EP1305846B1 - Active dual-polarization microwave reflector, in particular for electronically scanning antenna - Google Patents

Active dual-polarization microwave reflector, in particular for electronically scanning antenna Download PDF

Info

Publication number
EP1305846B1
EP1305846B1 EP01958154A EP01958154A EP1305846B1 EP 1305846 B1 EP1305846 B1 EP 1305846B1 EP 01958154 A EP01958154 A EP 01958154A EP 01958154 A EP01958154 A EP 01958154A EP 1305846 B1 EP1305846 B1 EP 1305846B1
Authority
EP
European Patent Office
Prior art keywords
reflector
phase shift
layer
guides
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01958154A
Other languages
German (de)
French (fr)
Other versions
EP1305846A1 (en
Inventor
Claude Thales Intellectual Property CHEKROUN
Serge Thales Intellectual Property DRABOWITCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1305846A1 publication Critical patent/EP1305846A1/en
Application granted granted Critical
Publication of EP1305846B1 publication Critical patent/EP1305846B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the present invention relates to a bi-polarization active electron-beam reflector capable of being illuminated by a microwave source to form an antenna.
  • antennas comprising an active microwave reflector.
  • the latter also called “reflect array” in the Anglo-Saxon literature, is a network of electronically controllable phase shifters.
  • This network extends in a plane and comprises an array of phase-controlled elements, or phased array, disposed in front of reflector means, constituted for example by a ground plane forming a ground plane.
  • the reflector network comprises in particular elementary cells each performing the electronically variable reflection and phase shift, of the microwave wave it receives.
  • a primary source for example a horn, arranged in front of the reflector network emits microwave waves towards the latter.
  • a patent US-A-3,706,998 presents an antenna with two polarizations with nested networks.
  • An object of the invention is in particular to allow the realization of an electronic scanning antenna using an active reflector network and operating in two independent polarizations.
  • the subject of the invention is an active microwave reflector capable of receiving an electromagnetic wave comprising two interwoven waveguide arrays. The bottom of each guide is closed by a circuit performing the reflection and phase shift of the wave it receives, a network being intended to receive a polarization and the other network being intended to receive a polarization perpendicular to the previous one.
  • An embodiment may be as defined by claim 1.
  • the invention also relates to an electronic scanning antenna comprising a reflector as defined above.
  • This antenna may for example be of the "Reflect Array” type or of the Cassegrain type.
  • the invention has the particular advantage that it provides a compact reflector and low weight, it is simple to implement and it is economical.
  • FIG. 1 schematically illustrates an exemplary embodiment of an electron-ray scanning antenna with an active reflector network facing an orthonormal Oxyz coordinate system.
  • the microwave distribution is for example of the so-called optical type, that is to say for example provided by means of a primary source illuminating the reflector network.
  • the antenna comprises a primary source 1, for example a horn.
  • the primary source 1 transmits microwave waves 3 to the active reflector network 4 disposed in the Oxy plane.
  • This reflector network 4 comprises a set of elementary cells performing the reflection and phase shift of the waves they receive.
  • the primary source 1 may be double polarized.
  • FIG. 2 illustrates the principle of producing a reflector according to the invention.
  • the latter comprises two networks of waveguides 21, 22 nested. These guides are seen according to F, that is to say according to a front view of the reflector 4.
  • the figure thus represents in particular the section of the guides in the plane Oxy, the walls of the guides extending in the direction Oz.
  • Each guide belongs to an elementary cell as mentioned above.
  • a first array of guides 21 is intended to receive the vertical polarization and a second array of guides 22 is intended to receive the horizontal polarization.
  • the incident microwave waves penetrate the guides.
  • Each guide 21, 22 is short-circuited by a phase-shifter as described for example in the patent application French n ° 97 01326 , controllable in two to four bits or more.
  • FIG. 3 schematically illustrates a phase shift cell.
  • This therefore comprises a guide 21, 22 and a phase shift circuit 31, the latter being arranged at the bottom of the guide in the plane Oxy.
  • a phase shifter circuit 31 comprises at least one conductive wire 32, 33 itself carrying at least two semiconductors D 1 , D 2 , for example two-state diodes. Conductor wires and diodes are placed on a support dielectric 34 whose opposite face comprises a conductive plane reflecting the microwave wave. This conductive plane is for example in electrical contact with the walls of the guide 21, 22.
  • An elementary cell 31 thus realizes the reflection and the phase shift of the microwave wave 3 that it receives for the wave component whose polarization is substantially parallel to the son son 32, 33.
  • the cell as shown in Figure 3 acts on a polarized wave in the direction Oy parallel to the direction of the son of conductive 32, 33 of the cell.
  • horizontal polarization only the guides intended to receive this polarization are active, the others being short-circuited.
  • vertical polarization only the guides intended to receive this polarization are active, the others being short-circuited.
  • Figures 4a, 4b and 4c illustrate a possible nesting mode of the two guide arrays.
  • Figure 4a shows three guides 21 of the first network, representing a mesh, intended for example to receive the vertical polarization.
  • Figure 4b shows three guides 22 of the second network, representing a mesh, intended for example to receive the horizontal polarization.
  • the two networks are intended to receive cross-polarization waves, the second network of guides 22 being assigned to a polarization perpendicular to the polarization of the first network of guides 21.
  • the section of each guide comprises a midpoint C. Since this section is angular, the midpoint C is the intersection of its two median lines.
  • the sections of the guides are represented in the plane Oxy of the reflector.
  • the Ox axis corresponds to the direction of a first polarization.
  • the axis Oy corresponds to the direction of the second polarization, crossed with respect to the previous one.
  • FIG. 4a thus presents a first network of guides 21 intended to receive the vertical polarizations.
  • the network has several sets of aligned guides.
  • a guide line extends in the horizontal direction Ox and the set of lines extends in the direction Vertical Oy.
  • the centers C of two consecutive guides 21 are separated by a distance d.
  • Two consecutive lines are separated by a distance h, according to Oy, and offset relative to each other by the distance d / 2, according to Ox.
  • two median lines 41, 42 consecutive are distant from h, the center lines being the center lines of the guides taken according to Ox. Between two consecutive lines, there is a shift of d / 2 of the middle points of the guides.
  • Figure 4b shows the second array of guides 22 for receiving horizontal polarization.
  • the arrangement of the guides is similar to that of the network of Figure 4a, but with a rotation of the whole 90 °.
  • the lines extend along the axis Oy and the set of lines extends along the axis Ox.
  • the centers C of two consecutive guides 22 are separated by a distance d.
  • Two consecutive lines are separated by a distance h, according to Ox, and offset relative to each other by the distance d / 2, according to Oy.
  • two consecutive median lines 43, 44 are distant. of h, the median lines being the median lines of the guides taken according to Oy. Between two consecutive lines, there is a shift of d / 2 of the middle points of the guides.
  • FIG. 4c defines the nesting of the two guide arrays by showing how a guide 22 of a network is positioned relative to the guides 21 of the other network.
  • This guide 22 is contiguous with guides 21 of the other network.
  • the guide 22 is contiguous to four guides 21 of the other network.
  • the midpoint C of this guide 22 is aligned with the middle points of the two pairs of guides 21 flanking the guide 22.
  • a mesh is thus obtained as shown in FIG. 2.
  • the distance d between the middle points C of two consecutive guides of the same line is then equal ⁇ for example and the distance h between the medians 41, 42, 43, 44 of two consecutive lines is for example ⁇ / 2.
  • the inner dimensions of a waveguide are 1.8 cm and 0.9 cm, and the distances d and h are respectively 3 cm and 1.5 cm. This mesh allows in particular a misalignment of the beam reflected by the reflector 4 on a cone of about 60 °.
  • FIG. 5 presents, in a sectional view, the possible constituent layers of a reflector according to the invention. It comprises at least three layers 51, 52, 53.
  • a first layer 51 comprises the phase-shift microwave circuits, that is to say in particular the diodes D 1 , D 2 , the conducting wires which carry them and the connection circuits. associates.
  • the microwave circuits are for example supported by a substrate 54. On the face opposite to the microwave circuits, this substrate is covered with a metallized layer 56, forming a conductive plane, whose particular function is to reflect the microwave waves 3.
  • the thickness e h of the substrate is for example of the order of 3 mm, the relative dielectric constant ⁇ r being of the order of 2.5.
  • a second layer 52 comprises the control circuits 55 of the diodes D 1 , D 2 of the phase shifters.
  • This layer also ensures the connection between the control circuits and the diodes.
  • it has for example the structure of a multilayer printed circuit comprising interconnection planes of the control circuits to the microwave circuits.
  • a third layer 53 arranged opposite the microwave circuits D 1 , D 2 comprises the two waveguide gratings.
  • FIG. 6 shows a possible embodiment of the waveguide layer 53.
  • the walls of the guides 21, 22 are formed by metallized holes 61, 62 oriented in the direction Oz. These metallized holes could be replaced by conductive son, that is to say straight electrical conductors, oriented in the direction Oz.
  • the guides thus produced have for example common wall portions, that is to say that metallized holes 63, 64 are common to two guides. In this case, two neighboring guides have metallized holes in common.
  • the metallized holes are made in a plate of dielectric material of thickness eg, this thickness constituting the length of the guides.
  • the metallized holes are close enough to act as walls of waveguides. These metallized holes 61, 62 thus cross the entire third layer 53.
  • certain metallized holes 61, 64 may extend in the layer 52 comprising the control circuits. These holes which extend allow in particular to electrically connect the control circuits to the diodes of the phase-shifter circuits of the microwave layer 51. These metallized holes 61, 64 thus convey the control of the diodes and the power supply circuits. They are for example connected to the different interconnection planes of the control layer 52.
  • the metallized holes 61, 64 shown in black are also used for the supply and control of the microwave circuits. These holes 61, 64 pass through the conductive plane 56 without electrical contact with the latter.
  • the other holes 62, 63 stop for example at this conductive plane 56, in electrical contact with the latter.
  • the thickness e g of the waveguide layer is for example of the order of one centimeter.
  • the weight of a reflector according to the invention is low because of the low weight of the different layers. . Moreover, despite the waveguide layer, the reflector remains compact.
  • FIG. 7 illustrates a complementary embodiment making it possible in particular to reduce the active standing wave ratio (TOS) in the guides.
  • the inlet of the guides 21, 22 comprises an iris 71 of rectangular opening, the assembly being closed by a dielectric plate 72.
  • the waveguide layer 53 may be covered with a layer forming the irises, the assembly being closed by a dielectric layer.
  • a reflector according to the invention can be used for different types of antennas. It can be used as shown in Figure 1 to form a antenna of the "reflect array” type. Similarly, it can be used in a Cassegrain type antenna. In the latter case, the primary source is placed in the center of the reflector and illuminates an auxiliary reflector. The latter in turn illuminates, by reflection, the reflector according to the invention.
  • a reflector or an antenna according to the invention are simple to implement. They are also economical because the components and technologies used are cheap.
  • the invention also provides all the advantages associated with bipolarization.
  • An antenna according to the invention can thus for example be used for polarimetric measurements on targets, in particular by transmitting on one polarization and receiving on the other polarization. It can be used in telecommunication applications, for example bi-band.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

