EP1304419A1 - Process for proving the structural integrity of structural systems under fire conditions - Google Patents

Process for proving the structural integrity of structural systems under fire conditions Download PDF

Info

Publication number
EP1304419A1
EP1304419A1 EP01124843A EP01124843A EP1304419A1 EP 1304419 A1 EP1304419 A1 EP 1304419A1 EP 01124843 A EP01124843 A EP 01124843A EP 01124843 A EP01124843 A EP 01124843A EP 1304419 A1 EP1304419 A1 EP 1304419A1
Authority
EP
European Patent Office
Prior art keywords
load
fire
cross
temperature
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01124843A
Other languages
German (de)
French (fr)
Other versions
EP1304419B1 (en
Inventor
Johannes Dipl.-Ing. Wageneder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wageneder Johannes
Original Assignee
Wageneder Johannes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wageneder Johannes filed Critical Wageneder Johannes
Priority to DE50109767T priority Critical patent/DE50109767D1/en
Priority to EP01124843A priority patent/EP1304419B1/en
Priority to AT01124843T priority patent/ATE325928T1/en
Priority to CN02160263A priority patent/CN1427138A/en
Priority to JP2002292867A priority patent/JP4399153B2/en
Priority to TW091123098A priority patent/TW536577B/en
Priority to KR1020020061672A priority patent/KR20030033108A/en
Priority to US10/270,585 priority patent/US20030089071A1/en
Priority to SG200206360A priority patent/SG105564A1/en
Publication of EP1304419A1 publication Critical patent/EP1304419A1/en
Application granted granted Critical
Publication of EP1304419B1 publication Critical patent/EP1304419B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire

Definitions

  • Structurally loaded structures are usually designed in their design that they any negative environmental influences, such as increased temperature load on occurrence withstand a fire for at least some time.
  • tunneling elements on their surface with Thermal insulation mat lined to the heating of the tunnel shell in a fire delay for example tunneling elements on their surface with Thermal insulation mat lined to the heating of the tunnel shell in a fire delay.
  • the present invention sets the task To develop computational methods, which without application of complex numerical Methods works and a load-bearing proof of statically charged Concrete structures during and after a fire.
  • the fire load either predefined fire courses or especially for fire load curves calculated in each case, in which case the nature of the Transport or goods transported. Determine these fire load curves the temperature curve as a function of time.
  • the material characteristics for the component in the case of a tunnel for reinforced concrete, under the influence of temperature. These are the properties during the Fire and residual strength after firing for both concrete and steel certainly.
  • the prerequisite for this is that the inner reinforcement layer is protected accordingly is. If the inner, the temperature-exposed reinforcement layer is not against overheating protected, so there is no residual strength and thus no carrying capacity is obtained.
  • the protection Reinforcement can only be achieved by correspondingly large coverage.
  • the Preventing the peeling of the cover either by skin reinforcement or by the Addition of polypropylene fibers is of great importance.
  • the carrying capacity of the individual cross section depends from the definition of the marginal expansions, whereby here in particular the increase of the admissible Concrete compression makes a significant contribution.
  • the definition of the limit strains has all influence with temperature-loaded cross sections.
  • the temperature stress leads to a reduction of the total Bearing capacity of the cross-section and at the same time to an asymmetrical load-bearing behavior of the cross section, since the material properties themselves for geometrically symmetric Cross sections are now asymmetrical.
  • Linear linear statics only allow linear gradients of temperature gradients. As could be detected, the actual temperature gradients deviate greatly from linear courses. As a rule, the edge zones are heavily stressed by temperature, further internal cross-sectional parts and the part facing away from the fire Cross-section are usually hardly or not at all temperature-stressed.
  • an internal load can be applied to any temperature load Stress condition can be defined, at each point on the one hand by the respective prevailing temperature and the resulting strains is determined. on the other hand
  • the material properties can be dependent on the temperature be defined, bringing the total load from the given temperature gradient calculates.
  • the fire load is set constant around the tunnel cross section. As the fire duration increases, the temperature stress penetrates deeper into the cross section:
  • the calculation model according to the invention dispenses with the application of complex numerical approaches and, on the basis of elementary strength theory and reinforced concrete construction with the aid of linear bar statics, allows proof of the load-bearing safety of load-bearing systems under fire load.
  • the step that is usually missing in the project planning can be In any case, the load capacity calculation can be included with little effort and Measures such as thermal insulation and other constructive measures on their influence be examined. A purely empirical arrangement of such measures can thus omitted. Also, the basic arrangement of thermal insulation in the form of Mats and plastering or protective concrete are offered an alternative, the exclusively based on the principles of reinforced reinforced concrete structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Turbines (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

The method involves defining the fire load, defining a time point and calculating the temperature load across the whole section at this time, and defining the material characteristics under the influence of temperate and after the effects of fire. The load curves for this section is determined, and internal cutting forces are converted to equivalent external temperature loads. The system stiffnesses, i.e. bending resistance and strain resistance are determined. <??>An Independent claim is also included for the use of the method to construct a statically loaded building.

Description

Statisch belastete Bauwerke werden in ihrer Konstruktion üblicherweise so ausgelegt, dass sie eventuellen negativen Umwelteinflüssen, wie erhöhter Temperaturbelastung beim Auftreten eines Brandes zumindest über einige Zeit hinweg standhalten.Structurally loaded structures are usually designed in their design that they any negative environmental influences, such as increased temperature load on occurrence withstand a fire for at least some time.

