EP1301434A2 - Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same - Google Patents

Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same

Info

Publication number
EP1301434A2
EP1301434A2 EP01960526A EP01960526A EP1301434A2 EP 1301434 A2 EP1301434 A2 EP 1301434A2 EP 01960526 A EP01960526 A EP 01960526A EP 01960526 A EP01960526 A EP 01960526A EP 1301434 A2 EP1301434 A2 EP 1301434A2
Authority
EP
European Patent Office
Prior art keywords
corundum
precursor
aluminum
temperatures
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01960526A
Other languages
German (de)
French (fr)
Inventor
Robert Drumm
Christian Goebbert
Kai Gossmann
Ralph Nonninger
Helmut Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz-Institut fur Neue Materialien Gemeinnuet
Original Assignee
Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH filed Critical Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Publication of EP1301434A2 publication Critical patent/EP1301434A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • NANOSKAL1GE COROD POWDER SINTER BODIES MADE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
  • the invention relates to nanoscale corundum powder, a process for their production and their processing into sintered bodies.
  • Powdered corundum ( ⁇ - Al 2 O 3 ) is an important raw material for the production of aluminum oxide ceramics, which can basically be done in two ways.
  • One way starts with shaped bodies that are made directly from corundum powder ( ⁇ -AI 2 0 3 powder), the other from shaped bodies that consist of an -AI 2 0 3 precursor (for example, the ⁇ or ⁇ phase) , which is then converted in situ into the ⁇ -AI 0 3 phase.
  • the sintering temperature of the corundum is between 1300 and 1600 ° C, depending on the size of the starting particles used.
  • the most important obstacle to this is the high activation energy of the homogeneous nucleation, which is kinetically strongly delayed, so that the other Al 2 0 3 phases (e.g.
  • US-A-4657754 describes nanoscale corundum having an average particle size of 20 and 50 nm (jr nanocorundum "), which is produced by seeding, so that the synthesis temperature may be reduced so that at 1000 ° C ⁇ -AI 2 0 3 -Powder with a density of 3.78 g / cm 3 (corresponds to 95% of the theoretical density) is present.
  • Weng et al. describe another method from salt solutions in CN-A-085187, which likewise gives nanocorundus with a diameter of 10 to 15 nm at synthesis temperatures of 1100 to 1300 ° C.
  • a synthesis temperature of 1000 ° C is too high for many purposes, in particular for cofiring processes in microelectronics with foils or the sealing sintering of pastes.
  • the synthesis temperature can be reduced to values below 1000 ° C. by means of a special process technology, an only weakly agglomerated nanoscale corundum powder being obtained which can be sintered at lower sintering temperatures.
  • This seemingly minor improvement is of eminent technical importance, since it enables a much broader field of application to be worked on.
  • new multi-layer systems can be processed in a single cofiring step (which previously required several sintering steps at higher temperatures), since all the multilayer elements contained can now be compressed at the lower sintering temperature.
  • the invention relates to a process for the preparation of nanoscale corundum powders, in which one first produces an Al 2 0 3 precursor by adding an aqueous solution of an aluminum compound with seed crystals and adding a base and the Al 2 O 3 precursor then by calcining at elevated temperatures The temperature is converted to corundum, which is characterized in that the salts present in addition to the Al 2 O 3 precursor are separated off before the calcination, the product obtained is calcined at temperatures from 700 to 975 ° C. and any fines present ( ⁇ 40 nm) are removed ,
  • Aluminum compounds suitable for producing the Al 2 O 3 precursor are preferably water-soluble aluminum salts such as aluminum (IH) nitrate, aluminum (III) chloride, aluminum (III) acetate or aluminum (III) ethylate. These aluminum compounds are dissolved, for example, in deionized water and seed crystals are added, which preferably have a particle size ⁇ 100 nm. Examples of suitable germs are corundum or diasporic germs.
  • the desired Al 2 O 3 precursor which is required for conversion to corundum at temperatures below 1000 ° C., is formed during a ripening period.
  • bases which can be used are inorganic or organic bases, such as sodium, potassium, calcium or magnesium hydroxide, ammonia, urea, aliphatic and aromatic amines, thermally separable bases such as ammonia being particularly preferred.
  • the precipitation or ripening usually takes place at temperatures of 50 to 100 ° C., preferably 70 to 90 ° C. and particularly preferably 80 to 90 ° C., over a period of 20 to 145 hours, preferably 60 to 90 hours and particularly preferably 70 to 80 hours.
  • the n-corundum is preferably produced using the following two alternative methods.
  • the aqueous solvent is preferably removed by freeze-drying and the salts contained as impurities are thermally decomposed at temperatures of 150 to 500 ° C., for example 400 ° C.
  • the product obtained is mechanically comminuted and converted into ⁇ -Al 2 O 3 by calcining at temperatures from 700 to 975 ° C., preferably 750 to 950 ° C. and in particular 800 to 900 ° C.
  • Caicination is usually carried out over a period of 1 to 3 hours.
