EP1314789A1 - Precipitation hardenable copper alloy for manufacturing moulds - Google Patents

Precipitation hardenable copper alloy for manufacturing moulds Download PDF

Info

Publication number
EP1314789A1
EP1314789A1 EP02025220A EP02025220A EP1314789A1 EP 1314789 A1 EP1314789 A1 EP 1314789A1 EP 02025220 A EP02025220 A EP 02025220A EP 02025220 A EP02025220 A EP 02025220A EP 1314789 A1 EP1314789 A1 EP 1314789A1
Authority
EP
European Patent Office
Prior art keywords
copper alloy
casting
alloy according
cobalt
beryllium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02025220A
Other languages
German (de)
French (fr)
Other versions
EP1314789B1 (en
Inventor
Dirk Dr.-Ing. Rode
Thomas Dipl.-Ing. Helmenkamp
Fred Ing. Reichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KME Special Products GmbH and Co KG
Original Assignee
KM Europa Metal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KM Europa Metal AG filed Critical KM Europa Metal AG
Publication of EP1314789A1 publication Critical patent/EP1314789A1/en
Application granted granted Critical
Publication of EP1314789B1 publication Critical patent/EP1314789B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to a hardenable copper alloy as a material for production of molds.
  • Another disadvantage of the proven mold material CuCrZr is the relatively low Hardness from about 110 HBW to 130 HBW. With a one- or two-roll continuous casting process But it is unavoidable that even before Pour the steel splash area onto the roller surfaces. The froze Steel particles are then in the relatively soft surfaces of the casting rolls pressed, resulting in the surface quality of the cast tapes of about 1.5 mm up to 4 mm thickness is significantly impaired.
  • the lower electrical conductivity of a known CuNiBe alloy An addition of up to 1% niobium leads to a CuCrZr alloy a higher surface temperature. Since the electrical conductivity is about behaves proportionally to the thermal conductivity, the surface temperature in the Coating of a casting roll made of the CuNiBe alloy compared to a casting roll with a jacket made of CuCrZr with a maximum temperature of 400 ° C at the Increase the surface and 30 ° C on the back to about 540 ° C.
  • Ternary CuNiBe or CuCoBe alloys generally have a Brinell hardness of over 200 HBW, but the electrical conductivity of the standard semi-finished products made from these materials, such as rods for the production of resistance welding electrodes or sheets and strips for the production of springs or Lead frames, at most values in the range from 26 Sm / mm 2 to approximately 32 Sm / mm 2 . Under optimal conditions, these standard materials would only achieve a surface temperature of around 585 ° C on the surface of a casting roll.
  • the state of the art also includes the use of a hardenable copper alloy made from 1.0% to 2.6% nickel, which can be replaced in whole or in part by cobalt, 0.1% to 0.45% Beryllium, optionally 0.05% to 0.25% zirconium and optionally up to a maximum of 0.15% of at least one element from the group comprising niobium, tantalum, vanadium, titanium, chromium, cerium and hafnium, the rest of copper including production-related impurities and more Processing additives with a Brinell hardness of at least 200 HBW and an electrical conductivity above 38 Sm / mm 2 as a material for the production of casting rolls and casting wheels.
  • a hardenable copper alloy made from 1.0% to 2.6% nickel, which can be replaced in whole or in part by cobalt, 0.1% to 0.45% Beryllium, optionally 0.05% to 0.25% zirconium and optionally up to a maximum of 0.15% of at least one element from the group comprising niobium
  • Alloys with these compositions such as the alloys CuCo2Be0.5 or CuNi2Be0.5 have due to the. relatively high Alloy element content disadvantages in hot formability.
  • there are high degrees of hot forming are required, based on the coarse-grained cast structure with a grain size of several millimeters, a more fine-grained product with a Grain size ⁇ 1.5 mm (according to ASTM E 112).
  • Large-format casting rolls have so far been sufficient only with very great effort large cast blocks can be produced with sufficient quality; are hardly available, however technical forming equipment, with a reasonable effort sufficiently high hot kneading to recrystallize the casting structure in one Realize fine grain structure.
  • the invention is based on the object a hardenable copper alloy as a material for the production of casting molds create which even at high casting speeds compared to changing Temperature stress is insensitive or high Fatigue resistance at working temperature for a mold.
  • Casting speed more than twice that of the conventional one Increase casting speed.
  • a significantly improved Surface quality of the cast strip achieved. It is also a much longer one Tool life guaranteed.
  • Casting molds are not only meant to be stationary Casting molds, e.g. Plate or tube molds, but also moving molds, such as casting rolls can be understood.
  • Another improvement in the mechanical properties of the mold, in particular an increase in tensile strength, according to claim 2 can be advantageously achieved in that the copper alloy 0.03% to 0.35% Contains zirconium and 0.005% to 0.05% magnesium.
  • the Copper alloy contains ⁇ 1.0% cobalt, 0.15% to 0.3% beryllium and 0.15% up to 0.3% zirconium.
  • this ratio of cobalt to Beryllium 2.2 to 5 is a ratio of cobalt to Beryllium 2.2 to 5.
  • the copper alloy contains up to 0.6% nickel in addition to cobalt.
  • the copper alloy up to a maximum 0.15% of at least one element from the niobium, manganese, tantalum, vanadium, titanium, Contains chromium, cerium and hafnium group.
  • the casting mold is advantageously produced according to claim 8 by the processing steps casting, hot forming, solution annealing at 850 ° C to 980 ° C, cold forming up to 30% and curing at 400-550 ° C within a period of 2 to 32 h, whereby it maximum average grain size of 1.5 mm according to ASTM E 112, a hardness of at least 170 HBW and an electrical conductivity of at least 26 Sm / mm 2 .
  • the casting mold in the cured state has an average grain size of 30 ⁇ m to 500 ⁇ m according to ASTM E 112, a hardness of at least 185 HBW, a conductivity between 30 and 36 Sm / mm 2 , a 0.2 % Yield strength of at least 450 MPa and an elongation at break of at least 12%.
  • the copper alloy according to the invention is suitable in accordance with the features of claim 10 in particular for the production of the shells of casting rolls a two-roll caster that is used for casting tapes close to the final dimension made of non-ferrous metals, in particular of strips of aluminum or Aluminum alloys, a changing temperature stress under high Subject to rolling presses.
  • Each jacket can have a thermal permeability reducing Coating should be provided. This can affect the product quality of the cast Bands of a non-ferrous metal, but especially of aluminum or one Aluminum alloy, can be increased even more.
  • the coating is targeted due to the operating behavior of the jacket made of a copper alloy causes an aluminum strip in particular that at the beginning of a Casting and rolling process from the interaction of copper with aluminum forms an adhesive layer on the surface of the jacket, from which it is then further developed During the casting process, aluminum penetrate the copper surface and form a stable, resistant diffusion layer there, the thickness and Property largely determined by casting speed and cooling conditions are. This improves and improves the surface quality of the aluminum strip consequently the product quality increased significantly.
  • the alloys were then subjected to solution annealing at least 30 minutes above 850 ° C. with subsequent water quenching and then hardened for 2 to 32 hours in the temperature range between 400 ° C. and 550 ° C.
  • the property combinations listed in Table 2 below were achieved.
  • those according to the invention achieve Alloys, in particular for the manufacture of a jacket Casting roller, the desired recrystallized fine grain structure with a corresponding good elongation at break.
  • a grain size lies in the comparison alloys H to J over 1.5 mm, which reduces the plasticity of the material.
  • alloys A to J which are obtained by solution annealing of the pressed material for at least 30 minutes above 850 ° C with subsequent water quenching, 10% to 15% cold rolling (reduction in cross-section) and subsequent hardening of 2 to 32 Hours in the temperature range between 400 ° C and 550 ° C can be reached.
  • alloy Rm MPa Rp o 2 MPa A% HBW 2.5 187.5 el.
  • Alloys A to G according to the invention again show good elongations at break and a grain size below 0.5 mm, while the comparative alloys H to J a coarse grain with a grain size over 1.5 mm and smaller Have elongation at break values. So these copper alloys have unique Processing advantages in the manufacture of coats, especially for larger ones Casting rolls of two-roll casting machines, which makes it possible to have a fine-grained End product with optimal basic properties for the area of application produce.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Continuous Casting (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Particle Accelerators (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Powder Metallurgy (AREA)
  • Metal Rolling (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