Zu diesem Zweck werden beispielsweise Tunnelbauelemente an ihrer Oberfläche mit Wärmedämmatten ausgekleidet, um die Erwärmung der Tunnelschale bei einem Brand zu verzögern.For this purpose, for example tunneling elements on their surface with Thermal insulation mat lined to the heating of the tunnel shell in a fire delay.

Aus den Schadensbildern der Tunnelbrände der letzten Jahre wurde gefunden, dass sowohl unbewehrte Betonstrukturen als auch Stahlbetontragwerke gegen Brandeinwirkung gewisse Tragreserven aufweisen. Ein adäquates Rechenverfahren zum Nachweis solcher Tragreserven, welches auf den gleichen Prinzipien wie der Nachweis gegen Gebirgsdruck und andere Lasten beruht, ist jedoch bisher nicht bekannt.From the damage pictures of the tunnel firings of the last years was found that both unreinforced concrete structures as well as reinforced concrete structures against fire certain Have carrying reserves. An adequate calculation method for the detection of such Bearing reserves based on the same principles as the proof against rock pressure and other burdens, but is not yet known.

Da die nationalen Behörden im Zuge der Bewilligungsverfahren aber vermehrt auf die Vorlage derartiger Nachweise drängen, stellt sich die vorliegende Erfindung die Aufgabe ein Rechenverfahren zu entwickeln, welches ohne Anwendung von komplexen numerischen Methoden funktioniert und einen Tragsicherheitsnachweis von statisch belasteten Betonbauwerken während und nach einem Brand ermöglicht.However, as the national authorities increasingly opted for the Urging the submission of such evidence, the present invention sets the task To develop computational methods, which without application of complex numerical Methods works and a load-bearing proof of statically charged Concrete structures during and after a fire.

Damit soll eine zuverlässige Informationsquelle geschaffen werden, welche Auskunft darüber gibt, wie lange ein Betonbauwerk unter Brandlast seine Stabilität hält bevor es einstürzt. Diese Information ist wichtig, um zu wissen welche Zeitspanne ab dem Ausbruch des Brandes zur Evakuierung gefährdeter Personen zur Verfügung steht bzw. ab wann das Betreten durch Löschpersonal nicht mehr ratsam ist. This is to create a reliable source of information, which information about it How long does a concrete structure last under fire load before it collapses? This information is important to know what time span from the onset of the Brandes for the evacuation of endangered persons is available or from when the Enter by extinguishing personnel is no longer advisable.

Diese Problematik trifft prinzipiell auf jedes statisch belastete Bauwerk zu. Exemplarisch wird hier jedoch besonders auf das Problem von Bränden in einem Tunnel eingegangen. Von besonderer Bedeutung sind solche Tragsicherheitsnachweise für Tunnelanlagen im städtischen Bereich, wo ein Einbrechen der Tunnelschalen einen Verbruch bis an die bebaute Oberfläche verursachen kann. Diese Problematik wird um so anschaulicher, wenn man weiß, dass der Abstand zwischen der Tunneldecke und dem Erdniveau hier nur einige Meter, etwa 7 bis 15 Meter betragen kann.This problem applies in principle to any statically loaded structure. exemplary However, the problem of fires in a tunnel is particularly addressed here. From Of particular importance are such safety certificates for tunnel installations in urban area, where a collapse of the tunnel shells made a break up to the built-up Surface can cause. This issue becomes all the more vivid when you know that the distance between the tunnel ceiling and the ground level is only a few meters, about 7 can be up to 15 meters.

Um Brandlasten und deren Auswirkungen auf die Tragkonstruktion berücksichtigen zu können sind in der Abfolge der Analyse drei wesentliche Abschnitte zu unterscheiden:

  • die Definition der Brandlast
  • die Berechnung der Temperaturgradiente im Bauteil
  • der Nachweis der Tragsicherheit des Bauwerkes
In order to be able to consider fire loads and their effects on the supporting structure, three main sections are to be distinguished in the sequence of the analysis:
  • the definition of the fire load
  • the calculation of the temperature gradient in the component
  • the proof of the structural safety of the building

Zur Definition der Brandlast können entweder vordefinierte Brandverläufe oder speziell für den jeweiligen Fall berechnete Brandlastkurven herangezogen werden, wobei hier die Art des Verkehrs bzw. der beförderten Güter berücksichtigt wird. Diese Brandlastkurven bestimmen den Temperaturverlauf in Abhängigkeit von der Zeit.For the definition of the fire load either predefined fire courses or especially for fire load curves calculated in each case, in which case the nature of the Transport or goods transported. Determine these fire load curves the temperature curve as a function of time.

Mit den somit vorgegebenen Brandlasten kann über Lösung von Differentialgleichungen die Temperaturgradiente im Bauteil in Abhängigkeit von der Zeit ermittelt werden. Auch hierfür stehen Rechenprogramme zur Lösung dieses Wärmeleitproblems zur Verfügung.With the thus given fire loads can solve the differential equations the Temperature gradient in the component as a function of time are determined. Also for this Computer programs are available to solve this heat conduction problem.

Entsprechende Berechnungen der Tunnelschalen für sogenannte Standardlastfälle wie Eigengewicht, Wasserlast, Erddruck und Nutzlast liegen üblicherweise zu Beginn jeder Konstruktionsentwicklung vor. Diese Berechnungen werden meist mit Hilfe linearer Stabstatik durchgeführt. Der Nachweis der Temperaturlasten erfolgt ebenfalls nach diesem System.Corresponding calculations of tunnel shells for so-called standard load cases such as Dead weight, water load, earth pressure and payload are usually at the beginning of each Design development. These calculations are usually done using linear Stabstatics performed. The proof of the temperature loads also follows this System.

