EP1301690B1 - Verfahren zur primärregelung einer kombinierten gas- und dampfturbinenanlage - Google Patents

Verfahren zur primärregelung einer kombinierten gas- und dampfturbinenanlage Download PDF

Info

Publication number
EP1301690B1
EP1301690B1 EP01967124A EP01967124A EP1301690B1 EP 1301690 B1 EP1301690 B1 EP 1301690B1 EP 01967124 A EP01967124 A EP 01967124A EP 01967124 A EP01967124 A EP 01967124A EP 1301690 B1 EP1301690 B1 EP 1301690B1
Authority
EP
European Patent Office
Prior art keywords
pressure
steam turbine
steam
power
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01967124A
Other languages
English (en)
French (fr)
Other versions
EP1301690A1 (de
Inventor
Helmut Bescherer
Dieter Diegel
Reinhard Frank
Oldrich Zaviska
Michael Henning
Peter Gottfried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01967124A priority Critical patent/EP1301690B1/de
Publication of EP1301690A1 publication Critical patent/EP1301690A1/de
Application granted granted Critical
Publication of EP1301690B1 publication Critical patent/EP1301690B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor

Definitions

  • the invention relates to a method for primary control with a combined gas and steam turbine plant according to the preamble of claim 1.
  • the gas and steam turbine plant has a gas turbine part and a steam turbine part with at least one pressure stage.
  • the working steam of the steam turbine part is generated by one or more of the waste heat of the gas turbine part fed waste heat boiler.
  • the pressure stage has at least one steam turbine control valve.
  • the control valve passage cross-section is set by a control whose setpoint is done using a performance-relevant control parameter of the pressure stage.
  • Performance-relevant control parameter means that the control allows regulation of the power of the pressure stage.
  • the performance-relevant control parameter can also be the power of the pressure stage itself. This will be discussed later.
  • a deviation of the current network frequency from a nominal network frequency is determined in a frequency control and it is counteracted in the sense of compensation.
  • Network operators must guarantee basic network operation characteristics. This includes, in particular, a specific, temporal and with respect to the requested electrical power stable current frequency (Europe: 50 Hz). Deviations from this are only tolerated within certain narrow limits. The frequency stability is ensured in the network by a dynamic load / power compensation. For this purpose, considerable reserve power must be available within seconds. This reserve power must be purchased by the network operators as a service.
  • Combined gas and steam turbine plants are plants in which waste gas boilers for operating a steam turbine plant are connected downstream of the gas turbines.
  • the exhaust gas temperature of the gas turbines is kept constant over a wide power range. In such an operation, however, the change in the gas turbine power limits.
  • the load capacity is limited essentially by the dynamics of the exhaust gas temperature control and thus the changeability of the air mass flow of the gas turbine.
  • the steam turbine part of the system follows the power changes of the gas turbines in general with the significantly slower time behavior of the waste heat process.
  • the gas turbine must provide the total reserve power in the primary control alone. Therefore, when operating the system, the frequency control reserves in the gas turbine alone account and the stationary driven block performance is then reduced by a correspondingly higher proportion.
  • the invention offers the advantage that in the range of seconds practically the entire reserve power, which is provided for both the gas and the steam part, can be provided.
  • the reserve power attributable to the steam part can be provided in the range of seconds.
  • the mentioned in the prior art delay the reaction of the steam turbine part is thus eliminated.
  • the plants can thus reserve the reserve capacity with higher block performance and the release of the control reserve in the second range is dynamically improved by the contribution of the steam turbine.
  • the operators of the combined cycle gas turbine plants thus achieve not only revenues through participation in the frequency regulation, but also additional revenue from power generation with higher block output.
  • a frequency support power reserve is built up in the boiler tank for the steam part.
  • the pressure stage is driven with a throttled control valve. Due to the throttling, a back pressure builds up in front of the control valve until an equilibrium state is reached between the prevailing pressure and the mass flow.
  • the frequency support power reserve is used in the case of underfrequency for frequency support, that a setpoint correction is formed according to the frequency undershoot.
  • the setpoint correction refers to the setpoint of the control parameter that is used in the relevant gas and steam turbine plant for setpoint / actual control. This means that, depending on the amount by which the current frequency falls below the nominal frequency, a desired value correction is formed, which counteracts the frequency deviation.
  • the setpoint correction therefore corresponds to one compared to throttled state of the control valve increased flow area. It acts with an impressed, temporal disappearance signal on the passage cross section of the respective control valve. As a result, the respective passage cross-section is increased by one of the desired value correction according to the time profile of the impressed disappearance signal corresponding measure, ie the throttling so far canceled. As a result, the accumulated frequency support power reserve is released (at least in part) at subfrequency for frequency support.
  • throttling means that the passage cross section of the control valve is narrowed and by increasing the pressure upstream of the valve, the same mass flow continues to flow as before the throttling when the valve is fully open.
  • the temporal disappearance signal serves to limit the abolition of the throttling in its duration and in its height. It corresponds to a temporary amplification of the setpoint correction.
  • the temporal disappearance signal starts with a finite value and drops to zero after a predetermined time.
  • the disappearance signal can be multiplied, for example, by the setpoint correction, so that the result (for example via an opening regulator) acts on the relevant control valve.
  • the resulting total signal which corresponds to the amount of cancellation of the above-mentioned throttling, preferably drops to zero after the predetermined period of time, so that then the state without setpoint correction is restored.
  • the temporal disappearance signal is measured in terms of its strength, its course and its duration such that, taking into account the response of the gas and steam turbine plant to the increased flow area under the setpoint correction, a stable operating condition is respected. This takes into account the fact that the flow area of the control valve can only be increased so far and only so long that the pressure does not drop too much. This will be discussed later.
  • the participation of the steam part in the frequency support is possible for the first time by the invention, whereby the above-mentioned advantages can be achieved. This makes it possible for the first time at the same time with the invention that a gas and steam turbine plant can participate more economically in the frequency control both with the gas turbine part and with the steam turbine part.
  • the gas turbine part is relieved at underfrequency by the steam turbine part and no longer has to spend the entire required for frequency support power reserve alone in the first few seconds.
  • the inventive method provides for gas and steam turbine further the advantage that in the case of an underfrequency Frequenzstützung.nötige additional power is introduced not only by power entry at the moment of the request, but already before by a temporarily slightly increased power of the gas turbine part.
  • the temporarily lower steam turbine power during the construction of the steam storage reserve can be easily compensated for via a cross-block power management by the gas turbine power, so that it can always be met in its sum always the power requirements of the block.
  • the performance-relevant control parameter is the prevailing in the region of the control valve form, which is determined by measuring the steam flow rate and conversion using a characteristic of the pressure stage, modified Gleitdruckkennline corresponding to a throttled control valve.
  • the valve position is thus determined from the modified Gleitdruckkennline.
  • a pressure setpoint is calculated, which represents the pressure value to be set within the pressure stage.
  • the relationship between the instantaneous steam flow rate and the pressure is given by the modified sliding pressure characteristic characteristic of the pressure stage.
  • the modified Gleitdruckkennline based on a compared to the fully open control valve (natural Gleitdruckkennline) reduced flow cross-section.
  • a power reserve in the pressure stage is available in this sense.
  • This power reserve can be used at underfrequency according to the invention by a controlled extension of the flow area of the control valve for frequency support.
  • the temporal disappearance signal is a decaying signal decaying with a time constant.
  • the disappearance signal can also be a square wave signal.
  • a disappearance signal is preferred in which the time constant and / or the signal form of the decay signal is a model of the temporal impulse response of the combined cycle gas turbine plant.
  • the time constant indicates the rate of decrease of the decay signal.
  • the decay signal has subsided sufficiently or completely after approximately 3 to 6 time constants.