  • the corundum powder obtained by method 1 is characterized by a high
  • Corundum content but as a secondary phase still contains a small fine fraction ( ⁇ 40 nm), which mainly consists of non- ⁇ -Al 2 0 3 phases. It is essential to the invention to at least largely remove this fine fraction by a later one To enable compaction of the nanoscale corundum powder at sintering temperatures ⁇ 1200 ° C.
  • the fine fraction is preferably removed by centrifugation.
  • the corundum powder produced is dispersed in aqueous solution with the aid of a dispersant (surface modifier) and then centrifuged one or more times.
  • Suitable dispersants are, for example, inorganic acids (preferably HNO 3 ), aromatic or aliphatic mono-, di- or polycarboxylic acids, aromatic or aliphatic oxacarboxylic acids, such as trioxadecanoic acids (TODS), ⁇ -dicarbonyl compounds and amino acids.
  • the dispersant concentration is adapted to the specific surface of the synthesized corundum powder, so that, for example, 4-5 ⁇ mol of dispersant are available per m 2 Al 2 O 3 surface.
  • the existing salt load is reduced or removed by dialysis.
  • the solution containing the AI 2 0 3 precursor is filled into dialysis tubes and stored in deionized water.
  • the dialyzed solution is then frozen and freeze-dried.
  • the powder obtained can, if necessary, be calcined at 150 to 500.degree. C. (for example 400.degree. C.) to completely remove the salt content still present.
  • the powder is converted into ⁇ -Al 2 O 3 by calcining at temperatures from 700 to 975 ° C., preferably 750 to 950 ° C. and in particular 800 to 900 ° C.
  • ⁇ -Al 2 0 3 powder obtained after surface modification with suitable surface modifiers such as inorganic acids (preferably HN0 3 ), .aromatic or aliphatic mono-, di- or polycarboxylic acids, aromatic or aliphatic oxacarboxylic acids, for example trioxadecanoic acids (TODS), ⁇ -dicarbonyl compounds or amino acids, can be compressed directly at sintering temperatures ⁇ 1200 ° C.
  • suitable surface modifiers such as inorganic acids (preferably HN0 3 ), .aromatic or aliphatic mono-, di- or polycarboxylic acids, aromatic or aliphatic oxacarboxylic acids, for example trioxadecanoic acids (TODS), ⁇ -dicarbonyl compounds or amino acids
  • the amount of surface modifier is the specific surface of the synthesized corundum powder adapted so that, for example, 4-5 ⁇ mol of dispersant are available per m 2 Al 2 O 3 surface.
  • the surface can be modified, for example, using a ball mill (3-4 h, aluminum oxide grinding balls ⁇ 1 mm), mortar mills, three-roller mill or kneading unit, adapted to the subsequent shaping technique.
  • the average primary particle size is usually 30 to 150 nm, preferably 40 to 100 nm and particularly preferably 50 to 70 nm.
  • the corundum powder is only slightly agglomerated in the redispersed state. It has a phase purity (content of ⁇ -Al 2 0 3 ) of> 80, preferably> 90 and in particular> 95% by weight and a density of> 3.90 g / cm 3 , preferably 3 3.93 g / cm 3 , particularly preferably> 3.95 g / cm 3 .
  • the corundum powder produced according to the invention is used for further shaping with conventional processing aids, e.g. organic solvents, binders, plasticizers, mixed.
  • suitable solvents are e.g. Ethylene glycol, diethylene glycol monobutyl ether and diethylene glycol monoethyl ether, individually or as mixtures.
  • binders which can be used are cellulose derivatives such as hydroxypropyl cellulose, polyvinylpyrrolidone, acrylate polymers and oligomers,
  • Methacrylates such as tetraethylene glycol dimethacrylate and polyethylene glycoidimethacrylate. The following are used e.g. 15% by weight of binder, based on the weighed solid.
  • binder e.g. 15% by weight of binder, based on the weighed solid.
  • polyethylene glycol dimethacrylates, polyethylene glycols e.g. PEG 600, PEG 800, PEG 1000, PEG 2000, PEG 6000
  • plasticizers e.g. PEG 600, PEG 800, PEG 1000, PEG 2000, PEG 6000
  • 25% by weight based on the weighed-in binder.
  • the nanoscale corundum powders according to the invention are suitable for producing dense Al 2 O 3 sintered bodies in the form of components or constituents of multilayer structures.
  • Special application areas of these components and Multi-layer systems are (micro) electronics, sensors (gas, pressure, piezo sensors), microsystem technology (eg microreactors), ceramic filter elements and catalyst carriers.
  • the solution obtained is frozen (for example at -30 ° C.) and then dried (freeze-drying).
  • the powder is then heated to 400 ° C. (air atmosphere) at a heating rate of 2 K / min and kept at this temperature for 1 h.
  • the powder is ground dry in a mortar mill for 1 hour.
  • the powder is then brought to 800 ° C. at a heating rate of 10 K / min and immediately heated to 900 ° C. at a heating rate of 2 K / min and kept at this temperature for 1 hour.
  • the powder produced in this way has a specific surface area of approximately 20-60 m 2 / g and a density of 3.6-3.9 g / cm 3 , depending on the germs used.