Zunächst sind die Materialkennwerte für den Bauteil, im Fall eines Tunnels für Stahlbeton, unter Temperatureinwirkung festzulegen. Dazu werden die Eigenschaften während des Brandes und die Restfestigkeit nach dem Brand sowohl für den Beton als auch für den Stahl bestimmt. Voraussetzung dafür ist, dass die innere Bewehrungslage entsprechend geschützt ist. Wird die innere, der Temperatur ausgesetzte Bewehrungslage nicht gegen Überhitzung geschützt, so bleibt keine Restfestigkeit und somit keine Tragfähigkeit erhalten. Der Schutz der Bewehrung ist nur durch entsprechend große Deckung erzielbar. Dabei kommt der Verhinderung des Abplatzens der Deckung entweder durch Hautbewehrung oder durch die Beigabe von Polypropylenfasern große Bedeutung zu.First, the material characteristics for the component, in the case of a tunnel for reinforced concrete, under the influence of temperature. These are the properties during the Fire and residual strength after firing for both concrete and steel certainly. The prerequisite for this is that the inner reinforcement layer is protected accordingly is. If the inner, the temperature-exposed reinforcement layer is not against overheating protected, so there is no residual strength and thus no carrying capacity is obtained. The protection Reinforcement can only be achieved by correspondingly large coverage. Here comes the Preventing the peeling of the cover either by skin reinforcement or by the Addition of polypropylene fibers is of great importance.

In Abhängigkeit der Temperatur T im Querschnitt, die durch die Temperaturgradiente zu jedem Zeitpunkt t gegeben ist, ergeben sich an jeder Stelle im Querschnitt verschiedene Materialeigenschaften. So ergibt sich für jeden Punkt im Querschnitt der gültige Elastizitätsmodul (E-Modul) als Em = f (T (f (t))) wobei der E-Modul eine Funktion der Temperatur und diese wiederum eine Funktion der Zeit ist. Das gleiche gilt für die jeweils gültige Beton- bzw. Stahlfestigkeit sigma,m = f ( T ( f(t))). Depending on the temperature T in the cross section, which is given by the temperature gradient at each time t, arise at each point in cross-section different material properties. Thus, for each point in the cross section, the valid modulus of elasticity (modulus of elasticity) is given as Em = f (T (f (t))) where the modulus of elasticity is a function of temperature and this in turn is a function of time. The same applies to the respectively valid concrete or steel strength sigma, m = f (T (f (t))).

Diese, über den Querschnitt ständig unterschiedlichen Materialeigenschaften sind nun über die Querschnittshöhe zu integrieren und ergeben die Gesamteigenschaften des Querschnittes mit der zu diesem Zeitpunkt herrschenden Temperaturbelastung.These, over the cross section constantly different material properties are now over To integrate the cross-sectional height and give the overall properties of the cross section with the temperature load prevailing at that time.

Mit Hilfe eines Computerprogrammes werden die einzelnen Querschnittseigenschaften für die vordefinierten Grenzdehnungszustände integriert und die jeweils möglichen Traglasten errechnet. Die Umhüllende, geformt aus der Variation der Randdehnungen ergibt dann die Traglastkurven.Using a computer program, the individual cross-sectional properties for the integrated predefined limiting strain states and the respective possible payloads calculated. The Umhüllende, formed from the variation of the marginal strains then gives the Load curves.

Wie für Stahlbeton-Traglastkurven üblich, hängt die Tragkapazität des einzelnen Querschnitts von der Definition der Grenzdehnungen ab, wobei hier vor allem die Erhöhung der zulässigen Betonstauchung einen erheblichen Anteil leistet. Die Definition der Grenzdehnungen hat vor allem Einfluß bei temperaturbelasteten Querschnitten.As is usual for reinforced concrete load curves, the carrying capacity of the individual cross section depends from the definition of the marginal expansions, whereby here in particular the increase of the admissible Concrete compression makes a significant contribution. The definition of the limit strains has all influence with temperature-loaded cross sections.

Erwartungsgemäß führt die Temperaturbeanspruchung insgesamt zu einer Reduktion des Tragvermögens des Querschnittes und gleichzeitig zu einem unsymmetrischen Tragverhalten des Querschnittes, da ja die Materialeigenschaften selbst für geometrisch symmetrische Querschnitte nunmehr unsymmetrisch sind. Wie festgestellt werden konnte, führt eine Erhöhung der maximal zulässigen Betonstauchung zu einer nicht unwesentlichen Erhöhung der Tragkapazität des Querschnittes. Die Erklärung liegt darin, dass zwar an den Rändern keine höhere wirksame Betonspannung aufgebaut werden kann, aber in den etwas kühleren inneren Bereichen des Querschnittes nunmehr bei höherer zugehöriger Betonstauchung größere Lastreserven aktiviert werden können.As expected, the temperature stress leads to a reduction of the total Bearing capacity of the cross-section and at the same time to an asymmetrical load-bearing behavior of the cross section, since the material properties themselves for geometrically symmetric Cross sections are now asymmetrical. As could be stated, leads one Increase of the maximum allowable concrete compression to a not insignificant increase the carrying capacity of the cross section. The explanation is that while at the edges no higher effective concrete stress can be built, but in the slightly cooler inner areas of the cross section now at higher associated concrete compression larger load reserves can be activated.