La présente invention concerne un réflecteur hyperfréquence actif à balayage électronique à bipolarisation, susceptible d'être illuminé par une source d'onde hyperfréquence pour former une antenne.The present invention relates to a bi-polarization active electron-beam reflector capable of being illuminated by a microwave source to form an antenna.

Il est connu de réaliser des antennes comportant un réflecteur hyperfréquence actif. Ce dernier, par ailleurs nommé « reflect array » dans la littérature anglo-saxonne, est un réseau de déphaseurs commandables électroniquement. Ce réseau s'étend dans un plan et comporte un réseau d'éléments à contrôle de phase, ou réseau phasé, disposé devant des moyens réflecteurs, constitués par exemple par un plan de masse métallique formant plan de masse. Le réseau réflecteur comporte notamment des cellules élémentaires réalisant chacune la réflexion et le déphasage, variable sur commande électronique, de l'onde hyperfréquence qu'elle reçoit. Une telle antenne apporte une grande agilité de faisceau. Une source primaire, par exemple un cornet, disposée devant le réseau réflecteur émet vers ce dernier les ondes hyperfréquence.It is known to produce antennas comprising an active microwave reflector. The latter, also called "reflect array" in the Anglo-Saxon literature, is a network of electronically controllable phase shifters. This network extends in a plane and comprises an array of phase-controlled elements, or phased array, disposed in front of reflector means, constituted for example by a ground plane forming a ground plane. The reflector network comprises in particular elementary cells each performing the electronically variable reflection and phase shift, of the microwave wave it receives. Such an antenna provides great beam agility. A primary source, for example a horn, arranged in front of the reflector network emits microwave waves towards the latter.

Un brevet US-A-3 706 998 présente une antenne à deux polarisations à réseaux imbriqués.A patent US-A-3,706,998 presents an antenna with two polarizations with nested networks.

Un but de l'invention est notamment de permettre la réalisation d'une antenne à balayage électronique utilisant un réseau réflecteur actif et fonctionnant selon deux polarisations indépendantes. A cet effet, l'invention a pour objet un réflecteur hyperfréquence actif, susceptible de recevoir une onde électromagnétique comportant deux réseaux de guide d'ondes imbriqués. Le fond de chaque guide est fermé par un circuit réalisant la réflexion et le déphasage de l'onde qu'elle reçoit, un réseau étant destiné à recevoir une polarisation et l'autre réseau étant destiné à recevoir une polarisation perpendiculaire à la précédente.An object of the invention is in particular to allow the realization of an electronic scanning antenna using an active reflector network and operating in two independent polarizations. For this purpose, the subject of the invention is an active microwave reflector capable of receiving an electromagnetic wave comprising two interwoven waveguide arrays. The bottom of each guide is closed by a circuit performing the reflection and phase shift of the wave it receives, a network being intended to receive a polarization and the other network being intended to receive a polarization perpendicular to the previous one.