An age-hardening copper alloy comprises (wt.%) cobalt (0.4-2) which maybe partially substituted by nickel; beryllium (0.1-0.5); and copper (being balance). <??>Independent claims are also included for: <??>(a) a casting mold having maximum average grain size of 1.5 mm as ASTM E 112, a hardness of ≥ 170 HBW, and an electrical conductivity of ≥ 26 Sm/mm<2> produced from the copper alloy by hot working solution treatment at 850-980 degrees C, cold working up to 30% and age-hardening at 400-550 degrees C for 2-32 hours; and <??>(b) a sleeve of a continuous casting roll of a two-roll casting installation that is submitted to a changing temperature stress under high roll pressures during close to final dimension casting of strips made of non-ferrous metals made of the copper alloy.

Description

Die Erfindung betrifft eine aushärtbare Kupferlegierung als Werkstoff zur Herstellung von Gießformen.The invention relates to a hardenable copper alloy as a material for production of molds.

Das weltweite Ziel, insbesondere der Stahlindustrie, Halbzeug möglichst endabmessungsnah zu gießen, um Warm- und/oder Kaltverformungsschritte einzusparen, hat seit etwa 1980 zu einer Reihe von Entwicklungen, beispielsweise in Ein- und Zweiwalzen-Stranggießverfahren geführt.The worldwide goal, especially the steel industry, semi-finished products as possible pour close to the final dimensions for hot and / or cold forming steps Saving has led to a number of developments since about 1980, for example in Single and two-roll continuous casting process.

Bei diesen Gießverfahren treten an den wassergekühlten Walzen oder Rollen beim Gießen von Stahllegierungen, Nickel, Kupfer sowie Legierungen, die sich nur schwer warm walzen lassen, im Eingießbereich der Schmelze sehr hohe Oberflächentemperaturen auf. Diese liegen z.B. beim endabmessungsnahen Gießen einer Stahllegierung bei 350°C bis 450°C, wobei die Gießwalzenmäntel einen CuCrZr-Werkstoff mit einer elektrischen Leitfähigkeit von 48 Sm/mm2 und einer Wärmeleitfähigkeit von etwa 320 W/mK aufweisen. Werkstoffe auf CuCrZr-Basis wurden bisher vornehmlich für thermisch hoch beanspruchte Stranggießkokillen und Gießräder eingesetzt. Die Oberflächentemperatur fällt bei diesen Werkstoffen durch die Kühlung der Gießwalzen zyklisch bei jeder Umdrehung kurz vor dem Eingießbereich auf etwa 150 °C bis 200 °C ab. Auf der gekühlten Rückseite der Gießwalzen bleibt sie dagegen während des Umlaufs weitgehend konstant bei etwa 30 °C bis 40 °C. Der Temperaturgradient zwischen Oberfläche und Rückseite in Kombination mit der zyklischen Änderung der Oberflächentemperatur der Gießwalzen bewirkt thermische Spannungen im Oberflächenbereich des Mantelwerkstoffs.With these casting processes, very high surface temperatures occur on the water-cooled rolls or rolls when casting steel alloys, nickel, copper and alloys that are difficult to hot-roll in the pouring area of the melt. These lie, for example, when casting a steel alloy close to the final dimensions at 350 ° C to 450 ° C, the casting roll shells having a CuCrZr material with an electrical conductivity of 48 Sm / mm 2 and a thermal conductivity of about 320 W / mK. CuCrZr-based materials have so far been used primarily for thermally highly stressed continuous casting molds and casting wheels. With these materials, the surface temperature of these materials drops cyclically to about 150 ° C to 200 ° C with every revolution just before the pouring area. On the cooled back of the casting rolls, however, it remains largely constant at around 30 ° C to 40 ° C during circulation. The temperature gradient between the surface and the back in combination with the cyclical change in the surface temperature of the casting rolls causes thermal stresses in the surface area of the jacket material.

Gemäß Untersuchungen des Ermüdungsverhaltens an dem bisher verwendeten CuCrZr-Werkstoff bei verschiedenen Temperaturen mit einer Dehnungsamplitude von ± 0,3 % und einer Frequenz von 0,5 Hertz - diese Parameter entsprechen etwa einer Umdrehungsgeschwindigkeit der Gießwalzen von 30 U/min - ist beispielsweise bei einer maximalen Oberflächentemperatur von 400 °C, entsprechend einer Wanddicke von 25 mm oberhalb der Wasserkühlung, im günstigsten Fall eine Lebensdauer von 3000 Zyklen bis zur Rißbildung zu erwarten. Die Gießwalzen müssen daher bereits nach einer relativ kurzen Betriebszeit von etwa 100 Minuten zwecks Beseitigung von Oberflächenrissen nachgearbeitet werden. Die Standzeit zwischen den Nacharbeiten ist dabei unter anderem wesentlich von der Wirksamkeit der Schmier-/Trennmittel an der Gießfläche, der konstruktiv und prozeßbedingten Kühlung sowie der Gießgeschwindigkeit abhängig. Für das Auswechseln der Gießwalzen muß die Gießmaschine angehalten und der Gießvorgang unterbrochen werden.According to investigations of the fatigue behavior on the previously used CuCrZr material at different temperatures with an expansion amplitude of ± 0.3% and a frequency of 0.5 Hertz - these parameters correspond approximately a rotation speed of the casting rolls of 30 rpm - is for example at a maximum surface temperature of 400 ° C, corresponding to a Wall thickness of 25 mm above the water cooling, in the best case one Life expectancy of 3000 cycles until cracking. The casting rolls must therefore already after a relatively short operating time of about 100 minutes reworked to remove surface cracks. The service life Between the reworking, among other things, the effectiveness is essential the lubricant / release agent on the casting surface, the design and process-related Cooling and the casting speed dependent. For replacing the Casting rolls must stop the casting machine and interrupt the casting process become.

Ein weiterer Nachteil des bewährten Kokillenwerkstoffs CuCrZr ist die relativ geringe Härte von etwa 110 HBW bis 130 HBW. Bei einem Ein- oder Zweiwalzen-Stranggießverfahren ist es aber nicht vermeidbar, daß bereits vor dem Eingießbereich Stahlspritzer auf die Walzenoberflächen gelangen. Die erstarrten Stahlpartikel werden dann in die relativ weichen Oberflächen der Gießwalzen gedrückt, wodurch die Oberflächenqualität der gegossenen Bänder von etwa 1,5 mm bis 4 mm Dicke erheblich beeinträchtigt wird. Another disadvantage of the proven mold material CuCrZr is the relatively low Hardness from about 110 HBW to 130 HBW. With a one- or two-roll continuous casting process But it is unavoidable that even before Pour the steel splash area onto the roller surfaces. The froze Steel particles are then in the relatively soft surfaces of the casting rolls pressed, resulting in the surface quality of the cast tapes of about 1.5 mm up to 4 mm thickness is significantly impaired.