  • the powder After cooling, the powder is dispersed for 3-4 hours in a ball mill with aluminum oxide grinding balls ( ⁇ 1 mm) and an organic acid (TODS) as a dispersant / surface modifier.
  • the dispersant content is adapted to the specific surface of the synthesized aluminum oxide powder, so that 4-5 ⁇ mol TODS per m 2 Al 2 O 3 surface are contained.
  • the fine fraction of the aluminum oxide powder obtained is separated off by repeated centrifugation.
  • the separation limit for centrifugation is arithmetically a particle size of approximately 40 nm.
  • the fine fraction consists predominantly (> 90%) of non- ⁇ -Al 2 0 3 particles.
  • the centrifugate is freeze-dried to remove the solvent.
  • the resulting solution is purified by dialysis in portions containing approximately 400 g ammonium nitrate to remove the dissolved ammonium nitrate ions.
  • the solution is poured into a dialysis tube (pore size 2.5 - 3 nmj and approx.
  • a hold period of 1 is inserted at 900 ° C.
  • the powder thus produced has a specific surface area of approx. 18-22 m 2 / g and a density of 3.95-3.98 g / cm 3 .
  • the primary particle size is between 40-70 nm, the powder is weakly agglomerated in the redispersed state.
  • Example 1 10.5 g of the ⁇ -Al 2 0 3 prepared in Example 1 are homogeneously mixed together with 2.8 g of a 1: 1 solvent mixture of ethylene glycol and diethylene glycol monobutyl ether and 0.5 g of polyvinylpyrrolidone as a binder. Mortars, kneaders or mortar mills can be used as mixing units. The paste obtained is applied several times to a three-roll mill for the final homogenization.
  • the aluminum oxide paste is applied using a thick-film process (screen printing) to already sintered corundum substrates or green (unsintered) substrates made of yttrium-stabilized (3 mol% Y 2 0 3 ) zirconium dioxide in dry layer thicknesses of up to 30 ⁇ m and dried without cracks in a circulating air drying cabinet at 80 ° C.
  • the printed layers on the corundum substrates are thermally compacted at 1200 ° C (heating rate 5K / min) with a holding time of 1 hour.
  • the compression of the ⁇ -Al 2 0 3 layers printed on green (unsintered) substrates made of yttrium-stabilized zirconium dioxide takes place in two stages.
  • the organic matter contained in the composite is removed in a protective gas atmosphere (nitrogen) at temperatures up to 450 ° C by thermal decomposition.
  • the heating up time is 10 hours, holding time 3 hours.
  • the thermal compression up to the dense material composite takes place in an atmosphere furnace at temperatures of
  • Example 2 5 2 g of the -Al 2 0 3 powder produced in Example 1 are homogeneously mixed with 1 g of a solvent mixture of ethylene glycol / diethylene glycol monobutyl ether (1: 1) and 0.15 g of a cellulose binder and dried at 100 ° C. 200 mg of the mixture are compressed in a uniaxial pressing tool with an inner diameter of 5 mm at a pressure of 200 MPa. Then ⁇ Q is post-compressed in a cold isostatic press at 400 MPa. The compact is thermally compressed at 1200 ° C (1h) in an air atmosphere. After sintering, the shaped body has a density of 3.85 g / cm 3 (96.5% of theory).

Abstract

Nanoscale corundum powders are obtained by first producing an Al2O3 precursor by adding seed crystals to an aqueous solution of an aluminium compound and adding a base and then converting the Al2O3 precursor into corundum by calcination at a high temperature. Before the calcination, the salts that are present in addition to the Al2O3 precursor are separated off. The resulting product is calcinated at temperatures of 700 to 975 DEG C and any fines that may be present are removed. The resulting corundum powders can be sintered at temperatures ≤ 1200 DEG C to produce compacts or components of multiple layer systems.

Description

NANOSKAL1GE KORUNDPULVER, DARAUS GEFERTIGTE SINTERKÖRPER UND VERFAHREN ZU DEREN HERSTELLUNG NANOSKAL1GE COROD POWDER, SINTER BODIES MADE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
Die Erfindung betrifft nanoskaiige Korundpulver, ein Verfahren zu deren Herstellung und deren Verarbeitung zu Sinterkörpern.The invention relates to nanoscale corundum powder, a process for their production and their processing into sintered bodies.
Pulverförmiger Korund (α- AI2O3) ist ein wichtiger Rohstoff zur Herstellung von Aluminiumoxidkeramik, die grundsätzlich auf zwei Wegen erfolgen kann. Ein Weg geht aus von Formkörpern, die direkt aus Korundpulver (α-AI203-Pulver) gefertigt sind, der andere von Formkörpern, die aus einer -AI203-Vorstufe (beispielsweiise der γ- oder Θ-Phase) bestehen, welche dann in situ in die α-AI 03-Phase umgewandelt wird.Powdered corundum (α- Al 2 O 3 ) is an important raw material for the production of aluminum oxide ceramics, which can basically be done in two ways. One way starts with shaped bodies that are made directly from corundum powder (α-AI 2 0 3 powder), the other from shaped bodies that consist of an -AI 2 0 3 precursor (for example, the γ or Θ phase) , which is then converted in situ into the α-AI 0 3 phase.