Un mode de réalisation peut être tel que celui défini par la revendication 1.An embodiment may be as defined by claim 1.

L'invention a également pour objet une antenne à balayage électronique comportant un réflecteur tel que défini précédemment. Cette antenne peut être par exemple du type « Reflect Array » ou du type Cassegrain.The invention also relates to an electronic scanning antenna comprising a reflector as defined above. This antenna may for example be of the "Reflect Array" type or of the Cassegrain type.

L'invention a notamment pour avantage qu'elle permet d'obtenir un réflecteur compact et de faible poids, qu'elle est simple à mettre en oeuvre et qu'elle est économique.The invention has the particular advantage that it provides a compact reflector and low weight, it is simple to implement and it is economical.

D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :

  • la figure 1, un exemple de réalisation d'une antenne à balayage électronique à réflecteur hyperfréquence actif ;
  • la figure 2, une illustration du principe de réalisation d'un réflecteur selon l'invention ;
  • la figure 3, un exemple de réalisation d'une cellule de déphasage ;
  • les figures 4a, 4b et 4c, une illustration d'un mode d'imbrication possible des réseaux de guides d'un réflecteur selon l'invention ;
  • la figure 5, par une vue en coupe, les couches constitutives possibles d'un réflecteur selon l'invention ;
  • la figure 6, un mode de réalisation possible des réseaux de guides d'un réflecteur selon l'invention ;
  • la figure 7, un mode de réalisation complémentaire permettant notamment de réduire le taux d'ondes stationnaires.
Other characteristics and advantages of the invention will become apparent with the aid of the following description made with reference to appended drawings which represent:
  • FIG. 1, an exemplary embodiment of an active microwave reflector electronic scanning antenna;
  • FIG. 2, an illustration of the principle of producing a reflector according to the invention;
  • Figure 3, an exemplary embodiment of a phase shift cell;
  • Figures 4a, 4b and 4c, an illustration of a possible method of nesting the guide arrays of a reflector according to the invention;
  • Figure 5, in a sectional view, the possible constituent layers of a reflector according to the invention;
  • FIG. 6, a possible embodiment of the guide arrays of a reflector according to the invention;
  • FIG. 7, a complementary embodiment making it possible in particular to reduce the standing wave ratio.

La figure 1 illustre de façon schématique un exemple de réalisation d'une antenne à balayage électronique à réseau réflecteur actif en regard d'un repère orthonormé Oxyz. Dans cet exemple de réalisation, la distribution hyperfréquence est par exemple du type dit optique, c'est-à-dire par exemple assurée à l'aide d'une source primaire illuminant le réseau réflecteur. A cet effet, l'antenne comporte une source primaire 1, par exemple un cornet. La source primaire 1 émet des ondes hyperfréquence 3 vers le réseau réflecteur actif 4, disposé dans le plan Oxy. Ce réseau réflecteur 4 comporte un ensemble de cellules élémentaires réalisant la réflexion et le déphasage des ondes qu'elles reçoivent. Ainsi, par commande des déphasages imprimés à l'onde reçue par chaque cellule, il est possible ainsi qu'il est connu, de former un faisceau hyperfréquence dans la direction souhaitée. Avec un réflecteur selon l'invention, la source primaire 1 peut être à double polarisation.FIG. 1 schematically illustrates an exemplary embodiment of an electron-ray scanning antenna with an active reflector network facing an orthonormal Oxyz coordinate system. In this exemplary embodiment, the microwave distribution is for example of the so-called optical type, that is to say for example provided by means of a primary source illuminating the reflector network. For this purpose, the antenna comprises a primary source 1, for example a horn. The primary source 1 transmits microwave waves 3 to the active reflector network 4 disposed in the Oxy plane. This reflector network 4 comprises a set of elementary cells performing the reflection and phase shift of the waves they receive. Thus, by controlling the phase shifts printed on the wave received by each cell, it is possible, as is known, to form a microwave beam in the desired direction. With a reflector according to the invention, the primary source 1 may be double polarized.

La figure 2 illustre le principe de réalisation d'un réflecteur selon l'invention. Ce dernier comporte deux réseaux de guides d'onde 21, 22 imbriqués. Ces guides sont vus selon F, c'est-à-dire selon une vue de face du réflecteur 4. La figure représente donc notamment la section des guides dans le plan Oxy, les parois des guides s'étendant dans la direction Oz. Chaque guide appartient à une cellule élémentaire telle qu'évoquée précédemment. Un premier réseau de guides 21 est destiné à recevoir la polarisation verticale et un second réseau de guides 22 est destiné à recevoir la polarisation horizontale. Les ondes hyperfréquence 3 incidentes pénètrent dans les guides. Chaque guide 21, 22 est court-circuité par un déphaseur tel que décrit par exemple dans la demande de brevet français n° 97 01326 , commandable selon deux à quatre bits ou plus.FIG. 2 illustrates the principle of producing a reflector according to the invention. The latter comprises two networks of waveguides 21, 22 nested. These guides are seen according to F, that is to say according to a front view of the reflector 4. The figure thus represents in particular the section of the guides in the plane Oxy, the walls of the guides extending in the direction Oz. Each guide belongs to an elementary cell as mentioned above. A first array of guides 21 is intended to receive the vertical polarization and a second array of guides 22 is intended to receive the horizontal polarization. The incident microwave waves penetrate the guides. Each guide 21, 22 is short-circuited by a phase-shifter as described for example in the patent application French n ° 97 01326 , controllable in two to four bits or more.

