrical, linear and branched dialkyl ethers with a total of between 12 to 36 carbon atoms, in particular 12 to 24 carbon atoms, such as, for example, di-n-octyl ether, di-n-decyl ether, di-n-nonyl ether, di-n -undecyl ether and di-n-dodecyl ether, n-hexyl-n-octyl ether, n-octyl-n-decyl ether, n-decyl-n-undecyl ether, n-undecyl-n-dodecyl ether and Di tert-butyl ether
  • Fatty alcohols especially linear and / or saturated fatty alcohols with 8 to 30 carbon atoms,
  • active ingredients which improve the fiber tract in particular mono-, di- and oligosaccharides such as, for example, glucose, galactose, fractose, fructose and lactose,
  • paraffin oils such as paraffin oils, vegetable oils, e.g. B. sunflower oil, orange oil, almond oil, wheat germ oil and peach seed oil as well
  • Phospholipids for example soy lecithin, egg lecithin and cephalins,
  • quaternized amines such as memyl-l-alkylamidoethyl-2-alkylimidazolinium methosulfate,
  • anti-dandruff agents such as piroctone olamine, zinc omadine and climbazol
  • Swelling and penetration substances such as glycerol, propylene glycol monoethyl ether, carbonates, hydrogen carbonates, guanidines, ureas and primary, secondary and tertiary phosphates,
  • opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers
  • Pearlescent agents such as ethylene glycol mono- and distearate and PEG-3 distearate
  • Propellants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air,
  • the invention also relates to agents for improving the fastness to washing of colored fibers and for intensifying the coloring, in particular keratin fibers, which comprise a combination of a. the active ingredient (A) and b. contain a dye precursor (B) and / or a substantive dye (C).
  • a particularly preferred embodiment here is one in which the active ingredient (A) and dye precursors (B) and / or substantive dyes (C) are packaged separately and only added together immediately before use.
  • a third object of the invention is an agent for improving the fastness to washing of dyed fibers and for intensifying the dyeing, in particular keratinic fibers, which comprises an active ingredient combination of a. a compound (A) according to claim 1 and b. contains a polymer (G), with the proviso that the compound (A) is not formaldehyde or a compound which releases formaldehyde.
  • a particularly preferred embodiment is that in which the composition comprising the active ingredient (A) and the polymer (G) as an active ingredient combination after dyeing on the dyed fiber is applied.
  • surfactants (E) and / or fatty substances (D) are also present.
  • a fourth object of the invention is a process for improving the wash-fastness of dyeings of fibers, in particular keratin fibers, in which a coloring agent with the active ingredient according to the invention, as used in one of claims 1 to 9, is applied to the fibers, the agent if desired after an exposure time of 1 to 45 minutes.
  • Strands of Kerling (0.5 g Kerling, natural white) were tied in the middle and half bleached. The other half was bleached twice and subjected to two conventional perm treatments with the commercial product Poly Lock-Normal Perm.
  • the fibers were each exposed in a first step for 30 minutes at room temperature to the reducing solution (containing 7.9% by weight of thioglycolic acid), rinsed with pure water and then fixed at room temperature for 10 minutes (oxidation solution containing 2 6 wt .-% hydrogen peroxide). After the oxidative treatment, the fibers were rinsed and dried again.
  • a mixture of 1 g of a coloring cream (commercial product Poly Diadem skin care cream coloring 718 hazelnut) and 1 ml of an aqueous 6% hydrogen peroxide solution was applied to the strands and left there at 32 ° C. for 30 minutes. The hair was then rinsed with water.
  • a coloring cream commercial product Poly Diadem skin care cream coloring 718 hazelnut
  • an aqueous 6% hydrogen peroxide solution was applied to the strands and left there at 32 ° C. for 30 minutes. The hair was then rinsed with water.
  • the hair was treated for 5 minutes with 1 g of a conditioning agent from Table 1 at 32 ° C., rinsed, dried and measured by colorimetry. Value 6 - - subsequently thereto the strands of hair with an aqueous solution% Texapon ® NSO, pH was consisting of 1.0 wt. 7, washed 6 times, and dried in turn colorimetrically measured. d. Colorimetric measurement
  • each strand of hair was measured at eight points using the Text Flash color measurement system from Datacolor.
  • the sample to be measured was fixed in a clamping device on the spectrophotometer, the reflectance values over the range of visible light from 390 - 700 nm measured at a distance of 10 nm and processed by a computer.
  • the computer program determined the standard color values according to the CIELAB system in accordance with DIN 5033.
  • the measurement results of the total color difference ⁇ E were evaluated with the Data Color Tools QC software according to formula (I) and summarized in the following table.
  • the composition marked with “V” served as the standard
  • Methylparaben (and) propylparaben) (COGNIS) 13- INCI name: Imidazolidinyl Urea (Sutton Laboratories)
  • Glucoside (COGNIS) 3 Liquid dispersion of pearlescent substances and amphoteric surfactant (approx. 62%
  • CTFA name Glycol Distearate (and) Glycerin (and) Laureth-4
  • the formaldehyde is added immediately before use.
  • Etidronic Acid (COGNIS) 48- acrylic ester-methacrylic acid copolymer (25% active substance) (BASF)
  • BASF active substance
  • the glutardialdehyde is added immediately before use.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Durch die Verwendung von kurzkettigen Aldhyden und/oder Formaldehyd und/oder Fromaldehyd abspaltenden Verbindungen wird die Farbstablität gefärbter Fasern, insbesondere keratinischer Fasern, deutilich erhöht.