Ebenso wie die Traglast des Querschnittes, sinken mit zunehmender Temperaturbeanspruchung auch die Steifigkeiten des Querschnittes, die einerseits vom Absinken des zugehörigen E-Modules abhängen, andererseits durch die ständige Reduktion der Querschnittshöhe aufgrund der Überbelastung durch die Temperatur erfolgen, da ja alle Querschnittsanteile mit Temperaturbelastungen größer 700 °C ausfallen.As well as the load capacity of the cross section, sink with increasing Temperature stress also the stiffness of the cross section, on the one hand from the Decrease of the associated E-module depend on the other hand by the constant reduction the cross-sectional height due to the overload of the temperature, since all Cross section parts fail with temperature loads greater than 700 ° C.

Sinngemäß wie bei der Ermittlung der Traglast kann im Querschnitt an jeder Stelle über die Definition des jeweils gültigen E-Modules der Anteil zur Steifigkeit des Gesamtquerschnittes ermittelt werden.Analogous to the determination of the load can cross section at any point on the Definition of the respectively valid E-module the proportion of the stiffness of the total cross-section be determined.

Wie bereits erwähnt, soll mit diesem Verfahren mit linearer Stabstatik das Auslangen gefunden werden. Um dies zu gewährleisten, müssen die Temperaturbelastungen des Querschnittes umgeformt werden.As already mentioned, this process with linear bar statics is said to endure being found. To ensure this, the temperature loads of the Cross-section to be reshaped.

In der linearen Stabstatik sind nur lineare Verläufe von Temperaturgradienten zulässig. Wie festgestellt werden konnte, weichen die tatsächlichen Temperaturgradienten stark von linearen Verläufen ab. So sind in der Regel die Randzonen stark temperaturbeansprucht, weiter innen liegende Querschnittsteile und der dem Brand abgewandte Teil des Querschnittes werden in der Regel kaum oder gar nicht temperaturbeansprucht.Linear linear statics only allow linear gradients of temperature gradients. As could be detected, the actual temperature gradients deviate greatly from linear courses. As a rule, the edge zones are heavily stressed by temperature, further internal cross-sectional parts and the part facing away from the fire Cross-section are usually hardly or not at all temperature-stressed.

Ebenso sind die reduzierten Materialeigenschaften nur in den Zonen erhöhter Temperaturbeanspruchung von Bedeutung, für den Restquerschnitt gelten immer noch die ursprünglichen Materialeigenschaften.Likewise, the reduced material properties are increased only in the zones Temperature stress of importance, for the remaining cross section still apply the original material properties.

Ähnlich wie bei der Ermittlung der Traglast kann zu jeder Temperaturbelastung ein innerer Spannungszustand definiert werden, der an jeder Stelle einerseits von der jeweils herrschenden Temperatur und den dabei auftretenden Dehnungen bestimmt ist. Andererseits können für jeden Punkt die Materialeigenschaften in Abhängigkeit von der Temperatur definiert werden, womit sich die Gesamtbelastung aus der vorgegebenen Temperaturgradiente errechnen läßt.Similar to the determination of the load, an internal load can be applied to any temperature load Stress condition can be defined, at each point on the one hand by the respective prevailing temperature and the resulting strains is determined. on the other hand For each item, the material properties can be dependent on the temperature be defined, bringing the total load from the given temperature gradient calculates.

Diese inneren Schnittkräfte können in einem Folgeschritt jeweils wieder in äquivalente äußere Temperaturbelastungen umgerechnet werden, die genau diese inneren Schnittgrößen, nicht jedoch denselben Spannungszustand erzeugen würden.These internal cutting forces can each be transformed into equivalent external ones in a subsequent step Temperature loads are converted, which are exactly these internal internal forces, not however, would produce the same stress condition.

Mit diesen äquivalenten Temperaturbelastungen können nunmehr Schnittgrößen mit Hilfe der linearen Stabstatik ermittelt werden, und deren Resultate aus Biegemoment und Normalkraft gegen die Traglastkurven abgegrenzt werden.With these equivalent temperature loads now internal forces with the help of Linear Stabstatik be determined, and their results of bending moment and normal force be delimited against the load curves.

Mit den angeführten Berechnungsschritten sind nunmehr alle Voraussetzungen geschaffen, den Traglastnachweis zu führen. Die äquivalente Temperaturbelastung wird zusätzlich zu den ohnehin wirkenden Lasten aufgebracht und mit Hilfe der linearen Stabstatik werden die Schnittgrößen ermittelt. Die Interaktion dieser Schnittgrößen wird gegen die Traglastkurven des jeweiligen Querschnittes abgegrenzt und der Tragsicherheitsnachweis somit erbracht.With the mentioned calculation steps now all conditions are created to carry the load test. The equivalent temperature load is in addition to the applied loads anyway and with the help of linear Stabstatik the Internal forces determined. The interaction of these internal forces is against the load curves delimited the respective cross-section and thus provided the proof of contract proof.

Soll das nachgewiesene System auch nach dem Brand noch mit einer vorgegebenen Sicherheit standsicher bleiben, bis entsprechende Sanierungsmaßnahmen durchgeführt werden, ist auch ein Tragsicherheitsnachweis nach dem Brand zu führen.If the proven system even after the fire with a predetermined Security remain stable until appropriate remedial action is carried out A proof of safety after the fire is also to be provided.

Dies hat mit den durch die Brandbelastung entsprechend reduzierten Materialeigenschaften sowohl für Beton als auch für Stahl zu geschehen. Dies ist bei der Festlegung der notwendigen Bewehrung derart zu berücksichtigen, dass zunächst Schnittgrößen an der Konstruktion ohne Brandlast, jedoch mit den geänderten Steifigkeitsverhältnissen zu ermitteln sind. Der Bemessungsnachweis erfolgt sodann mit reduzierten Materialeigenschaften, wobei die geforderten Sicherheitsbeiwerte anzusetzen sind.This has the correspondingly reduced by the fire stress material properties for both concrete and steel. This is when setting the necessary reinforcement to be considered in such a way that first internal forces at the Design without fire load, but with the changed stiffness ratios to determine are. The design verification is then carried out with reduced material properties, where the required safety factors are to be applied.