La figure 3 illustre de façon schématique une cellule de déphasage. Celle-ci comporte donc un guide 21, 22 et un circuit de déphasage 31, ce dernier étant disposé au fond du guide dans le plan Oxy. Un circuit déphaseur 31 comporte au moins un fil conducteur 32, 33 portant lui-même au moins deux semi-conducteurs D1, D2, par exemple des diodes, à deux états. Les fils conducteurs et les diodes sont placés sur un support diélectrique 34 dont la face opposée comporte un plan conducteur réfléchissant l'onde hyperfréquence. Ce plan conducteur est par exemple au contact électrique des parois du guide 21, 22. Une cellule élémentaire 31 réalise donc la réflexion et le déphasage de l'onde hyperfréquence 3 qu'elle reçoit pour la composante de l'onde dont la polarisation est sensiblement parallèle aux fils conducteurs 32, 33. A titre d'exemple, la cellule telle qu'illustrée par la figure 3 agit sur une onde polarisée selon la direction Oy parallèle à la direction des fils conducteurs 32, 33 de la cellule. En polarisation horizontale, seuls les guides destinés à recevoir cette polarisation sont actifs, les autres étant court-circuités. De même, en polarisation verticale, seuls les guides destinés à recevoir cette polarisation sont actifs, les autres étant court-circuités.Figure 3 schematically illustrates a phase shift cell. This therefore comprises a guide 21, 22 and a phase shift circuit 31, the latter being arranged at the bottom of the guide in the plane Oxy. A phase shifter circuit 31 comprises at least one conductive wire 32, 33 itself carrying at least two semiconductors D 1 , D 2 , for example two-state diodes. Conductor wires and diodes are placed on a support dielectric 34 whose opposite face comprises a conductive plane reflecting the microwave wave. This conductive plane is for example in electrical contact with the walls of the guide 21, 22. An elementary cell 31 thus realizes the reflection and the phase shift of the microwave wave 3 that it receives for the wave component whose polarization is substantially parallel to the son son 32, 33. For example, the cell as shown in Figure 3 acts on a polarized wave in the direction Oy parallel to the direction of the son of conductive 32, 33 of the cell. In horizontal polarization, only the guides intended to receive this polarization are active, the others being short-circuited. Likewise, in vertical polarization, only the guides intended to receive this polarization are active, the others being short-circuited.

Les figures 4a, 4b et 4c illustrent un mode d'imbrication possible des deux réseaux de guides. La figure 4a présente trois guides 21 du premier réseau, représentant une maille, destinés par exemple à recevoir la polarisation verticale. La figure 4b présente trois guides 22 du second réseau, représentant une maille, destinés par exemple à recevoir la polarisation horizontale. En tout état de cause, les deux réseaux sont destinés à recevoir des ondes de polarisations croisées, le deuxième réseau de guides 22 étant affecté à une polarisation perpendiculaire à la polarisation du premier réseau de guides 21. La section de chaque guide comporte un point milieu C. Cette section étant angulaire, le point milieu C est l'intersection de ses deux lignes médianes. Les sections des guides sont représentées dans le plan Oxy du réflecteur. A titre d'exemple on considère que l'axe Ox correspond à la direction d'une première polarisation. De même, on considère que l'axe Oy correspond à la direction de la deuxième polarisation, croisée par rapport à la précédente. Pour simplifier et à titre d'exemple, on pourra assimiler par la suite la direction Oy à la direction verticale et la direction Ox à la direction horizontale.Figures 4a, 4b and 4c illustrate a possible nesting mode of the two guide arrays. Figure 4a shows three guides 21 of the first network, representing a mesh, intended for example to receive the vertical polarization. Figure 4b shows three guides 22 of the second network, representing a mesh, intended for example to receive the horizontal polarization. In any case, the two networks are intended to receive cross-polarization waves, the second network of guides 22 being assigned to a polarization perpendicular to the polarization of the first network of guides 21. The section of each guide comprises a midpoint C. Since this section is angular, the midpoint C is the intersection of its two median lines. The sections of the guides are represented in the plane Oxy of the reflector. For example, it is considered that the Ox axis corresponds to the direction of a first polarization. Similarly, it is considered that the axis Oy corresponds to the direction of the second polarization, crossed with respect to the previous one. For simplicity and by way of example, it will be possible to assimilate later the direction Oy to the vertical direction and the direction Ox to the horizontal direction.

La figure 4a présente donc un premier réseau de guides 21 destinés à recevoir les polarisations verticales. Le réseau comporte plusieurs ensembles de guides alignés. Une ligne de guides s'étend selon la direction horizontale Ox et l'ensemble des lignes s'étend selon la direction verticale Oy. Pour une même ligne, les centres C de deux guides 21 consécutifs sont séparés d'une distance d. Deux lignes consécutives sont séparées d'une distance h, selon Oy, et décalées l'une par rapport à l'autre de la distance d/2, selon Ox. En d'autres termes, deux lignes médianes 41, 42 consécutives sont distantes de h, les lignes médianes étant les lignes médianes des guides prises selon Ox. Entre deux lignes consécutives, il y a un décalage de d/2 des points milieu des guides.FIG. 4a thus presents a first network of guides 21 intended to receive the vertical polarizations. The network has several sets of aligned guides. A guide line extends in the horizontal direction Ox and the set of lines extends in the direction Vertical Oy. For the same line, the centers C of two consecutive guides 21 are separated by a distance d. Two consecutive lines are separated by a distance h, according to Oy, and offset relative to each other by the distance d / 2, according to Ox. In other words, two median lines 41, 42 consecutive are distant from h, the center lines being the center lines of the guides taken according to Ox. Between two consecutive lines, there is a shift of d / 2 of the middle points of the guides.

La figure 4b présente le second réseau de guides 22 destinés à recevoir la polarisation horizontale. La disposition des guides est similaire à celle du réseau de la figure 4a, mais avec une rotation de l'ensemble de 90°. Dans ce cas, les lignes s'étendent le long de l'axe Oy et l'ensemble de lignes s'étend le long de l'axe Ox. Pour une même ligne, les centres C de deux guides 22 consécutifs sont séparés d'une distance d. Deux lignes consécutives sont séparées d'une distance h, selon Ox, et décalées l'une par rapport à l'autre de la distance d/2, selon Oy. En d'autres termes, deux lignes médianes 43, 44 consécutives sont distantes de h, les lignes médianes étant les lignes médianes des guides prises selon Oy. Entre deux lignes consécutives, il y a un décalage de d/2 des points milieu des guides.Figure 4b shows the second array of guides 22 for receiving horizontal polarization. The arrangement of the guides is similar to that of the network of Figure 4a, but with a rotation of the whole 90 °. In this case, the lines extend along the axis Oy and the set of lines extends along the axis Ox. For the same line, the centers C of two consecutive guides 22 are separated by a distance d. Two consecutive lines are separated by a distance h, according to Ox, and offset relative to each other by the distance d / 2, according to Oy. In other words, two consecutive median lines 43, 44 are distant. of h, the median lines being the median lines of the guides taken according to Oy. Between two consecutive lines, there is a shift of d / 2 of the middle points of the guides.