Description

„Neue Verwendung von kurzke tigen Aldehyden und Formaldehyd abspaltenden Verbindungen"
Die Erfindung betrifft die Verwendung von kurzkettigen Aldehyden und oder Formaldehyd abspaltenden Verbindungen zur Farbstabilisierung von Färbungen keratinischer Fasern, entsprechende Zubereitungen sowie Verfahren zum Pflegen und Färben und Pflegen gefärbter Fasern.
Menschliches Haar wird heute in vielfaltiger Weise mit haarkosmetischen Zubereitungen behandelt. Dazu gehören etwa die Reinigung der Haare mit Shampoos, die Pflege und Regeneration mit Spülungen und Kuren sowie das Bleichen, Färben und Verformen der Haare mit Färbemitteln, Tönungsmitteln, Wellmitteln und Stylingpräparaten. Dabei spielen Mittel zur Veränderung oder Nuancierung der Farbe des Kopfhaares eine herausragende Rolle. Sieht man von den Blondiermitteln, die eine oxidative Aufhellung der Haare durch Abbau der natürlichen Haarfarbstoffe bewirken, ab, so sind im Bereich der Haarfarbung im wesentlichen drei Typen von Haarfarbemitteln von Bedeutung:
Für dauerhafte, intensive Färbungen mit entsprechenden Echtheitseigenschaften werden sogenannte Oxidationsfärbemittel verwendet. Solche Färbemittel enthalten üblicherweise Oxidationsfarbstoflvo-φrodukte, sogenannte Entwicklerkomponenten und Kupplerkomponenten. Die Entwicklerkomponenten bilden unter dem Einfluß von Oxidationsmitteln oder von Luftsauerstoff untereinander oder unter Kupplung mit einer oder mehreren Kupplerkomponenten die eigentlichen Farbstoffe aus. Die Oxidationsfärbemittel zeichnen sich zwar durch hervorragende, lang anhaltende Färbeergebnisse aus. Für natürlich wirkende Färbungen muß aber üblicherweise eine Mischung aus einer größeren Zahl von Oxidationsfarbstoffvorprodukten eingesetzt werden; in vielen Fällen werden weiterhin direktziehende Farbstoffe zur Nuancierung verwendet. Weisen die im Verlauf der Farbaus- bildung gebildeten bzw. direkt eingesetzten Farbstoffe deutlich unterschiedliche Echtheiten (z. B. UV-Stabilität, Schweißechtheit, Waschechtheit etc.) auf, so kann es mit der Zeit zu einer erkennbaren und daher unerwünschten Farbverschiebung kommen. Dieses Phänomen tritt verstärkt auf, wenn die Frisur Haare oder Haarzonen unterschiedlichen Schädigungsgrades aufweist. Ein Beispiel dafür sind lange Haare, bei denen die lange Zeit allen möglichen Umwelteinflüssen ausgesetzten Haarspitzen in der Regel deutlich stärker geschädigt sind als die relativ frisch nachgewachsenen Haarzonen.
Für temporäre Färbungen werden üblicherweise Färbe- oder Tönungsmittel verwendet, die als färbende Komponente sogenannte Direktzieher enthalten. Hierbei handelt es sich um Farbstoffmoleküle, die direkt auf das Haar aufziehen und keinen oxidativen Prozeß zur Ausbildung der Farbe benötigen. Zu diesen Farbstoffen gehört beispielsweise das bereits aus dem Altertum zur Färbung von Körper und Haaren bekannte Henna. Diese Färbungen sind gegen Shampoonieren in der Regel deutlich empfindlicher als die oxidativen Färbungen, so daß dann sehr viel schneller eine vielfach unerwünschte Nuancenverschiebung oder gar eine sichtbare „Entfärbung" eintritt.
Schließlich hat in jüngster Zeit ein neuartiges Färbeverfahren große Beachtung gefunden. Bei diesem Verfahren werden Vorstufen des natürlichen Haarfarbstoffes Melanin auf das Haar aufgebracht; diese bilden dann im Rahmen oxidativer Prozesse im Haar naturanaloge Farbstoffe aus. Ein solches Verfahren mit 5,6-Dihydroxyindolin als Farbstoff orprodukt wurde in der EP-B 1-530229 beschrieben. Bei, insbesondere mehrfacher, Anwendung von Mitteln mit 5,6-Dihydroxyindolin ist es möglich, Menschen mit ergrauten Haaren die natürliche Haarfarbe wiederzugeben. Die Ausfärbung kann dabei mit Luftsauerstoff als einzigem Oxidationsmittel erfolgen, so daß auf keine weiteren Oxidationsmittel zurückgegriffen werden muß. Bei Personen mit ursprünglich mittelblondem bis braunem Haar kann das Indolin als alleinige Farbstoffvorstufe eingesetzt werden. Für die Anwendung bei Personen mit ursprünglich roter und insbesondere dunkler bis schwarzer Haarfarbe können dagegen befriedigende Ergebnisse häufig nur durch Mitverwendung weiterer Farbstoffkomponenten, insbesondere spezieller Oxidationsfarbstoffvo rodukte, erzielt werden. Auch hier können dann Probleme hinsichtlich der Echtheit der Färbungen auftreten. Es hat nicht an Anstrengungen gefehlt, die Echtheit von Färbungen keratinischer Fasern zu verbessern. Eine Entwicklungsrichtung ist die Optimierung der Farbstoffe selbst bzw. die Synthese neuer, modifizierter Farbstof moleküle. Eine weitere Entwicklungsrichtung ist die Suche nach Zusätzen für die Färbemittel, um die Echtheit der Färbungen zu erhöhen. Eine bekannte Problemlösung ist, dem Färbemittel UV-Filter zuzusetzen. Diese Filtersubstanzen werden beim Färbeprozeß zusammen mit dem Farbstoff auf das Haar aufgebracht, wodurch in vielen Fällen eine deutliche Steigerung der Stabilität der Färbung gegen die Einwirkung von Tages- oder Kunstlicht erzielt wird.
Überraschenderweise wurde nun gefunden, daß durch den Einsatz von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen als Wirkstoffe die Farbstabilität von Färbungen insbesondere keratinischer Fasern signifikant gesteigert werden kann. Unter Farbstabilität im Sinne der Erfindung ist die Erhaltung der ursprünglichen Färbung hinsichtlich Nuance und/oder Intensität zu verstehen, wenn die keratinische Faser dem wiederholten Einfluß von wäßrigen Mitteln, insbesondere tensidhaltigen Mitteln wie Shampoos, ausgesetzt wird.
Ein erster Gegenstand der vorliegenden Erfindung sind daher kosmetische Mittel enthaltend kurzkettige Aldehyde und/oder Formaldehyd abspaltende Verbindungen (A) als Wirkstoffe zur Farbstabilisierung der Färbung von Fasern.
Unter keratinischen Fasern werden erfindungsgemäß Pelze, Wolle, Federn und insbesondere menschliche Haare verstanden.
Unter kurzkettigen Aldehyden im Sinne der Erfindung werden Aldehyde verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 500 aufweisen. Die kurzkettigen Aldehyde im Sinne der Erfindung können ein, zwei oder drei Formylgruppen aufweisen. Die Formylgruppen können ganz oder teilweise als Halbacetale, Acetale, Oxime, Hydrazone, Semicarbazone oder Imine vorliegen. Zu den erfindungsgemäßen Wirkstoffen zählen neben dem Formaldehyd auch alle Verbindungen, welche Formaldehyd freisetzen können, so daß dieser als Wirkstoff in einem kosmetischen Mittel zur Farbstabilisierung zur Verfügung steht.
Aldehyde im allgemeinen sowie Formaldehyd und Formaldehyd abspaltende Verbindungen sind bereits seit langem bekannt und werden vielfach in kosmetischen Mitteln zur Konservierung, das heißt zur Stabilisierung der Mittel gegen mikrobiellen Befall, eingesetzt. Weiterhin ist bekannt, daß Formaldehyd und Formaldehyd abspaltende Substanzen die Haarstruktur durch Vernetzungen stabilisieren können.
Als Beispiele für erfindungsgemäße Wirkstoffe seien genannt Formaldehyd, Acetaldehyd, Propionaldehyd, Butyraldehyd, Isobutyraldehyd, Valeraldehyd, Acrolein, Crotonaldehyd, Benzaldehyd, Zimtaldehyd, o-, m- und p-Anisaldehyd, Nicotinaldehyd, Furfural, Glyceral- dehyd, Glycolaldehyd, Citral, Vanillin, Piperonal, Glyoxal, Methylglyoxal, Malonaldehyd, Succinaldehyd, Glutaraldehyd, Adipaldehyd, Phthalaldehyd, Isophthalaldehyd, Terephthalaldehyd, 5-Bromo-5-nitro-l,3-dioxan, 2-Bromo-2-nitropropan-l,3-diol, DEDM Hydantoin, DEDM Hydantoin Dilaurate, Benzisothiazolinon, Benzylhemiformal, Diazolidinyl Urea, DMDM Hydantoin, DMHF, Dehydroacetsäure, Glycerolformal, Hydroxymethyl Dioxoazabicylooctan, Imidazolidinylharnstoff, MDM Hydantoin, Methylchloroisothiazolinon, Methylisothiazolinon, Octylisothiazolinon, PEG-5 DEDM Hydantoin, PEG-15 DEDM Hydantoin, PEG-5 DEDM Hydantoin Oleat, PEG-15 DEDM Hydantoin Stearat sowie Hexamethylentetramin.
Die erfindungsgemäßen Wirkstoffe sind in den Mitteln in Konzentrationen von 0,01 Gew.% bis zu 10 Gew.%, vorzugsweise von 0,05 Gew.% bis zu 7,5 Gew.% und ganz besonders bevorzugt in Mengen von 0,1 Gew.% bis zu 5 Gew.% enthalten.
Selbstverständlich können auch mehrere erfindungsgemäße Wirkstoffe gleichzeitig enthalten sein.
Gemäß einer ersten Ausfuhrungsform der erfindungsgemäßen Lehre kann es bevorzugt sein, den farberhaltenden Wirkstoff (A) direkt in Färbe- oder Tönungsmittel einzuarbeiten, das bedeutet, den erfindungsgemäßen Wirkstoff (A) in Kombination mit Oxidationsfarbstoff - Vorprodukten (B) einzusetzen. Es kann dabei, von Vorteil sein, den Wirkstoff (A) unmittelbar vor der Anwendung dem Färbe- oder Tönungsmittel zuzusetzen.
Als Farbstoffvorprodukte können Oxidationsfarbstoffvorprodukte vom Entwickler- (Bl) und Kuppler-Typ ( B2), natürliche und synthetische direktziehende Farbstoffe (C) und Vorstufen naturanaloger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern einer oder mehrerer dieser Gruppen eingesetzt werden.
Als Oxidationsfarbstoffvorprodukte vom Entwickler-Typ (Bl) werden üblicherweise primäre aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen, freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocy- clische Hydrazone, 4-Aminopyrazolderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt. Geeignete Entwicklerkomponenten sind beispielsweise p-Phe- nylendiamin, p-Toluylendiamin, p-Aminophenol, o- Aminophenol, l-(2'-Hydroxyethyl)- 2,5-diaminobenzol, N,N-Bis-(2-hydroxy-ethyl)-p-phenylendiamin, 2-(2,5-Diamino- phenoxy)-ethanol, 4-Amino-3-methylphenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy- 4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6- diaminopyrimidin, 2-Dimethylamino-4,5,6-triaminopyrimidin, 2-Hydroxymethylamino-4- amino-phenol, Bis-(4-aminophenyl)amin, 4-Amino-3-fluorphenol, 2-AminomethyI-4- aminophenol, 2-Hydroxymethyl-4-aminophenol, 4-Amino-2-((diethylamino)-methyl)-phe- nol, Bis-(2-hydroxy-5-aminophenyl)-methan, 1 ,4-Bis-(4-aminophenyl)-diazacycloheptan, 1 ,3 -Bis(Η(2-hydroxyethyl)-N(4-aminophenylamino))-2-propanol, 4-Amino-2-(2-hy- droxyethoxy)-phenol, l,10-Bis-(2,5-diaminophenyl)-l,4,7,10-tetraoxadecan sowie 4,5- Diaminopyrazol-Derivate nach EP 0 740 741 bzw. WO 94/08970 wie z. B. 4,5-Diamino-l- (2'-hydroxyethyl)-pyrazol. Besonders vorteilhafte Entwicklerkomponenten sind p-Phe- nylendiamin, p-Toluylendiamin, p-Aminophenol, l-(2'-Hydroxyethyl)-2,5-diaminobenzol, 4-Amino-3-methylphenol, 2-Aminomethyl-4-aminophenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin.
Als Oxidationsfarbstoffvorprodukte vom Kuppler-Typ (B2) werden in der Regel m-Phe- nylendiaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone und m- Aminophenolderivate verwendet. Beispiele für solche Kupplerkomponenten sind m-Aminophenol und dessen Derivate wie beispielsweise 5-Amino-2-methylphenol, 5-(3- Hydroxypropylamino)-2-methy lphenol, 3 -Amino-2-chlor-6-methylphenol, 2-Hydroxy-4- aminophenoxyethanol, 2,6-Dimethyl-3-aminophenol, 3-Trifluoroacetylamino-2-chlor-6- methylphenol, 5--Amino-4-chlor-2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, 5- (2 ' -Hydroxyethyl)-amino-2-methy lphenol, 3 -(Diethylamino)-phenol, N-Cycloρentyl-3 - aminophenol, 1 ,3-Dihydroxy-5-(methylamino)-benzol, 3-(Ethylamino)-4-methylphenol und 2,4-Dichlor-3 -aminophenol, o- Aminophenol und dessen Derivate, m-Diaminobenzol und dessen Derivate wie beispielsweise 2,4-Diaminophenoxyethanol, l,3-Bis-(2,4-dia- minophenoxy)-propan, l-Methoxy-2-amino-4-(2'-hydroxyethylamino)benzol, 1,3-Bis- (2,4-diaminophenyl)-propan, 2,6-Bis-(2-hydroxyethylamino)-l-methylbenzol und 1- Amino-3-bis-(2'-hydroxyethyl)-aminobenzol, o-Diaminobenzol und dessen Derivate wie beispielsweise 3,4-Diaminobenzoesäure und 2,3-Diamino-l-methylbenzol, Di- beziehungsweise Trihydroxybenzolderivate wie beispielsweise Resorcin, Resorcin-mono- methy lether, 2-Methylresorcin, 5-Methykesorcin, 2,5-Dimethylresorcin, 2-Chlorresorcin, 4-Chlorresorcin, Pyrogallol und 1,2,4-Trihydroxybenzol,
Pyridinderivate wie beispielsweise 2,6-Dihydroxypyridin, 2-Amino-3-hydroxypyridin, 2- Amino-5-chlor-3-hydroxypyridin, 3-Amino-2-methylamino-6-methoxypyridin, 2,6-Dihy- droxy-3,4-dimethylpyridin, 2,6-Dihydroxy-4-methylpyridin, 2,6-Diaminopyridin, 2,3- Diamino-6-methoxypyridin und 3,5-Diamino-2,6-dimethoxypyridin, Naphthalinderivate wie beispielsweise 1-Naphthol, 2-Methyl-l-naphthol, 2-Hydroxyme- thyl-1-naphthol, 2-Hydroxyethyl-l-naphthol, 1,5-Dihydroxynaphthalin, 1,6-Dihydroxy- naphthalin, 1,7-Dihydroxynaphthalin, 1,8-Dihydroxynaphthalin, 2,7-Dihydroxynaphthalin und 2,3-Dihydroxynaphthalin, Morpholinderivate wie beispielsweise 6-Hydroxyben- zomoφholin und 6-Amino-benzomorpholin, Chinoxalinderivate wie beispielsweise 6- Methyl-l,2,3,4-tetrahydrochinoxalin, Pyrazolderivate wie beispielsweise l-Phenyl-3- methylpyrazol-5-on, Indolderivate wie beispielsweise 4-Hydroxyindol, 6-Hydroxyindol und 7-Hydroxyindol, Methylendioxybenzolderivate wie beispielsweise l-Hydroxy-3,4- methylendioxybenzol, l-Amino-3,4-methylendioxybenzol und l-(2'-Hydroxyethyl)- amino-3 ,4-methylendioxybenzol.
Besonders geeignete Kupplerkomponenten sind 1-Naphthol, 1,5-, 2,7- und 1,7-Dihydroxy- naphthalin, 3 -Aminophenol, 5 -Amino-2-methy lphenol, 2-Amino-3-hydroxypyridin, Re- sorcin, 4-Chlorresorcin, 2-Chlor-6-methyl-3 -aminophenol, 2-Methylresorcin, 5- Methylresorcin, 2,5-Dimethylresorcin und 2,6-Dihydroxy-3,4-dimethylpyridin.
In einer zweiten Ausfuhrungsform der erfindungsgemäßen Lehre kann es bevorzugt sein, den farberhaltenden Wirkstoff (A) direkt in die Färbe- oder Tönungsmittel einzuarbeiten, und zwar in Kombination mit direkt ziehenden Farbstoffen (C).Auch hier hat es sich als besonders günstig herausgestellt, den Wirkstoff (A) unmittelbar vor der Anwendung dem Färbe- oder Tönungsmittel zuzusetzen.