  • the decay signal takes into account the essential parameters of the gas and steam turbine plant;
  • the decay signal corresponds to the Behavior of the steam part when canceling the throttling taking into account the gas part and in particular the steam generation of the steam part.
  • the temporal disappearance signal preferably corresponds to a DT n model function of the combined cycle power plant.
  • n is 1, 2 or more. It is a delayed differentiation behavior, which is adapted to the real behavior and ideally reflects the real behavior.
  • the DT 1 function has a sudden increase and then a decreasing with the time constant course.
  • the DT 2 function has no sudden increase, but a continuous increase, which also has a time constant. However, the time constant of the rising branch is much smaller than that of the decreasing branch.
  • the use of the DT n function ensures that the setpoint correction acts with a characteristic of the gas and steam turbine time response to the flow area of the control valve.
  • the time constants are between 10 and 200 seconds.
  • a block power management common to the combined cycle power plant takes place.
  • the setpoint correction in particular with imprinted, temporal disappearance signal
  • the stop circuit stops a block power correction via the block power control, which causes a power change of the pressure stage / steam turbine section the setpoint correction, in particular with impressed, temporal disappearance signal would counteract.
  • the setpoint correction is consequently fed into the block power control stop circuit.
  • a counter-control of the setpoint control for the modified sliding pressure which would also counteract possible Ein Grandevorticiann or Aus Grandevorticiann is avoided by a determination of the pressure profile and the steam flow rate in the pressure stage takes place and in the opposite direction of the aforementioned sizes each of the tendency of the control parameter counteracting direction of the setpoint change is stopped.
  • a storage process occurs when throttling the control valve when the power reserve is established.
  • a withdrawal process occurs when the throttling is canceled and the stored power reserve is - at least partially - released for frequency support.
  • the pressure in the pressure stage decreases due to the increase in the passage cross-section, at the same time the steam flow rate increases. In this case, the two behave in opposite directions. Then the increase of the pressure setpoint, which would counteract in this case, is stopped.
  • a gas and steam turbine plant 1 is shown in the embodiment with 2 gas turbines, each with a downstream Three-pressure waste heat boiler and 1 steam turbine.
  • the gas and steam turbine plant 1 has a gas turbine part 2 and a steam part 3. It is a higher-level block guide 10 is provided, which allows the coordinated control and regulation of the entire combined cycle power plant 1.
  • the gas turbine section 2 comprises two gas turbine sets 25, 26. Each gas turbine set 25, 26 has a compressor 29, a turbine part 30 and a generator 28.
  • a gas turbine control 31 is provided for controlling the gas turbine set 25, a gas turbine control 31 is provided.
  • Their power setpoints 34 receive the gas turbine sets 25, 26 from the block guide 10.
  • a gas turbine power actual value 32 and a gas turbine speed actual value 33 are fed into the gas turbine control 31.
  • the gas turbine speed is used as the actual value for the frequency control of the gas turbine set.
  • the second gas turbine tower 26 is constructed accordingly.
  • the waste heat of the two Gasurbo algorithms 25,26 is directed in each case via an exhaust passage 27 to the respective downstream waste heat boiler 4,5 of the steam part 3 in the gas and steam turbine 1.
  • each pressure stage of the waste heat boiler (there are three pressure levels shown) is generated via the supplied waste heat steam, which is used in a downstream steam turbine 11,12,13 to generate electricity.
  • the actual value of the steam turbine speed 35 is tapped for the steam turbine control 15. There, a deviation of the instantaneous frequency from a nominal network frequency is determined on the basis of the measured steam turbine speed actual value 35.
  • the regulation 15 of the steam turbine acts such a deviation in the sense of compensation dynamically, ie temporarily, contrary.
  • the control valves of the individual pressure stages are actuated in accordance with control signals, which are dependent on the frequency deviation.
  • a live steam control valve 6 for a high-pressure stage and a medium-pressure control valve 7 for a medium-pressure stage are provided in each case. At overfrequency steam is temporarily stored in the steam system by throttling the control valves, temporarily stored at underfrequency. Accordingly, there is a temporary reduction in performance or increase in the steam turbine.
  • a steam storage reserve In order to be able to react with under-frequency at all with expulsion, a steam storage reserve must first be established. This is achieved by raising the steam pressures by means of the steam turbine valves in the individual pressure stages according to the specification of modified Gleitdruckkennlinien 9. After a certain period of throttling the control valves 6, 7, a modified Gleit horrstician is reached, in which the steam storage reserve is available.
  • the modified Gleitdruckkennlinien 9 are given per pressure stage as a function of the steam mass flow to the steam turbine.
  • Via special, suitable detection circuit 46, 47 its value is temporarily stopped during the expulsion used for frequency support, so that the discharge process is not counteracted via the sliding pressure characteristic (this will be discussed in more detail later, see FIG. 2).
  • a low-pressure turbine section 13 is present (Fig. 1), which in addition to the exhaust steam from the medium-pressure turbine section still steam from the low-pressure stage of the heat recovery steam generator is supplied via a Niedertownstellklappe 8.
  • the use of Niedertownstellklappe for frequency support is in present embodiment not shown.
  • the low-pressure control flap 8 of the low-pressure turbine part 13 can be used for the frequency support.
  • the control according to the invention can take place.
  • the high-pressure desired value 16 or the mean-pressure desired value 17 determined in accordance with the control is supplied to the steam turbine control system 15 by the block guide 10 (where the said values can be tapped and the control parameters can be calculated) and used there to regulate the steam turbine output.
  • Fig. 2 shows a schematic block diagram of a control device for carrying out the method according to the invention.
  • This is a control device for primary control 45, which consists of a respective circuit for using the high-pressure stage and the medium-pressure stage of the steam turbine of a combined cycle power plant. 2, to a control device for controlling a gas and steam turbine plant according to FIG. 1, where also only a throttling or extension of the passage cross sections of the control valves 6 and 7 of the high-pressure stage and the medium-pressure stage are provided.
  • the circuit can be extended in a corresponding, suitable manner to the use of the butterfly valve 8 of the low pressure stage.
  • control valve passage cross-section is determined by a regulation of the form, wherein the desired value is set by a modified Gleitdruckkennline.
  • the form is thus the performance-relevant control parameter in the sense of claim 1.
  • the power of the pressure stage could be used directly, if this is determined. In the present case, the power is converted into pressure.
  • An on / off signal 42 can be specified which switches on or off the frequency influence according to the invention.
  • the frequency influence is switched off, for example, if the inventive contribution of the steam turbine to the frequency support is not desired. Then the switches 56 would be in the off position. If the switches 56 are in the ON position, the frequency support according to the invention is activated.
  • the high-pressure flow rate actual value 21 is measured and converted in the evaluation circuit 59 by means of the sliding pressure characteristic 9 into a desired value.
  • the high-pressure throttling 57 specifies the degree of throttling of the control valve 6. This is calculated by providing an additional pressure setpoint component which, using the sliding pressure characteristic curve 9, results in a correspondingly modified sliding pressure as setpoint.
  • the pressure setpoint is then fed into the set point control 65 and then forwarded to the steam turbine control 43 (for the high pressure part). There, the setpoint is converted via a control function into a control value for the corresponding control valve and then acts on the control valve.
  • the steam turbine speed feedback 35 is continuously tapped and compared 53 to the frequency reference 52 (after the speed has been converted to the appropriate frequency).
  • the frequency deviation is evaluated with a predetermined statics 54, which predefines the characteristic of the pressure setpoint correction as a function of the present frequency deviation.
  • the statics 54 may have a predetermined deadband; if the frequency deviation is within the deadband, the pressure setpoint correction is zero.
  • the pressure setpoint correction is given a time disappearance signal in the dynamic block 55.
  • the pressure setpoint correction thus determined is forwarded to the pressure regulator corresponding to the pressure stage via the output 38 at which the pressure set point correction dynamically evaluated by the time difference signal is applied.
  • the deviation due to the setpoint correction can be taken into account in this pressure regulator.