Um die Anwendung der vorgestellten Methodik zu veranschaulichen, wird nachstehend ein Beispiel erläutert.To illustrate the application of the methodology presented below Example explained.

Gegeben sei ein üblicher, elastisch gebetteter Tunnelquerschnitt mit folgenden Querschnittsabmessungen:

  • Innenschalenquerschnitt = 40 cm
  • Bewehrung innen, außen = 5 cm2 /m
  • Betongüte B300
  • Stahlgüte ST 55
  • Bettungsmodulus 100.000 kN/m2
  • Innendurchmesser ca. 6 m
  • Überlagerung = 10 m Lockerboden
  • Wasserspiegel 2 m unter GOK
  • Betondeckung außen = 5 cm
  • Betondeckung innen = 10 cm
  • Schutzbewehrung innen, d = 3 cm (dient zur Begrenzung der Abplatzungen bei Temperatureinfluß)
  • Given is a conventional, elastically bedded tunnel cross-section with the following cross-sectional dimensions:
  • Inner shell cross-section = 40 cm
  • Reinforcement inside, outside = 5 cm 2 / m
  • Concrete grade B300
  • Steel grade ST 55
  • Bedding modulus 100,000 kN / m 2
  • Inner diameter about 6 m
  • Overlay = 10 m loose bottom
  • Water level 2 m below GOK
  • Concrete cover outside = 5 cm
  • Concrete cover inside = 10 cm
  • Protective reinforcement inside, d = 3 cm (serves to limit flaking under the influence of temperature)
  • Die Brandbelastung wird konstant rund um den Tunnelquerschnitt angesetzt. Mit zunehmender Branddauer dringt die Temperaturbeanspruchung in den Querschnitt immer tiefer ein:

    Figure 00060001
    The fire load is set constant around the tunnel cross section. As the fire duration increases, the temperature stress penetrates deeper into the cross section:
    Figure 00060001

    Für die Lastfälle Eigengewicht, Erddruck und Wasser ergeben sich die folgenden Schnittgrößen. Die Stahlbetonbemessung für diese Schnittgrößen erfordert den Einbau der Mindestbewehrung.

    Figure 00070001
    For the load cases dead weight, earth pressure and water, the following internal forces result. The reinforced concrete design for these internal forces requires the installation of the minimum reinforcement.
    Figure 00070001

    Die Schnittgrößen aus den Standardlastfällen sind nun mit den Schnittgrößen aus der Temperaturbelastung überlagert. Im nachfolgenden Bild sind lediglich die Schnittgrößen für den letzten Belastungszustand nach t = 180 min dargestellt.

    Figure 00070002
    The internal forces from the standard load cases are now superimposed with the internal forces from the temperature load. The following figure only shows the internal forces for the last load condition after t = 180 min.
    Figure 00070002

    Nach der Durchrechnung verschiedener Zeitpunkte t zeigt sich, dass mit einer ständigen Zunahme der Normalkraft im System zu rechnen ist, die jedoch mit zunehmender Branddauer verflacht und von der Steifigkeit der Bettung abhängt.After the calculation of different times t shows that with a permanent Increase in normal force in the system is expected, but with increasing fire duration flattened and depends on the rigidity of the bedding.

    Im Gegensatz dazu steigt zunächst die Momentenbelastung im Querschnitt enorm an und sinkt nach einem Maximum wieder entsprechend stark ab. Dies erklärt sich aus der Tatsache, dass bei Brandbeginn die innere Belastung durch die Temperaturgradiente äußerst exzentrisch wirkt, nach einer gewissen Branddauer jedoch zwar die Temperaturbeanspruchung noch immer zunimmt, aber wesentlich weniger exzentrisch wirkt.In contrast, the moment load in the cross section increases enormously and decreases after a maximum again accordingly strong. This is explained by the fact that at the beginning of the fire, the internal stress due to the temperature gradient is extremely eccentric acts, but after a certain fire duration, although the temperature stress always increasing, but much less eccentric.

    Der Nachweiß der Tragsicherheit wird mit den zugehörigen Traglastkurven geführt. Im angeführten Beispiel zeigt sich, dass der Querschnitt auch nach einer Brandbelastung von 180 min noch immer eine Tragsicherheit von > 1 aufweist.

    Figure 00080001
    The evidence of structural safety is guided with the associated load curves. In the example given, it can be seen that even after a fire load of 180 minutes, the cross-section still has a support safety of> 1.
    Figure 00080001

    Es kann somit nachgewiesen werden, dass ohne zusätzliche Maßnahmen die Standsicherheit des Querschnittes mit einer Sicherheit > 1 auch während des Brandes gewährleistet ist. It can thus be demonstrated that without additional measures, the stability of the cross-section with a safety> 1 is also guaranteed during the fire.

    Zusätzlich zu den angeführten Schritten ist zu beachten, dass im Zuge der Berechnung Querschnittsteile, deren Temperaturbelastung über 700 Grad C hinausgeht, ausgeschieden werden. Dies entspricht den definierten Materialeigenschaften.In addition to the steps listed, it should be noted that in the course of the calculation Cross-section parts whose temperature load exceeds 700 degrees C, excreted become. This corresponds to the defined material properties.