La figure 4c définit l'imbrication des deux réseaux de guides en montrant comment un guide 22 d'un réseau est positionné par rapport aux guides 21 de l'autre réseau. Ce guide 22 est uniquement contigu à des guides 21 de l'autre réseau. Dans le cas de la figure 4c, le guide 22 est contigu à quatre guides 21 de l'autre réseau. Le point milieu C de ce guide 22 est aligné avec les points milieu des deux paires de guides 21 encadrant le guide 22. On obtient ainsi un maillage tel qu'illustré par la figure 2. Les dimensions intérieures des guides d'onde 21, 22 sont par exemple de 0,6λ et 0,3λ (λ = longueur de l'onde 3) respectivement en longueur et en largeur, la longueur des guides s'étendant le long des lignes des réseaux. La distance d entre les points milieu C de deux guides consécutifs d'une même ligne est alors par exemple égale λ et la distance h entre les médianes 41, 42, 43, 44 de deux lignes consécutives est par exemple de λ/2. A titre d'exemple, pour une onde hyperfréquence 3 à 10 GHz, les dimensions intérieures d'un guide d'onde sont 1,8 cm et 0,9 cm, et les distances d et h sont respectivement 3 cm et 1,5 cm. Ce maillage permet notamment un dépointage du faisceau réfléchi par le réflecteur 4 sur un cône d'environ 60°.FIG. 4c defines the nesting of the two guide arrays by showing how a guide 22 of a network is positioned relative to the guides 21 of the other network. This guide 22 is contiguous with guides 21 of the other network. In the case of Figure 4c, the guide 22 is contiguous to four guides 21 of the other network. The midpoint C of this guide 22 is aligned with the middle points of the two pairs of guides 21 flanking the guide 22. A mesh is thus obtained as shown in FIG. 2. The internal dimensions of the waveguides 21, 22 are for example 0.6λ and 0.3λ (λ = length of the wave 3) respectively in length and in width, the length of the guides extending along the lines of the networks. The distance d between the middle points C of two consecutive guides of the same line is then equal λ for example and the distance h between the medians 41, 42, 43, 44 of two consecutive lines is for example λ / 2. By way of example, for a 3 to 10 GHz microwave wave, the inner dimensions of a waveguide are 1.8 cm and 0.9 cm, and the distances d and h are respectively 3 cm and 1.5 cm. This mesh allows in particular a misalignment of the beam reflected by the reflector 4 on a cone of about 60 °.

La figure 5 présente par une vue en coupe les couches constitutives possibles d'un réflecteur selon l'invention. Il comporte au moins trois couches 51, 52, 53. Une première couche 51 comporte les circuits hyperfréquence de déphasage, c'est-à-dire notamment les diodes D1, D2, les fils conducteurs qui les portent et les circuits de connexion associés. Les circuits hyperfréquence sont par exemple supportés par un substrat 54. Sur la face opposée aux circuits hyperfréquence, ce substrat est recouvert d'une couche métallisée 56, formant un plan conducteur, qui a notamment pour fonction de réfléchir les ondes hyperfréquence 3. En bande X, l'épaisseur eh du substrat est par exemple de l'ordre de 3 mm, la constante diélectrique relative εr étant de l'ordre de 2,5. Une deuxième couche 52 comporte les circuits de commande 55 des diodes D1, D2 des déphaseurs. Cette couche assure par ailleurs la connexion entre les circuits de commande et les diodes. A cet effet, elle a par exemple la structure d'un circuit imprimé multicouche comportant des plans d'interconnexions des circuits de commandes aux circuits hyperfréquence. Enfin, une troisième couche 53, disposée en regard des circuits hyperfréquence D1, D2 comporte les deux réseaux de guides d'onde.FIG. 5 presents, in a sectional view, the possible constituent layers of a reflector according to the invention. It comprises at least three layers 51, 52, 53. A first layer 51 comprises the phase-shift microwave circuits, that is to say in particular the diodes D 1 , D 2 , the conducting wires which carry them and the connection circuits. associates. The microwave circuits are for example supported by a substrate 54. On the face opposite to the microwave circuits, this substrate is covered with a metallized layer 56, forming a conductive plane, whose particular function is to reflect the microwave waves 3. In band X, the thickness e h of the substrate is for example of the order of 3 mm, the relative dielectric constant ε r being of the order of 2.5. A second layer 52 comprises the control circuits 55 of the diodes D 1 , D 2 of the phase shifters. This layer also ensures the connection between the control circuits and the diodes. For this purpose, it has for example the structure of a multilayer printed circuit comprising interconnection planes of the control circuits to the microwave circuits. Finally, a third layer 53, arranged opposite the microwave circuits D 1 , D 2 comprises the two waveguide gratings.

La figure 6 présente un mode de réalisation possible de la couche de guides d'ondes 53. Ce mode de réalisation est notamment facile à mettre en oeuvre. Les parois des guides 21, 22 sont réalisées par des trous métallisés 61, 62 orientés selon la direction Oz. Ces trous métallisés pourraient être remplacés par des fils conducteurs, c'est-à-dire des conducteurs électriques rectilignes, orientés selon la direction Oz. Les guides ainsi réalisés ont par exemple des parties de parois communes, c'est-à-dire que des trous métallisés 63, 64 sont communs à deux guides. Dans ce cas, deux guides voisins ont des trous métallisés en commun. Les trous métallisés sont réalisés dans une plaque en matériau diélectrique d'épaisseur eg, cette épaisseur constituant la longueur des guides. Les trous métallisés sont suffisamment rapprochés pour jouer le rôle de parois de guides d'onde. Ces trous métallisés 61, 62 traversent donc toute la troisième couche 53. Ils se prolongent dans la couche hyperfréquence 51 pour atteindre le plan conducteur 56. Ils permettent ainsi par ailleurs de découpler électromagnétiquement chaque circuit de déphasage 32, 33, D1, D2 de ses voisins en formant un blindage électromagnétique. Il n'y a alors pas de propagation d'onde d'une cellule à l'autre. Avantageusement, certains trous métallisés 61, 64 peuvent se prolonger dans la couche 52 comportant les circuits de commande. Ces trous qui se prolongent permettent notamment de relier électriquement les circuits de commande aux diodes des circuits déphaseurs de la couche hyperfréquence 51. Ces trous métallisés 61, 64 véhiculent ainsi la commande des diodes ainsi que l'alimentation électrique des circuits. Ils sont par exemples reliés aux différents plans d'interconnexion de la couche de commande 52. A titre d'exemple, les trous métallisés 61, 64 représentés en noir sont utilisés par ailleurs pour l'alimentation et la commande des circuits hyperfréquence. Ces trous 61, 64 traversent notamment le plan conducteur 56 sans contact électrique avec ce dernier. Les autres trous 62, 63 s'arrêtent par exemple au niveau de ce plan conducteur 56, en contact électrique avec ce dernier. L'épaisseur eg de la couche de guide d'onde est par exemple de l'ordre d'un centimètre. Il faut par exemple prévoir des creux dans cette couche 53 de guides pour loger les diodes D1, D2 de la couche hyperfréquence 51. Avantageusement, le poids d'un réflecteur selon l'invention est faible en raison du faible poids des différentes couches. Par ailleurs, malgré la couche de guides d'ondes, le réflecteur reste toujours compact.Figure 6 shows a possible embodiment of the waveguide layer 53. This embodiment is particularly easy to implement. The walls of the guides 21, 22 are formed by metallized holes 61, 62 oriented in the direction Oz. These metallized holes could be replaced by conductive son, that is to say straight electrical conductors, oriented in the direction Oz. The guides thus produced have for example common wall portions, that is to say that metallized holes 63, 64 are common to two guides. In this case, two neighboring guides have metallized holes in common. The metallized holes are made in a plate of dielectric material of thickness eg, this thickness constituting the length of the guides. The metallized holes are close enough to act as walls of waveguides. These metallized holes 61, 62 thus cross the entire third layer 53. They extend in the microwave layer 51 to reach the conductive plane 56. They thus also make it possible to electromagnetically decouple each phase shift circuit 32, 33, D 1 , D 2 from its neighbors by forming an electromagnetic shield. There is no wave propagation from one cell to another. Advantageously, certain metallized holes 61, 64 may extend in the layer 52 comprising the control circuits. These holes which extend allow in particular to electrically connect the control circuits to the diodes of the phase-shifter circuits of the microwave layer 51. These metallized holes 61, 64 thus convey the control of the diodes and the power supply circuits. They are for example connected to the different interconnection planes of the control layer 52. For example, the metallized holes 61, 64 shown in black are also used for the supply and control of the microwave circuits. These holes 61, 64 pass through the conductive plane 56 without electrical contact with the latter. The other holes 62, 63 stop for example at this conductive plane 56, in electrical contact with the latter. The thickness e g of the waveguide layer is for example of the order of one centimeter. For example, it is necessary to provide recesses in this layer 53 of guides for accommodating the diodes D 1 , D 2 of the microwave layer 51. Advantageously, the weight of a reflector according to the invention is low because of the low weight of the different layers. . Moreover, despite the waveguide layer, the reflector remains compact.