Auch die geringere elektrische Leitfähigkeit einer bekannten CuNiBe-Legierung mit einem Zusatz von bis zu 1 % Niob führt im Vergleich zu einer CuCrZr-Legierung zu einer höheren Oberflächentemperatur. Da sich die elektrische Leitfähigkeit etwa proportional zur Wärmeleitfähigkeit verhält, wird sich die Oberflächentemperatur im Mantel einer Gießwalze aus der CuNiBe-Legierung im Vergleich zu einer Gießwalze mit einem Mantel aus CuCrZr mit einer maximalen Temperatur von 400 °C an der Oberfläche und 30 °C auf der Rückseite auf etwa 540 °C erhöhen.Also the lower electrical conductivity of a known CuNiBe alloy An addition of up to 1% niobium leads to a CuCrZr alloy a higher surface temperature. Since the electrical conductivity is about behaves proportionally to the thermal conductivity, the surface temperature in the Coating of a casting roll made of the CuNiBe alloy compared to a casting roll with a jacket made of CuCrZr with a maximum temperature of 400 ° C at the Increase the surface and 30 ° C on the back to about 540 ° C.

Ternäre CuNiBe- bzw. CuCoBe-Legierungen weisen zwar grundsätzlich eine Brinellhärte von über 200 HBW auf, jedoch erreicht die elektrische Leitfähigkeit der aus diesen Werkstoffen hergestellten Standard-Halbzeuge, wie beispielsweise Stangen zur Fertigung von Widerstandsschweißelektroden bzw. Blechen und Bändern zur Herstellung von Federn oder Leadframes, allenfalls im Bereich von 26 Sm/mm2 bis etwa 32 Sm/mm2 liegende Werte. Unter optimalen Bedingungen wäre mit diesen Standardwerkstoffen lediglich eine Oberflächentemperatur am Mantel einer Gießwalze von etwa 585 °C zu erreichen.Ternary CuNiBe or CuCoBe alloys generally have a Brinell hardness of over 200 HBW, but the electrical conductivity of the standard semi-finished products made from these materials, such as rods for the production of resistance welding electrodes or sheets and strips for the production of springs or Lead frames, at most values in the range from 26 Sm / mm 2 to approximately 32 Sm / mm 2 . Under optimal conditions, these standard materials would only achieve a surface temperature of around 585 ° C on the surface of a casting roll.

Auch für die aus dem US-Patent 4,179,314 grundsätzlich bekannten CuCoBeZr- bzw. CuNiBeZr-Legierungen ergeben sich keine Hinweise, daß bei gezielter Auswahl der Legierungskomponenten Leitfähigkeitswerte von > 38 Sm/mm2 in Verbindung mit einer Mindesthärte von 200 HBW erreichbar sind.Also for the CuCoBeZr or CuNiBeZr alloys known in principle from US Pat. No. 4,179,314, there are no indications that if the alloy components are specifically selected, conductivity values of> 38 Sm / mm 2 in conjunction with a minimum hardness of 200 HBW can be achieved.

Im Umfang der EP 0 548 636 B1 zählt femer zum Stand der Technik die Verwendung einer aushärtbaren Kupferlegierung aus 1,0 % bis 2,6 % Nickel, das ganz oder teilweise durch Kobalt ersetzt sein kann, 0,1 % bis 0,45 % Beryllium, wahlweise 0,05 % bis 0,25 % Zirkonium und gegebenenfalls bis zu maximal 0,15 % mindestens eines Elements aus der Niob, Tantal, Vanadium, Titan, Chrom, Cer und Hafnium umfassenden Gruppe, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen und üblicher Verarbeitungszusätze mit einer Brinellhärte von mindestens 200 HBW und einer elektrischen Leitfähigkeit über 38 Sm/mm2 als Werkstoff zur Herstellung von Gießwalzen und Gießrädern.Within the scope of EP 0 548 636 B1, the state of the art also includes the use of a hardenable copper alloy made from 1.0% to 2.6% nickel, which can be replaced in whole or in part by cobalt, 0.1% to 0.45% Beryllium, optionally 0.05% to 0.25% zirconium and optionally up to a maximum of 0.15% of at least one element from the group comprising niobium, tantalum, vanadium, titanium, chromium, cerium and hafnium, the rest of copper including production-related impurities and more Processing additives with a Brinell hardness of at least 200 HBW and an electrical conductivity above 38 Sm / mm 2 as a material for the production of casting rolls and casting wheels.

Legierungen mit diesen Zusammensetzungen, wie beispielsweise die Legierungen CuCo2Be0,5 oder CuNi2Be0,5 weisen aufgrund des . relativ hohen Legierungselementgehaltes Nachteile in der Warmumformbarkeit auf. Es sind jedoch hohe Warmumformgrade erforderlich, um, ausgehend vom grobkörnigen Gußgefüge mit mehreren Millimetern Korngröße, ein feinkörnigeres Erzeugnis mit einer Korngröße < 1,5 mm (nach ASTM E 112) zu erreichen. Insbesondere für großformatige Gießwalzen sind bislang nur mit sehr hohem Aufwand genügend große Gußblöcke mit ausreichender Qualität herstellbar; kaum verfügbar sind jedoch technische Umformeinrichtungen, um mit einem vertretbaren Aufwand eine ausreichend hohe Warmdurchknetung zur Umkristallisation des Gußgefüges in ein Feinkorngefüge zu realisieren.Alloys with these compositions, such as the alloys CuCo2Be0.5 or CuNi2Be0.5 have due to the. relatively high Alloy element content disadvantages in hot formability. However, there are high degrees of hot forming are required, based on the coarse-grained cast structure with a grain size of several millimeters, a more fine-grained product with a Grain size <1.5 mm (according to ASTM E 112). Especially for Large-format casting rolls have so far been sufficient only with very great effort large cast blocks can be produced with sufficient quality; are hardly available, however technical forming equipment, with a reasonable effort sufficiently high hot kneading to recrystallize the casting structure in one Realize fine grain structure.

Der Erfindung liegt - ausgehend vom Stand der Technik - die Aufgabe zugrunde, eine aushärtbare Kupferlegierung als Werkstoff zur Herstellung von Gießformen zu schaffen, welche auch bei hohen Gießgeschwindigkeiten gegenüber wechselnden Temperaturbeanspruchungen unempfindlich ist bzw. die eine hohe Ermüdungsbeständigkeit bei der Arbeitstemperatur für eine Gießform aufweist.Starting from the prior art, the invention is based on the object a hardenable copper alloy as a material for the production of casting molds create which even at high casting speeds compared to changing Temperature stress is insensitive or high Fatigue resistance at working temperature for a mold.

Diese Aufgabe wird mit den im Patentanspruch 1 angegebenen Merkmalen gelöst.This object is achieved with the features specified in claim 1.