  • the pressure controller remains "quiet” by applying the setpoint correction and the actual value change does not counteract.
  • the pressure setpoint correction with the impressed, temporal disappearance signal - evaluated by a weighting factor 62 which converts the pressure setpoint correction in the corresponding valve position - passed through the output 39 to the pressure regulator output from the high pressure part of the steam turbine.
  • the corresponding setting of the control value of the control valve is effected.
  • the dynamically evaluated pressure setpoint correction is evaluated by the weighting factor 61, which converts the pressure setpoint correction into the corresponding valve position - corresponding to the mean pressure regulator output 40. Also for the medium-pressure level, a correction of the deviation occurs in that the dynamically and stationarily evaluated pressure setpoint correction 41 is applied to the pressure regulator and thus also keeps the pressure regulator for the medium-pressure level "quiet".
  • a stop circuit 48 is provided for the block power control, in which the setpoint correction is processed with the impressed, temporal disappearance signal.
  • the correction of the block power is stopped there, that of the power change counteracts the pressure stage / the steam turbine part due to the setpoint correction with the impressed, temporal disappearance signal.
  • This is represented by the binary signals stop "higher” 49 and stop “lower” 50.
  • the respective stop signals act on the block power command setpoint guide 51, which outputs a power setpoint for the gas turbine (n) at the controller output 37 to control power in accordance with the block power setpoint 36.
  • the detection of the counter-rotation of the high-pressure actual-value course and the mass-current actual value course in the pressure stage takes place in a high-pressure recognition circuit 46. If the aforementioned variables are in opposition, the direction of the setpoint change which counteracts the tendency of the high-pressure actual value is stopped. For this purpose, a quotient of these quantities is carried out in detail, whereupon it can be recognized whether the quantities develop in opposite directions. Then, the set value guide 65 is stopped in the above-mentioned manner.
  • a medium-pressure throttle 58 which can also be switched on and off via a switch 56. Also there, the calculation of the pressure via an evaluation circuit 59 using the modified Gleit horrline 9. However, is at the input of the mean pressure flow 20 and the output of the result of the block pressure setpoint guide 44 for the medium-pressure part. Also for the medium-pressure part, a detection circuit 47 is provided which functions analogously to the above-mentioned high-pressure detection circuit 46. There is at the entrance of the mean-pressure actual value 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Primärregelung mit einer kombinierten Gas- und Dampfturbinenanlage nach dem Oberbegriff des Anspruchs 1.
  • Ein derartiges Verfahren ist, zum Beispiel, aus der EP-A-0 976 914 bekannt.
  • Die Gas- und Dampfturbinenanlage hat ein Gasturbinenteil und ein Dampfturbinenteil mit zumindest einer Druckstufe. Der Arbeitsdampf des Dampfturbinenteils wird durch einen oder mehrere mit der Abwärme des Gasturbinenteils gespeisten Abhitzekessel erzeugt. Die Druckstufe hat mindestens ein Dampfturbinen-Stellventil. Der Stellventil-Durchlaßquerschnitt wird dabei durch eine Regelung eingestellt, deren Sollwertbildung unter Verwendung eines leistungsrelevanten Regelparameters der Druckstufe erfolgt. Leistungsrelevanter Regelparameter bedeutet, daß die Regelung eine Regelung der Leistung der Druckstufe erlaubt. Dabei kann der leistungsrelevante Regelparameter auch die Leistung der Druckstufe selber sein. Hierauf wird später noch näher eingegangen.
  • Eine Abweichung der momentanen Netzfrequenz von einer Netz-Sollfrequenz wird in einer Frequenzregelung ermittelt und es wird im Sinne einer Kompensation entgegengesteuert.
  • Netzbetreiber müssen grundlegende Eigenschaften des Netzbetriebes garantieren. Hierzu gehört insbesondere auch eine bestimmte, zeitliche und bezüglich der angeforderten elektrischen Leistung stabile Stromfrequenz (Europa: 50 Hz). Abweichungen hiervon werden nur in bestimmten engen Grenzen toleriert. Die Frequenzstabilität wird im Netz durch einen dynamischen Last-/Leistungsausgleich sichergestellt. Hierzu muß innerhalb von Sekunden beträchtliche Reserveleistung zur Verfügung stehen. Diese Reserveleistung müssen die Netzbetreiber als Dienstleistung einkaufen.
  • Bei kombinierten Gas- und Dampfturbinenanlagen wird diese Reserveleistung bisher von der Gasturbinenteilanlage bereitgestellt. Kombinierte Gas- und Dampfturbinenanlagen sind Anlagen, in denen den Gasturbinen Abhitzekessel zum Betrieb einer Dampfturbinenanlage nachgeschaltet sind. Im allgemeinen wird dabei die Abgastemperatur der Gasturbinen über einen großen Leistungsbereich konstant gehalten. Bei einem derartigen Betrieb sind jedoch der Veränderung der Gasturbinenleistung Grenzen gesetzt. Begrenzt wird die Lastwechselfähigkeit im wesentlichen von der Dynamik der Abgastemperaturregelung und damit der Änderbarkeit des Luftmassenstroms der Gasturbine. Der Dampfturbinenteil der Anlage folgt den Leistungsänderungen der Gasturbinen im allgemeinen mit dem erheblich trägeren Zeitverhalten des Abhitzeprozesses. Bei kombinierten Gas- und Dampfturbinenalagen im Frequenzregelbetrieb wird also heute die vom Netz geforderte Leistungsänderung allein mit dem Gasturbinenteil der Anlagen erbracht, da der Dampfturbinenteil in den ersten Sekunden nichts dazu beiträgt. Der Wasser-/Dampfkreis d. h. die Dampferzeugung und die Dampfturbine, ist nur ein passives Teil der gesamten Gas- und Dampfturbinenanlage, welches lediglich die Funktion eines Abwärmeverwerters erfüllt.
  • Demzufolge muß die Gasturbine die gesamte Reserveleistung bei der Primärregelung alleine erbringen. Deshalb sind beim Betrieb der Anlage die Frequenzregelreserven bei der Gasturbine alleine einzukalkulieren und die stationär gefahrene Blockleistung ist dann um einen entsprechend höheren Anteil reduziert.
  • Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren der eingangs genannten Art anzugeben, das es erlaubt, bei der Gas- und Dampfturbinenanlage eine Reserveleistung auch im Dampfturbinenteil vorzusehen, die praktisch vollständig für die effektive Frequenzstützung im Sekundenbereich zur Verfügung steht.
  • Die Erfindung bietet den Vorteil, daß im Sekundenbereich praktisch die gesamte Reserveleistung, die sowohl für den Gas- als auch für den Dampfteil vorgesehen ist, bereitgestellt werden kann. Insbesondere ist die auf den Dampfteil entfallende Reserveleistung erfindungsgemäß im Sekundenbereich bereitstellbar. Die im Stand der Technik genannte Verzögerung der Reaktion des Dampfturbinenteils entfällt somit. Die Anlagen können damit die Reserveleistung bei höherer Blockleistung vorhalten und die Entbindung der Regelreserve im Sekundenbereich wird durch den Beitrag der Dampfturbine dynamisch verbessert. Die Betreiber der kombinierten Gas- und Dampfturbinenanlagen erzielen somit neben den Erlösen durch Teilnahme an der Frequenzregelung auch Mehreinnahmen aus der Stromerzeugung mit höherer Blockleistung.
  • Dieser Vorteil wird dadurch erreicht, daß für den Dampfteil eine Frequenzstützungs-Leistungsreserve im Kesselspeicher aufgebaut wird. Dazu wird die Druckstufe mit einem angedrosselten Stellventil gefahren. Durch die Androsselung baut sich vor dem Stellventil ein Staudruck auf, bis ein Gleichgewichtszustand erreicht ist zwischen dem herrschenden Druck und dem Massenstrom. Die Frequenzstützungs-Leistungsreserve wird bei Unterfrequenz dadurch zur Frequenzstützung genutzt, daß nach Maßgabe der Frequenzunterschreitung eine Sollwertkorrektur gebildet wird. Die Sollwertkorrektur bezieht sich auf den Sollwert des Regelparameters, der in der betreffenden Gas- und Dampfturbinenanlage zur Soll-Ist-Regelung verwendet wird. Dies bedeutet, daß in Abhängigkeit des Betrages, um den die aktuelle Frequenz die Sollfrequenz unterschreitet eine Sollwertkorrektur gebildet wird, die der Frequenzabweichung entgegenwirkt.
  • Die Sollwertkorrektur entspricht daher einem gegenüber dem angedrosselten Zustand des Stellventils erhöhten Durchlaßquerschnitt. Sie wirkt mit einem aufgeprägten, zeitlichen Verschwindsignal auf den Durchlaßquerschnitt des betreffenden Stellventils ein. Dadurch wird der betreffende Durchlaßquerschnitt um ein der Sollwertkorrektur gemäß dem zeitlichen Verlauf des aufgeprägten Verschwindsignal entsprechendes Maß erhöht, d. h. die Androsselung insoweit aufgehoben. Demzufolge wird die aufgespeicherte Frequenzstützungs-Leistungsreserve (zumindest teilweise) bei Unterfrequenz zur Frequenzstützung freigesetzt.
  • Die Androsselung und die Aufhebung der Androsselung wird somit über die Ventilstellung bewirkt. Dabei bedeutet Androsselung, daß der Durchlaßquerschnitt des Stellventils verengt wird und durch Druckanstieg vor dem Ventil der gleiche Massenstrom wie vor der Androsselung beim voll geöffneten Ventil weiter fließt.
  • Dabei dient das zeitliche Verschwindsignal dazu, die erwähnte Aufhebung der Androsselung in ihrer Zeitdauer und in ihrer Höhe zu begrenzen. Es entspricht einer temporären Verstärkung der Sollwertkorrektur. Das zeitliche Verschwindsignal startet mit einem endlichen Wert und fällt nach einer vorbestimmten Zeit auf Null ab. Dabei kann das Verschwindsignal beispielsweise mit der Sollwertkorrektur multipliziert sein, so daß das Ergebnis (z.B. über einen Öffnungsregler) auf das betreffende Stellventil einwirkt. Vorzugsweise fällt demnach das sich ergebende Gesamtsignal, welches dem Maß der Aufhebung der obengenannten Androsselung entspricht, nach der vorbestimmten Zeitdauer auf Null ab, so daß dann der Zustand ohne Sollwertkorrektur wiederhergestellt ist.