Direktziehende Farbstoffe sind üblicherweise Nitrophenylendiamine, Nitroaminophenole, Azofarbstoffe, Anthrachinone oder Indophenole. Besonders geeignete direktziehende Farbstoffe sind die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 und Basic Brown 17 bekannten Verbindungen sowie l,4-Bis-(ß-hydroxyethyl)-amino- 2-nitrobenzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, 6-Nitro-l ,2,3,4-tetrahydro- chinoxalin, Hydroxyethyl-2-nitro-toluidin, Pikraminsäure, 2-Amino-6-chloro-4- nitrophenol, 4-Ethylamino-3-nitrobenzoesäure und 2-Chloro-6-ethylamino-l-hydroxy-4- nitrobenzol.
In der Natur vorkommende direktziehende Farbstoffe sind beispielsweise Henna rot, Henna neutral, Kamillenblüte, Sandelholz, schwarzen Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten.
Es ist nicht erforderlich, daß die Oxidationsfarbstoffvorprodukte oder die direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfindungsgemäßen Haarfärbemitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z. B. toxikologischen, ausgeschlossen werden müssen. Bezüglich der in den erfindungsgemäßen Haarfärbe- und -tönungsmitteln einsetzbaren Farbstoffe wird weiterhin ausdrücklich auf die Monographie Ch. Zviak, The Science of Hair Care, Kapitel 7 (Seiten 248-250; direktziehende Farbstoffe) sowie Kapitel 8, Seiten 264-267; Oxidationsfarbstoffvorprodukte), erschienen als Band 7 der Reihe „Dermato- logy" (Hrg.: Ch., Culnan und H. Maibach), Verlag Marcel Dekker Inc., New York, Basel, 1986, sowie das „Europäische Inventar der Kosmetik-Rohstoffe", herausgegeben von der Europäischen Gemeinschaft, erhältlich in Diskettenform vom Bundesverband Deutscher Industrie- und Handelsunternehmen für Arzneimittel, Reformwaren und Körperpflegemittel e.V., Mannheim, Bezug genommen.
Als Vorstufen naturanaloger Farbstoffe werden beispielsweise Indole und Indoline sowie deren physiologisch verträgliche Salze verwendet. Bevorzugt werden solche Indole und Indoline eingesetzt, die mindestens eine Hydroxy- oder Aminogruppe, bevorzugt als Sub- stituent am Sechsring, aufweisen. Diese Gruppen können weitere Substituenten tragen, z. B. in Form einer Veretherung oder Veresterung der Hydroxygruppe oder eine Alkylierung der Aminogruppe. Besonders vorteilhafte Eigenschaften haben 5,6-Dihydroxyindolin, N- Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxy- indolin, N-Butyl-5,6-dihydroxyindolin, 5,6-Dihydroxyindolin-2-carbonsäure, 6-Hydroxy- indolin, 6-Aminoindolin und 4-Aminoindolin sowie 5,6-Dihydroxyindol, N-Methyl-5,6- dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6- dihydroxyindol, 5,6-Dihydroxyindol-2-carbonsäure, 6-Hydroxyindol, 6-Aminoindol und 4- Aminoindol.
Besonders hervorzuheben sind innerhalb dieser Gruppe N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxy- indolin und insbesondere das 5,6-Dihydroxyindolin sowie N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol sowie insbesondere das 5,6-Dihydroxyindol.
Die Indolin- und Indol-Derivate in den im Rahmen des erfindungsgemäßen Verfahrens eingesetzten Färbemitteln sowohl als freie Basen als auch in Form ihrer physiologisch ver- fraglichen Salze mit anorganischen oder organischen Säuren, z. B. der Hydrochloride, der Sulfate und Hydrobromide, eingesetzt werden.
Bei der Verwendung von Farbstoff- Vorstufen vom Indolin- oder Indol-Typ kann es bevorzugt sein, diese zusammen mit mindestens einer Aminosäure und/oder mindestens einem Oligopeptid einzusetzen. Bevorzugte Aminosäuren sind Aminocarbonsäuren, insbesondere -Aminocarbonsäuren und ω-Aminocarbonsäuren. Unter den α-Aminocarbonsäuren sind wiederum Arginin, Lysin, Ornithin und Histidin besonders bevorzugt. Eine ganz besonders bevorzugte Aminosäure ist Arginin, insbesondere in freier Form, aber auch als Hydrochlorid eingesetzt.
Sowohl die Oxidationsfarbstoffvorprodukte als auch die direktziehenden Farbstoffe sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,1 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
Haarfärbemittel, insbesondere wenn die Ausfarbung oxidativ, sei es mit Luftsauerstoff oder anderen Oxidationsmitteln wie Wasserstoffperoxid, erfolgt, werden üblicherweise schwach sauer bis alkalisch, d. h. auf pH- Werte im Bereich von etwa 5 bis 11, eingestellt. Zu diesem Zweck enthalten die Färbemittel Alkalisierungsmittel, üblicherweise Alkali- oder Erdal- kalihydroxide, Ammoniak oder organische Amine. Bevorzugte Alkalisierungsmittel sind Monoethanolamin, Monoisopropanolamin, 2-Amino-2-methyl-propanol, 2-Amino-2- methyl-l,3-propandiol, 2-Amino-2-ethyl-l,3-propandiol, 2-Amino-2-methylbutanol und Triethanolamin sowie Alkali- und Erdalkalimetallhydroxide. Insbesondere Monoethanolamin, Triethanolamin sowie 2-Amino-2-methyl-propanol und 2-Amino-2-methyl-l,3- propandiol sind im Rahmen dieser Gruppe bevorzugt. Auch die Verwendung von ω- Aminosäuren wie ω-Aminocapronsäure als Alkalisierungsmittel ist möglich.
Erfolgt die Ausbildung der eigentlichen Haarfarben im Rahmen eines oxidativen Prozesses, so können übliche Oxidationsmittel, wie insbesondere Wasserstoffperoxid oder dessen Anlagerungsprodukte an Harnstoff, Melamin oder Natriumborat verwendet werden. Die Oxidation mit Luftsauerstoff als einzigem Oxidationsmittel kann allerdings bevorzugt sein. Weiterhin ist es möglich, die Oxidation mit Hilfe von Enzymen durchzuführen, wobei die Enzyme sowohl zur Erzeugung von oxidierenden Per- Verbindungen eingesetzt werden als auch zur Verstärkung der Wirkung einer geringen Menge vorhandener Oxidationsmittel, oder auch Enzyme verwendet werden, die Elektronen aus geeigneten Entwickler-komponenten (Reduktionsmittel) auf Luftsauerstoff übertragen. Bevorzugt sind dabei Oxidasen wie Tyrosinase, Ascorbatoxidase und Laccase aber auch Glucoseoxidase, Uricase oder Pyruvatoxidase. Weiterhin sei das Vorgehen genannt, die Wirkung geringer Mengen (z. B. 1% und weniger, bezogen auf das gesamte Mittel) Wasserstoffperoxid durch Peroxidasen zu verstärken.
Zweckmäßigerweise wird die Zubereitung des Oxidationsmittels dann unmittelbar vor dem Färben der Haare mit der Zubereitung mit den Farbstoffvorprodukten vermischt. Das dabei entstehende gebrauchsfertige Haarfärbepräparat sollte bevorzugt einen pH- Wert im Bereich von 6 bis 10 aufweisen. Besonders bevorzugt ist die Anwendung der Haarfärbemittel in einem schwach alkalischen Milieu. Die Anwendungstemperaturen können in einem Bereich zwischen 15 und 40 °C, bevorzugt bei der Temperatur der Kopfhaut, liegen. Nach einer Einwirkungszeit von ca. 5 bis 45, insbesondere 15 bis 30, Minuten wird das Haarfarbemittel durch Ausspülen von dem zu färbenden Haar entfernt. Das Nachwaschen mit einem Shampoo entfällt, wenn ein stark tensidhaltiger Träger, z. B. ein Färbeshampoo, verwendet wurde.
Insbesondere bei schwer färbbarem Haar kann die Zubereitung mit den Farbstoffvorprodukten ohne vorherige Vermischung mit der Oxidationskomponente auf das Haar aufgebracht werden. Nach einer Einwirkdauer von 20 bis 30 Minuten wird dann - gegebenenfalls nach einer Zwischenspülung - die Oxidationskomponente aufgebracht. Nach einer weiteren Einwirkdauer von 10 bis 20 Minuten wird dann gespült und gewünschtenfalls nachsham- pooniert. Bei dieser Ausfuhrungsform wird gemäß einer ersten Variante, bei der das vorherige Aufbringen der Farbstoffvorprodukte eine bessere Penetration in das Haar bewirken soll, das entsprechende Mittel auf einen pH- Wert von etwa 4 bis 7 eingestellt. Gemäß einer zweiten Variante wird zunächst eine Luftoxidation angestrebt, wobei das aufgebrachte Mittel bevorzugt einen pH- Wert von 7 bis 10 aufweist. Bei der anschließenden beschleunigten Nachoxidation kann die Verwendung von sauer eingestellten Peroxidisulfat-Lösun- gen als Oxidationsmittel bevorzugt sein. Weiterhin kann die Ausbildung der Färbung dadurch unterstützt und gesteigert werden, daß dem Mittel bestimmte Metallionen zugesetzt werden. Solche Metallionen sind beispielsweise Zn +, Cu2+, Fe2+, Fe3+, Mn2+, Mn4+, Li+, Mg2+, Ca2+ und Al3+. Besonders geeignet sind dabei Zn2+, Cu2+ und Mn2+. Die Metallionen können prinzipiell in der Form eines beliebigen, physiologisch verträglichen Salzes eingesetzt werden. Bevorzugte Salze sind die Acetate, Sulfate, Halogenide, Lactate und Tartrate. Durch Verwendung dieser Metallsalze kann sowohl die Ausbildung der Färbung beschleunigt als auch die Farbnuance gezielt beeinflußt werden.
In einer bevorzugten Ausfuhrungsform der Erfindung kann die Wirkung des erfindungsgemäßen Wirkstoffes (A) durch Fettstoffe (D) weiter verbessert werden. Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können, und natürliche und synthetische kosmetische Ölkomponenten zu verstehen.
Als Fettsäuren können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6 - 30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10 — 22 Kohlenstof atomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol®871 und Emersol® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor® IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotride- cansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Ara- chinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure. Die Einsatzmenge beträgt dabei 0,1 - 15 Gew.%, bezogen auf das gesamte Mittel. In einer bevorzugten Ausführungsform beträgt die Menge 0,5 - 10 Gew.%, wobei ganz besonders vorteilhaft Mengen von 1 - 5 Gew.% sein können.
Als Fettalkohole können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder unverzweigte Fettalkohole mit C6 - C30-, bevorzugt C10 - C22- und ganz besonders bevorzugt C12 - C22- Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z.B. Stenol® 1618 oder Lanette®, z.B. Lanette® O oder Lorol®, z.B. Lorol® C8, Lorol® C14, Lorol® Cl 8, Lorol® C8-18, HD-Ocenol®, Crodacol®, z.B. Crodacol® CS, Novol®, Eutanol® G, Guer- bitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Iso- carb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1 - 30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1 - 20 Gew.-% eingesetzt.
Als natürliche oder synthetische Wachse können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Micro wachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau. Die Einsatzmenge beträgt 0,1 - 50 Gew.% bezogen auf das gesamte Mittel, bevorzugt 0,1
- 20 Gew.% und besonders bevorzugt 0,1 - 15 Gew.% bezogen auf das gesamte Mittel.
Zu den natürlichen und synthetischen kosmetischen Ölkörpern, welche die Wirkung des erfindungsgemäßen Wirkstoffes steigern können, sind beispielsweise zu zählen:
- pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle.
- flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n- alky lether mit insgesamt zwischen 12 bis 36 C- Atomen, insbesondere 12 bis 24 C- Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n- undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl- n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert- butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pen- tyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhältlichen Verbindungen l,3-Di-(2-ethyl-hexyl)-cyclohexan (Cetiol® S) und Di-n-octylether (Cetiol® OE) können bevorzugt sein.
- Esteröle. Unter Esterölen sind zu verstehen die Ester von C6 - C30 - Fettsäuren mit C2 - C30 - Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotri- decansäure, Myristinsäure, Palmitinsäure, Pälmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearin- säure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimeri- sierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylal- kohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylal- kohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalko- hol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylal- kohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Iso- propylmyristat (Rilanit® IPM), Isononansäure-C16-18-alkylester (Cetiol® SN), 2- Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Ce- tyloleat, Glycerintricaprylat, Kokosfettalkohol-caprinatV-caprylat (Cetiol® LC), n-Bu- tylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäurehexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmy- ristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN), Ölsäuredecylester (Cetiol®
V).
- Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)- succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol- di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykol- dicaprylat,
- symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoholen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dica- prylylcarbonat (Cetiol® CC),
- Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,
- Fettsäurepartialglyceride, das sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceri.de folgen vorzugsweise der Formel (I), CH^CH.CH.O^R1
I
CHO(CH2CH2O)nR2 (I)
CH2O(CH2CH2O)qR3
in der R1, R2 und R3 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine dieser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m+n+q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevorzugt steht R1 für einen Acylrest und R2 und R3 für Wasserstoff und die Summe (m+n+q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostea- rinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
Die Einsatzmenge der natürlichen und synthetischen kosmetischen Ölkörper in den erfindungsgemäß verwendeten Mitteln beträgt üblicherweise 0,1 - 30 Gew.%, bezogen auf das gesamte Mittel, bevorzugt 0,1 - 20 Gew.-%, und insbesondere 0,1 - 15 Gew.-%.
Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5 - 75 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 0,5 - 35 Gew.-% sind erfindungsgemäß bevorzugt.
Weiterhin hat sich gezeigt, daß die Wirkung des erfindungsgemäßen Wirkstoffes gesteigert werden kann, wenn er mit Hydroxycarbonsäureestern kombiniert wird. Bevorzugte Hydroxycarbonsäureester sind Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der ß-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, Zuckersäure, Schleimsäure oder Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8 - 22 C-Atomen, also z.B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von Cπ-C15-Fettalko- holen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z.B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Die Einsatzmenge der Hydroxycarbonsäureester beträgt dabei 0,1 - 15 Gew.% bezogen auf das Mittel, bevorzugt 0,1 - 10 Gew.% und ganz besonders bevorzugt 0,1 - 5 Gew.%.