Durch die Verwendung einer CuCoBeZr(Mg)-Legierung mit gezielt abgestuftem niedrigem Co- und Be-Gehalt kann einerseits eine noch ausreichende Aushärtbarkeit des Werkstoffs zur Erzielung hoher Festigkeit, Härte und Leitfähigkeit sichergestellt werden. Andererseits sind nur geringe Warmumformgrade zur vollständigen Umkristallisation der Gußstruktur und Einstellung eines feinkörnigen Gefüges mit ausreichender Plastizität erforderlich. By using a CuCoBeZr (Mg) alloy with specifically graded A low Co and Be content can on the one hand still ensure adequate hardenability of the material to achieve high strength, hardness and conductivity become. On the other hand, only low degrees of hot forming are complete Recrystallization of the cast structure and setting of a fine-grained structure with sufficient plasticity required.

Dank eines derart ausgebildeten Werkstoffs für eine Gießform gelingt es, die Gießgeschwindigkeit um mehr als das Doppelte gegenüber der herkömmlichen Gießgeschwindigkeit zu steigern. Außerdem wird eine deutlich verbesserte Oberflächenqualität des abgegossenen Bands erzielt. Auch ist eine erheblich längere Standzeit der Gießform gewährleistet. Unter Gießformen sollen nicht nur stationäre Gießformen, wie z.B. Platten- oder Rohrkokillen, sondern auch mitlaufende Kokillen, wie beispielsweise Gießwalzen verstanden werden.Thanks to such a material for a casting mold, the Casting speed more than twice that of the conventional one Increase casting speed. In addition, a significantly improved Surface quality of the cast strip achieved. It is also a much longer one Tool life guaranteed. Casting molds are not only meant to be stationary Casting molds, e.g. Plate or tube molds, but also moving molds, such as casting rolls can be understood.

Eine weitere Verbesserung der mechanischen Eigenschaften der Gießform, insbesondere eine Erhöhung der Zugfestigkeit, kann nach Patentanspruch 2 vorteilhaft dadurch erzielt werden, daß die Kupferlegierung 0,03 % bis 0,35 % Zirkonium und 0,005 % bis 0,05 % Magnesium enthält.Another improvement in the mechanical properties of the mold, in particular an increase in tensile strength, according to claim 2 can be advantageously achieved in that the copper alloy 0.03% to 0.35% Contains zirconium and 0.005% to 0.05% magnesium.

Gemäß einer weiteren Ausführungsform (Patentanspruch 3) enthält die Kupferlegierung einen Anteil < 1,0 % Kobalt, 0,15 % bis 0,3 % Beryllium und 0,15 % bis 0,3 % Zirkonium.According to a further embodiment (claim 3), the Copper alloy contains <1.0% cobalt, 0.15% to 0.3% beryllium and 0.15% up to 0.3% zirconium.

Vorteilhaft ist es ferner, wenn nach Patentanspruch 4 in der Kupferlegierung das Verhältnis Kobalt zu Beryllium zwischen 2 und 15 liegt.It is also advantageous if that according to claim 4 in the copper alloy Cobalt to beryllium ratio is between 2 and 15.

Insbesondere beträgt nach Patentanspruch 5 dieses Verhältnis von Kobalt zu Beryllium 2,2 bis 5.In particular, according to claim 5, this ratio of cobalt to Beryllium 2.2 to 5.

Die Erfindung läßt es zu, daß entsprechend den Merkmalen des Patentanspruchs 6 die Kupferlegierung neben Kobalt bis zu 0,6 % Nickel enthält.The invention allows that according to the features of claim 6 the copper alloy contains up to 0.6% nickel in addition to cobalt.

Weitere Verbesserungen der mechanischen Eigenschaften einer Gießform können erreicht werden, wenn gemäß Patentanspruch 7 die Kupferlegierung bis maximal 0,15 % mindestens eines Elements aus der Niob, Mangan, Tantal, Vanadium, Titan, Chrom, Cer und Hafnium umfassenden Gruppe enthält. Further improvements in the mechanical properties of a casting mold can can be achieved if, according to claim 7, the copper alloy up to a maximum 0.15% of at least one element from the niobium, manganese, tantalum, vanadium, titanium, Contains chromium, cerium and hafnium group.

Die Gießform wird vorteilhaft nach Patentanspruch 8 durch die Verarbeitungsschritte Gießen, Warmumformen, Lösungsglühen bei 850 °C bis 980 °C, Kaltumformen bis zu 30 % sowie Aushärten bei 400-550°C innerhalb eines Zeitraums von 2 bis 32 h hergestellt, wobei sie eine maximale mittlere Korngröße von 1,5 mm nach ASTM E 112, eine Härte von mindestens 170 HBW und eine elektrische Leitfähigkeit von mindestens 26 Sm/mm2 aufweist.The casting mold is advantageously produced according to claim 8 by the processing steps casting, hot forming, solution annealing at 850 ° C to 980 ° C, cold forming up to 30% and curing at 400-550 ° C within a period of 2 to 32 h, whereby it maximum average grain size of 1.5 mm according to ASTM E 112, a hardness of at least 170 HBW and an electrical conductivity of at least 26 Sm / mm 2 .

Besonders vorteilhaft ist es, wenn die Gießform gemäß Patentanspruch 9 im ausgehärteten Zustand eine mittlere Korngröße von 30 µm bis 500 µm nach ASTM E 112, eine Härte von mindestens 185 HBW, eine Leitfähigkeit zwischen 30 und 36 Sm/mm2, eine 0,2% Dehngrenze von mindestens 450 MPa und eine Bruchdehnung von mindestens 12 % aufweist.It is particularly advantageous if the casting mold in the cured state has an average grain size of 30 µm to 500 µm according to ASTM E 112, a hardness of at least 185 HBW, a conductivity between 30 and 36 Sm / mm 2 , a 0.2 % Yield strength of at least 450 MPa and an elongation at break of at least 12%.

Die erfindungsgemäße Kupferlegierung eignet sich entsprechend den Merkmalen des Patentanspruchs 10 insbesondere zur Herstellung der Mäntel von Gießwalzen einer Zweiwalzengießanlage, die beim endabmessungsnahen Gießen von Bändern aus Nichteisenmetallen, insbesondere von Bändern aus Aluminium oder Aluminiumlegierungen, einer wechselnden Temperaturbeanspruchung unter hohen Walzdrücken unterliegen.The copper alloy according to the invention is suitable in accordance with the features of claim 10 in particular for the production of the shells of casting rolls a two-roll caster that is used for casting tapes close to the final dimension made of non-ferrous metals, in particular of strips of aluminum or Aluminum alloys, a changing temperature stress under high Subject to rolling presses.

Hierbei kann jeder Mantel mit einer die Wärmedurchlässigkeit reduzierenden Beschichtung versehen sein. Dadurch kann die Produktqualität des abgegossenen Bands aus einem Nichteisenmetall, insbesondere jedoch aus Aluminium bzw. einer Aluminiumlegierung, noch mehr gesteigert werden. Die Beschichtung wird gezielt aufgrund des Betriebsverhaltens des Mantels aus einer Kupferlegierung bei insbesondere einem Aluminiumband dadurch bewirkt, daß sich zu Beginn eines Abgieß- und Walzvorgangs aus dem Zusammenwirken von Kupfer mit Aluminium auf der Oberfläche des Mantels eine Adhäsionsschicht bildet, aus der dann im weiteren Verlauf des Gießverfahrens Aluminium in die Kupferoberfläche eindringen und dort eine stabile widerstandsfähige Diffusionsschicht ausbilden, deren Dicke und Eigenschaft durch Gießgeschwindigkeit und Kühlbedingungen wesentlich bestimmt sind. Hierdurch wird die Oberflächenqualität des Aluminiumbands verbessert und folglich die Produktqualität deutlich erhöht.Each jacket can have a thermal permeability reducing Coating should be provided. This can affect the product quality of the cast Bands of a non-ferrous metal, but especially of aluminum or one Aluminum alloy, can be increased even more. The coating is targeted due to the operating behavior of the jacket made of a copper alloy causes an aluminum strip in particular that at the beginning of a Casting and rolling process from the interaction of copper with aluminum forms an adhesive layer on the surface of the jacket, from which it is then further developed During the casting process, aluminum penetrate the copper surface and form a stable, resistant diffusion layer there, the thickness and Property largely determined by casting speed and cooling conditions are. This improves and improves the surface quality of the aluminum strip consequently the product quality increased significantly.