Bei der Verarbeitung üblicher Korundpulver zu dichten Sinterkörpern liegt die Sintertemperatur des Korund, je nach verwendeter Ausgangsteilchengröße, zwischen 1300 und 1600°C. Es hat vielfache Versuche gegeben, die Sintertemperatur von Korund zu reduzieren bzw. die thermodynamisch stabile α- AI 03.Phase bei wesentlich niedrigen Temperaturen zu erreichen. Wichtigster Hinderungsgrund dabei ist die hohe Aktivierungsenergie der homogenen Nukleation, die kinetisch stark verzögert ist, so dass sich aus den anderen Al203-Phasen (z. B.When conventional corundum powder is processed to form dense sintered bodies, the sintering temperature of the corundum is between 1300 and 1600 ° C, depending on the size of the starting particles used. There have been numerous attempts to reduce the sintering temperature of corundum or to achieve the thermodynamically stable α-AI 0 3 phase at significantly lower temperatures. The most important obstacle to this is the high activation energy of the homogeneous nucleation, which is kinetically strongly delayed, so that the other Al 2 0 3 phases (e.g.
- der γ- oder Θ-Phase) eine solche Nukleation nur bei höheren Temperaturen erreichen lässt, da hier die Diffusionskoeffizienten höher liegen. Es hat daher nicht an Versuchen gefehlt, durch Zugabe von Keimen die Umwandlungstemperatur deutlich zu erniedrigen; siehe EP-A-554908, US-A-4657754 und WO 98/55400.- the γ- or Θ-phase) can only achieve such nucleation at higher temperatures, since the diffusion coefficients are higher here. There has therefore been no lack of attempts to significantly lower the transition temperature by adding germs; see EP-A-554908, US-A-4657754 and WO 98/55400.
Beispielsweise beschreibt die US-A-4657754 nanoskaligen Korund mit einer mittleren Partikelgröße von 20 und 50 nm (jrNanokorund"), der durch Bekeimen hergestellt wird, wodurch die Synthesetemperatur so reduziert werden kann, dass bei 1000°C α-AI203-Pulver mit einer Dichte von 3,78 g/cm3 (entspricht 95 % der theoretischen Dichte) vorliegt. Weng et al. beschreiben in der CN-A- 085187 ein anderes Verfahren aus Salzlösungen, das ebenfalls Nanokorund von 10 bis 15 nm Durchmesser bei Synthesetemperaturen von 1100 bis 1300°C ergibt.For example, US-A-4657754 describes nanoscale corundum having an average particle size of 20 and 50 nm (jr nanocorundum "), which is produced by seeding, so that the synthesis temperature may be reduced so that at 1000 ° C α-AI 2 0 3 -Powder with a density of 3.78 g / cm 3 (corresponds to 95% of the theoretical density) is present. Weng et al. describe another method from salt solutions in CN-A-085187, which likewise gives nanocorundus with a diameter of 10 to 15 nm at synthesis temperatures of 1100 to 1300 ° C.
Eine Synthesetemperatur von 1000°C ist jedoch für viele Zwecke zu hoch, insbesondere für Cofiringprozesse in der Mikroelektronik mit Folien oder das Dichtsintern von Pasten. Gleiches gilt für die relativ hohe Sintertemperatur herkömmlicher Korundpulver von 1300 bis 1600°C.However, a synthesis temperature of 1000 ° C is too high for many purposes, in particular for cofiring processes in microelectronics with foils or the sealing sintering of pastes. The same applies to the relatively high sintering temperature of conventional corundum powder from 1300 to 1600 ° C.