    Das erfindungsgemäße Berechnungsmodell verzichtet auf die Anwendung von komplexen numerischen Ansätzen und erlaubt auf der Basis der elementaren Festigkeitslehre und des Stahlbetonbaues unter Zuhilfenahme der linearen Stabstatik den Nachweis der Tragsicherheit von Tragsystemen unter Brandlast.

    Figure 00090001
    The calculation model according to the invention dispenses with the application of complex numerical approaches and, on the basis of elementary strength theory and reinforced concrete construction with the aid of linear bar statics, allows proof of the load-bearing safety of load-bearing systems under fire load.
    Figure 00090001

    Mit diesem Berechnungsmodell kann der zumeist bei den Projektierungen fehlende Schritt der Traglastberechnung jedenfalls mit geringem Aufwand mit einbezogen werden und Maßnahmen wie Wärmedämmungen und andere konstruktive Maßnahmen auf deren Einfluß hin untersucht werden. Eine rein empirische Anordnung derartiger Maßnahmen kann damit entfallen. Auch kann der grundsätzlichen Anordnung von Wärmedämmungen in Form von Matten und Verputzen oder Schutzbetonen eine Alternative geboten werden, die ausschließlich auf die Prinzipien bewehrter Stahlbetontragwerke zurück greift.With this calculation model, the step that is usually missing in the project planning can be In any case, the load capacity calculation can be included with little effort and Measures such as thermal insulation and other constructive measures on their influence be examined. A purely empirical arrangement of such measures can thus omitted. Also, the basic arrangement of thermal insulation in the form of Mats and plastering or protective concrete are offered an alternative, the exclusively based on the principles of reinforced reinforced concrete structures.

    Claims (4)

    Verfahren zum Nachweis der Tragsicherheit von Tragsystemen unter Brandlast durch Berechnung der Veränderungen der Materialeigenschaften während des Brandes und der Restfestigkeit nach dem Brand unter Zugrundelegung von mittels Stabstatik gewonnener Daten, welche bereits aus der Konstruktion des Bauteiles hervorgegangen sind und welche sich auf die Auslegung des Bauteiles für Standardlastfälle wie Eigengewicht, Wasserlast, Erddruck und Nutzlast beziehen, dadurch gekennzeichnet, dass Eingangswerte zur Berechnung für den Bauteil unter Temperatureinwirkung wie folgt festgelegt werden durch Definition der Brandlast durch Festlegung eines beliebigen Zeitpunktes t und Berechnung der Temperaturbelastung über den gesamten Querschnitt zu diesem Zeitpunkt t und durch Festlegung der Materialeigenschaften unter Temperatureinfluß und nach Brandeinwirkung, wobei mit diesen festgelegten Daten über die Querschnittshöhe des Bauteiles für jeden dieser Zeitschritte unter Berücksichtigung der unterschiedlichen nicht linearen Materialeigenschaften an jeder Stelle des Querschnittes durch Integration innerhalb festgelegter Grenzdehnungszustände die Traglastkurven für diesen Querschnitt zu diesem Zeitpunkt, das ist die Ermittlung der Tragfähigkeit des Querschnittes durch Bestimmung der Interaktion Biegemoment und Normalkraft mittels Traglastkurven die Umrechnung der aus der Temperaturlast resultierenden inneren Schnittkräfte in äquivalente äußere Temperaturlasten und die Bestimmung der jeweils für den betrachteten Querschnitt geltenden Systemsteifigkeiten, das sind Biegesteifigkeit und Dehnsteifigkeit ermittelt werden und die sich unter Zuhilfenahme von Stabzugberechnungen ergebenden Schnittgrößen unter Berücksichtigung der geänderten Steifigkeiten und aufgebrachter Ersatztemperaturlast gegen die dann geltenden Traglastkurven abgegrenzt werden. Method for proving the structural safety of load - bearing systems under fire load by calculating the changes in the material properties during the fire and the residual strength after firing on the basis of data obtained by Stabstatik, which have already emerged from the construction of the component and which relates to the design of the component Refer to standard load cases such as dead weight, water load, earth pressure and payload, characterized in that input values for calculating the component under the influence of temperature are determined as follows by defining the fire load by determining an arbitrary point in time t and calculating the temperature load over the entire cross section at this time t and by determining the material properties under the influence of temperature and after exposure to fire, with these specified data on the cross-sectional height of the component for each of these time steps, taking into account the different non-linear material properties at each point of the cross-section by integration within fixed limit strain states the load curves for this cross section at this time, that is the determination of the load capacity of the cross section by determining the interaction bending moment and normal force by means of load curves the conversion of the internal cutting forces resulting from the temperature load into equivalent external temperature loads and the determination of the respective system rigidities for the cross-section considered, ie bending stiffness and tensile rigidity are determined and the resulting with the aid of Stabzugberechnungen internal forces, taking into account the changed stiffness and applied equivalent temperature load against the then valid load curves are delineated. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei einem negativen Nachweis der Tragsicherheit des betreffenden Tragsystems die in Anspruch 1 angeführten Verfahrensschritte mit geänderten festzulegenden Materialeigenschaften so lange wiederholt werden, bis die gewünschte Tragsicherheit erreicht ist.A method according to claim 1, characterized in that in a negative proof of the structural safety of the respective support system, the method steps recited in claim 1 with changed material properties to be defined are repeated until the desired security is achieved. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Materialeigenschaften durch Erhöhung der Bewehrung und/oder durch Erhöhung des Betonanteiles und/oder durch Einbeziehung eines Fließgelenkes in die Berechnung geändert werden.A method according to claim 2, characterized in that the material properties are changed by increasing the reinforcement and / or by increasing the proportion of concrete and / or by including a flow joint in the calculation. Anwendung eines Verfahrens nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass im Anschluß an die Erarbeitung der Konstruktionspläne zur Errichtung eines statisch belasteten Bauwerkes die Tragsicherheit dieses Bauwerkes für einen eventuellen Brandfall unter Zugrundelegung von mittels Stabstatik gewonnener Daten, welche bereits aus der Konstruktion des Bauteiles hervorgegangen sind und welche sich auf die Auslegung des Bauteiles für Standardlastfälle wie Eigengewicht, Wasserlast, Erddruck und Nutzlast beziehen, ermittelt und gegebenenfalls die Konstruktionsmerkmale soweit verändert werden, dass die Tragsicherheit bei Brandlast bzw. die erforderliche Restfestigkeit nach dem Brand gegeben ist.Application of a method according to one of claims 1 to 3, characterized in that following the preparation of the construction plans for the construction of a statically loaded structure, the safety of this structure for a possible fire on the basis of data obtained by Stabstatik, which already from the construction of the Components have arisen and which relate to the design of the component for standard load cases such as dead weight, water load, earth pressure and payload, determined and, where appropriate, the design features are changed so far that the load-bearing safety at fire load or the required residual strength is given after the fire.
    EP01124843A 2001-10-18 2001-10-18 Process for proving the structural integrity of structural systems under fire conditions Expired - Lifetime EP1304419B1 (en)