Die Erfindung wird im folgenden näher erläutert. Anhand von sieben Legierungen (Legierungen A bis G) und drei Vergleichslegierungen (H bis J) wird gezeigt, wie kritisch die Zusammensetzung ist, um die angestrebte Eigenschaftskombination zu erreichen.The invention is explained in more detail below. Using seven alloys (Alloys A to G) and three comparative alloys (H to J) is shown how the composition is critical in order to achieve the desired combination of properties to reach.

Alle Legierungen wurden in einem Tiegelofen erschmolzen und zu Rundblöcken gleichen Formats vergossen. Die Zusammensetzung in Gewichtsprozenten ist in der nachfolgenden Tabelle 1 angegeben. Der Zusatz von Magnesium dient der Vordesoxidation der Schmelze und der Zirkoniumzusatz wirkt sich positiv auf die Warmplastizität aus. Legierung Co (%) Ni (%) Be (%) Zr (%) Mg (%) Cu (%) A 0,68 - 0,20 0,20 0,03 Rest B 1,0 - 0,22 0,22 0,03 Rest C 1,4 - 0,20 0,18 0,02 Rest D 0,65 - 0,29 0,21 0,04 Rest E 1,0 - 0,31 0,24 0,01 Rest F 1,4 - 0,28 0,19 0,03 Rest G 1,0 0,1 0,22 0,16 0,03 Rest H - 1,7 0,27 0,16 - Rest I 2,1 - 0,55 0,24 - Rest J - 1,4 0,54 0,20 - Rest All alloys were melted in a crucible furnace and cast into round blocks of the same format. The composition in percentages by weight is given in Table 1 below. The addition of magnesium serves to pre-deoxidize the melt and the addition of zirconium has a positive effect on the warm plasticity. alloy Co (%) Ni (%) Be (%) Zr (%) Mg (%) Cu (%) A 0.68 - 0.20 0.20 0.03 rest B 1.0 - 0.22 0.22 0.03 rest C 1.4 - 0.20 0.18 0.02 rest D 0.65 - 0.29 0.21 0.04 rest e 1.0 - 0.31 0.24 0.01 rest F 1.4 - 0.28 0.19 0.03 rest G 1.0 0.1 0.22 0.16 0.03 rest H - 1.7 0.27 0.16 - rest I 2.1 - 0.55 0.24 - rest J - 1.4 0.54 0.20 - rest

Die Legierungen wurden anschließend mit einem geringen Verpressungsverhältnis (= Querschnitt des Gußblocks / Querschnitt der Preßstange) von 5,6:1 auf einer Strangpresse bei 950 °C zu Flachstangen verpreßt. Die Legierungen wurden danach einer mindestens 30minütigen Lösungsglühung oberhalb 850 °C mit nachfolgender Wasserabschreckung unterzogen und anschließend 2 bis 32 h im Temperaturbereich zwischen 400 °C und 550 °C ausgehärtet. Es wurden die in der nachstehenden Tabelle 2 aufgeführten Eigenschaftskombinationen erreicht. Legierung Rm MPa Rp0,2 MPa A % HBW 2,5 187,5 el. Leitf. Sm/mm2 Korngröße mm A 694 492 21 207 36,8 0,09-0,25 B 675 486 18 207 32,8 0,09-0,18 C 651 495 18 211 30,0 0,045-0,13 D 707 501 19 207 31,4 0,09-0,25 E 735 505 19 229 33,6 0,045-0,18 F 735 520 19 224 32,3 0,09-0,25 G 696 513 18 213 33,5 0,065-0,18 H 688 556 10 202 41,0 2-3 I 784 541 11 229 30,3 1,5-3 J 645 510 4 198 30,9 4-6 Rm = Zugfestigkeit
RP0,2 = 0,2 % Dehngrenze
A = Bruchdehnung
HBW = Brinellhärte
The alloys were then pressed with a low compression ratio (= cross-section of the casting block / cross-section of the pressing rod) of 5.6: 1 on an extrusion press at 950 ° C. to give flat bars. The alloys were then subjected to solution annealing at least 30 minutes above 850 ° C. with subsequent water quenching and then hardened for 2 to 32 hours in the temperature range between 400 ° C. and 550 ° C. The property combinations listed in Table 2 below were achieved. alloy Rm MPa Rp 0.2 MPa A% HBW 2.5 187.5 el. guide Sm / mm 2 Grain size mm A 694 492 21 207 36.8 0.09 to 0.25 B 675 486 18 207 32.8 0.09 to 0.18 C 651 495 18 211 30.0 0.045 to 0.13 D 707 501 19 207 31.4 0.09 to 0.25 e 735 505 19 229 33.6 0.045 to 0.18 F 735 520 19 224 32.3 0.09 to 0.25 G 696 513 18 213 33.5 0.065 to 0.18 H 688 556 10 202 41.0 2-3 I 784 541 11 229 30.3 1,5-3 J 645 510 4 198 30.9 4-6 Rm = tensile strength
R P0.2 = 0.2% proof stress
A = elongation at break
HBW = Brinell hardness

Wie den Eigenschaftskombinationen zu entnehmen ist, erreichen die erfindungsgemäßen Legierungen, insbesondere zur Herstellung eines Mantels einer Gießwalze, das angestrebte rekristallisierte Feinkorngefüge mit einer entsprechend guten Bruchdehnung. Bei den Vergleichslegierungen H bis J liegt eine Korngröße über 1,5 mm vor, wodurch die Plastizität des Materials reduziert wird.As can be seen from the combinations of properties, those according to the invention achieve Alloys, in particular for the manufacture of a jacket Casting roller, the desired recrystallized fine grain structure with a corresponding good elongation at break. A grain size lies in the comparison alloys H to J over 1.5 mm, which reduces the plasticity of the material.