Überraschenderweise wurde nun gefunden, dass über eine besondere Verfahrenstechnik die Synthesetemperatur auf Werte unter 1000°C abgesenkt werden kann, wobei ein nur schwach agglomeriertes nanoskaliges Korundpulver erhalten wird, das bei niedrigeren Sintertemperaturen gesintert werden kann. Diese gering erscheinende Verbesserung ist von eminenter technischer Bedeutung, da hierdurch ein deutlich breiteres Anwendungsfeld bearbeitet werden kann. Beispielsweise können neuartige Merhschichtsysteme in einem einzigen Cofiring-Schritt verarbeitet werden (wozu zuvor mehrere Sinterschritte bei höheren Temperaturen erforderlich waren), da nun alle enthaltenen Mehrschichtelemente bei der niedrigeren Sintertemperatur verdichtet werden können.Surprisingly, it has now been found that the synthesis temperature can be reduced to values below 1000 ° C. by means of a special process technology, an only weakly agglomerated nanoscale corundum powder being obtained which can be sintered at lower sintering temperatures. This seemingly minor improvement is of eminent technical importance, since it enables a much broader field of application to be worked on. For example, new multi-layer systems can be processed in a single cofiring step (which previously required several sintering steps at higher temperatures), since all the multilayer elements contained can now be compressed at the lower sintering temperature.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von nanoskaligen Korundpulvern, bei dem man zunächst einen AI203-Precursor herstellt durch Versetzen einer wässrigen Lösung einer Aluminiumverbihdung mit Keimkristallen und Zugabe einer Base und den AI2O3-Precursor dann durch Calcinieren bei erhöhter Temperatur in Korund überführt, das dadurch gekennzeichnet ist, daß man vor der Calcinierung die neben dem AI2O3-Precursor vorhandenen Salze abtrennt, das erhaltene Produkt bei Temperaturen von 700 bis 975°C calciniert und gegebenenfalls vorhandene Feinanteile (< 40 nm) entfernt.The invention relates to a process for the preparation of nanoscale corundum powders, in which one first produces an Al 2 0 3 precursor by adding an aqueous solution of an aluminum compound with seed crystals and adding a base and the Al 2 O 3 precursor then by calcining at elevated temperatures The temperature is converted to corundum, which is characterized in that the salts present in addition to the Al 2 O 3 precursor are separated off before the calcination, the product obtained is calcined at temperatures from 700 to 975 ° C. and any fines present (<40 nm) are removed ,
Zur Herstellung des AI2O3-Precursors geeignete Aluminiumverbindungen sind vorzugsweise wasserlösliche Aluminiumsalze wie Aluminium(IH)nitrat, Aluminium(lll)chlorid, Aluminium(lll)acetat oder Aluminium(lll)ethylat. Diese Aluminiumverbindungen werden z.B. in deionisiertem Wasser gelöst und mit Keimkristallen versetzt, die vorzugsweise eine Partikelgröße < 100 nm aufweisen. Beispiele für geeignete Keime sind Korund- oder Diaspor-Keime.Aluminum compounds suitable for producing the Al 2 O 3 precursor are preferably water-soluble aluminum salts such as aluminum (IH) nitrate, aluminum (III) chloride, aluminum (III) acetate or aluminum (III) ethylate. These aluminum compounds are dissolved, for example, in deionized water and seed crystals are added, which preferably have a particle size <100 nm. Examples of suitable germs are corundum or diasporic germs.
Durch Zugabe einer Base bildet sich während einer Reifezeit der gewünschte AI2O3- Precursor, der zur Umwandlung in Korund bei Temperaturen unter 1000°C erforderlich ist. Beispiele für verwendbare Basen sind anorganische oder organische Basen, wie Natrium-, Kalium-, Calcium- oder Magnesiumhydroxid, Ammoniak, Harnstoff, aliphatische und aromatische Amine, wobei thermisch abtrennbare Basen wie Ammoniak besonders bevorzugt sind. ,By adding a base, the desired Al 2 O 3 precursor, which is required for conversion to corundum at temperatures below 1000 ° C., is formed during a ripening period. Examples of bases which can be used are inorganic or organic bases, such as sodium, potassium, calcium or magnesium hydroxide, ammonia, urea, aliphatic and aromatic amines, thermally separable bases such as ammonia being particularly preferred. .
Die Ausfällung bzw. Reifung erfolgt gewöhnlich bei Temperaturen von 50 bis 100°C, vorzugsweise 70 bis 90°C und besonders bevorzugt 80 bis 90°C, über einen Zeitraum von 20 bis 145 Stunden, bevorzugt 60 bis 90 Stunden und besonders bevorzugt 70 bis 80 Stunden.The precipitation or ripening usually takes place at temperatures of 50 to 100 ° C., preferably 70 to 90 ° C. and particularly preferably 80 to 90 ° C., over a period of 20 to 145 hours, preferably 60 to 90 hours and particularly preferably 70 to 80 hours.
Nach dieser Reifung erfolgt die n-Korund-Herstellung vorzugsweise nach den folgenden beiden alternativen Methoden.After this ripening, the n-corundum is preferably produced using the following two alternative methods.
Bei der Methode 1 wird das wässrige Lösungsmittel vorzugsweise durch Gefriertrocknung entfernt und die als Verunreinigungen enthaltenen Salze werden bei Temperaturen von 150 bis 500°C, beispielsweise 400°C, thermisch zersetzt. Das erhaltene Produkt wird mechanisch zerkleinert und durch Calcinieren bei Temperaturen von 700 bis 975°C, vorzugsweise 750 bis 950°C und insbesondere 800 bis 900°C in α-AI2O3 umgewandelt. Die Caicinierung erfolgt gewöhnlich über einen Zeitraum von 1 bis 3 Stunden.In method 1, the aqueous solvent is preferably removed by freeze-drying and the salts contained as impurities are thermally decomposed at temperatures of 150 to 500 ° C., for example 400 ° C. The product obtained is mechanically comminuted and converted into α-Al 2 O 3 by calcining at temperatures from 700 to 975 ° C., preferably 750 to 950 ° C. and in particular 800 to 900 ° C. Caicination is usually carried out over a period of 1 to 3 hours.