Ebenfalls als vorteilhaft hat sich die Kombination des farberhaltenden Wirkstoffes mit Tensiden (E) erwiesen. In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäß verwendeten Mittel daher Tenside. Unter dem Begriff Tenside werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumenphasen zu MizellkoUoiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtionische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind. Weitergehende Definitionen und Eigenschaften von Tensiden finden sich in „H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Die zuvor wiedergegebene Begriffsbestimmung findet sich ab S. 190 in dieser Druckschrift.
Als anionische Tenside (El) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe, - lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen),
- Ethercarbonsäuren der Formel R-O-(CH2-CH2θ)χ-CH2~COOH, in der R eine lineare
Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist,
- Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
- Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
- Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe,
- Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
- lineare Alkansulfonate mit 8 bis 24 C-Atomen,
- lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,
- Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,
- Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)X-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
- Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-3725 030,
- sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-3723 354,
- Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-3926 344,
- Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
- Alkyl- und/oder Alkenyletherphosphate der Formel (II),
O R4 (OCH2CH2)n- 0 -P - OR5 i,x
(II) in der R4 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R5 für Wasserstoff, einen Rest (CH2CH2O)nR18 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR6R7R8R9, mit R6 bis R9 unabhängig voneinander stehend für Wasserstoff oder einen C, bis C4 - Kohlenwasserstoffrest, steht,
- sulfatierte Fettsäurealkylenglykolester der Formel (III), R10CO(AlkO)nSO3M (III) in der R10CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE- OS 197 36 906.5 beschrieben sind,
- Monoglyceridsulfate und Monoglyceridethersulfate der Formel (IV),
in der RnCO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoff- atomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Olsäuremonoglycerid und TaIgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (IV) eingesetzt, in der R25CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, wie sie beispielsweise in der EP-Bl 0 561 825, der EP-Bl 0 561 999, der DE-Al'42 04 700 oder von A.K.Biswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) und F.U.Ahmed in J.Am.Oil.Chem.Soc. 67, 8 (1990) beschrieben worden sind,
- Amidethercarbonsäuren wie sie in der EP 0 690 044 beschrieben sind,
- Kondensationsprodukte aus Cg - C30 - Fettalkoholen mit Proteinhydrolysaten und/oder Aminosäuren und deren Derivaten, welche dem Fachmann als Eiweissfettsäurekonden- sate bekannt sind, wie beispielsweise die Lamepon® - Typen, Gluadin® - Typen, Hostapon® KCG oder die Amisoft® - Typen. Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykol- ethergruppen im Molekül, Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C- Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgrappen, Monoglycerdisulfate, Alkyl- und Alkenyletherphosphate sowie Eiweissfettsäurekondensate.
Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine - COO _) - oder -SO -Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl- dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylamino- ethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cs - C24 - Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N- Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12 _ Clg - Acylsarcosin.
Nichtionische Tenside (E4) enthalten als hydrophile Gruppe z.B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolether- gruppe. Solche Verbindungen sind beispielsweise - Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
- mit einem Methyl- oder C2 - C6 - Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
- C12-C3o-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
- Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
- Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol - Typen (Cognis),
- alkoxilierte Triglyceride,
- alkoxilierte Fettsäurealkylester der Formel (V), R12CO-(OCH2CHR13)wOR14 (V) in der R12CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R13 für Wasserstoff oder Methyl, R14 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
- Aminoxide,
- Hydroxymischether, wie sie beipielsweise in der DE-OS 19738866 beschrieben sind,
- Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäure- ester wie beispielsweise die Polysorbate,
- Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäureester,
- Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
- Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside gemäß Formel (VI), R15O-[G]p (VI) in der R15 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm.Toil. 108, 89 (1993) sowie J. Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) verwiesen. Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (VI) gibt den Oligo- merisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- - und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R1 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestem oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-Cι0(DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-CI8-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R15 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Lauryl- alkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3. Zuckertenside vom Typ der Fettsäure-N-alkylpolyhydroxyalkylamide, nichtionische Tenside der Formel (VII), R17
R16CO-N-[Z] (VII)
in der R!6CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht.
Bei den Fettsäure-N-alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US- Patentschriften US 1,985,424, US 2,016,962 und US 2,703,798 sowie die Internationale Patentanmeldung WO 92/06984 verwiesen. Eine Übersicht zu diesem Thema von H.Kelkenberg findet sich in Tens. Surf. Det. 25, 8 (1988). Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N- alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (III) wiedergegeben werden:
R17 OH OH OH
I I I I
R16CO-N-CH2-CH-CH-CH-CH-CH2OH (VIII)
OH Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (VIII) eingesetzt, in der R17 für Wasserstoff oder eine Alkylgruppe steht und R16CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkylglucamide der Formel (III), die durch reduktive Ami- nierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.
Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid- Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigenschaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1 -Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1- Stearyl. Besonders bevorzugt sind 1 -Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung sogenannter "Oxo- Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
Weiterhin sind ganz besonders bevorzugte nichtionische Tenside die Zuckertenside. Diese können in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 - 20 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Mengen von 0,5 - 15 Gew.-% sind bevorzugt, und ganz besonders bevorzugt sind Mengen von 0,5 - 7,5 Gew.%. Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.
Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhy- droxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
Die Tenside (E) werden in Mengen von 0,1 - 45 Gew.%, bevorzugt 0,5 - 30 Gew.% und ganz besonders bevorzugt von 0,5 - 25 Gew.%, bezogen auf das gesamte erfindungsgemäß verwendete Mittel, eingesetzt.
Erfindungsgemäß einsetzbar sind ebenfalls kationische Tenside (E6) vom Typ der quar- tärnen Ammoniumverbindungen, der Esterquats und der Amidoamine. Bevorzugte quater- näre Ammoniumverbindungen sind Anmioniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimemylammoniumchlorid, Stearyltri- methylammomumchlorid, Distearyldimemylammoniumchlorid, Lauryldimethyl- ammoniumchlorid, Lauiyldimethylbenzylammoniumchlorid und Tricetylmethyl- ammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quateπιium-27 und Quater- nium-83 bekannten Imidazolium- Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf. Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthalten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quaternierten Estersalzen von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, einN,N-Bis(2-Palmitoyloxyethyl)dimethyl- ammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
Die kationischen Tenside (E6) sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Anionische, nichtionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen können erfindungsgemäß bevorzugt sein.
In einer weiteren bevorzugten Ausführungsform kann die Wirkung des erfindungsgemäßen Wirkstoffes durch Emulgatoren (F) gesteigert werden. Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsorptionsschichten, welche die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabilisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydrophilen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W - Emulsionen und hydrophobe Emulgatoren bilden bevorzugt W/O - Emulsionen. Unter einer Emulsion ist eine tröpfchenfbrmige Verteilung (Dispersion) einer Flüssigkeit in einer anderen Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasengrenz- flächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweiligen äußeren Phase sowie der Feinteiligkeit der Emulsion. Weiterführende Definitionen und Eigenschaften von Emulgatoren finden sich in „H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Erfindungsgemäß verwendbare Emulgatoren sind beispielsweise
- Anlagerungsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C- Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
- C,2-C22-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an Glycerin,
- Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid-Fettsäure- ester, Fettsäurealkanolamide und Fettsäureglucamide,
- C8-C22-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga, wobei Oli- gomerisierungsgrade von 1,1 bis 5, insbesondere 1,2 bis 2,0, und Glucose als Zuckerkomponente bevorzugt sind,
- Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zum Beispiel das im Handel erhältliche Produkt Montanov®68,
- Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
- Partialester von Polyolen mit 3-6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen,
Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phytosterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
- Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z.B. als Lecithine bzw. Phospahtidylcholine aus z.B. Eidotter oder Pflanzensamen (z.B. Sojabohnen) gewonnen werden, verstanden.
- Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit, - Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12- hydroxystearat (Handelsprodukt Dehymuls® PGPH),
- Lineare und verzweigte Fettsäuren mit 8 bis 30 C - Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn - Salze.
Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1 - 25 Gew.-%, insbesondere 0,5 - 15 Gew.-%, bezogen auf das gesamte Mittel.
Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtio- nogenen Emulgator mit einem HLB-Wert von 8 bis 18, gemäß den im Römpp-Lexikon Chemie (Hrg. J. Falbe, M.Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 10 - 15 können erfindungsgemäß besonders bevorzugt sein.
Weiterhin hat es sich gezeigt, daß Polymere (G) die farberhaltende Wirkung des erfindungsgemäßen Wirkstoffes unterstützen können. In einer bevorzugten Ausfuhrungsform werden den erfindungsgemäß verwendeten Mitteln daher Polymere zugesetzt, wobei sich sowohl kationische, anionische, amphotere als auch nichtionische Polymere als wirksam erwiesen haben.
Unter kationischen Polymeren (Gl) sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche „temporär" oder „permanent" kationisch sein kann. Als „permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH- Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammo- niumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C^-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen. Homopolymere der allgemeinen Formel (IX),
R 18
-[CH2-C-]n X- (IX)
I CO-O-(CH2)ra-N+R19R20R21
in der R18= -H oder -CH3 ist, R19, R20 und R21 unabhängig voneinander ausgewählt sind aus C1-4- Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X" ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (IX) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt: R18 steht für eine Methylgruppe R19, R20 und R21 stehen für Methylgruppen m hat den Wert 2.
Als physiologisch verträgliches Gegenionen X" kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyemylfrimemylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylen- bisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens. Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50 % Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral Oil) und Tridecyl-polyoxypro- pylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-l-Trideceth-6)) und Salcare® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylen- glykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Glycol Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI- Bezeichnung: PPG-l-Trideceth-6)) im Handel erhältlich.