La figure 7 illustre un mode de réalisation complémentaire permettant notamment de réduire le taux d'ondes stationnaires (TOS) actif dans tes guides. L'entrée des guides 21, 22 comporte un iris 71 d'ouverture rectangulaire, l'ensemble étant fermé par une lame diélectrique 72. Dans ce mode de réalisation, la couche de guides d'ondes 53 peut être recouverte d'une couche formant les iris, l'ensemble étant fermé par une couche diélectrique.FIG. 7 illustrates a complementary embodiment making it possible in particular to reduce the active standing wave ratio (TOS) in the guides. The inlet of the guides 21, 22 comprises an iris 71 of rectangular opening, the assembly being closed by a dielectric plate 72. In this embodiment, the waveguide layer 53 may be covered with a layer forming the irises, the assembly being closed by a dielectric layer.

Un réflecteur selon l'invention peut être utilisé pour différents types d'antennes. Il peut être utilisé comme l'illustre la figure 1 pour former une antenne du type « reflect array ». De même, il peut être utilisé dans une antenne du type Cassegrain. Dans ce dernier cas, la source primaire est placée au centre du réflecteur et illumine un réflecteur auxiliaire. Ce dernier illumine à son tour, par réflexion, le réflecteur selon l'invention.A reflector according to the invention can be used for different types of antennas. It can be used as shown in Figure 1 to form a antenna of the "reflect array" type. Similarly, it can be used in a Cassegrain type antenna. In the latter case, the primary source is placed in the center of the reflector and illuminates an auxiliary reflector. The latter in turn illuminates, by reflection, the reflector according to the invention.

Un réflecteur ou une antenne selon l'invention sont simples à mettre en oeuvre. Ils sont aussi économiques, car les composants et les technologies utilisés sont bons marchés. L'invention apporte par ailleurs tous les avantages liés à la bipolarisation. Une antenne selon l'invention peut ainsi par exemple être utilisée pour des mesures de polarimétrie sur des cibles, notamment en émettant selon une polarisation et en recevant sur l'autre polarisation. Elle peut être utilisée dans des applications de télécommunication, par exemple bi-bande.A reflector or an antenna according to the invention are simple to implement. They are also economical because the components and technologies used are cheap. The invention also provides all the advantages associated with bipolarization. An antenna according to the invention can thus for example be used for polarimetric measurements on targets, in particular by transmitting on one polarization and receiving on the other polarization. It can be used in telecommunication applications, for example bi-band.

Claims (9)

  1. Active microwave reflector, capable of receiving an electromagnetic wave (3), comprising two waveguide arrays (21, 22), the bottom of each guide being closed by a phase shift circuit (31) carrying out the reflection and the phase shifting of the wave that it receives, one array being designed to receive one polarization and the other array being designed to receive a polarization perpendicular to the previous one characterized in that the arrays are imbricated in such a way that:
    - a first array comprises several sets of aligned guides (21) having a rectangular cross section, one row lying in a direction Ox and the set of rows lying in a perpendicular direction Oy, for the same row, the centers C of two consecutive guides (21) being separated by a distance d, two consecutive rows being separated by a distance h=d/2, along Oy, and offset one with respect to the other by the distance d/2, along Ox;
    - the second array comprises several sets of guides (22) aligned in the same way as in the first array, the rows being offset by an angle of 90° with respect to those of the first array.
  2. Reflector according to Claim 1, characterized in that it comprises at least three layers:
    - a layer (51) comprising the phase shift circuits;
    - a layer (52) comprising the circuits (55) for controlling the phase shift circuits, this layer moreover providing the connection between the control circuits and the diodes;
    - a layer (53), placed facing the phase shift circuits, comprising the two waveguide arrays (21, 22).
  3. Reflector according to Claim 2, characterized in that the walls of waveguides (21, 22) are made by closely-spaced rectilinear electrical conductors (61, 62, 63, 64) passing through the layer (53) and oriented perpendicular to the plane (Oxy) of the phase shift circuits.
  4. Reflector according to Claim 3, characterized in that the guides (21, 22) also pass through the layer (51) comprising the phase shift circuits, the conductors providing the microwave decoupling between neighboring phase shift circuits.
  5. Reflector according to Claim 4, characterized in that conductors enter the control layer (52) in order to carry control signals toward the layer (51) comprising the phase shift circuits.
  6. Reflector according to any one of Claims 3 to 5, characterized in that the conductors are plated-through holes.
  7. Reflector according to any one of the preceding claims, characterized in that the phase shift circuit (31) comprises at least one conducting wire (32, 33), itself carrying at least two semiconductors (D1, D2) with two states, the conducting wires and the semiconductors being placed on a dielectric support (34), the opposing face of which comprises a conducting plane reflecting the microwave, the phase shift circuit reflecting and phase shifting the wave that it receives for the component of the wave whose polarization is substantially parallel to the conducting wires.
  8. Microwave antenna with electronic scanning, characterized in that it comprises a reflector (4) according to any one of the preceding claims and a microwave source (1) illuminating the reflector.
  9. Microwave antenna with electronic scanning, characterized in that it comprises a reflector (4) according to any one of Claims 1 to 7 in order to form an antenna of the Cassegrain type, a microwave source being located substantially at the center of the reflector (4) in order to illuminate an auxiliary reflector, which illuminates the reflector (4) by reflection.
EP01958154A 2000-07-28 2001-07-20 Active dual-polarization microwave reflector, in particular for electronically scanning antenna Expired - Lifetime EP1305846B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0009975A FR2812457B1 (en) 2000-07-28 2000-07-28 ACTIVE BI-POLARIZATION MICROWAVE REFLECTOR, ESPECIALLY FOR AN ELECTRONICALLY BALANCED ANTENNA
FR0009975 2000-07-28
PCT/FR2001/002383 WO2002011238A1 (en) 2000-07-28 2001-07-20 Active dual-polarization microwave reflector, in particular for electronically scanning antenna