Das nach der Methode 1 erhaltene Korundpulver zeichnet sich durch einen hohenThe corundum powder obtained by method 1 is characterized by a high
Korundanteil aus, enthält jedoch als Nebenphase noch ein geringen Feinanteil (< 40 nm), der hauptsächlich aus Nicht-α-AI203-Phasen besteht. Erfindungswesentlich ist es, diesen Feinanteil zumindest weitgehend zu entfernen, um eine spätere Verdichtung der nanoskaligen Korundpulver bei Sintertemperaturen < 1200 °C zu ermöglichen.Corundum content, but as a secondary phase still contains a small fine fraction (<40 nm), which mainly consists of non-α-Al 2 0 3 phases. It is essential to the invention to at least largely remove this fine fraction by a later one To enable compaction of the nanoscale corundum powder at sintering temperatures <1200 ° C.
Die Abtrennung des Feinanteils erfolgt vorzugsweise durch Zentrifugation. Hierzu wird das hergestellte Korundpulver mit Hilfe eines Dispergiermittels (Oberflächen- modifikator) in wässriger Lösung dispergiert und anschließend ein- oder mehrmals zentrifugiert. Geeignete Dispergiermittel sind z.B. anorganische Säuren (vorzugsweise HNO3), aromatische oder aliphatische Mono- Di- oder Polycarbonsäuren, aromatische oder aliphatische Oxacarbonsäuren, wie Trioxadecansäre (TODS), ß- Dicarbonylverbindungen und Aminosäuren. Die Dispergiermittelkonzentration wird der spezifischen Oberfläche des synthetisierten Korundpulvers angepasst, so dass beispielsweise 4-5 μmol Dispergiermittel pro m2 AI203-Oberfläche zur Verfügung stehen.The fine fraction is preferably removed by centrifugation. For this purpose, the corundum powder produced is dispersed in aqueous solution with the aid of a dispersant (surface modifier) and then centrifuged one or more times. Suitable dispersants are, for example, inorganic acids (preferably HNO 3 ), aromatic or aliphatic mono-, di- or polycarboxylic acids, aromatic or aliphatic oxacarboxylic acids, such as trioxadecanoic acids (TODS), β-dicarbonyl compounds and amino acids. The dispersant concentration is adapted to the specific surface of the synthesized corundum powder, so that, for example, 4-5 μmol of dispersant are available per m 2 Al 2 O 3 surface.
Bei der Methode 2 wird die vorhandene Salzbeladung durch Dialyse reduziert oder entfernt. Dazu wird die den AI203-Precursor enthaltende Lösung in Dialyseschläuche gefüllt und in deionisiertem Wasser eingelagert. Die dialysierte Lösung wird anschließend eingefroren und gefriergetrocknet. Das erhaltene Pulver kann zur vollständigen Entfernung des noch vorhandenen Salzgehaltes gegebenenfalls noch bei 150 bis 500°C (z.B. 400 °C) calciniert werden. Die Umwandlung des Pulvers in α-AI2O3 erfolgt wie bei Methode 1 durch Calcinieren bei Temperaturen von 700 bis 975°C, vorzugsweise 750 bis 950°C und insbesondere 800 bis 900°C.In method 2, the existing salt load is reduced or removed by dialysis. For this purpose, the solution containing the AI 2 0 3 precursor is filled into dialysis tubes and stored in deionized water. The dialyzed solution is then frozen and freeze-dried. The powder obtained can, if necessary, be calcined at 150 to 500.degree. C. (for example 400.degree. C.) to completely remove the salt content still present. As in method 1, the powder is converted into α-Al 2 O 3 by calcining at temperatures from 700 to 975 ° C., preferably 750 to 950 ° C. and in particular 800 to 900 ° C.
Bei dieser Methode 2 entsteht während der Synthese kein oder nur eine geringe Menge Feinanteil aus Nicht-α-AI203-Phasen, so dass das erhaltene α-AI203-Pulver nach einer Oberflächenmodifizierung mit geeigneten Oberflächenmodifikatoren, wie anorganischen Säuren (vorzugsweise HN03), .aromatischen oder aliphatischen Mono-, Di- oder Polycarbonsäuren, aromatischen oder aliphatischen Oxacarbonsäuren, z.B. Trioxadecansäre (TODS), ß-Dicarbonylverbindungen oder Aminosäuren, direkt bei Sintertemperaturen < 1200 °C verdichtet werden kann. Die Menge des Oberflächenmodifikators wird der spezifischen Oberfläche des synthetisierten Korundpulvers angepasst, so dass beispielsweise 4-5 μmol Dispergiermittel pro m2 AI203-Oberfläche zur Verfügung stehen. Die Oberflächenmodifizierung kann z.B. mittels Kugelmühle (3-4 h, Aluminiumoxid- Mahlkugeln < 1 mm), Mörsermühlen, Dreiwalzenstuhl oder Knetaggregat erfolgen, angepasst an die darauf folgende Formgebungstechnik.In this method 2, no or only a small amount of fine fraction is formed from non-α-Al 2 0 3 phases during the synthesis, so that the α-Al 2 0 3 powder obtained after surface modification with suitable surface modifiers, such as inorganic acids ( preferably HN0 3 ), .aromatic or aliphatic mono-, di- or polycarboxylic acids, aromatic or aliphatic oxacarboxylic acids, for example trioxadecanoic acids (TODS), β-dicarbonyl compounds or amino acids, can be compressed directly at sintering temperatures <1200 ° C. The amount of surface modifier is the specific surface of the synthesized corundum powder adapted so that, for example, 4-5 μmol of dispersant are available per m 2 Al 2 O 3 surface. The surface can be modified, for example, using a ball mill (3-4 h, aluminum oxide grinding balls <1 mm), mortar mills, three-roller mill or kneading unit, adapted to the subsequent shaping technique.