Copolymere mit Monomereinheiten gemäß Formel (IX) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-C,.4-alkylester und Methacrylsäure-Cj-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopolymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Memacryloyloxyethyltrimethylammomumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50 %ige nichtwäßrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
Weitere bevorzugte kationische Polymere sind beispielsweise
- quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate,
- kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686,
- kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50,
- kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosme- dia®Guar und Jaguar® vertriebenen Produkte,
- Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethyl- silylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino- modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Gόldschmidt), diquaternäre Polydimethylsiloxane, Quater- nium-80),
- polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Ami- den von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimemyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammo- niumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,
- Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoal- kylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinyl- pyrrolidon-Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich,
- Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden,
- quaternierter Polyvinylalkohol,
- sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyqua- ternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.
Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeichnungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat®ASCP 1011, Gafquat®HS 110, Luviquat®8155 und Luviquat® MS 370 erhältlich sind.
Weitere erfindungsgemäße kationische Polymere sind die sogenannten „temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei bestimmten pH- Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind. Erfindungsgemäß bevorzugte kationische Polymere sind kationische Cellulose-Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer®JR 400, Hydagen® HCMF und Kytamer® PC, kationische Guar-Derivate, kationische Honig-Derivate, insbesondere das Handelsprodukt Honeyquat® 50, kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686 und Polymere vom Typ Polyquaternium-37.
Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2-hydroxy-3-chloro-n-propyl)- ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI - Bezeichnungen im „International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17* Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxy- propyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypropyl Silk Amino Acids, Hydroxypropyl Arginine Lauryl/Myristyl Ether HC1, Hydroxypropyl- trimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimo- nium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxyproypltrimonium Hydrolyzed Silk, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Pro- tein/Siloxysilicate, Laurdimomum Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Silk, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Silk, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Silk, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
Bei den anionischen Polymeren (G2), welche die farberhaltende Wirkung des erfindungsgemäßen Wirkstoffes unterstützen können, handelt es sich um anionische Polymere, welche Carboxylat- und/oder Sulfonatgruppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2-Acryl- amido-2-methyIpropansulfonsäure und Acrylsäure.
Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als alleiniges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.
Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropansulfonsäure, das beispielsweise unter der Bezeichnung Rheothik®l 1-80 im Handel erhältlich ist.
Innerhalb dieser Ausführungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwiesen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäure- ester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester.
Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbesondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein besonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vernet- zungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyl- oxyethan, Allylsucrose, Allylpentaerythrit und Methylen-bisacrylamid zum Einsatz kommen. Ein solches Polymer ist in dem Handelsprodukt Sepigel®305 der Firma SEPPIC enthalten. Die Verwendung dieses Compounds, das neben der Polymerkomponente eine Kohlenwasserstoffinischung (C,3-Cι4-Isoparaffin) und einen nichtionogenen Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vorteilhaft erwiesen. Auch die unter der Bezeichnung Simulgel®600 als Compound mit Isohexadecan und Poly- sorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich als erfindungsgemäß besonders wirksam erwiesen.
Ebenfalls bevorzugte anionische Homopolymere sind unvemetzte und vernetzte Polyacryl- säuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich.
Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1,9-Decadiene vernetztes Mal- einsäure-Methylvinylether-Copolymer ist unter der Bezeichnungg Stabileze® QM im Handel erhältlich.
Weiterhin können als Polymere zur Steigerung der Wirkung der erfindungsgemäßen Wirkstoffkombination amphotere Polymere (G3) verwendet werden. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Ami- nogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO"- oder -SO3 "-Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten.
Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymeres aus tert.-Butylamino- ethylmethacrylat, N-(1J,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt.
Weitere erfindungsgemäß einsetzbare amphotere Polymere sind die in der britischen Offenlegungsschrift 2 104 091, der europäischen Offenlegungsschrift 47 714, der euro- päischen Offenlegungsschrift 217274, der europäischen Offenlegungsschrift 283 817 und der deutschen Offenlegungsschrift 28 17 369 genannten Verbindungen.
Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesentlichen zusammensetzen aus
(a) Monomeren mit quartären Ammoniumgrappen der allgemeinen Formel (X), R22-CH=CR23-CO-Z-(CnH2n)-N(+)R24R 5R26 A° (X) in der R22 und R23 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R24, R25 und R26 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und
A das Anion einer organischen oder anorganischen Säure ist, und
(b) monomeren Carbonsäuren der allgemeinen Formel (XI), R27-CH=CR28-COOH (XI) in denen R27 und R28 unabhängig voneinander Wasserstoff oder Methylgruppen sind.
Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsgemäß eingesetzt werden. Bezüglich der Einzelheiten der Herstellung dieser Polymerisate wird ausdrücklich auf den Inhalt der deutschen Offenlegungsschrift 3929 973 Bezug genommen. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R24, R25 und R26 Methylgruppen sind, Z eine NH- Gruppe und A° ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamido- propyl-trimethyl-a-mmoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
Die erfindungsgemäßen Mittel können in einer weiteren Ausführungsform nichtionogene Polymere (G4) enthalten.
Geeignete nichtionogene Polymere sind beispielsweise:
Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere.
Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhy- droxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden.
- Schellack
- Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden.
Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nichtflüchtige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normaldruck oberhalb von 200 °C liegt. Bevorzugte Siloxane sind Polydialkylsi- loxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie beispielsweise Polyphenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Poly- dialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten.
- Glycosidisch substituierte Silicone gemäß der EP 0612759 B 1.
Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbesondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.
Die Polymere (G) sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.
Weiterhin können in den erfindungsgemäß verwendeten Zubereitungen Proteinhydrolysate und/oder Aminosäuren und deren Derivate (H) enthalten sein. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden.
Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs eingesetzt werden. Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben.
Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex) und Crotein® (Croda) erhältlich.
Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
Die Proteinhydrolysate oder deren Derivate sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Weiterhin kann in einer bevorzugten Ausfuhrungsform der Erfindung die Wirkung der Wirkstoffe (A) durch UV - Filter (I) gesteigert werden. Die erfindungsgemäß zu verwendenden UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigenschaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbereich einsetzbaren UV-Filter, deren Absorptionsmaximum im UV A(315-400 nm)-, im UVB(280-315nm oder im UVC(<280 nm)-Bereich liegt. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt. Die erfindungsgemäß verwendeten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäureestern, Zimtsäureestern, Salicylsäureestern, Benzimidazolen und o-Aminobenzoesäureestern.
Beispiele für erfindungsgemäß verwendbar UV-Filter sind 4-Amino-benzoesäure, N,N,N- Trimethyl-4-(2-oxobom-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexyl- salicylat (Homosalate), 2-Hydroxy-4-methoxy-benzophenon (Benzophenone-3; UvinuI®M 40, Uvasorb®MET, Neo Heliopan®BB, Eusolex®4360), 2-Phenylbenzimidazol-5-sulfon- säure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol®HS; Neo Helioρan®Hydro), 3,3'-(l,4-Phenylendimethylen)-bis(7,7- dimethyl-2-oxo-bicyclo-[2.2J]hept-l-yl-methan-sulfonsäure) und deren Salze, l-(4-tert- Butylphenyl)-3-(4-methoxyphenyl)-propan-l ,3-dion (Butyl methoxydibenzoylmethane; Parsol®1789, Eusolex®9020), α-(2-Oxobom-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul®P 25), 4-Di- methylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb®DMO, Escalol®507, Eusolex®6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Escalol®587, Neo Heliopan®OS, Uvinul®O18), 4-Methoxyzimtsäure-isopentylester (Isoamyl p- Methoxycinnamate; Neo Heliopan®E 1000), 4-Methoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parso MCX, Escalol®557, Neo Heliopan®AV), 2-Hydroxy-4- methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul®MS 40; Uvasorb®S 5), 3-(4'-Methylbenzyliden)-D,L-Campher (4-Methylbenzylidene camphor; Parsol®5000, Eusolex®6300), 3-Benzyliden-campher (3-Benzylidene camphor), 4- Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-l '-oxi)-l ,3,5-triazin, 3- Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3- ylidenmethyl]benzyl}-acrylamids, 2,4-Dihydroxybenzophenon (Benzophenone-1 ; Uvasorb®20 H, Uvinul®400), l, -Diphenylacrylonitτilsäure-2-ethylhexyl-ester (Octocrylene; Eusolex®OCR, Neo Heliopan®Type 303, Uvinul®N 539 SG), o-Aminoben- zoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan®MA), 2,2',4,4'-Tetrahy- droxybenzophenon (Benzophenone-2; Uvinul®D-50), 2,2'-Dihydroxy-4,4'-dimethoxy- benzophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natri- umsulfonat und 2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexylester. Bevorzugt sind 4- Amino-benzoesäure, N,N,N-Trime yl-4-(2-oxobom-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexyIsalicylat, 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylben- zimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 3,3'-(l,4- Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo- [2.2.1 ]hept- 1 -yl-methan-sulfon- säure) und deren Salze, l-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-l,3-dion, α- (2-Oxobom-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoe- säure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethyl- hexylester, 4-Methoxyzimtsäure-isopentylester, 4-Methoxyzimtsäure-2-ethylhexyl-ester, 2- Hydroxy-4-methoxybenzophenon-5-suIfonsäure und deren Natriumsalz, 3-(4'-Methyl- benzyliden)-D,L-Campher, 3-Benzyliden-campher, 4-Isopropylbenzylsalicylat, 2,4,6-Tri- anilino-(p-carbo-2'-ethylhexyl- -oxi)-l,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)- [2-oxobom-3-ylidenmethyl]benzyl} -acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-Hydroxy-4-methoxy-benzophenon, 2- Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, l-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-l,3-dion, 4-Methoxyzimtsäure-2- ethylhexyl-ester und 3-(4'-Methylbenzyliden)-D,L-Campher.
Bevorzugt sind solche UV-Filter, deren molarer Extinktionskoeffizient am Absorptionsmaximum oberhalb von 15000, insbesondere oberhalb von 20000, liegt.
Weiterhin wurde gefunden, daß bei strukturell ähnlichen UV-Filtern in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erflndungsgemäßen Lehre die höhere Wirkung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Grappen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20 °C zu nicht mehr als 1 Gew.-%, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtemperatur zu mindestens 0,1, insbesondere zu mindestens 1 Gew.-% löslich sein). Die Verwendung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein.
Gemäß einer weiteren Ausführungsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Gruppe, insbesondere eine quartäre Ammoniumgruppe, aufweisen. Diese UV-Filter weisen die allgemeine Struktur U - Q auf.
Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Gruppe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben genannten UV-Filtern ableiten, in dem eine Gruppe, in der Regel ein Wasserstoffatom, des UV- Filters durch eine kationische Gruppe Q, insbesondere mit einer quartären Aminofunktion, ersetzt wird. Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise
- substituierte Benzophenone,
- p-Aminobenzoesäureester,
- Diphenylacrylsäureester,
- Zimtsäureester,
- Salicylsäureester,
- Benzimidazole und
- o-Aminobenzoesäureester.
Strukturteile U, die sich vom Zimtsäureamid oder vom N,N-Dimethylamino-benzoesäu- reamid ableiten, sind erfindungsgemäß bevorzugt.
Die Stniktυrteile U können prinzipiell so gewählt werden, daß das Absorptionsmaximum der UV-Filter sowohl im UVA(315-400 nm)-, als auch im UVB(280-315nm)- oder im UVC(<280 nm)-Bereich liegen kann. UV-Filter mit einem Absorptionsmaximum im UVB- Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Weiterhin wird der Strukturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, daß der molare Extinktionskoeffizient des UV-Filters am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
Der Strukturteil Q enthält als kationische Gruppe bevorzugt eine quartäre Ammoniumgruppe. Diese quartäre Ammoniumgruppe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so daß der Strukturteil U einen der vier Substituenten des positiv geladenen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substituenten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoffatom fungiert.
Vorteilhafterweise hat die Grappe Q die allgemeine Struktur -(CH2)X-N+R1R2R3 X", in der x steht für eine ganze Zahl von 1 bis 4, R1 und R2 unabhängig voneinander stehen für CM- Alkylgrappen, R3 steht für eine C,.22-Alkylgrappe oder eine Benzylgrappe und X" für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Struktur steht x bevorzugt für die die Zahl 3, R1 und R2 jeweils für eine Methylgrappe und R3 entweder für eine Methylgruppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlenwasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.
Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halogenide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.
Zwei bevorzugte UV-Filter mit kationischen Gruppen sind die als Handelsprodukte erhältlichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (Incro- quat®UV-283) und Dodecyl-dimethylammobenzamidopropyl-dimemylammoniumtosylat (Escalol® HP 610).
Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung einer Kombination von mehreren UV-Filtern. Im Rahmen dieser Ausfiihrungsform ist die Kombination mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV-Filter mit einer kationischen Gruppe bevorzugt.
Die UV-Filter (I) sind in den erfindungsgemäß verwendeten Mitteln üblicherweise in Mengen 0,1-5 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,4-2,5 Gew.-% sind bevorzugt.
Die farberhaltende Wirkung des erfindungsgemäßen Wirkstoffes kann weiterhin durch eine 2-Pyrrolidinon-5-carbonsäure und deren Derivate (J) gesteigert werden. Ein weiterer Ge- genstand der Erfindung ist daher die Verwendung des farberhaltenden Wirkstoffes in Kombination mit Derivaten der 2-Pyrrolidinon-5-carbonsäure. Bevorzugt sind die Natrium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoni- umion neben Wasserstoff eine bis drei Cr bis C4-Alkylgrappen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Mitteln betragen 0,05 bis 10 Gew.%, bezogen auf das gesamte Mittel, besonders bevorzugt 0,1 bis 5, und insbesondere 0,1 bis 3 Gew.%.
Ebenfalls als vorteilhaft hat sich die Kombination des farberhaltenden Wirkstoffes mit Vitaminen, Provitaminen und Vitaminvorstufen sowie deren Derivaten (K) erwiesen.
Dabei sind erfindungsgemäß solche Vitamine, Pro-Vitamine und Vitaminvorstufen bevorzugt, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden.
Zur Grappe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A sowie das 3,4-Didehydroretinol (Vitamin A2). Das ß-Carotin ist das Provitamin des Re- tinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A- Säure und deren Ester, Vitamin A- Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäß verwendeten Zubereitungen enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf die gesamte Zubereitung.
Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.
- Vitamin B, (Thiamin)
- Vitamin B2 (Riboflavin)
- Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nico- tinsäureamid, das in den erfindungsgemäß verwendetenen Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
- Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B5-Typs sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 - 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 - 5 Gew.-% sind besonders bevorzugt. - Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
Vitamin F. Unter dem Begriff „Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.
Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S, 6ai?)-2-Oxohexahy- drotMenol[3,4-d]-imidazol-4-valeriansäure bezeichnet, für die sich aber zwischenzeitlich der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
Bevorzugt enthalten die erfindungsgemäß verwendeten Mittel Vitamine, Provitamine und Vitaminvorstufen aus den Grappen A, B, E und H. Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
Schließlich läßt sich die Wirkung des farberhaltenden Wirkstoffes (A) auch durch den kombinierten Einsatz mit Pflanzenextrakten (L) steigern.
Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Weißdom, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.
Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone. Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1:10 bis 10:1 haben sich als besonders geeignet erwiesen.
Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2 - 80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
Der erfindungsgemäße farberhaltende Wirkstoff kann prinzipiell direkt dem Färbemittel zugegeben werden. Das Aufbringen des farberhaltenden Wirkstoffes auf die gefärbte kera- tinische Faser kann aber auch in einem getrennten Schritt, entweder vor oder im Anschluß an den eigentlichen Färbevorgang erfolgen. Auch getrennte Behandlungen, gegebenenfalls auch Tage oder Wochen vor oder nach dem Färbevorgang werden von der erfindungsgemäßen Lehre umfaßt. Bevorzugt kann jedoch die Anwendung des erfindungsgemäßen Wirkstoffes nach der Färbung und insbesondere im Färbemittel.
Der Begriff Färbevorgang umfaßt dabei alle dem Fachmann bekannten Verfahren, bei denen auf das, gegebenenfalls angefeuchtete, Haar ein Färbemittel aufgebracht wird und dieses entweder für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird oder ganz auf dem Haar belassen wird. Es wird in diesem Zusammenhang ausdrücklich auf die bekannten Monographien, z. B. K. H. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen, die das entsprechende Wissen des Fachmannes wiedergeben. Hinsichtlich der Art, gemäß der die erfindungsgemäße farberhaltende Wirkstoffkombination auf die keratinische Faser, insbesondere das menschliche Haar, aufgebracht wird, bestehen keine prinzipiellen Einschränkungen. Als Konfektionierung dieser Zubereitungen sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, O/W-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikro- emulsionen und multiple Emulsionen, Gele, Sprays, Aerosole und Schaumaerosole geeignet. Der pH- Wert dieser Zubereitungen kann prinzipiell bei Werten von 2 - 11 liegen. Er liegt bevorzugt zwischen 5 und 11, wobei Werte von 6 bis 10 besonders bevorzugt sind. Zur Einstellung dieses pH- Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base verwendet werden. Üblicherweise werden als Säuren Genußsäuren verwendet. Unter Genußsäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufhahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genußsäuren sind beispielsweise Essigsäure, Milchsäure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure und Milchsäure besonders bevorzugt. Bevorzugte Basen sind Ammoniak, Alkalihydroxide, Monoethanolamin, Triethanolamin sowie N,N,N',N'-Tetrakis-(2-hydroxypropyl)-ethylendiamin.
Auf dem Haar verbleibende Zubereitungen haben sich als besonders wirksam erwiesen und können daher bevorzugte Ausführungsformen der erfindungsgemäßen Lehre darstellen. Unter auf dem Haar verbleibend werden erfindungsgemäß solche Zubereitungen verstanden, die nicht im Rahmen der Behandlung nach einem Zeitraum von wenigen Sekunden bis zu einer Stunde mit Hilfe von Wasser oder einer wäßrigen Lösung wieder aus dem Haar ausgespült werden. Vielmehr verbleiben die Zubereitungen bis zur nächsten Haarwäsche, d.h. in der Regel mehr als 12 Stunden, auf dem Haar.
Gemäß einer bevorzugten Ausf-ihrungsform werden diese Zubereitungen als Haarkur oder Haar-Conditioner formuliert. Die erfindungsgemäßen Zubereitungen gemäß dieser Aus- führungsform können nach Ablauf dieser Einwirkzeit mit Wasser oder einem zumindest überwiegend wasserhaltigen Mittel ausgespült werden; sie können jedoch, wie oben ausgeführt, auf dem Haar belassen werden. Dabei kann es bevorzugt sein, die erfindungsgemäße Zubereitung vor der Anwendung eines reinigenden Mittels, eines Wellmittels oder anderen Haarbehandlungsmitteln auf das Haar aufzubringen. In diesem Falle dient die erfindungsgemäße Zubereitung als Farbschutz für die nachfolgenden Anwendungen.
Gemäß weiteren bevorzugten Ausführungsformen kann es sich bei den erfindungsgemäßen Mitteln aber beispielsweise auch um reinigende Mittel wie Shampoos, pflegende Mittel wie Spülungen, festigende Mittel wie Haarfestiger, Schaumfestiger, Styling Gels und Fönwellen, dauerhafte Verformungsmittel wie Dauerwell- und Fixiermittel sowie insbesondere im Rahmen eines Dauerwellverfahrens oder Färbeverfahrens eingesetzte Vorbehandlungsmittel oder Nachspülungen handeln.
Neben dem erfindungsgemäß zwingend erforderlichen farberhaltenden Wirkstoff und den weiteren, oben genannten bevorzugten Komponenten können diese Zubereitungen prinzipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Komponenten enthalten.
Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
- nichtionische Polymere wie beispielsweise Vinylpyrrolidon/Ninylacrylat-Copolymere, Polyvinylpyrrolidon und Vinylpyrrolido-n/Ninylacetat-Copolymere und Polysiloxane,
- Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi ara- bicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxyme- thylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Po- lyvinylalkohol,
Strukturanten wie Maleinsäure und Milchsäure,
- haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline, sowie Silikonöle,
- Pa-i-fümöle, Dimethylisosorbid und Cyclodextrine,
- Lösungsmittel und -Vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylen- glykol, Glycerin und Diethylenglykol, - symmetrische und unsymmetrische, lineare und verzweigte Dialkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether und Di-n- dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n- Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert-butylether, Di-iso- pentylether, Di-3-ethyldecy lether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether,
- Fettalkohole, insbesondere lineare und/oder gesättigte Fettalkohole mit 8 bis 30 C- Atomen,
- Monoester von C8 bis C30 - Fettsäuren mit Alkoholen mit 6 bis 24 C-Atomen,
- faserstrakt-urverbessernde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharidewie beispielsweise Glucose, Galactose, Fractose, Fruchtzucker und Lactose,
- konditionierende Wirkstoffe wie Paraffinöle, pflanzliche Öle, z. B. Sonnenblumenöl, Orangenöl, Mandelöl, Weizenkeimöl und Pfirsichkernöl sowie
- Phospholipide, beispielsweise Sojalecithin, Ei-Lecithin und Kephaline,
- quaternierte Amine wie Memyl-l-alkylamidoethyl-2-alkylimidazolinium-methosulfat,
- Entschäumer wie Silikone,
- Farbstoffe zum Anfärben des Mittels,
- Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
- weitere Substanzen zur Einstellung des pH- Wertes, wie beispielsweise α- und ß-Hy- droxycarbonsäuren,
- Wirkstoffe wie Allantoin und Bisabolol,
- Cholesterin,
- Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
- Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine,
- Fettsäurealkanolamide,
- Komplexbildner wie EDTA, NTA, ß-Alanindiessigsäure und Phosphonsäuren,
- Quell- und Penetrationsstoffe wie Glycerin, Propylenglykolmonoethylether, Carbonate, Hydrogencarbonate, Guanidine, Harnstoffe sowie primäre, sekundäre und tertiäre Phosphate,
- Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere - Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
- Pigmente,
- Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cy- steamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,
- Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft,
- Antioxidantien.
Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die oben genannte Monographie von K. H. Schrader verwiesen.
Ein zweiter Gegenstand der Erfindung sind Mittel zur Verbesserung der Waschechtheit gefärbter Fasern sowie der Intensivierung der Färbung, insbesondere keratinischer Fasem, die eine Kombination aus a. dem Wirkstoff (A) und b. einem Farbstoffvorprodukt (B) und/oder einem direktziehenden Farbstoff (C) enthalten. Hierbei ist eine besonders bevorzugte Ausführungsform diejenige, bei welcher der Wirkstoff (A) sowie FarbstoffVorprodukte (B) und/oder direktziehende Farbstoffe (C) getrennt konfektioniert und erst unmittelbar vor der Anwendung zusammen gegeben werden.
Bezüglich weiterer Komponenten dieser Mittel wird auf das oben gesagte verwiesen.
Ein dritter Gegenstand der Erfindung ist ein Mittel zur Verbesserung der Waschechtheit gefärbter Fasem sowie der Intensivierung der Färbung, insbesondere keratinischer Fasem, das eine Wirkstoffkombination aus a. einer Verbindung (A) gemäß Anspruch 1 und b. einem Polymer (G) enthält, mit der Maßgabe, daß die Verbindung (A) nicht Formaldehyd oder eine Formaldehyd abspaltende Verbindung ist. Hierbei ist eine besonders bevorzugte Ausführungsform diejenige, bei welcher das Mittel, enthaltend den Wirkstoff (A) und das Polymer (G) als Wirkstoff kombination, nach der Färbung auf die gefärbte Faser aufgebracht wird. Als besonders vorteilhaft hat sich dabei in dieser Ausführungsform erwiesen, wenn zusätzlich neben der Wirkstoffkombination Tenside (E) und/oder Fettstoffe (D) enthalten sind.