Publications (2)

Publication Number Publication Date
EP1305846A1 EP1305846A1 (en) 2003-05-02
EP1305846B1 true EP1305846B1 (en) 2007-09-19

Family

ID=8853063

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01958154A Expired - Lifetime EP1305846B1 (en) 2000-07-28 2001-07-20 Active dual-polarization microwave reflector, in particular for electronically scanning antenna

Country Status (8)

Country Link
US (1) US6703980B2 (en)
EP (1) EP1305846B1 (en)
JP (1) JP2004505582A (en)
AU (1) AU2001279889A1 (en)
CA (1) CA2385787A1 (en)
DE (1) DE60130561T2 (en)
FR (1) FR2812457B1 (en)
WO (1) WO2002011238A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1668389B1 (en) 2003-09-15 2010-01-13 The Science and Technology Facilities Council Millimetre and sub-millimetre imaging device
FR2879359B1 (en) * 2004-12-15 2007-02-09 Thales Sa BROADBAND ELECTRONIC SCANNING ANTENNA
US7283085B2 (en) * 2005-03-24 2007-10-16 Agilent Technologies, Inc. System and method for efficient, high-resolution microwave imaging using complementary transmit and receive beam patterns
US7333055B2 (en) * 2005-03-24 2008-02-19 Agilent Technologies, Inc. System and method for microwave imaging using an interleaved pattern in a programmable reflector array
FR2907262B1 (en) * 2006-10-13 2009-10-16 Thales Sa DEPHASEUSE CELL WITH ANALOG PHASE SENSOR FOR REFLECTARRAY ANTENNA.
FR2920597B1 (en) * 2007-08-31 2010-04-16 Thales Sa ELECTRONIC SCANNING HYPERFREQUENCY REFLECTOR WITH DOUBLE POLARIZATION, BROADBAND, AND ANTENNA EQUIPPED WITH SUCH A REFLECTOR
JP5371633B2 (en) * 2008-09-30 2013-12-18 株式会社エヌ・ティ・ティ・ドコモ Reflect array
JP5297349B2 (en) * 2009-11-13 2013-09-25 株式会社エヌ・ティ・ティ・ドコモ Reflect array
GB201122324D0 (en) 2011-12-23 2012-02-01 Univ Edinburgh Antenna element & antenna device comprising such elements
DE102013218555A1 (en) * 2013-07-18 2015-01-22 Rohde & Schwarz Gmbh & Co. Kg System and method for illuminating and imaging an object
TWI713517B (en) * 2016-04-20 2020-12-21 智邦科技股份有限公司 Antenna system