Danach liegt ein redispergierbares Korundpulver vor, dass über unterschiedliche Formgebungsverfahren wie Foliengießen, Siebdruck, Tampondruck, Elektrophorese, Schlickerguß, Extrusion, Spritzguß, weiterverarbeitet werden kann. Die mittlere Primärpartikelgröße beträgt gewöhnlich 30 bis 150 nm, vorzugsweise 40 bis 100 nm und besonders bevorzugt 50 bis 70 nm. Das Korundpulver ist im redispergierten Zustand nur schwach agglomeriert. Es hat eine Phasenreinheit (Gehalt an α-AI203 ) von > 80, vorzugsweise > 90 und insbesondere > 95 Gew.-% und eine Dichte von > 3,90 g/cm3, vorzugsweise ≥ 3,93 g/cm3, besonders bevorzugt > 3,95 g/cm3.Thereafter, there is a redispersible corundum powder which can be processed further using various shaping processes such as film casting, screen printing, pad printing, electrophoresis, slip casting, extrusion, injection molding. The average primary particle size is usually 30 to 150 nm, preferably 40 to 100 nm and particularly preferably 50 to 70 nm. The corundum powder is only slightly agglomerated in the redispersed state. It has a phase purity (content of α-Al 2 0 3 ) of> 80, preferably> 90 and in particular> 95% by weight and a density of> 3.90 g / cm 3 , preferably 3 3.93 g / cm 3 , particularly preferably> 3.95 g / cm 3 .
Das erfindungsgemäß hergestellte Korundpulver wird zur weiteren Formgebung mit üblichen Verarbeitungshilfsmitteln, z.B. organischen Lösungsmitteln, Bindemitteln, Weichmachern, vermischt. Als Lösungsmittel eignen sich z.B. Ethylenglycol, Diethylenglycolmonobutylether und Diethylenglycolmonoethylether, einzeln oder als Gemische. Beispiele für verwendbare Bindemittel sind Cellulosederivate wie Hydroxypropylcellulose, Polyvinylpyrrolidon, Acrylat-Polymere und -Oligomere,The corundum powder produced according to the invention is used for further shaping with conventional processing aids, e.g. organic solvents, binders, plasticizers, mixed. Suitable solvents are e.g. Ethylene glycol, diethylene glycol monobutyl ether and diethylene glycol monoethyl ether, individually or as mixtures. Examples of binders which can be used are cellulose derivatives such as hydroxypropyl cellulose, polyvinylpyrrolidone, acrylate polymers and oligomers,
Methacrylate wie Tetraethylenglycol-dimethacrylat und Polyethylenglycoi- dimethacrylat. Eingesetzt werden dabei z.B. 15 Gew.% Bindemittel, bezogen auf den eingewogenen Feststoff. Als Weichmacher werden beispielsweise Polyethylen- glycol-dimethacrylate, Polyethyienglycole (z.B. PEG 600, PEG 800, PEG 1000, PEG 2000, PEG 6000) verwendet. Eingesetzt werden z.B. 25 Gew.%, bezogen auf das eingewogene Bindemittel.Methacrylates such as tetraethylene glycol dimethacrylate and polyethylene glycoidimethacrylate. The following are used e.g. 15% by weight of binder, based on the weighed solid. For example, polyethylene glycol dimethacrylates, polyethylene glycols (e.g. PEG 600, PEG 800, PEG 1000, PEG 2000, PEG 6000) are used as plasticizers. For example, 25% by weight, based on the weighed-in binder.
Die erfindungsgemäßen nanoskaligen Korundpulver eignen sich zur Herstellung von dichten Al203-Sinterkörpern in Form von Bauteilen oder Bestandteilen von mehrschichtigen Strukturen. Spezielle Anwendungsgebiete dieser Bauteile und Mehrsschichtsysteme sind die (Mikro)Elektronik, Sensorik (Gas-, Druck-, Piezosensoren), Mikrosystemtechnik (z.B. Mikroreaktoren), keramische Filterelemente und Katalysatorträger.The nanoscale corundum powders according to the invention are suitable for producing dense Al 2 O 3 sintered bodies in the form of components or constituents of multilayer structures. Special application areas of these components and Multi-layer systems are (micro) electronics, sensors (gas, pressure, piezo sensors), microsystem technology (eg microreactors), ceramic filter elements and catalyst carriers.
Die folgenden Beispiele erläutern die Erfindung.The following examples illustrate the invention.