Bezüglich weiterer Komponenten dieser Mittel wird auf das oben gesagte verwiesen.
Ein vierter Gegenstand der Erfindung ist ein Verfahren zur Verbesserung der Waschechtheit von Färbungen von Fasem, insbesondere keratinischer Fasem, bei dem ein färbendes Mittel mit dem erfindungsgemäßen Wirkstoff, wie in einem der Ansprüche 1 bis 9 verwendet auf die Fasern aufgetragen wird, wobei das Mittel gewünschtenfalls nach einer Einwirkzeit von 1 bis 45 Minuten wieder ausgespült wird.
Beispiele
Alle Mengenangaben sind, soweit nicht anders vermerkt, Gewichtsteile.
1. Wirkungsnachweis
a. Vorbehandlung
Strähnen der Fa. Kerling (0,5 g Kerling, Naturweiß) wurden mittig abgebunden und eine Hälfte gebleicht. Die andere Hälfte wurde zweimal gebleicht und zwei herkömmlichen Dauerwellbehandlungen mit dem Handelsprodukt Poly Lock-Normale Dauerwelle unterzogen. Im Rahmen einer Dauerwellbehandlung wurden die Fasem jeweils in einem ersten Schritt für 30 Minuten bei Raumtemperatur der Reduktionslösung (enthaltend 7,9 Gew.-% Thioglykolsäure) ausgesetzt, mit reinem Wasser gespült und anschließend bei Raumtemperatur für 10 Minuten fixiert (Oxidationslösung, enthaltend 2,6 Gew.-% Wasserstofφeroxid). Nach der oxidativen Behandlung wurden die Fasem jeweils emeut gespült und getrocknet.
b. Färbung
Zur Färbung wurde auf die Strähnen eine Mischung aus lg einer Färbecreme (Handelsprodukt Poly Diadem Pflege-Creme-Coloration 718 Haselnuß) und 1 ml einer wäßrigen 6 %igen Wasserstoffperoxidlösung aufgetragen und dort 30 Min bei 32°C belassen. Danach wurde das Haar mit Wasser gespült.
c. Farbfixierung und Waschverhalten
Nach der Beendigung des Färbeprozesses wurde das Haar für 5 Minuten mit lg eines Konditioniermittels der Tabelle 1 bei 32°C behandelt, ausgespült, getrocknet und farbmetrisch vermessen. Anschließend hieran wurden die Haarsträhnen mit einer wäßrigen Lösung, bestehend aus 1,0 Gew.% Texapon® NSO, pH - Wert 6 - 7, 6 mal gewaschen, getrocknet und wiederum farbmetrisch vermessen. d. Farbmetrische Vermessung
Zur farbmetrischen Vermessung wurde jede Haarsträhne an acht Stellen mit Hilfe des Farbmeßsystemes Text Flash der Firma Datacolor vermessen. Dabei wurde die zu vermessende Probe in einer Einspannvorrichtung am Spektralphotometer fixiert, die Remissionswerte über den Bereich des sichtbaren Lichtes von 390 - 700 nm im Abstand von 10 nm gemessen und über einen Rechner verarbeitet. Das Rechnerprogramm ermittelte die Normfarbwerte nach dem CIELAB-System entsprechend DIN 5033. Die Meßergebnisse des Gesamtfarbabstandes ΔE wurden mit der Software Data Color Tools QC gemäß Formel (I) ausgewertet und in der folgenden Tabelle zusammengefaßt. Als Standard diente die mit „V gekennzeichnete Zusammensetzung
Je größer der ΔE-Wert ist, desto stärker ist die Farbabnahme gegenüber dem
Ausgangsfarbwert, d. h. umso schlechter ist die Waschechtheit.
Tabelle 1:
L Cetylstearylalkohol + 20 EO (INCI-Bezeichnung: Ceteareth-20) (COGNIS)
2- Trimemylhexadecylammoniumchlorid ca. 25% Aktivsubstanz (INCI-Bezeichnung: Cetrimonium Chloride) (COGNIS)
3- Hydroxybenzoesäuremethylester-Hydroxybenzoesäureethylester-Hydroxybenzoe- säurepropylester-Hydroxybenzoesäurebutylester-Phenoxyethanol-Gemisch (ca. 28 % Aktivsubstanz; INCI-Bezeichnung: Phenoxyethanol, Methylparaben, Ethylparaben, Propylparaben, Butylparaben) (NIPA)
Anwendungsbeispiele
1. Haarspülung
Eumulgin® B2 0,3
Cetyl/Stearylalkohol 3,3
Isopropylmyristat 0,5
Lamesoft® PO 654 0,5
Dehyquart®A-CA 2,0
Salcare®SC 965 1,0
Citronensäure 0,4
Gluadin® WQ6 2,0
Acetaldehyd 0,7
Phenonip® 0,8
Wasser ad 100
4- Gemisch aus Alkylpolyglycosid und Fettsäuremonoglycerid (INCI-Bezeichnung: Coco-Glucoside (and) Glyceryl Oleate) 5' N,N,N-Trimethy 1-2 [(methyl- 1 -oxo-2-propenyl)oxy] -Ethanaminiumchlorid-Homo- polymer (50 % -Aktivsubstanz; INCI-Bezeichnung: Polyquaternium-37 (and) Pro- pylenglycol Dicaprilate Dicaprate (and) PPG-1 Trideceth-6) (ALLIED COLLOIDS)
6' Kationisiertes Weizenproteinhydrolysat ca. 31% Aktivsubstanz (INCI-Bezeichnung: Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein) (COGNIS)
2. Haarspülung
Eumulgin® B2 0,3
Cetyl/Stearylalkohol 3,3
Isopropylmyristat 0,5
Paraffinöl perliquidum 15 cSt. DAB 9 0,3
Dehyquart®L 807 0,4
La esoft® PO 65 1,5
Cosmedia Guar® C 2618 1,5
Promois® Milk-CAQ9 3,0
Citronensäure 0,4
DMDM Hydantoin 0,5
Phenonip® 0,8
Wasser ad 100
7' Bis(cocoylemyl)-hydroxyet-hyl-memyl-a-mmonium-methosulfat (ca. 76 % Aktivsub- stanz in Propylenglykol; INCI-Bezeichnung: Dicocoylethyl Hydroxyethylmonium Methosulfat, Propylene Glycol) (COGNIS)
8' Guarhydroxypropyltrimethylammonium Chlorid; INCI-Bezeichnung: Guar Hydroxypropyl Trimonium Chloride (COGNIS)
9' INCI-Bezeichnung: Cocodimonium Hydroxypropyl Hydrolyzed Casein (SEIWA KASEI)
3. Haarkur
Dehyquart® F7510 4,0
Cetyl/Stearylalkohol 4,0
Paraffinöl perliquidum 15 cSt DAB 9 1,5
Dehyquart®A-CA 4,0 Lamesoft® PO 65 1,0
Salcare®SC 96 1,5
Amisafe-LMA-60®11 1,0
Gluadin®W 2012 3,0
Germall® 11513 1,0
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100
10' Fettalkohole-Methyltriethanola-mmomumm
Bezeichnung: Distearoylethyl Hydroxyethylmonium Methosulfate, Cetearyl Alcohol)
(COGNIS) " INCI-Bezeichnung Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl (Ajinomoto) 1 Weizenproteinhydrolysat (20 % Aktivsubstanz in Wasser; INCI-Bezeichnung: Aqua
(and) Hydrolized Wheat Protein (and) Sodium Benzoate (and) Phenoxyethanol (and)
Methylparaben (and) Propylparaben) (COGNIS) 13- INCI-Bezeichnung: Imidazolidinyl Urea (Sutton Laboratories)
4. Haarkur
Dehyquart® L80 2,0
Cetyl/Stearylalkohol 6,0
Paraffinöl perliquidum 15 cSt DAB 9 2,0
Rewoquat®W 7514 2,0
Cosmedia Guar® C261 0,5
Lamesoft® PO 65 0,5
Sepigel®30515 • 3,5
Honeyquat® 5016 1,0
Gluadin® WQ 2,5
Gluadin®W 20 3,0
Butyraldehyd 1,0
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100 14. 1 -Methyl-2-nortalgal-k l-3-talgfettsäureamidoethylimidazolinium-methosulfat (ca. 75 % Aktivsubstanz in Propylenglykol; INCI-Bezeichnung: Quaternium-27, Propylene Glycol) (WTTCO)
15. Copolymer aus Acrylamid und 2-Acrylamido-2-methylpropansulfonsäure (INCI- Bezeichnung: Polyacrylamide (and) C13-C14 Isoparaffin (and) Laureth-7) (SEPPIC)
16. INCI - Bezeichnung: Hydroxypropyltrimonium Honey (BROOKS)
5. Haarkur
Dehyquart® F75 0,3
Salcare®SC 96 5,0
Gluadin® WQ 1,5
Lamesoft® PO 65 0,5
Dow Corning®200 Fluid, 5 cSt.17 1 ,5
Gafquat®755N18 1,5
Hexamethylentetraamin 1,5
Biodocarb® 19 0,02
Parfumöl 0,25
Wasser ad 100 n Polydimethylsiloxan (INCI-Bezeichnung: Dimethicone) (DOW CORNING)
18- Dimethylaminoethylmethacrylat-Vinylpyrrolidon-Copolymer, mit Diethylsulfat quatemiert (19 % Aktivsubstanz in Wasser; INCI-Bezeichnung: Polyquaternium- 11) (GAF)
19- 3-Iod-2-propinyl-n-butylcarbamat (INCI-Bezeichnung: lodopropynyl Butylcarbamate) (MILKER & GRÜNING)
6. Haarkur
Sepigel®305 5,0
Dow Corning®Q2-522020 1,5
Promois® Milk Q21 3,0
Lamesoft® PO 65 0,5
Polymer Pl entsprechend DE 3929173 0,6
Genamin®DSAC22 0,3 Methylglyoxal 0,8
Phenonip® 0,8
Parfümöl 0,25
Wasser ad 100
20- Silicon-Glykol-Copolymer (INCI-Bezeichnung: Dimethicone Copolyol) (DOW CORNING)
2 INCI-Bezeichnung Hydroxypropyltrimonium Hydrolyzed Casein ca. 30% Aktivsubstanz (SEIWA KASEI)
2 Dimethyldistearylammoniumchlorid (INCI-Bezeichnung: Distearyldimonium Chloride) (CLARIANT)
7. Shampoo
Texapon® NSO23 40,0
Dehyton® G24 6,0
Polymer JR 400®25 0,5
Cetiol® HE26 0,5
Ajidew® NL 5027 1,0
Lamesoft® PO 65 3,0
Gluadin® WQT28 2,5
Gluadin® W 20 0,5
Panthenol (50%) 0,3
Glutardialdehyd 1,0
Vitamin E 0,1
Vitamin H 0,1
Citronensäure 0,5
Natriumbenzoat 0,5
Parfüm 0,4
NaCI 0,5
Wasser ad 100 23' Natriumlaurylethersulfat ca. 28% Aktivsubstanz (INCI - Bezeichnung: Sodium Laureth Sulfate) (COGNIS) 24' INCI - Bezeichnung: Sodium Cocoamphoacetate, ca. 30% Aktivsubstanz in Wasser)
(COGNIS) 25' quaternierte Hydroxyethylcellulose (INCI - Bezeichnung: Polyquaternium- 10)
(UNION CARBIDE) M- Polyol-Fettsäure-Ester (INCI - Bezeichnung: PEG-7 Glyceryl Cocoate) (COGNIS)
27- Natrium-Salz der 2-Pyrrolidinon-5 -carbonsäure (50% Aktivsubstanz: INCI-Bezeichnung: Sodium PCA) (AJINOMOTO)
28- INCI-Bezeichnung: Hydroxypropyltrimonium Hydrolyzed Wheat Protein (COGNIS)
8. Shampoo
Texapon® NSO 43,0
Dehyton® K29 10,0
Plantacare® 1200 UP30 4,0
Lamesoft® PO 65 2,5
Euperlan®PK 30003i 1,6
Arquad®31632 0,8
Polymer JR® 400 0,3
Gluadin® WQ 4,0
Glycerol Formal 1,5
Glucamate®DOE 12033 0,5
Natriumchlorid 0,2
Wasser ad 100
29- INCI - Bezeichnung: Coca idopropyl Betaine ca. 30% Aktivsubstanz (COGNIS)
30> C 12 - C 16 Fettalkoholglycosid ca. 50% Aktivsubstanz (INCI - Bezeichnung: Lauryl
Glucoside) (COGNIS) 3 Flüssige Dispersion von perlglanzgebenden Substanzen und Amphotensid (ca. 62 %
Aktivsubstanz; CTFA-Bezeichnung: Glycol Distearate (and) Glycerin (and) Laureth-4
(and) Cocoamidopropyl Betaine) (COGNIS)
32- Tri-C ι g-alkylmethylammoniumchlorid (AKZO)
33- ethoxyliertes Methylglucosid-dioleat (CTFA-Bezeichnung: PEG-120 Methyl Glucose Dioleate) (AMERCHOL) 9. Shampoo
Texapon®N 7034 21,0
Plantacare® 1200 UP 8,0
Lamesoft® PO 65 3,0
Gluadin® WQ 1,5
Cutina® EGMS35 0,6
Honeyquat® 50 2,0
Ajidew® NL 50 2,8
Antil® 14136 1,3
Glyoxal 2,0
Natriumchlorid 0,2
Magnesiumhydroxid ad pH 4,5
Wasser ad 100
34- Natriumlaurylethersulfat mit 2 Mol EO ca. 70% Aktivsubstanz (INCI - Bezeichnung: Sodium Laureth Sulfate) (COGNIS)
35- Ethylenglykolmonostearat (ca. 25-35% Monoester, 60-70% Diester; INC Bezeich ung: Glycol Stearate) (COGNIS)
36- Polyoxyethylen-propylenglykoldioleat (40 % Aktivsubstanz; INCI - Bezeichnung: Propylene Glycol (and) PEG-55 Propylene Glycol Oleate) (GOLDSCHMIDT)
10. Shampoo
Texapon® K 14 S37 50,0
Dehyton® K 10,0
Plantacare® 818 UP38 4,5
Lamesoft® PO 65 2,0
Polymer P 1 , entsprechend DE 39 29 973 0,6
Cutina® AGS39 2,0
D-Panthenol 0,5
Glucose 1,0
Butyraldehyd 0,8
Salicylsäure 0,4 Natriumchlorid 0,5
Gluadin® WQ 2,0
Wasser ad 100
37- Natriumlaurylmyristylethersulfat ca 28% Aktivsubstanz (INCI - Bezeichnung: Sodium Myreth Sulfate) (COGNIS)
38- C 8 - C 16 Fettalkoholglycosid ca. 50% Aktivsubstanz (INCI - Bezeichnung: Coco Glucoside) (COGNIS)
39- Ethylenglykolstearat (ca. 5-15% Monoester, 85-95% Diester; INCI - Bezeichnung: Glycol Distearate) (COGNIS)
l l. Haarkur
Celquat® L 20040 0,6
Luviskol® K3041 0,2
D-Panthenol 0,5
Polymer Pl, entsprechend DE 39 29 973 0,6
Dehyquart® A-CA 1,0
Lamesoft® PO 65 0,5
Acetaldehyd 1,0
Methylglyoxal 0,5
Gluadin® W 4042 1,0
Natrosol® 250 HR43 1,1
Gluadin® WQ 2,0
Wasser ad 100
40, quaterniertes Cellulose-Derivat (95 % Aktivsubstanz; CTFA-Bezeichnung: Polyqua- temium-4) (DELFT NATIONAL)
41- Polyvinylpyrrolidon (95 % Aktivsubstanz; CTFA-Bezeichnung: PVP) (BASF)
42- Partialhydrolysat aus Weizen ca. 40% Aktivsubstanz (INCI - Bezeichnung: Hydrolyzed Wheat Gluten Hydrolyzed Wheat Protein) (COGNIS)
43- Hydroxyethylcellulose (AQUALON) 12. Färbecreme
C12.18-Fettalkohol 1,2
Lanette® O44 4,0
Eumulgin® B 2 0,8
Cutina® KD 1645 2,0
Lamesoft® PO 65 4,0
Natriumsulfit 0,5
L(+)-Ascorbinsäure 0,5
Ammoniumsulfat 0,5
1,2-Propylenglykol 1,2
Polymer JR®400 0,3 p-Aminophenol 0,35 p-Toluylendiamin 0,85
2-Methylresorcin 0,14
6-Methyl-m-aminophenol 0,42
Cetiol® OE46 0,5
Honeyquat® 50 1,0
Ajidew® NL 50 1,2
Gluadin® WQ 1,0
Formaldehyd 0,5
Ammoniak 1,5
Wasser ad 100
44- Cetylstearylalkohol (INCI - Bezeichnung: Cetearyl Alcohol) (COGNIS)
45- Selbstemulgierendes Gemisch aus Mono- / Diglyceriden höherer gesättigter Fettsäuren mit Kaliumstearat (INCI - Bezeichnung: Glyceryl Stearate SE) (COGNIS) 6- Di-n-octylether (INCI - Bezeichnung: Dicaprylyl Ether) (COGNIS)
Die Zugabe des Formaldehyd erfolgt in diesem Beispiel unmittelbar vor der Verwendung.
13. Entwicklerdispersion für Färbecreme 12. Texapon® NSO 2,1 Wasserstofφeroxid (50%ig) 12,0 Turpinal® SL47 1,7
Latekoll® D48 12,0
Lamesoft® PO 65 2,0
Gluadin® WQ 0,3
Salcare® SC 96 1,0
Hexamemylentettaamin 0,8
Wasser ad 100
47' 1 -Hydroxyethan- 1 , 1 -diphosphonsäure (60 % Aktivsubstanz; INCI - Bezeichnung:
Etidronic Acid) (COGNIS) 48- Acrylester-Methacrylsäure-Copolymer (25 % Aktivsubstanz) (BASF) Die Zugabe des Hexamethylentetraamin erfolgt in diesem Beispiel unmittelbar vor der
Verwendung.
14. Tönungsshampoo
Texapon® N 70 14,0
Dehyton® K 10,0
Akypo® RLM 45 NV49 14,7
Plantacare® 1200 UP 4,0
Lamesoft® PO 65 3,0
Polymer Pl, entsprechend DE 3929 973 0,3
Cremophor® RH 4050 0,8
Propionaldehyd 0,3
Benzaldehyd 0,3
Salicylaldehyd 0,3
Farbstoff CL 12 719 0,02
Farbstoff CL 12251 0,02
Farbstoff CL 12 250 0,04
Farbstoff CL 56 059 0,03
Konservierung 0,25
Parfümöl q.s.
Eutanol® G51 0,3
Gluadin® WQ 1,0 Honeyquat® 50 1,0
Salcare® SC 96 0,5
Wasser ad 100
49- Laurylalkohol+4,5 Ethylenoxid-essigsäure-Natriumsalz (20,4 % Aktivsubstanz) (CHEM-Y)
50- Rizinus-Öl, hydriert + 45 Ethylenoxid (INCI - Bezeichnung: PEG-40 Hydrogenated Castor Oil) (BASF)
5 2-Octyldodecanol (Guerbet-Alkohol) (INCI - Bezeichnung: Octyldodecanol)
(COGNIS) Die Zugabe des Salicylaldehydes, des Benzaldehydes und des Propionaldehydes erfolgt in diesem Beispiel unmittelbar vor der Verwendung.
15. Cremedauerwelle Wellcreme
Plantacare® 810 UP52 5,0
Thioglykolsäure 8,0
Turpinal® SL 0,5
Ammoniak (25%ig) 7,3
Ammoniumcarbonat 3,0
Cetyl/Stearyl-Alkohol 5,0
Lamesoft® PO 65 0,5
Guerbet-Alkohol 4,0
Salcare® SC 96 3,0
Gluadin® WQ 2,0
Hexamethylentetraamin 0,5
Parfümöl / q.s. Wasser ad 100
S2- C8-C10-Alkylglucosid mit Oligomerisationsgrad 1,6 (ca. 60% Aktivsubstanz) (COGNIS) Fixierlösung
Plantacare® 810 UP 5,0 gehärtetes Rizinusöl 2,0
Lamesoft® PO 65 1,0
Kaliumbromat 3,5
Nitrilotriessigsäure 0,3
Zitronensäure 0,2
Merquat® 55053 0,5
Hydagen® HCMF54 0,5
Glutardialdehyd 0,5
Gluadin® WQ 0,5
Parfümöl q.s. Wasser ad 100
53- Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer (8 % Aktivsubstanz; INCI Bezeichnung: Polyquarternium 7) (MOBIL OIL)
54- Chitosan Pulver (INCI - Bezeichnung: Chitosan) (COGNIS)
Die Zugabe des Glutardialdehydes erfolgt in diesem Beispiel unmittelbar vor der Verwendung.