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308469A (en) 1962-10-19 1967-03-07 Thomson Houston Comp Francaise Multi-mode antenna system
FR1460030A (en) 1965-10-14 1966-06-17 Thomson Houston Comp Francaise Developments in electronic scanning antennas
FR1460075A (en) 1965-10-15 1966-06-17 Thomson Houston Comp Francaise Improvements to radiating networks
FR1462334A (en) 1965-10-15 1966-04-15 Thomson Houston Comp Francaise Multibeam antenna system performing spatial spectro-analysis
FR2118848B1 (en) 1970-12-22 1974-03-22 Thomson Csf
US3706998A (en) * 1971-02-03 1972-12-19 Raytheon Co Multiple interleaved phased antenna array providing simultaneous operation at two frequencies and two polarizations
FR2148341B1 (en) 1971-08-09 1977-01-28 Thomson Csf
US3761943A (en) * 1972-07-21 1973-09-25 Us Navy Dual-band array antenna
FR2255716B1 (en) 1973-12-20 1978-03-24 Thomson Csf
US3978484A (en) * 1975-02-12 1976-08-31 Collier Donald C Waveguide-tuned phased array antenna
FR2302601A1 (en) 1975-02-28 1976-09-24 Thomson Csf EXTR DEVICE
FR2646924B1 (en) 1976-07-13 1991-10-25 Thomson Csf ANTI-SCALING METHOD AND DEVICE FOR ELECTROMAGNETIC SENSING EQUIPMENT COMPRISING A REFLECTOR ANTENNA, ANTENNA AND EQUIPMENT THUS OBTAINED
FR2383530A1 (en) 1977-03-11 1978-10-06 Thomson Csf NON-DISPERSIVE NETWORK ANTENNA AND ITS APPLICATION TO THE REALIZATION OF AN ELECTRONIC SCAN ANTENNA
FR2385233A1 (en) 1977-03-25 1978-10-20 Thomson Csf ANTENNA STRUCTURE WITH REFLECTORS AND ESPECIALLY EXCENTER REFLECTORS, AND ELECTROMAGNETIC DETECTION AND SPACE TELECOMMUNICATION EQUIPMENT CONTAINING SUCH A STRUCTURE
FR2395620A1 (en) 1977-06-24 1979-01-19 Radant Etudes IMPROVEMENT OF THE ELECTRONIC SWEEPING PROCESS USING DEPHASER DIELECTRIC PANELS
FR2412960A1 (en) 1977-12-20 1979-07-20 Radant Etudes HYPERFREQUENCY DEPHASER AND ITS APPLICATION TO ELECTRONIC SCAN
FR2445040A1 (en) 1978-12-22 1980-07-18 Thomson Csf CONICAL SCANNING ANTENNA FOR RADAR, ESPECIALLY TRACKING RADAR
FR2448231A1 (en) 1979-02-05 1980-08-29 Radant Et MICROWAVE ADAPTIVE SPATIAL FILTER
FR2456399A1 (en) 1979-05-08 1980-12-05 Thomson Csf DISK-TYPE MICROWAVE NETWORK ANTENNA WITH ITS FEEDING DEVICE, AND APPLICATION TO ECARTOMETRY RADARS
FR2469808A1 (en) 1979-11-13 1981-05-22 Etude Radiant Sarl ELECTRONIC SCANNING DEVICE IN THE POLARIZATION PLAN
FR2511196A1 (en) 1981-08-07 1983-02-11 Thomson Csf MAIN AND AUXILIARY ANTENNA ASSEMBLY WITH ELECTRONIC SCAN AND RADAR COMPRISING SUCH AN ASSEMBLY
FR2513022A1 (en) 1981-09-11 1983-03-18 Thomson Csf WAVEGUIDE WITH RADIANT SLOTS AND BROADBAND FREQUENCY
FR2527785A1 (en) 1982-05-27 1983-12-02 Thomson Csf METHOD AND DEVICE FOR REDUCING THE POWER OF THE INTERFERENCE SIGNALS RECEIVED BY THE LATERAL LOBES OF A RADAR ANTENNA
FR2594274B1 (en) 1982-08-27 1988-08-26 Thomson Csf METHOD FOR COMPRESSING PULSES BY SPACE CODING AND ITS APPLICATION TO RADAR
FR2723210B1 (en) 1983-05-06 1997-01-10 Cmh Sarl ANTI-DETECTION METHOD AND DEVICE FOR RADAR
FR2733091B1 (en) 1983-05-06 1997-05-23 Cmh Sarl ELECTRICALLY CONTROLLABLE MICROWAVE ANSWER AND ITS APPLICATIONS TO THE PRODUCTION OF ELECTROMAGNETIC LURES
FR2548836B1 (en) 1983-07-08 1986-02-21 Thomson Csf QUASI-TORIC COVERED ANTENNA WITH TWO REFLECTORS
FR2557737B1 (en) 1983-12-30 1987-12-18 Thomson Csf ANTENNA WITH TWO CROSS-CYLINDRO-PARABOLIC REFLECTORS AND MANUFACTURING METHOD THEREOF
FR2732469B1 (en) 1984-01-23 1997-04-11 Cmh Sarl DEVICE USING AN AUXILIARY ANTENNA EQUIPPED WITH AN ADAPTIVE SPATIAL FILTER FOR THE INTERFERENCE OF AN ASSOCIATED MAIN ANTENNA, AND ITS IMPLEMENTING METHOD
FR2629920B1 (en) 1984-01-23 1991-09-20 Cmh Sarl REFLECTIVE MICROWAVE ADAPTIVE SPATIAL FILTER AND METHOD FOR IMPLEMENTING SAME
FR2574037B1 (en) 1984-11-30 1993-09-10 Thomson Csf DEVICE AND METHOD FOR CONTROLLING GUIDED VEHICLES
FR2580868B1 (en) 1985-04-19 1988-04-08 Thomson Csf DEVICE REFLECTING THE ELECTROMAGNETIC WAVES OF A POLARIZATION AND ITS MANUFACTURING METHOD
FR2589011B1 (en) 1985-10-22 1988-10-14 Thomson Csf NETWORK ANTENNA WITH CONICAL SCANNING AND RADAR COMPRISING SUCH ANTENNA
FR2604794B1 (en) 1986-10-07 1988-12-02 Thomson Csf FILTER, PHASE MEASURING DEVICE AND METHOD USING THE SAME
US5262788A (en) 1986-12-30 1993-11-16 Thomson-Csf Device and method for data transmission and/or acquisition using two cross polarizations of an electromagnetic wave and magnetic recording device
FR2609224B1 (en) 1986-12-30 1989-04-07 Thomson Csf DEVICE AND METHOD FOR TRANSMITTING AND / OR ACQUIRING DATA USING TWO CROSS POLARIZATIONS OF AN ELECTROMAGNETIC WAVE AND MAGNETIC RECORDING DEVICE
FR2656468B1 (en) 1989-12-26 1993-12-24 Thomson Csf Radant MAGIC MICROWAVE RADIATION SOURCE AND ITS APPLICATION TO AN ELECTRONIC SCANNING ANTENNA.
FR2725077B1 (en) 1990-11-06 1997-03-28 Thomson Csf Radant BIPOLARIZATION MICROWAVE LENS AND ITS APPLICATION TO AN ELECTRONICALLY SCANNED ANTENNA
FR2671194B1 (en) 1990-12-27 1993-12-24 Thomson Csf Radant PROTECTION SYSTEM FOR ELECTRONIC EQUIPMENT.
US5198827A (en) * 1991-05-23 1993-03-30 Hughes Aircraft Company Dual reflector scanning antenna system
FR2786610B1 (en) 1997-02-03 2001-04-27 Thomson Csf ACTIVE MICROWAVE REFLECTOR FOR ELECTRONIC SCANNING ANTENNA
FR2801729B1 (en) * 1999-11-26 2007-02-09 Thomson Csf ACTIVE ELECTRONIC SCANNING HYPERFREQUENCY REFLECTOR

Also Published As

Publication number Publication date
JP2004505582A (en) 2004-02-19
EP1305846A1 (en) 2003-05-02
AU2001279889A1 (en) 2002-02-13
US6703980B2 (en) 2004-03-09
FR2812457B1 (en) 2004-05-28
DE60130561D1 (en) 2007-10-31
CA2385787A1 (en) 2002-02-07
DE60130561T2 (en) 2008-06-19
US20020145492A1 (en) 2002-10-10
FR2812457A1 (en) 2002-02-01
WO2002011238A1 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
EP2656438B1 (en) Radio cell with two phase states for transmit array
EP0481417B1 (en) Device for feeding an antenna element radiating two orthogonal polarisations
EP0108463B1 (en) Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements
EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
FR2956252A1 (en) ONBOARD DIRECTIVE FLIGHT ANTENNA, VEHICLE COMPRISING SUCH ANTENNA AND SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH A VEHICLE
EP1305846B1 (en) Active dual-polarization microwave reflector, in particular for electronically scanning antenna
EP1234356B1 (en) Active electronic scan microwave reflector
FR3044832A1 (en) ACTIVE ANTENNA ARCHITECTURE WITH RECONFIGURABLE HYBRID BEAM FORMATION
EP3900113B1 (en) Elementary microstrip antenna and array antenna
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
EP1139484B1 (en) Microwave phase shifter and phased array antenna with such phase shifters
EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
EP1157444B1 (en) Antenna with double-band electronic scanning, with active microwave reflector
FR2678438A1 (en) LINEAR NETWORK ANTENNA.
FR3102311A1 (en) NETWORK ANTENNA
FR2907262A1 (en) Microwave phase-changing cell for e.g. bipolarization reflect array antenna, has external conductive band with extension whose shape and dimension are determined to obtain total static capacitor with value at desired operating frequency
FR2747842A1 (en) Microwave lens with panel of stacked phase shifting channels
FR2815479A1 (en) Active ultrahigh frequency reflector with two independent polarizations, notably in an electronic scanning antenna
EP1133000B1 (en) Active microwave reflector for antenna with electronic scanning
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
FR2920597A1 (en) Active dual-polarization and wideband electronically scanning microwave reflector for reflecting-type electronically scanning antenna, has metallic interior protrusions formed along width of interleaved waveguides
FR2703516A1 (en) Travelling-wave antenna
FR2820886A1 (en) MICROWAVE REFLECTOR PANEL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020402

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040212

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

17Q First examination report despatched

Effective date: 20040212

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60130561

Country of ref document: DE

Date of ref document: 20071031

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100724

Year of fee payment: 10

Ref country code: DE

Payment date: 20100714

Year of fee payment: 10

Ref country code: SE

Payment date: 20100708

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100714

Year of fee payment: 10

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60130561

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110721