  • Das zeitliche Verschwindsignal ist nach seiner Stärke, seinem Verlauf und seiner Zeitdauer derart bemessen, daß unter Berücksichtigung des Antwortverhaltens der Gas- und Dampfturbinenanlage auf den erhöhten Durchlaßquerschnitt unter der Sollwertkorrektur ein stabiler Betriebszustand gewahrt wird. Damit wird dem Umstand Rechnung getragen, daß der Durchlaßquerschnitt des Stellventils nur so weit und nur so lange erhöht werden kann, daß der Druck nicht zu stark abfällt. Hierauf wird später noch näher eingegangen.
    Die Beteiligung des Dampfteils an der Frequenzstützung ist erstmals durch die Erfindung möglich, wodurch die obengenannten Vorteile erreicht werden können. Damit wird es zugleich mit der Erfindung erstmals möglich, daß sich eine Gas- und Dampfturbinenanlage an der Frequenzregelung sowohl mit dem Gasturbinenteil als auch mit dem Dampfturbinenteil wirtschaftlicher beteiligen kann. Hierbei wird der Gasturbinenteil bei Unterfrequenz durch den Dampfturbinenteil entlastet und muß in den ersten Sekunden nicht mehr die gesamte zur Frequenzstützung erforderliche Leistungsreserve alleine aufbringen.
  • Das erfindungsgemäße Verfahren bietet für Gas- und Dampfturbinenanlagen des weiteren den Vorteil, daß die im Falle einer Unterfrequenz zur Frequenzstützung.nötige Mehrleistung nicht erst durch Leistungseintrag im Augenblick der Anforderung eingebracht wird, sondern bereits vorher durch eine vorübergehend geringfügig erhöhte Leistung des Gasturbinenteils. Der erforderliche, vorübergehend geringfügig erhöhte Leistungsanteil für den Aufbau der Dampfspeicherreserve geht aber nicht verloren, sondern wird gerade bei der Frequenzstützung durch Ausspeicherung des Dampfspeichers wieder genutzt. Die während des Aufbaus der Dampfspeicherreserve vorübergehend geringere Dampfturbinenleistung kann über eine blockübergreifende Leistungsführung durch die Gasturbinenleistung problemlos ausgeglichen werden, so daß darüber den Leistungsanforderungen an den Block in seiner Summe stets entsprochen werden kann.
  • Bevorzugte Ausgestaltungen der vorliegenden Erfindung sind in den Unteransprüchen beschrieben.
  • Es wird vorgeschlagen, daß der leistungsrelevante Regelparameter der im Bereich des Stellventils herrschende Vordruck ist, welcher ermittelt wird durch Messung des Dampfdurchsatzes und Umrechnung mit Hilfe einer für die Druckstufe charakteristischen, modifizierten Gleitdruckkennlinie, die einem angedrosselten Stellventil entspricht. Die Ventilstellung wird also aus der modifizierten Gleitdruckkennlinie ermittelt. Dabei wird ein Drucksollwert berechnet, der den einzustellenden Druckwert innerhalb der Druckstufe repräsentiert. Der Zusammenhang zwischen dem momentanen Dampfdurchsatz und dem Druck wird durch die für die Druckstufe charakteristische, modifizierte Gleitdruckkennlinie gegeben. Dabei ist die modifizierte Gleitdruckkennlinie bezogen auf einen gegenüber dem voll geöffneten Stellventil (natürliche Gleitdruckkennlinie) verringerten Durchlaßquerschnitt.
  • Im modifizierten Gleitdruckbetriebspunkt ist in diesem Sinne eine Leistungsreserve in der Druckstufe verfügbar. Diese Leistungsreserve kann bei Unterfrequenz erfindungsgemäß durch eine geregelte Erweiterung des Durchlaßquerschnittes des Stellventils zur Frequenzstützung genutzt werden.
  • Das zeitliche Verschwindsignal ist ein mit einer Zeitkonstante abklingendes Abklingsignal. Bei einer Abkling-Zeikonstante = 0 kann das Verschwindsignal auch ein Rechtecksignal sein. Bevorzugt wird aber ein Verschwindsignal, bei dem die Zeitkonstante und/oder die Signalform des Abklingsignals ein Modell der zeitlichen Impulsantwort der kombinierten Gas- und Dampfturbinenanlage ist. Die Zeitkonstante gibt dabei die Geschwindigkeit der Abnahme des Abklingsignals an. Näherungsweise ist das Abklingsignal nach ca. 3 bis 6 Zeitkonstanten ausreichend bzw. vollständig abgeklungen. In dem Abklingsignal sind die wesentlichen Parameter der Gas- und Dampfturbinenanlage berücksichtigt; damit entspricht das Abklingsignal dem Verhalten des Dampfteils bei Aufhebung der Androsselung unter Berücksichtigung des Gasteils und insbesondere der Dampferzeugung des Dampfteils.
  • Bevorzugt entspricht das zeitliche Verschwindsignal einer D-Tn-Modellfunktion der kombinierten Gas- und Dampfturbinenanlage. Dabei steht n für 1, 2 oder mehr. Es handelt sich um ein verzögertes Differenzierverhalten, das dem realen Verhalten angepaßt ist und im Idealfall das reale Verhalten widerspiegelt. Die D-T1-Funktion hat einen sprunghaften Anstieg und darauffolgend einen mit der Zeitkonstante abnehmenden Verlauf. Die D-T2-Funktion hat demgegenüber keinen sprunghaften Anstieg, sondern einen kontinuierlichen Anstieg, der ebenfalls eine Zeitkonstante aufweist. Die Zeitkonstante des ansteigenden Zweiges ist aber wesentlich kleiner als die des abnehmenden Zweiges.
  • Die D-Tn-Funktion kann durch folgenden Zusammenhang mathematisch dargestellt werden: D-T n = T D s (1+sT 1 )(1+sT 2 )
    Figure imgb0001
  • Dabei sind
    • TD eine geeignete Vorhaltzeitkonstante,
    • s der entsprechende Laplace-Operator und
    • Tn die entsprechenden Zeitkonstanten,
    die jeweils für die betreffende Anlage charakteristisch sind. Auf diese Weise kann eine geeignete Modellfunktion abgeleitet werden.
  • Die Verwendung der D-Tn-Funktion gewährleistet, daß die Sollwertkorrektur mit einem für die Gas- und Dampfturbinenanlage charakteristischen Zeitverhalten auf den Durchlaßquerschnitt des Stellventils einwirkt.
  • Abhängig von der Speicherfähigkeit des Dampfteiles der Anlage sind die Zeitkonstanten auszuwählen. Für die meisten Anlagen betragen die Zeitkonstanten zwischen 10 und 200 Sekunden.
  • Bevorzugt erfolgt eine für die kombinierte Gas- und Dampfturbinenanlage gemeinsame Blockleistungsführung. Ist eine solche vorgesehen, so wird vorgeschlagen, daß die Sollwertkorrektur, insbesondere mit aufgeprägtem, zeitlichen Verschwindsignal, zusätzlich in einer Stoppschaltung der Blockleistungsführung verarbeitet wird, wobei die Stoppschaltung eine Korrektur der Blockleistung über die Blockleistungsführung stoppt, die einer Leistungsänderung der Druckstufe/des Dampfturbinenteils aufgrund der Sollwertkorrektur, insbesondere mit aufgeprägtem, zeitlichen Verschwindsignal, entgegenwirken würde. Die Sollwertkorrektur wird demzufolge in die Stoppschaltung der Blockleistungsführung eingespeist.
  • Dies bedeutet, daß bei Erhöhung des Durchlaßquerschnittes des Stellventils aufgrund der Sollwertkorrektur, insbesondere mit aufgeprägtem, zeitlichen Verschwindsignal, in der Blockleistungsführung zunächst eine Erhöhung der Blockleistung registriert werden würde, woraufhin die Blockleistungsführung der ansteigenden Blockleistung entgegenwirken würde. In diesem Fall ist aber die Erhöhung der Blockleistung aufgrund der Sollwertkorrektur gewünscht, so daß die Gegenwirkung zur Blockleistungserhöhung - das ist die obengenannte Korrektur der Blockleistung - in diesem Fall gestoppt werden muß.
  • Dies gilt auch für den entgegengesetzten Fall, nämlich daß der Durchlaßquerschnitt des Stellventils wieder verringert wird. Eine Verringerung des Durchlaßquerschnittes kommt beispielsweise aufgrund zu hoher Netzfrequenz in Betracht. Dann würde die Blockleistungsführung - entsprechend dem oben genannten Fall - eine Verringerung der Blockleistung registrieren und dieser entgegenwirken wollen. In diesem Fall muß die Erhöhung - das ist die obengenannte Korrektur der Blockleistung - wiederum gestoppt werden. Mit der genannten Stoppschaltung funktioniert die Erfindung effektiver, da eine Gegenreaktion der Blockleistungsführung zur Wirkung der Sollwertkorrektur - insbesondere mit aufgeprägtem, zeitlichen Verschwindsignal - verhindert wird.
  • Eine Gegensteuerung der Sollwertführung für den modifizierten Gleitdruck, die eventuellen Einspeichervorgängen oder Ausspeichervorgängen ebenfalls entgegenwirken würde, wird dadurch vermieden, daß eine Bestimmung des Druckverlaufs und des Dampfdurchsatzverlaufs in der Druckstufe erfolgt und bei Gegenläufigkeit der vorgenannten Größen die jeweils der Tendenz des Regelparameters entgegenwirkende Richtung der Sollwertänderung gestoppt wird. Ein Einspeichervorgang liegt bei Androsselung des Stellventils vor, wenn die Leistungsreserve aufgebaut wird. Ein Ausspeichervorgang liegt vor, wenn die Androsselung aufgehoben und die eingespeicherte Leistungsreserve - zumindest teilweise - zur Frequenzstützung freigesetzt wird. Dabei verringert sich der Druck in der Druckstufe aufgrund der Erhöhung des Durchlaßquerschnittes, wobei gleichzeitig der Dampfdurchsatz ansteigt. In diesem Fall verhalten sich die beiden Größen also gegenläufig. Dann wird die Erhöhung des Drucksollwertes, der in diesem Falle entgegenwirken würde, gestoppt.
  • Die Erfindung wird anhand von in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1
    ein schematisches Blockdiagramm einer Gas- und Dampfturbinenanlage,
    Fig. 2
    ein schematisches Blockschaltbild einer Regeleinrichtung zur Durchführung des erfindungsgemäßen Verfahrens
  • In dem schematischen Blockdiagramm der Fig. 1 ist eine Gas-und Dampfturbinenanlage 1 gezeigt in Ausführung mit 2 Gasturbinen mit je einem nachgeschalteten Dreidruckabhitzekessel und 1 Dampfturbine. Die Gas-und Dampfturbinenanlage 1 hat ein Gasturbinenteil 2 und ein Dampfteil 3. Es ist eine übergeordnete Blockführung 10 vorgesehen, die die koordinierte Steuerung und Regelung der gesamten Gas- und Dampfturbinenanlage 1 erlaubt. Der Gasturbinenteil 2 umfaßt zwei Gasturbosätze 25,26. Jeder Gasturbinensatz 25,26 weist einen Verdichter 29, ein Turbinenteil 30 und einen Generator 28 auf. Zur Regelung des Gasturbosatzes 25 ist eine Gasturbinenregelung 31 vorgesehen. Ihre Leistungs-Sollwerte 34 erhalten die Gasturbosätze 25,26 von der Blockführung 10. In die Gasturbinenregelung 31 werden ein Gasturbinenleistungs-Istwert 32 und ein Gasturbinendrehzahl-Istwert 33 eingespeist. Die Gasturbinendrehzahl wird als Istwert für die Frequenzregelung des Gasturbosatzes verwendet. Der zweite Gasturbosatz 26 ist entsprechend aufgebaut.