Eine zusätzliche Festigkeitssteigerung läßt sich durch Kaltumformung vor der Aushärtung erreichen. In der nachfolgenden Tabelle 3 sind Eigenschaftskombinationen zu den Legierungen A bis J wiedergegeben, die durch Lösungsglühen des gepreßten Materials von mindestens 30 Minuten oberhalb von 850 °C mit nachfolgender Wasserabschreckung, 10 % bis 15 % Kaltwalzung (Querschnittsreduktion) und anschließender Aushärtung von 2 bis 32 Stunden im Temperaturbereich zwischen 400 °C und 550 °C erreicht werden. Legierung Rm MPa Rpo,2 MPa A % HBW 2,5 187,5 el. Leitf. Sm/mm2 Korngröße mm A 688 532 20 211 36,7 0,13-0,25 B 679 534 18 207 34,6 0,045-0,18 C 741 600 17 227 34,4 0,065-0,18 D 690 537 21 207 32,6 0,065-0,25 E 735 576 19 230 34,7 0,045-0,18 F 741 600 17 227 34,4 0,13-0,25 G 695 591 15 224 33,0 0,18-0,35 H 751 689 9 202 40,9 2-4 I 836 712 10 229 31,0 2-3 J 726 651 6 198 31,5 3-6 An additional increase in strength can be achieved by cold forming before curing. The following table 3 shows combinations of properties for alloys A to J, which are obtained by solution annealing of the pressed material for at least 30 minutes above 850 ° C with subsequent water quenching, 10% to 15% cold rolling (reduction in cross-section) and subsequent hardening of 2 to 32 Hours in the temperature range between 400 ° C and 550 ° C can be reached. alloy Rm MPa Rp o, 2 MPa A% HBW 2.5 187.5 el. guide Sm / mm 2 Grain size mm A 688 532 20 211 36.7 0.13 to 0.25 B 679 534 18 207 34.6 0.045 to 0.18 C 741 600 17 227 34.4 0.065 to 0.18 D 690 537 21 207 32.6 0.065 to 0.25 e 735 576 19 230 34.7 0.045 to 0.18 F 741 600 17 227 34.4 0.13 to 0.25 G 695 591 15 224 33.0 0.18-0.35 H 751 689 9 202 40.9 2-4 I 836 712 10 229 31.0 2-3 J 726 651 6 198 31.5 3-6

Die erfindungsgemäßen Legierungen A bis G zeigen wiederum gute Bruchdehnungen und eine Korngröße unter 0,5 mm, während die Vergleichslegierungen H bis J ein grobes Korn mit einer Korngröße über 1,5 mm und niedrigere Bruchdehnungswerte aufweisen. Somit besitzen diese Kupferlegierungen eindeutige Verarbeitungsvorteile bei der Herstellung von Mänteln, insbesondere für größere Gießwalzen von Zweiwalzengießanlagen, wodurch es möglich wird, ein feinkörniges Endprodukt mit für den Anwendungsbereich optimalen Grundeigenschaften zu erzeugen.Alloys A to G according to the invention again show good elongations at break and a grain size below 0.5 mm, while the comparative alloys H to J a coarse grain with a grain size over 1.5 mm and smaller Have elongation at break values. So these copper alloys have unique Processing advantages in the manufacture of coats, especially for larger ones Casting rolls of two-roll casting machines, which makes it possible to have a fine-grained End product with optimal basic properties for the area of application produce.

Claims (10)

Aushärtbare Kupferlegierung aus - jeweils in Gew.% ausgedrückt - 0,4 % bis 2 % Kobalt, welches teilweise durch Nickel ersetzbar ist, 0,1 % bis 0,5 % Beryllium, wahlweise 0,03 % bis 0,5 % Zirkonium, 0,005 % bis 0,1 % Magnesium und gegebenenfalls maximal 0,15 % mindestens eines Elements aus der Niob, Mangan, Tantal, Vanadium, Titan, Chrom, Cer und Hafnium umfassenden Gruppe, Rest Kupfer einschließlich herstellungsbedingter Verunreinigungen und üblicher Verarbeitungszusätze als Werkstoff zur Herstellung von Gießformen.Hardenable copper alloy from - each expressed in% by weight - 0.4% to 2% Cobalt, which can be partially replaced by nickel, 0.1% to 0.5% beryllium, optionally 0.03% to 0.5% zirconium, 0.005% to 0.1% magnesium and possibly a maximum of 0.15% of at least one element from the niobium, Including manganese, tantalum, vanadium, titanium, chromium, cerium and hafnium Group, balance copper including manufacturing-related impurities and usual processing additives as a material for the production of casting molds. Kupferlegierung nach Patentanspruch 1, die 0,03 % bis 0,35 % Zirkonium und 0,005 % bis 0,05 % Magnesium enthält.Copper alloy according to claim 1, the 0.03% to 0.35% zirconium and Contains 0.005% to 0.05% magnesium. Kupferlegierung nach Patentanspruch 1 oder 2, die weniger als 1,0 % Kobalt, 0,15 % bis 0,3 % Beryllium und 0,15 % bis 0,3 % Zirkonium enthält.Copper alloy according to claim 1 or 2, which contains less than 1.0% cobalt, Contains 0.15% to 0.3% beryllium and 0.15% to 0.3% zirconium. Kupferlegierung nach einem der Patentansprüche 1 bis 3, bei der das Verhältnis Kobalt zu Beryllium zwischen 2 und 15 liegt.Copper alloy according to one of claims 1 to 3, in which the ratio Cobalt to beryllium is between 2 and 15. Kupferlegierung nach Patentanspruch 4, bei welcher das Verhältnis Kobalt zu Beryllium zwischen 2,2 und 5 liegt.Copper alloy according to claim 4, wherein the ratio of cobalt to Beryllium is between 2.2 and 5. Kupferlegierung nach mindestens einem der Patentansprüche 1 bis 5, die neben Kobalt bis zu 0,6 % Nickel enthält.Copper alloy according to at least one of claims 1 to 5, which in addition Contains cobalt up to 0.6% nickel. Kupferlegierung nach mindestens einem der Patentansprüche 1 bis 6, die bis maximal 0,15% mindestens eines Elements aus der Niob, Mangan, Tantal, Vanadium, Titan, Chrom, Cer und Hafnium umfassenden Gruppe enthält. Copper alloy according to at least one of claims 1 to 6, which to maximum 0.15% of at least one element from niobium, manganese, tantalum, Contains group comprising vanadium, titanium, chromium, cerium and hafnium. Kupferlegierung nach mindestens einem der Patentansprüche 1 bis 7, aus der durch die Verarbeitungsschritte Gießen, Warmumformen, Lösungsglühen bei 850 °C bis 980 °C, Kaltumformen bis zu 30 % sowie Aushärten bei 400 °C bis 550 °C innerhalb eines Zeitraums von 2 bis 32 h eine Gießform mit einer maximalen mittleren Korngröße von 1,5 mm nach ASTM E 112 herstellbar ist, die eine Härte von mindestens 170 HBW und eine elektrische Leitfähigkeit von mindestens 26 Sm/mm2 aufweist.Copper alloy according to at least one of Claims 1 to 7, from which the processing steps of casting, hot forming, solution annealing at 850 ° C to 980 ° C, cold forming up to 30% and hardening at 400 ° C to 550 ° C within a period of 2 to 32 h a casting mold with a maximum average grain size of 1.5 mm according to ASTM E 112 can be produced, which has a hardness of at least 170 HBW and an electrical conductivity of at least 26 Sm / mm 2 . Kupferlegierung nach Patentanspruch 8, die im ausgehärteten Zustand eine mittlere Korngröße von 30 µm bis 500 µm nach ASTM E 112, eine Härte von mindestens 185 HBW, eine Leitfähigkeit zwischen 30 und 36 Sm/mm2, eine 0,2 % Dehngrenze von mindestens 450 MPa und eine Bruchdehnung von mindestens 12 % aufweist.Copper alloy according to claim 8, which in the hardened state has an average grain size of 30 µm to 500 µm according to ASTM E 112, a hardness of at least 185 HBW, a conductivity between 30 and 36 Sm / mm 2 , a 0.2% proof stress of at least 450 MPa and an elongation at break of at least 12%. Kupferlegierung nach einem der Patentansprüche 1 bis 9 zur Herstellung der Mäntel von Gießwalzen einer Zweiwalzengießanlage, die beim endabmessungsnahen Gießen von Bändern aus Nichteisenmetallen, insbesondere aus Aluminium bzw. Aluminiumlegierungen, einer wechselnden Temperaturbeanspruchung unter hohen Walzdrücken unterliegen.Copper alloy according to one of claims 1 to 9 for the manufacture of Coats of casting rolls of a two-roll caster, which is close to the final dimensions Casting strips of non-ferrous metals, in particular made of aluminum or aluminum alloys, a changing one Subject to temperature stress under high rolling pressures.
EP02025220A 2001-11-21 2002-11-12 Mould made of a precipitation hardenable copper alloy Expired - Lifetime EP1314789B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10156925 2001-11-21
DE10156925A DE10156925A1 (en) 2001-11-21 2001-11-21 Hardenable copper alloy as a material for the production of casting molds