    Priority Applications (9)

    Application Number Priority Date Filing Date Title
    DE50109767T DE50109767D1 (en) 2001-10-18 2001-10-18 Method for proving the structural safety of load-bearing systems under fire load
    EP01124843A EP1304419B1 (en) 2001-10-18 2001-10-18 Process for proving the structural integrity of structural systems under fire conditions
    AT01124843T ATE325928T1 (en) 2001-10-18 2001-10-18 METHOD FOR PROVING THE LOADS-OF-SAFETY OF SUPPORT SYSTEMS UNDER FIRE LOAD
    CN02160263A CN1427138A (en) 2001-10-18 2002-09-30 Method for enhancing supporting safety of supporting system under burning load
    JP2002292867A JP4399153B2 (en) 2001-10-18 2002-10-04 How to prove the safety of a support system under fire load
    TW091123098A TW536577B (en) 2001-10-18 2002-10-07 A method for proving the safety against collapse of load-bearing systems under fire load
    KR1020020061672A KR20030033108A (en) 2001-10-18 2002-10-10 Method for demonstrating the supporting stability of supporting systems under fire load
    US10/270,585 US20030089071A1 (en) 2001-10-18 2002-10-16 Method for proving the safety against collapse of load-bearing systems under fire load
    SG200206360A SG105564A1 (en) 2001-10-18 2002-10-17 Method for proving the safety against collapse of load-bearing systems under fire load

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP01124843A EP1304419B1 (en) 2001-10-18 2001-10-18 Process for proving the structural integrity of structural systems under fire conditions

    Publications (2)

    Publication Number Publication Date
    EP1304419A1 true EP1304419A1 (en) 2003-04-23
    EP1304419B1 EP1304419B1 (en) 2006-05-10

    Family

    ID=8179001

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01124843A Expired - Lifetime EP1304419B1 (en) 2001-10-18 2001-10-18 Process for proving the structural integrity of structural systems under fire conditions

    Country Status (9)

    Country Link
    US (1) US20030089071A1 (en)
    EP (1) EP1304419B1 (en)
    JP (1) JP4399153B2 (en)
    KR (1) KR20030033108A (en)
    CN (1) CN1427138A (en)
    AT (1) ATE325928T1 (en)
    DE (1) DE50109767D1 (en)
    SG (1) SG105564A1 (en)
    TW (1) TW536577B (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN109885911A (en) * 2019-01-31 2019-06-14 中铁第四勘察设计院集团有限公司 Composite lining of tunnel design method including secondary lining under more load actions

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE50109767D1 (en) * 2001-10-18 2006-06-14 Wageneder Johannes Method for proving the structural safety of load-bearing systems under fire load
    US7587875B2 (en) * 2004-10-04 2009-09-15 No-Burn Investments, L.L.C. Fire resistance rating system
    KR101010656B1 (en) * 2008-06-13 2011-01-25 주식회사 평화 Pipe connector for underground pipe
    CN106372353A (en) * 2016-09-14 2017-02-01 南京林业大学 Method for determining geometric dimension of caulking material on cement pavement
    CN107167551B (en) * 2017-05-05 2019-07-12 西南交通大学 The test device of concrete structure performance in a kind of simulated fire
    CN109033716B (en) * 2018-09-05 2023-04-28 深圳市赛为智能股份有限公司 BIM-based fire accident data processing method, terminal and storage medium
    CN109299525B (en) * 2018-09-05 2023-04-07 深圳市赛为智能股份有限公司 BIM-based fire extinguishing water load effect simulation method and terminal
    CN111680612B (en) * 2020-06-03 2022-08-30 清华大学 Automatic indoor fire load identification device and method based on image processing
    CN114329967B (en) * 2021-12-29 2024-04-16 中国人民警察大学 Calculation method of temperature stress of steel frame center column

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0758773A1 (en) * 1995-08-10 1997-02-19 PROMAT GmbH Method for computer aided creation of a constructional detail of a building part
    JPH11326148A (en) * 1998-05-19 1999-11-26 Sato Kogyo Co Ltd Method for evaluating fire-proof performance of steel skeleton structure and computer-readable storage medium of processing procedure for evaluating fire-proof design incorporating the method