  • Die Abwärme der beiden Gasturbosätze 25,26 wird jeweils über einen Abgaskanal 27 an den jeweils nachgeschalteten Abhitzekessel 4,5 des Dampfteils 3 in der Gas- und Dampfturbinenanlage 1 geleitet. In jeder Druckstufe der Abhitzekessel (es sind drei Druckstufen dargestellt) wird über die zugeführte Abwärme Dampf erzeugt, der in einer nachgeschalteten Dampfturbine 11,12,13 zur Stromerzeugung genutzt wird. In jeder Druckstufe sind Stellorgane (Stellventile oder Stellklappen) 6, 7,8 am Dampfturbineneintritt vorhanden für die Beeinflussung des Dampfdurchsatzes durch die Dampfturbine, welcher letztlich die Dampfturbinenleistung bestimmt.
  • Zur Ermittlung der momentanen Netzfrequenz wird für die Dampfturbinenregelung 15 der Istwert der Dampfturbinendrehzahl 35 abgegriffen. Dort wird aufgrund des gemessenen Dampfturbinendrehzahl-Istwertes 35 eine Abweichung der momentanen Frequenz von einer Netz-Sollfrequenz ermittelt. Die Regelung 15 der Dampfturbine wirkt einer solchen Abweichung im Sinne einer Kompensation dynamisch, d.h. vorübergehend, entgegen. Dazu werden die Stellventile der einzelnen Druckstufen nach Maßgabe von Stellsignalen betätigt, die von der Frequenzabweichung abhängig sind. Im gezeigten Ausführungsbeispiel ist jeweils ein Frischdampfstellventil 6 für eine Hochdruckstufe und ein Mitteldruckstellventil 7 für eine Mitteldruckstufe vorhanden. Bei Überfrequenz wird durch Androsselung der Stellventile Dampf vorübergehend in das Dampfsystem eingespeichert, bei Unterfrequenz vorübergehend ausgespeichert. Entsprechend ergibt sich vorübergehend eine Leistungsminderung oder -erhöhung an der Dampfturbine.
  • Um bei Unterfrequenz überhaupt mit Ausspeicherung reagieren zu können, muß vorher eine Dampfspeicherreserve aufgebaut werden. Dies wird erreicht durch die Anhebung der Dampfdrücke mittels der Dampfturbinenventile in den einzelnen Druckstufen nach Vorgabe von modifizierten Gleitdruckkennlinien 9. Nach einer gewissen Zeitdauer der Androsselung der Stellventile 6, 7 ist ein modifizierter Gleitdruckbetriebspunkt erreicht, in welchem die Dampfspeicherreserve verfügbar ist. Die modifizierten Gleitdruckkennlinien 9 werden je Druckstufe als Funktion des Dampfmassenstroms zur Dampfturbine vorgegeben. Über eine spezielle, geeignete Erkennungsschaltung 46,47 wird ihr Wert während der zur Frequenzstützung genutzten Ausspeicherung vorübergehend gestoppt, damit über die Gleitdruckkennlinie dem Ausspeichervorgang nicht entgegengewirkt wird (hierauf wird später noch näher eingegangen, siehe Fig. 2).
  • Neben der Hochdruckteilturbine 11 und der Mitteldruckteilturbine 12 ist noch eine Niederdruckteilturbine 13 vorhanden (Fig. 1), welcher zusätzlich zu dem Abdampf aus der Mitteldruckteilturbine noch Dampf aus der Niederdruckstufe des Abhitzedampferzeugers zugeführt wird über eine Niederdruckstellklappe 8. Die Nutzung der Niederdruckstellklappe zur Frequenzstützung ist im vorliegenden Ausführungsbeispiel nicht gezeigt.
  • Erfindungsgemäß kann aber auch die Niederdruckstellklappe 8 der Niederdruckteilturbine 13 für die Frequenzstützung benutzt werden.
  • Zur Bestimmung der modifizierten Gleitdruckkennlinie wird der Dampfmassenstrom 21, 20 der zugehörigen Druckstufe erfaßt und zur Ermittlung der Drucksollwerte je Druckstufe der Blockführung 10 zugeleitet. Ferner wird der vor dem jeweiligen Stellventil 6, 7 vorhandene Druck-Istwert 18, 19 abgegriffen und ebenfalls der Blockführung 10 zugeleitet. Mit den genannten, im Dampfkreislauf gemessenen Parametern kann die erfindungsgemäße Regelung erfolgen. Dazu wird der gemäß der Regelung ermittelte Hochdrucksollwert 16 bzw. der Mitteldrucksollwert 17 von der Blockführung 10 (wo die genannten Werte abgegriffen und die Regelparameter berechnet werden können) der Dampfturbinenregelung 15 zugeführt und dort zur Regelung der Dampfturbinenleistung verwendet.
  • Fig. 2 zeigt ein schematisches Blockschaltbild einer Regeleinrichtung zur Durchführung des erfindungsgemäßen Verfahrens. Diese ist eine Regeleinrichtung für Primärregelung 45, die aus jeweils einer Schaltung zur Nutzung der Hochdruckstufe und der Mitteldruckstufe der Dampfturbine einer kombinierten Gas- und Dampfturbinenanlage besteht. Damit bezieht sich das Blockschaltbild der Fig. 2 auf eine Regeleinrichtung zur Regelung einer Gas- und Dampfturbinenanlage gemäß Fig. 1, wo ebenfalls lediglich eine Androsselung bzw. Erweiterung der Durchlaßquerschnitte der Stellventile 6 und 7 der Hochdruckstufe und der Mitteldruckstufe vorgesehen sind. Die Schaltung kann in entsprechender, geeigneter Weise auch um die Nutzung der Stellklappe 8 der Niederdruckstufe erweitert werden.
  • In dem gezeigten Ausführungsbeispiel wird der Stellventil-Durchlaßquerschnitt durch eine Regelung des Vordruckes bestimmt, wobei der Sollwert über eine modifizierte Gleitdruckkennlinie vorgegeben wird. Der Vordruck ist somit der leistungsrelevante Regelparameter im Sinne des Anspruchs 1. Hierfür könnte auch direkt die Leistung der Druckstufe verwendet werden, sofern diese ermittelt wird. Vorliegend wird die Leistung in Druck umgerechnet.
  • Es kann ein Ein/Aus-Signal 42 vorgegeben werden, welches den erfindungsgemäßen Frequenzeinfluß einschaltet bzw. ausschaltet. Der Frequenzeinfluß wird beispielsweise ausgeschaltet, wenn die erfindungsgemäße Beteiligung der Dampfturbine an der Frequenzstützung nicht gewünscht wird. Dann wären die Schalter 56 in Aus-Stellung. Befinden sich die Schalter 56 in Ein-Stellung, ist die erfindungsgemäße Frequenzstützung aktiviert.
  • Der Hochdruckdurchfluß-Istwert 21 wird gemessen und in der Bewertungsschaltung 59 mittels der Gleitdruckkennlinie 9 in einen Sollwert umgerechnet. Die Hochdruckandrosselung 57 gibt das Maß der Androsselung des Stellventils 6 vor. Dieses wird dadurch berechnet, daß ein zusätzlicher Drucksollwertanteil vorgegeben wird, der unter Verwendung der Gleitdruckkennlinie 9 in dieser einen entsprechend modifizierten Gleitdruck als Sollwert ergibt. Der Drucksollwert wird daraufhin in die Sollwertführung 65 eingespeist und daraufhin an die Dampfturbinenregelung 43 (für das Hochdruckteil) weitergeleitet. Dort wird der Sollwert über eine Regelungsfunktion in einen Stellwert für das entsprechende Stellventil umgerechnet und wirkt dann auf das Stellventil ein.
  • Der Dampfturbinendrehzahl-Istwert 35 wird ständig abgegriffen und mit dem Frequenzsollwert 52 verglichen 53 (nachdem die Drehzahl in die entsprechende Frequenz umgerechnet wurde). Dabei wird die Frequenzabweichung mit einer vorgegebenen Statik 54 bewertet, die die Charakteristik der Drucksollwertkorrektur in Abhängigkeit von der vorliegenden Frequenzabweichung vorgibt. Dabei kann die Statik 54 ein vorgegebenes Totband haben; wenn die Frequenzabweichung innerhalb des Totbandes liegt, ist die Drucksollwertkorrektur gleich Null. Die Drucksollwertkorrektur bekommt in dem dynamischen Block 55 ein zeitliches Verschwindsignal aufgeprägt.
  • Wenn der Schalter 56 in Ein-Stellung ist, wird die solchermaßen ermittelte Drucksollwertkorrektur über den Ausgang 38, an dem die durch das zeitliche Verschwindsignal dynamisch bewertete Drucksollwertkorrektur anliegt, an den der Druckstufe entsprechenden Druckregler weitergeleitet. Damit kann in diesem Druckregler die Abweichung aufgrund der Sollwertkorrektur berücksichtigt werden. Dies führt dazu, daß der Druckregler durch Anlegen der Sollwertkorrektur "ruhig" bleibt und der Istwertänderung nicht entgegenwirkt. Gleichzeitig wird die Drucksollwertkorrektur mit dem aufgeprägten, zeitlichen Verschwindsignal - durch einen Bewertungsfaktor 62 bewertet, der die Drucksollwertkorrektur in die entsprechende Ventilstellung umrechnet - über den Ausgang 39 an den Druckreglerausgang vom Hochdruckteil der Dampfturbine weitergegeben. Dadurch wird die entsprechende Einstellung des Stellwertes des Stellventils bewirkt.
  • Die dynamisch bewertete Drucksollwertkorrektur liegt- durch den Bewertungsfaktor 61 bewertet, der die Drucksollwertkorrektur in die entsprechende Ventilstellung umrechnet - entsprechend an dem Mitteldruckreglerausgang 40 an. Auch für die Mitteldruckstufe erfolgt eine Korrektur der Regelabweichung dadurch, daß die dynamisch und stationär bewertete Drucksollwertkorrektur 41 an dem Druckregler anliegt und somit ebenfalls den Druckregler für die Mitteldruckstufe "ruhig" hält.
  • Des weiteren ist eine Stoppschaltung 48 für die Blockleistungsführung vorgesehen, in welchem die Sollwertkorrektur mit dem aufgeprägten, zeitlichen Verschwindsignal verarbeitet wird. Diejenige Korrektur der Blockleistung wird dort gestoppt, die der Leistungsänderung der Druckstufe/des Dampfturbinenteils aufgrund der Sollwertkorrektur mit dem aufgeprägten, zeitlichen Verschwindsignal entgegenwirkt. Dies ist durch die Binärsignale Stopp "höher" 49 und Stopp "tiefer" 50 repräsentiert. Die entsprechenden Stoppsignale wirken auf die Sollwertführung 51 der Blockleistungsführung ein, die gemäß dem Blockleistungssollwert 36 einen Leistungssollwert für die Gasturbine(n) an dem Reglerausgang 37 zur Regelung der Leistung ausgibt.
  • Anhand des Hochdruck-Istwertes 18 erfolgt in einer Hochdruck-Erkennungsschaltung 46 die Erkennung der Gegenläufigkeit des Hochdruck-Istwertverlaufs und des Massenstrom-Istwertverlaufs in der Druckstufe. Bei Gegenläufigkeit der vorgenannten Größen wird die jeweils der Tendenz des Hochdruck-Istwertes entgegenwirkende Richtung der Sollwertänderung gestoppt. Dazu erfolgt im einzelnen eine Quotientenbildung dieser Größen, woraufhin erkannt werden kann, ob die Größen sich gegenläufig entwickeln. Dann wird die Sollwertführung 65 in der obengenannten Weise jeweils gestoppt.
  • Es findet zudem auch eine Mitteldruckandrosselung 58 statt, die ebenfalls über einen Schalter 56 ein- und ausschaltbar ist. Auch dort erfolgt die Berechnung des Druckes über eine Bewertungsschaltung 59 unter Verwendung der modifizierten Gleitdruckkennlinie 9. Allerdings liegt am Eingang der Mitteldruckdurchfluß-Istwert 20 und am Ausgang das Ergebnis der Block-Drucksollwertführung 44 für den Mitteldruckteil an. Auch für den Mitteldruckteil ist eine Erkennungsschaltung 47 vorgesehen, die analog der obengenannten Hochdruck-Erkennungsschaltung 46 funktioniert. Dort liegt am Eingang der Mitteldruck-Istwert 19 an.