Publications (2)

Publication Number Publication Date
EP1314789A1 true EP1314789A1 (en) 2003-05-28
EP1314789B1 EP1314789B1 (en) 2006-01-11

Family

ID=7706344

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02025220A Expired - Lifetime EP1314789B1 (en) 2001-11-21 2002-11-12 Mould made of a precipitation hardenable copper alloy

Country Status (17)

Country Link
US (1) US7510615B2 (en)
EP (1) EP1314789B1 (en)
JP (1) JP4464038B2 (en)
KR (1) KR100958687B1 (en)
CN (1) CN1419981A (en)
AT (1) ATE315670T1 (en)
AU (1) AU2002302077B2 (en)
BR (1) BR0204703B1 (en)
CA (1) CA2409888C (en)
DE (2) DE10156925A1 (en)
DK (1) DK1314789T3 (en)
ES (1) ES2252379T3 (en)
MX (1) MXPA02010878A (en)
NO (1) NO337790B1 (en)
RU (1) RU2307000C2 (en)
TW (1) TW593702B (en)
ZA (1) ZA200209326B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314495A2 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Sleeve for a casting roll of a twin roll continuous caster
WO2009115081A1 (en) * 2008-03-19 2009-09-24 Kme Germany Ag & Co. Kg Method for the production of castings and castings produced according to the method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10206597A1 (en) * 2002-02-15 2003-08-28 Km Europa Metal Ag Hardenable copper alloy used as a material for blocks for the sides of strip casting mills contains alloying additions of cobalt, beryllium, zirconium, and magnesium and/or iron
DE102004002124A1 (en) * 2004-01-14 2005-08-11 Km Europa Metal Ag continuous casting and rolling
CN101333609B (en) * 2007-06-28 2011-03-16 周水军 Low copper beryllium mold material for gravitation and low-pressure casting and production process thereof
JP5040521B2 (en) * 2007-08-17 2012-10-03 株式会社Sumco Silicon casting equipment
DE102009037283A1 (en) * 2009-08-14 2011-02-17 Kme Germany Ag & Co. Kg mold
US20110290555A1 (en) * 2010-05-31 2011-12-01 Hitachi Cable Fine-Tech, Ltd. Cable harness
RU2471583C2 (en) * 2011-03-16 2013-01-10 Сергей Алексеевич Костин Method of making large-size sheet billet for stamping articles from copper-based alloy
CN102527961B (en) * 2011-12-28 2016-06-01 烟台万隆真空冶金股份有限公司 A kind of copper sleeve for strip continuous casting crystallization roller and manufacture method thereof
CN102876918B (en) * 2012-09-03 2014-07-09 西峡龙成特种材料有限公司 Cu-Co-Be alloy for crystallizer copper plate parent metal of high-pulling-speed continuous casting machine and preparation process thereof
DE102012019555A1 (en) * 2012-10-05 2014-04-10 Kme Germany Gmbh & Co. Kg Electrode for a welding gun
JP6063592B1 (en) * 2016-05-13 2017-01-18 三芳合金工業株式会社 Copper alloy tube excellent in high temperature brazing and manufacturing method thereof
JP2020504272A (en) * 2017-01-06 2020-02-06 マテリオン コーポレイション Copper-beryllium alloy piston compression ring
JP7399855B2 (en) * 2017-11-17 2023-12-18 マテリオン コーポレイション Metal ring formed from beryllium-copper alloy
DE102018122574B4 (en) * 2018-09-14 2020-11-26 Kme Special Products Gmbh Use of a copper alloy
CN115558874B (en) * 2022-11-04 2023-12-19 烟台万隆真空冶金股份有限公司 Preparation method of thin-wall copper-based alloy glass mold

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179314A (en) * 1978-12-11 1979-12-18 Kawecki Berylco Industries, Inc. Treatment of beryllium-copper alloy and articles made therefrom
DE3120978A1 (en) * 1980-05-26 1982-02-11 Chuetsu Metal Works Co., Ltd., Tokyo "ELIGIBLE HARDENING ALLOY FOR STRUCTURAL MOLDING"
US4599120A (en) * 1985-02-25 1986-07-08 Brush Wellman Inc. Processing of copper alloys
JPH02166248A (en) * 1988-12-19 1990-06-26 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening continuous casting
EP0548636A1 (en) * 1991-12-24 1993-06-30 KM Europa Metal Aktiengesellschaft Use of an hardenable copper alloy
DE10018504A1 (en) * 2000-04-14 2001-10-18 Sms Demag Ag Use of a hardenable copper alloy containing beryllium and nickel for molds for producing plates for thin slab continuous casting molds

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657601A (en) * 1983-11-10 1987-04-14 Brush Wellman Inc. Thermomechanical processing of beryllium-copper alloys
US4565586A (en) * 1984-06-22 1986-01-21 Brush Wellman Inc. Processing of copper alloys
JPS6260879A (en) * 1985-09-10 1987-03-17 Ngk Insulators Ltd Wear resistant copper alloy member
JPH04221030A (en) * 1990-12-21 1992-08-11 Nikko Kyodo Co Ltd Copper alloy for die for plastic molding
JPH04221031A (en) * 1990-12-21 1992-08-11 Nikko Kyodo Co Ltd High strength and high thermal conductivity copper alloy for die for plastic molding and its manufacture
JP3303623B2 (en) * 1995-09-22 2002-07-22 三菱マテリアル株式会社 Method for producing copper alloy mold material for steelmaking continuous casting and mold produced thereby
JP2971790B2 (en) * 1995-10-16 1999-11-08 日本碍子株式会社 Casting mold with excellent thermal conductivity-hardness balance
FR2750438B1 (en) * 1996-06-27 1998-08-07 Usinor Sacilor METHOD AND INSTALLATION FOR ELECTROLYTIC COATING WITH A METAL LAYER OF THE SURFACE OF A CYLINDER FOR CONTINUOUS CASTING OF THIN METAL STRIPS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179314A (en) * 1978-12-11 1979-12-18 Kawecki Berylco Industries, Inc. Treatment of beryllium-copper alloy and articles made therefrom
DE3120978A1 (en) * 1980-05-26 1982-02-11 Chuetsu Metal Works Co., Ltd., Tokyo "ELIGIBLE HARDENING ALLOY FOR STRUCTURAL MOLDING"
US4599120A (en) * 1985-02-25 1986-07-08 Brush Wellman Inc. Processing of copper alloys
JPH02166248A (en) * 1988-12-19 1990-06-26 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening continuous casting
EP0548636A1 (en) * 1991-12-24 1993-06-30 KM Europa Metal Aktiengesellschaft Use of an hardenable copper alloy
DE10018504A1 (en) * 2000-04-14 2001-10-18 Sms Demag Ag Use of a hardenable copper alloy containing beryllium and nickel for molds for producing plates for thin slab continuous casting molds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 431 (C - 0759) 17 September 1990 (1990-09-17) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314495A2 (en) * 2001-11-21 2003-05-28 KM Europa Metal Aktiengesellschaft Sleeve for a casting roll of a twin roll continuous caster
EP1314495A3 (en) * 2001-11-21 2003-12-10 KM Europa Metal Aktiengesellschaft Sleeve for a casting roll of a twin roll continuous caster
WO2009115081A1 (en) * 2008-03-19 2009-09-24 Kme Germany Ag & Co. Kg Method for the production of castings and castings produced according to the method
CN101945719B (en) * 2008-03-19 2013-03-13 Kme德国股份及两合公司 Method for the production of castings and castings produced according to the method
RU2492961C2 (en) * 2008-03-19 2013-09-20 Кме Джермани Аг Унд Ко. Кг Method of producing mould parts and mould parts thus made