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5654337A (en) * 1979-10-11 1981-05-14 Kurosaki Refract Co Ltd Automatic correcting method for expansivity measured value of high-temperature load testing device for fire- resistant brick
    JP2001326443A (en) * 2000-05-15 2001-11-22 Rb Controls Co Method of mounting electrical component
    DE50109767D1 (en) * 2001-10-18 2006-06-14 Wageneder Johannes Method for proving the structural safety of load-bearing systems under fire load
    JP2003293481A (en) * 2002-03-29 2003-10-15 Nippon Steel Corp Method for lowering temperature of room on fire, and structure body for room on fire

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0758773A1 (en) * 1995-08-10 1997-02-19 PROMAT GmbH Method for computer aided creation of a constructional detail of a building part
    JPH11326148A (en) * 1998-05-19 1999-11-26 Sato Kogyo Co Ltd Method for evaluating fire-proof performance of steel skeleton structure and computer-readable storage medium of processing procedure for evaluating fire-proof design incorporating the method

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    DATABASE WPI Week 0007, Derwent World Patents Index; AN 2000-078199, XP002192366 *

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN109885911A (en) * 2019-01-31 2019-06-14 中铁第四勘察设计院集团有限公司 Composite lining of tunnel design method including secondary lining under more load actions
    CN109885911B (en) * 2019-01-31 2022-04-01 中铁第四勘察设计院集团有限公司 Tunnel composite lining design method including secondary lining under multi-load action

    Also Published As

    Publication number Publication date
    CN1427138A (en) 2003-07-02
    DE50109767D1 (en) 2006-06-14
    EP1304419B1 (en) 2006-05-10
    ATE325928T1 (en) 2006-06-15
    US20030089071A1 (en) 2003-05-15
    JP2003176694A (en) 2003-06-27
    SG105564A1 (en) 2004-08-27
    JP4399153B2 (en) 2010-01-13
    KR20030033108A (en) 2003-04-30
    TW536577B (en) 2003-06-11

    Similar Documents

    Publication Publication Date Title
    DE102018204079A1 (en) Truck-mounted concrete pump and method for the stability-relevant control of a truck-mounted concrete pump
    EP1304419A1 (en) Process for proving the structural integrity of structural systems under fire conditions
    EP3181772A1 (en) Reinforcing element for installations in concrete structures
    EP3803305A1 (en) Method for load monitoring and for determining the operational life of bodies of ground reinforced with geosynthetic materials
    EP3946866B1 (en) Computer-aided method and device for optimized control of the delivery rate of a concrete pump or the like
    EP4051851A1 (en) Computer-assisted method and system for determining and visualising force flows in a scaffold
    HANNEwALD Seismic behavior of poorly detailed RC bridge piers
    Drobiec Analysis of AAC walls subjected to vertical load
    DE202022101355U1 (en) A system for pile design considering downward resistance
    DE102011105061B4 (en) Embedable, displaceable head construction for anchoring tension elements on cyclically stressed components
    WO2021213723A1 (en) Method and arrangement for monitoring building foundations
    WO2002016702A1 (en) Method for determining the earthquake resistance of buildings
    Rebhan et al. Safety assessment of existing retaining structures: Sicherheitsbewertung bestehender Stützbauwerke
    EP3626890B1 (en) Method for testing the load bearing capabilities of a foundation
    AT5848U1 (en) PROGRAM LOGIC OF A PROGRAM TO DETECT THE STRENGTH SECURITY OF CARRYING SYSTEMS UNDER FIRE LOAD
    Singh et al. Design of PR frames with top and seat angle connections using the direct analysis method
    DE102017118041B4 (en) Method and device for checking the load capacity of a building
    DE102005027759B4 (en) Method for in-situ determination of strains on solid structures
    AT505270B1 (en) CONCRETE PROP
    Ludescher Berücksichtigung von dynamischen Verkehrslasten beim Tragsicherheitsnachweis von Strassenbrücken
    DE102004014246A1 (en) Determining load-dependent supporting mechanism deformations, especially for bridges, involves applying loads in stages using multiple axle vehicles certified for normal road use with known force effects, dimensions by axle or axle group
    Balbi Maintenance of retaining structures on the Swiss motorways and national roads
    Brandtner et al. Design strategies for sprayed concrete linings: Bemessungsstrategien für Spritzbetonschalen
    Bakker et al. Ultimate limit state design for linings of bored tunnels
    EP3660221B1 (en) Building element and construction

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020621

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AXX Extension fees paid

    Extension state: RO

    Payment date: 20020621

    Extension state: SI

    Payment date: 20020621

    17Q First examination report despatched

    Effective date: 20040604

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: RO SI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20060510

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060510

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060510

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20060510

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

    REF Corresponds to:

    Ref document number: 50109767

    Country of ref document: DE

    Date of ref document: 20060614

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060810

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060810

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060821

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061010

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061031

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070213

    BERE Be: lapsed

    Owner name: WAGENEDER, JOHANNES

    Effective date: 20061031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060811

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: WAGENEDER, JOHANNES

    Free format text: WAGENEDER, JOHANNES#SLATINGASSE 6A/8#1130 WIEN (AT) -TRANSFER TO- WAGENEDER, JOHANNES#SLATINGASSE 6A/8#1130 WIEN (AT)

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060510

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061018

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060510

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080827

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100501

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: NEW ADDRESS: HOLBEINSTRASSE 36-38, 4051 BASEL (CH)

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20171024

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20171019

    Year of fee payment: 17

    Ref country code: NL

    Payment date: 20171019

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20181101

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20181018

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181018

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20191024

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20191025

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20201030

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20201031

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20201031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20201018

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 325928

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20211018