Claims (7)

  1. Verfahren zur Primärregelung mit einer kombinierten Gas- und Dampfturbinenanlage im Netzbetrieb, mit einem Gasturbinenteil (2) und einem Dampfteil (3) mit zumindest einer Druckstufe, deren Arbeitsdampf durch einen oder mehrere mit der Abwärme des Gasturbinenteils (2) gespeisten Abhitzekessel (4,5) erzeugt wird und dessen Stellventil-Durchlaßquerschnitt durch eine Regelung eingestellt wird, deren Sollwertführung über einen leistungsrelevanten Regelparameter der Druckstufe erfolgt, dadurch gekennzeichnet, daß die Druckstufe mit einem derart angedrosselten Stellventil (6, 7,8) gefahren wird, daß eine Frequenzstützungs-Leistungsreserve aufgebaut wird, welche bei Unterfrequenz dadurch zur Frequenzstützung genutzt wird, daß nach Maßgabe der Frequenzunterschreitung eine Sollwertkorrektur gebildet wird, die einem gegenüber dem angedrosselten Zustand des Stellventils (6, 7,8) erhöhten Durchlaßquerschnitt entspricht und die mit einem aufgeprägten, zeitlichen Verschwindsignal auf den Durchlaßquerschnitt des Stellventils (6, 7,8) einwirkt, wobei das zeitliche Verschwindsignal derart bemessen ist, daß unter Berücksichtigung des Antwortverhaltens der Gas- und Dampfturbinenanlage auf den erhöhten Durchlaßquerschnitt trotz Sollwertkorrektur ein stabiler Betriebszustand gewahrt bleibt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der leistungsrelevante Regelparameter der im Bereich des Stellventils (6, 7,8) herrschende Vordruck ist, welcher ermittelt wird durch Messung des Dampfdurchsatzes und Umrechnung mit Hilfe einer für die Druckstufe charakteristischen, modifizierten Gleitdruckkennlinie, die einem angedrosselten Stellventil (6, 7,8) entspricht.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das zeitliche Verschwindsignal ein Rechtecksignal oder ein mit einer Zeitkonstante abklingendes Abklingsignal ist, wobei die Zeitkonstante und/oder die Signalform des Abklingsignals ein Modell der kombinierten Gas- und Dampfturbinenanlage (1) ist.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das zeitliche Verschwindsignal einer D-Tn - Modellfunktion der kombinierten Gas- und Dampfturbinenanlage (1) entspricht.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Zeitkonstante oder die Länge des oben genannten Rechtecksignales zwischen 10 und 200 Sekunden beträgt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß eine Blockleistungsführung der kombinierten Gas- und Dampfturbinenanlage (1) erfolgt und daß die Sollwertkorrektur, insbesondere mit aufgeprägtem, zeitlichen Verschwindsignal, zusätzlich in einer Stoppschaltung (48) der Blockleistungsführung verarbeitet wird, die eine Korrektur der Blockleistung stoppt, die der Leistungsänderung der Druckstufe/des Dampfturbinenteils aufgrund der Sollwertkorrektur, insbesondere mit aufgeprägtem, zeitlichen Verschwindsignal, entgegenwirkt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß eine Bestimmung des Druckverlaufs und des Massenstromverlaufs in der Druckstufe erfolgt und bei Gegenläufigkeit der vorgenannten Größen die jeweils der Tendenz des Regelparameters entgegenwirkende Richtung der Sollwertänderung gestoppt wird.
EP01967124A 2000-07-21 2001-07-04 Verfahren zur primärregelung einer kombinierten gas- und dampfturbinenanlage Expired - Lifetime EP1301690B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01967124A EP1301690B1 (de) 2000-07-21 2001-07-04 Verfahren zur primärregelung einer kombinierten gas- und dampfturbinenanlage