Also Published As

Publication number Publication date
JP2003160830A (en) 2003-06-06
NO20025564D0 (en) 2002-11-20
RU2307000C2 (en) 2007-09-27
ZA200209326B (en) 2003-06-02
US20030094220A1 (en) 2003-05-22
AU2002302077A1 (en) 2003-06-12
BR0204703A (en) 2003-09-16
CN1419981A (en) 2003-05-28
ATE315670T1 (en) 2006-02-15
EP1314789B1 (en) 2006-01-11
CA2409888C (en) 2014-09-02
MXPA02010878A (en) 2004-07-16
JP4464038B2 (en) 2010-05-19
NO20025564L (en) 2003-05-22
DK1314789T3 (en) 2006-05-29
DE50205572D1 (en) 2006-04-06
AU2002302077B2 (en) 2008-10-02
KR100958687B1 (en) 2010-05-20
CA2409888A1 (en) 2003-05-21
ES2252379T3 (en) 2006-05-16
US7510615B2 (en) 2009-03-31
BR0204703B1 (en) 2010-09-21
NO337790B1 (en) 2016-06-20
TW593702B (en) 2004-06-21
KR20030041832A (en) 2003-05-27
DE10156925A1 (en) 2003-05-28

Similar Documents

Publication Publication Date Title
EP1314789B1 (en) Mould made of a precipitation hardenable copper alloy
EP2829624B1 (en) Aluminium material with improved precipitation hardening
EP1888798B1 (en) Aluminium plain bearing alloy
EP2013371A2 (en) Copper-nickel-tin alloy and its use
DE102004025600A1 (en) Electrode material and process for its manufacture
EP2192202B9 (en) Aluminium sheet for lithographic printing plate support having high resistance to bending cycles
EP0548636B1 (en) Use of an hardenable copper alloy
EP1340564B1 (en) Use of a hardenable copper alloy
EP2061912B1 (en) ALUMINIUM ALLOY OF THE AlZnMg TYPE AND METHOD OF PRODUCING IT
DE102019205267B3 (en) Die-cast aluminum alloy
EP0521319A1 (en) Copper-nickel-tin alloy, process for the treatment of this alloy and application thereof
DE2809561A1 (en) COPPER ALLOY WITH GOOD ELECTRICAL CONDUCTIVITY AND GOOD MECHANICAL PROPERTIES
EP0346645B1 (en) Use of an age-hardenable copper-based alloy
EP1314495B1 (en) Sleeve for a casting roll of a twin roll continuous caster
EP1412113A2 (en) Sinter metal parts with homogeneous distribution of non-homogeneously melting components and method for the production thereof
EP1980633B1 (en) Use of a bronze alloy for a worm gear
EP0702094A1 (en) Use of a hardenable copper alloy
DE10224268A1 (en) Casting roll for a two-roll casting plant
EP1274871A1 (en) Use of a hardenable copper alloy for molds
EP2354264B1 (en) Wear-resistant, heat-resistant material and use of same
EP0249740B1 (en) Using a copper alloy
WO2004074526A2 (en) Copper alloy and use thereof for cast moulding
EP1093529A1 (en) Lead free aluminium alloy based on a mixture of aluminium-copper-magnesium with good machining capacity
WO2024032924A1 (en) Wrought copper-zinc alloy, semi-finished product made from a wrought copper-zinc alloy, and method for producing such a semi-finished product
DE3620655A1 (en) Copper alloy for producing concast moulds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031020

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20040319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: MOULD MADE OF A PRECIPITATION HARDENABLE COPPER ALLOY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060111

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 50205572

Country of ref document: DE

Date of ref document: 20060406

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060411

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2252379

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20060401065

Country of ref document: GR

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

26N No opposition filed

Effective date: 20061012

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: KME GERMANY AG

Free format text: KM EUROPA METAL AKTIENGESELLSCHAFT#KLOSTERSTRASSE 29#49074 OSNABRUECK (DE) -TRANSFER TO- KME GERMANY AG#KLOSTERSTRASSE 29#49074 OSNABRUECK (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50205572

Country of ref document: DE

Representative=s name: PIETRZYKOWSKI, ANJA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50205572

Country of ref document: DE

Representative=s name: PIETRZYKOWSKI, ANJA, DE

Effective date: 20130122

Ref country code: DE

Ref legal event code: R081

Ref document number: 50205572

Country of ref document: DE

Owner name: KME GERMANY GMBH & CO. KG, DE

Free format text: FORMER OWNER: KME GERMANY AG & CO. KG, 49074 OSNABRUECK, DE

Effective date: 20130122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KME GERMANY GMBH AND CO. KG, DE

Free format text: FORMER OWNER: KME GERMANY AG, DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: KME GERMANY AG & CO. KG, DE

Effective date: 20130821

BECH Be: change of holder

Owner name: KME GERMANY G.M.B.H. & CO. K.G.

Effective date: 20130829

BECN Be: change of holder's name

Owner name: KME GERMANY G.M.B.H. & CO. K.G.

Effective date: 20130829

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20130828

Ref country code: NL

Ref legal event code: SD

Effective date: 20130828

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: KME GERMANY GMBH & CO. KG, DE

Effective date: 20131029

Ref country code: FR

Ref legal event code: CD

Owner name: KME GERMANY GMBH & CO. KG, DE

Effective date: 20131029

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 315670

Country of ref document: AT

Kind code of ref document: T

Owner name: KME GERMANY GMBH & CO. KG, DE

Effective date: 20140219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211123

Year of fee payment: 20

Ref country code: NL

Payment date: 20211125

Year of fee payment: 20

Ref country code: DK

Payment date: 20211122

Year of fee payment: 20

Ref country code: ES

Payment date: 20211216

Year of fee payment: 20

Ref country code: FI

Payment date: 20211118

Year of fee payment: 20

Ref country code: FR

Payment date: 20211126

Year of fee payment: 20

Ref country code: PT

Payment date: 20211029

Year of fee payment: 20

Ref country code: SE

Payment date: 20211122

Year of fee payment: 20

Ref country code: TR

Payment date: 20211101

Year of fee payment: 20

Ref country code: AT

Payment date: 20211118

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211119

Year of fee payment: 20

Ref country code: GR

Payment date: 20211122

Year of fee payment: 20

Ref country code: CH

Payment date: 20211122

Year of fee payment: 20

Ref country code: BE

Payment date: 20211125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220127

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50205572

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Expiry date: 20221112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20221111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20221112

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20221111

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 315670

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221123

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20221113