Claims

Patentansprüche
1. Verwendung von Verbindungen (A) ausgewählt aus kurzkettigen Aldehyden mit einem Molgewicht von kleiner 500 und/oder Formaldehyd abspaltenden Verbindungen, als Wirkstoff zur Farbstabilisierung der Färbung keratinischer Fasem in kosmetischen Mitteln.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) Polymere (G) enthalten sind.
3. Verwendung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) Tenside (E) enthalten sind.
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) Fettstoffe (D) enthalten sind.
5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) Proteinhydrolysate und/oder deren Derivate (H) enthalten sind.
6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) UV - Filter (J) enthalten sind.
7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) oxidativ wirkende Farbstoffe (B) enthalten sind.
8. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) direktziehende Farbstoffe (C) enthalten sind.
9. Verfahren zur Verbesserung der Farbstabilität der Färbung von Fasem, insbesondere keratinischen Fasem, dadurch gekennzeichnet, daß ein Mittel, in dem ein Wirkstoff (A) sowie weitere Wirkstoffe, wie in einem der Ansprüche 1 bis 8 verwendet werden, auf die Fasem aufgetragen wird, wobei das Mittel nach einer Einwirkzeit von 1 bis 45 Minuten wieder ausgespült wird.
10. Mittel zur Verbesserung der Farbstabilität der Färbung von Fasem, insbesondere keratinischer Fasem, dadurch gekennzeichnet, daß es eine Wirkstoffkombination bestehend aus a. einer Verbindung (A) gemäß Anspruch 1 und b. einem Farbstoffvorprodukt (B) und/oder einem direktziehenden Farbstoff (C) enthält.
11. Mittel zur Verbesserung der Farbstabilität der Färbung von Fasem, insbesondere keratinischer Fasem, dadurch gekennzeichnet, daß es eine Wirkstoffkombination aus a. einer Verbindung (A) gemäß Anspruch 1 und b. einem Polymer (G) enthält, mit der Maßgabe, das die Verbindung (A) nicht Formaldehyd oder eine Formaldehyd abspaltende Verbindung ist.
EP01986594A 2000-10-04 2001-09-25 Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen Ceased EP1322281A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10048922 2000-10-04
DE2000148922 DE10048922A1 (de) 2000-10-04 2000-10-04 Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen
PCT/EP2001/011056 WO2002030373A2 (de) 2000-10-04 2001-09-25 Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen

Publications (1)

Publication Number Publication Date
EP1322281A2 true EP1322281A2 (de) 2003-07-02

Family

ID=7658525

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01986594A Ceased EP1322281A2 (de) 2000-10-04 2001-09-25 Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen

Country Status (4)

Country Link
EP (1) EP1322281A2 (de)
AU (1) AU2002223557A1 (de)
DE (1) DE10048922A1 (de)
WO (1) WO2002030373A2 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148671A1 (de) 2001-10-02 2003-04-10 Henkel Kgaa Verfahren zum Färben von Keratinfasern unter Verwendung von Carbonylverbindungen zur Verbesserung der Farbstabilität von Haarfärbungen
DE10151570A1 (de) * 2001-10-23 2003-04-30 Henkel Kgaa Neue Verwendung von Zuckertensiden und Fettsäurepartialglyceriden in farbverändernden Mitteln
DE60305911T2 (de) * 2002-04-25 2007-01-11 L'oreal Verwendung von alpha-dialdehyden in anwesenheit eines ammoniumsalzes einer brönsted säure zum färben von keratinfasern
FR2838961B1 (fr) * 2002-04-25 2006-06-23 Oreal Utilisation d'alpha-dialdehydes en presence d'un sel d'ammonium d'un acide de bronsted pour la teinture des fibres keratiniques
DE10218588A1 (de) 2002-04-26 2003-11-06 Wella Ag Mittel zum oxidativen Färben von Keratinfasern
DE10260832A1 (de) * 2002-12-23 2004-07-01 Henkel Kgaa Mittel zum Färben von keratinhaltigen Fasern
DE102006038343A1 (de) * 2006-08-15 2008-02-21 Henkel Kgaa Aufhell- und/oder Färbemittel mit Aldehyd(en)
FR2915376B1 (fr) * 2007-04-30 2011-06-24 Oreal Utilisation d'un agent de couplage multi-carbo sites multi-groupements pour proteger la couleur vis-a-vis du lavage de fibres keratiniques teintes artificiellement; procedes de coloration
CA3021254A1 (en) * 2016-04-22 2017-10-26 Innospec Limited A method of treating hair with a composition comprising a hydroxy-substituted aldehyde
RU2748840C2 (ru) * 2016-04-22 2021-05-31 Инноспек Лимитед Способы, композиции и относящиеся к ним применения
KR102351479B1 (ko) * 2016-04-22 2022-01-17 이노스펙 리미티드 방법, 조성물 및 그에 관한 용도
BR112018071601B1 (pt) * 2016-04-22 2022-05-03 Innospec Limited Métodos e uso para combate à perda de cor de um material tingido, produto e composição de cuidados para cabelo
GB201616657D0 (en) 2016-09-30 2016-11-16 Innospec Ltd Methods, compositions and uses relating thereto
DE102016218997A1 (de) * 2016-09-30 2018-04-05 Henkel Ag & Co. Kgaa Verbessert konditionierende Haarbehandlungsmittel mit Auswaschschutz
GB201616666D0 (en) * 2016-09-30 2016-11-16 Innospec Ltd Methods, compositions and uses relating thereto
CA3038454A1 (en) * 2016-09-30 2018-04-05 Innospec Limited Cosmetic compositions for combatting colour loss from a dyed material
DE102016219007A1 (de) * 2016-09-30 2018-04-05 Henkel Ag & Co. Kgaa Verbessert konditionierende Haarbehandlungsmittel mit Auswaschschutz
DE102016218999A1 (de) * 2016-09-30 2018-04-05 Henkel Ag & Co. Kgaa Verbessert konditionierende Haarbehandlungsmittel mit Auswaschschutz
GB201616670D0 (en) * 2016-09-30 2016-11-16 Innospec Ltd Methods, compositions and uses relating thereto
JP2023550563A (ja) * 2020-12-01 2023-12-01 ロレアル ケラチン繊維のための組成物
FR3118708B1 (fr) * 2021-01-11 2023-08-25 Oreal Composition pour fibres kératineuses

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097765A1 (de) * 2000-06-21 2001-12-27 Henkel Kommanditgesellschaft Auf Aktien Mittel zum färben von keratinhaltigen fasern

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1252400A (fr) * 1960-03-22 1961-01-27 Nestle Lemur Company Procédé et produits pour la coloration de substances kératiniques
FR1408167A (fr) * 1962-10-18 1965-08-13 Clairol Inc Compositions de teinture stabilisées pour cheveux
US3871818A (en) * 1972-10-30 1975-03-18 Avon Prod Inc Promoting color change in human hair with a dialdehyde compound and a nitrogen containing compound
GB2062016B (en) * 1979-10-03 1983-05-25 Elf Aquitaine Process and composition for the colouration of keratin-containing substances
DE3101011C2 (de) * 1981-01-15 1985-06-05 Wella Ag, 6100 Darmstadt Haarbehandlungsmittel
US5993792A (en) * 1997-11-13 1999-11-30 Tiro Industries Incorporated System for customized hair products containing surfactants
CA2330483A1 (en) * 1998-04-27 1999-11-04 The Procter & Gamble Company Cosmetic method for treating coloured hair to reduce colour fade
DE19820894A1 (de) * 1998-05-09 1999-11-11 Wella Ag Mittel und Verfahren zum Färben von Fasern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097765A1 (de) * 2000-06-21 2001-12-27 Henkel Kommanditgesellschaft Auf Aktien Mittel zum färben von keratinhaltigen fasern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0230373A3 *

Also Published As

Publication number Publication date
WO2002030373A2 (de) 2002-04-18
AU2002223557A1 (en) 2002-04-22
WO2002030373A3 (de) 2002-08-22
DE10048922A1 (de) 2002-04-11

Similar Documents

Publication Publication Date Title
EP1326577B2 (de) Neue verwendung von kurzkettigen carbonsäuren
EP1326579B1 (de) Neue verwendung von kurzkettigen carbonsäuren
EP1276451B2 (de) Verwendung von zuckertensiden und fettsäurepartialglyceriden
EP1432395B1 (de) Verfahren zum färben von keratinfasern unter verwendung von carbonylverbindungen zur verbesserung der farbstabilität von haarfärbungen
DE10240757A1 (de) Synergistische Kombination von Seidenproteinen
WO2002030373A2 (de) Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen
EP1339379B1 (de) Neue verwendung von proteinhydrolysaten
EP1729853B1 (de) Verwendung kationischer stärkederivate zum farberhalt
WO2006066674A1 (de) Wirkstoffgemische zur restrukturierung keratinischer fasern
DE10107216A1 (de) Wirkstoffkombination aus Kohlenwasserstoffen und Ölen in kosmetischen Mitteln
DE102004030886A1 (de) Haarkonditionierende Mittel mit aminofunktionellen Siliconen
WO2002045665A1 (de) Neue verwendung von polyhydroxyverbindungen
WO2006029757A1 (de) Wirkstoffgemisch zur behandlung keratinischer fasern
DE10163860A1 (de) Verwendung von ausgewählten kurzkettigen Carbonsäuren
WO2006034750A1 (de) Perlenextrakt in kosmetischen mitteln
WO2003035018A1 (de) Neue verwendung von zuckertensiden und fettsäurepartialglyceriden in farbverändernden mitteln
WO2002045664A1 (de) Verwendung von phospholipiden in haarbehandlungsmitteln
WO2006021349A1 (de) Extrakte als strukturanten
DE102004024511A1 (de) Verwendung von Polysulfiden zur Farbstabilisierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030401

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050208

17Q First examination report despatched

Effective date: 20050208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20071202