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00115684 2000-07-21
EP00115684A EP1174591A1 (de) 2000-07-21 2000-07-21 Verfahren zur Primärregelung mit einer kombinierten Gas- und Dampfturbinenanlage
EP01967124A EP1301690B1 (de) 2000-07-21 2001-07-04 Verfahren zur primärregelung einer kombinierten gas- und dampfturbinenanlage
PCT/EP2001/007653 WO2002008576A1 (de) 2000-07-21 2001-07-04 Verfahren zur primärregelung mit einer kombinierten gas- und dampfturbinenanlage

Publications (2)

Publication Number Publication Date
EP1301690A1 EP1301690A1 (de) 2003-04-16
EP1301690B1 true EP1301690B1 (de) 2005-09-21

Family

ID=8169316

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00115684A Withdrawn EP1174591A1 (de) 2000-07-21 2000-07-21 Verfahren zur Primärregelung mit einer kombinierten Gas- und Dampfturbinenanlage
EP01967124A Expired - Lifetime EP1301690B1 (de) 2000-07-21 2001-07-04 Verfahren zur primärregelung einer kombinierten gas- und dampfturbinenanlage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00115684A Withdrawn EP1174591A1 (de) 2000-07-21 2000-07-21 Verfahren zur Primärregelung mit einer kombinierten Gas- und Dampfturbinenanlage

Country Status (9)

Country Link
US (1) US6912855B2 (de)
EP (2) EP1174591A1 (de)
CN (1) CN1304735C (de)
AT (1) ATE305083T1 (de)
AU (2) AU2001287583B2 (de)
DE (1) DE50107507D1 (de)
ES (1) ES2249475T3 (de)
PT (1) PT1301690E (de)
WO (1) WO2002008576A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013019437A1 (de) 2013-11-20 2015-05-21 E. Quadrat GmbH & Co. Projekt- und Beratungs- KG Dampfkraftwerk mit elektrischem Batteriesystem zur Vermeidung der Drosselverluste am Turbineneinlassventil und Verfahren hierzu

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1388643B1 (de) * 2002-08-09 2008-10-29 Hitachi, Ltd. Kombikraftwerk
US6766646B1 (en) * 2003-11-19 2004-07-27 General Electric Company Rapid power producing system and method for steam turbine
JP4131859B2 (ja) * 2004-06-11 2008-08-13 株式会社日立製作所 蒸気温度制御装置及び蒸気温度制御方法並びにこれらを用いた発電プラント
CN101142375B (zh) * 2005-03-18 2010-05-26 西门子公司 由组合式燃气和蒸汽轮机装置提供调整功率的方法和设备
US7274111B2 (en) * 2005-12-09 2007-09-25 General Electric Company Methods and apparatus for electric power grid frequency stabilization
JP4981509B2 (ja) * 2007-04-27 2012-07-25 三菱重工業株式会社 複合発電プラント蒸気タービンの運転制御装置
US7966102B2 (en) * 2007-10-30 2011-06-21 General Electric Company Method and system for power plant block loading
US20090158738A1 (en) * 2007-12-20 2009-06-25 Tailai Hu Methods and apparatus for starting up combined cycle power system
AR066539A1 (es) * 2008-05-12 2009-08-26 Petrobras En S A Metodo para la regulacion primaria de frecuencia, a traves de control conjunto en turbinas de ciclo combinado.
CH699228A1 (de) * 2008-07-21 2010-01-29 Alstom Technology Ltd Verfahren zur Primärregelung einer kombinierten Gas- und Dampfturbinenanlage.
EP2450535A1 (de) 2008-06-27 2012-05-09 Alstom Technology Ltd Verfahren zur Primärregelung einer kombinierten Gas- und Dampfturbinenanlage
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
DE102009021924B4 (de) * 2009-05-19 2012-02-23 Alstom Technology Ltd. Verfahren zur Primärregelung einer Dampfturbinenanlage
DE102012213976A1 (de) 2012-08-07 2014-02-13 Siemens Aktiengesellschaft Externer Dampfspeicher zur Beteiligung einer Dampfturbine an Netzdienstleistungen und Leistungsrampen
DE102014201406B3 (de) * 2014-01-27 2014-12-24 Drewag - Stadtwerke Dresden Gmbh Verfahren und Anordnung zur mittelbaren Speicherung elektrischer Energie und zur Erbringung von positiver und negativer Regelleistung für ein elektrisches Verbundstromnetz
CN108875248A (zh) * 2018-06-29 2018-11-23 国网山东省电力公司电力科学研究院 一种背压式汽轮机修正曲线计算方法
US11099238B2 (en) 2019-03-27 2021-08-24 General Electric Company Distributed control modules with built-in tests and control-preserving fault responses

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418285A (en) * 1972-11-15 1983-11-29 Westinghouse Electric Corp. System and method for controlling a turbine power plant in the single and sequential valve modes with valve dynamic function generation
US4333310A (en) * 1975-04-02 1982-06-08 Westinghouse Electric Corp. Combined cycle electric power plant with feedforward afterburner temperature setpoint control
US4071897A (en) * 1976-08-10 1978-01-31 Westinghouse Electric Corporation Power plant speed channel selection system
US4368520A (en) * 1980-09-29 1983-01-11 Westinghouse Electric Corp. Steam turbine generator control system
JPS585415A (ja) * 1981-06-30 1983-01-12 Toshiba Corp コンバインドサイクル発電プラントの蒸気圧力制御装置
US4471446A (en) * 1982-07-12 1984-09-11 Westinghouse Electric Corp. Control system and method for a steam turbine having a steam bypass arrangement
US4578944A (en) * 1984-10-25 1986-04-01 Westinghouse Electric Corp. Heat recovery steam generator outlet temperature control system for a combined cycle power plant
DE59009440D1 (de) * 1990-01-31 1995-08-31 Asea Brown Boveri Verfahren zum Anfahren einer Kombianlage.
JP2593578B2 (ja) * 1990-10-18 1997-03-26 株式会社東芝 コンバインドサイクル発電プラント
DE4116065A1 (de) * 1991-05-16 1992-11-19 Siemens Ag Gas- und dampfturbinenanlage
JPH08200016A (ja) * 1995-01-23 1996-08-06 Hitachi Ltd 複合サイクル発電プラント負荷制御システム
JP3073429B2 (ja) * 1995-06-20 2000-08-07 三菱重工業株式会社 多軸コンバインドプラントの蒸気系切離制御方法
JP3660732B2 (ja) * 1995-12-19 2005-06-15 株式会社東芝 一軸型複合サイクル発電プラントの蒸気タービン冷却装置
JP3913328B2 (ja) * 1997-08-26 2007-05-09 株式会社東芝 コンバインドサイクル発電プラントの運転方法およびコンバインドサイクル発電プラント
EP0976914B1 (de) * 1998-07-29 2003-02-26 ALSTOM (Switzerland) Ltd Vorrichtung sowie Verfahren zur schnellen Bereitstellung von Leistungsreserven bei kombinierten Gas- und Dampfturbinenanlagen
US6644011B2 (en) * 2000-03-24 2003-11-11 Cheng Power Systems, Inc. Advanced Cheng Combined Cycle
AR029828A1 (es) * 2001-07-13 2003-07-16 Petrobras En S A Metodo para la regulacion primaria de frecuencia en turbinas de vapor de ciclo combinado

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013019437A1 (de) 2013-11-20 2015-05-21 E. Quadrat GmbH & Co. Projekt- und Beratungs- KG Dampfkraftwerk mit elektrischem Batteriesystem zur Vermeidung der Drosselverluste am Turbineneinlassventil und Verfahren hierzu

Also Published As

Publication number Publication date
US20030167774A1 (en) 2003-09-11
AU2001287583B2 (en) 2004-03-04
WO2002008576A1 (de) 2002-01-31
AU8758301A (en) 2002-02-05
DE50107507D1 (de) 2005-10-27
EP1174591A1 (de) 2002-01-23
ES2249475T3 (es) 2006-04-01
CN1304735C (zh) 2007-03-14
EP1301690A1 (de) 2003-04-16
US6912855B2 (en) 2005-07-05
PT1301690E (pt) 2007-07-18
ATE305083T1 (de) 2005-10-15
CN1440487A (zh) 2003-09-03

Similar Documents

Publication Publication Date Title
EP1301690B1 (de) Verfahren zur primärregelung einer kombinierten gas- und dampfturbinenanlage
DE3116340C2 (de) Verfahren und Regeleinrichtung zum Begrenzen der bei Belastungsänderungen auftretenden thermischen Beanspruchung von Bauteilen einer Dampfturbine
EP1766288B1 (de) Verfahren zum betrieb eines durchlaufdampferzeugers
WO2006097495A2 (de) Verfahren und vorrichtung zum bereitstellen einer regelleistung durch eine kombinierte gas- und dampfturbinenanlage
DE19807875A1 (de) Verfahren zur Regelung der Ankerauftreffgeschwindigkeit an einem elektromagnetischen Aktuator durch extrapolierende Abschätzung der Energieeinspeisung
EP2606206B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
EP2450535A1 (de) Verfahren zur Primärregelung einer kombinierten Gas- und Dampfturbinenanlage
CH617494A5 (de)
DE19830341C1 (de) Verfahren zum Betreiben einer Regelungseinrichtung und Vorrichtung zur Durchführung des Verfahrens
DE3632041C2 (de)
DE2900336C2 (de) Verfahren und Einrichtung zum Umsteuern von Düsengruppen- Ventilen einer Dampfturbine bei einem Betriebsartwechsel
EP3438447B1 (de) Bereitstellen von regelleistung beim betrieb einer regenerativen stromerzeugungseinheit, insbesondere windenergieanlage
EP2616643B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
EP1808348B1 (de) Verschliessarme und genaue Druckregelung mit Schaltventilen zur Bremsdruckregelung in Schienenfahrzeugen
DE102007057925A1 (de) Verfahren zum Betreiben einer Windenergieanlage mit einer spannungsabhängigen Steuerung einer bereitzustellenden elektrischen Blindgröße
DE3909473A1 (de) Dampfturbinensteuerung mit megawatt-rueckfuehrung
EP0822332B1 (de) Wasserkraftanlage
DE19621824C2 (de) Verfahren zum Regeln von Gasdrücken bei Einsatz von Gasentspannungsturbinen
EP1926889A2 (de) Verfahren zum ermitteln der aktuellen maximalleistung einer kraftwerksanlage und regelvorrichtung
DE2356390C2 (de) Verfahren zur Steuerung des Betriebs einer Dampfturbine
EP0684366B1 (de) Verfahren und Einrichtung zur Steuerung und Regelung der Leistung eines Dampfkraftwerksblocks
DE4124678C2 (de)
EP2226500A2 (de) Windparkregler
DE4016017C1 (de)
DE10055166C2 (de) Verfahren zur Regelung der Leistung und Drehzahl einer Turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021112

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050921

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50107507

Country of ref document: DE

Date of ref document: 20051027

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2249475

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

26N No opposition filed

Effective date: 20060622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20060829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060704

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20060731

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20080408

REG Reference to a national code

Ref country code: PT

Ref legal event code: NF4A

Free format text: RESTITUTIO IN INTEGRUM

Effective date: 20080616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060704

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: PT

Effective date: 20080616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120726

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130704

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160712

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20160722

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160712

Year of fee payment: 16

Ref country code: PT

Payment date: 20160704

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170801

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180920

Year of fee payment: 18

Ref country code: FR

Payment date: 20180726

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180711

Year of fee payment: 18

RIC2 Information provided on ipc code assigned after grant

Ipc: F01K 23/10 20060101AFI20020204BHEP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181024

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107507

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190705