Beispiel 1example 1
Herstellung des n-KorundsProduction of the n-corundum
In einem Glasrührbehälter werden 16 I deionisiertes Wasser vorgelegt, in die 4 kg AI(N03)3 . 6H20 unter Rühren zugegeben werden. Danach werden 60 g Aluminiumoxidkeime (α-Aluminiumoxid oder Diaspor) in Form einer 5-20 gew.-%igen wässrigen Suspension (pH-Wert > 3) zugesetzt. Die Lösung wird auf eine Temperatur von 85°C ± 5°C erwärmt. Mittels wässriger Ammoniaklösung (25 Gew.- %) wird der pH-Wert der Lösung auf pH = 4,8 + 0,1 eingestellt. Die Lösung wird 72 h bei einer Temperatur von 85°C ± 5°C unter Rühren gehalten. Nach den 72 h können zwei alternative Wege zur Herstellung von nanoskaligem Korund eingeschlagen werden.16 I of deionized water are placed in a glass stirred container, into which 4 kg of Al (NO 3 ) 3 . 6H 2 0 are added with stirring. Then 60 g of aluminum oxide seeds (α-aluminum oxide or diaspore) in the form of a 5-20% strength by weight aqueous suspension (pH> 3) are added. The solution is heated to a temperature of 85 ° C ± 5 ° C. The pH of the solution is adjusted to pH = 4.8 + 0.1 using aqueous ammonia solution (25% by weight). The solution is kept under stirring for 72 h at a temperature of 85 ° C ± 5 ° C. After the 72 h, two alternative ways of producing nanoscale corundum can be taken.
Methode 1Method 1
Die erhaltene Lösung wird eingefroren (beispielsweise bei -30°C) und anschließend getrocknet (Gefriertrocknung). Danach wird das Pulver mit einer Aufheizrate von 2 K/min auf 400°C aufgeheizt (Luftatmosphäre) und 1 h bei dieser Temperatur gehalten. Nach dem Abkühlen wird das Pulver 1 h in einer Mörsermühle trocken zerkleinert. Anschließend wird das Pulver mit einer Aufheizrate von 10 K/min auf 800°C gebracht und sofort mit einer Aufheizrate von 2 K/min auf 900°C erwärmt und 1 h bei dieser Temperatur gehalten. Das so hergestellte Pulver hat eine spezifische Oberfläche von circa 20-60 m2/g und eine Dichte von 3,6-3,9 g/cm3, jeweils abhängig von den eingesetzten Keimen. Nach dem Abkühlen wird das Pulver 3-4 h in einer Kugelmühle mit Aluminiumoxidmahlkugeln (< 1 mm) und einer organischen Säure (TODS) als Dispergiermittel/Oberflächenmodifikator dispergiert. Der Dispergiermittel-Gehalt wird der spezifischen Oberfläche des synthetisierten Aluminiumoxidpulvers angepasst, so dass 4-5 μmol TODS pro m2 AI203-Oberfläche enthalten sind. Nach dem Mahlprozeß wird der Feinanteil des erhaltenen Aluminiumoxidpulvers durch mehrmalige Zentrifugation abgetrennt. Die Trenngrenze bei der Zentrifugation liegt rechnerisch bei einer Partikelgröße von ca. 40 nm. Der Feinanteil besteht zu einem überwiegenden Anteil (> 90%) aus nicht α-AI203-Partikeln. Das Zentrifugat wird zur Entfernung des Lösungsmittels gefriergetrocknet.The solution obtained is frozen (for example at -30 ° C.) and then dried (freeze-drying). The powder is then heated to 400 ° C. (air atmosphere) at a heating rate of 2 K / min and kept at this temperature for 1 h. After cooling, the powder is ground dry in a mortar mill for 1 hour. The powder is then brought to 800 ° C. at a heating rate of 10 K / min and immediately heated to 900 ° C. at a heating rate of 2 K / min and kept at this temperature for 1 hour. The powder produced in this way has a specific surface area of approximately 20-60 m 2 / g and a density of 3.6-3.9 g / cm 3 , depending on the germs used. After cooling, the powder is dispersed for 3-4 hours in a ball mill with aluminum oxide grinding balls (<1 mm) and an organic acid (TODS) as a dispersant / surface modifier. The dispersant content is adapted to the specific surface of the synthesized aluminum oxide powder, so that 4-5 μmol TODS per m 2 Al 2 O 3 surface are contained. After the grinding process, the fine fraction of the aluminum oxide powder obtained is separated off by repeated centrifugation. The separation limit for centrifugation is arithmetically a particle size of approximately 40 nm. The fine fraction consists predominantly (> 90%) of non-α-Al 2 0 3 particles. The centrifugate is freeze-dried to remove the solvent.
Methode 2Method 2
Die erhaltene Lösung wird in Portionen, die ca. 400 g Ammoniumnitratenthalten, zur Entfernung der gelösten Ammoniumnitrat-Ionen durch Dialyse gereinigt. Dazu wird die Lösung in einen Dialyseschlauch (Porengröße 2,5 - 3 nmj eingefüllt und ca.The resulting solution is purified by dialysis in portions containing approximately 400 g ammonium nitrate to remove the dissolved ammonium nitrate ions. For this purpose, the solution is poured into a dialysis tube (pore size 2.5 - 3 nmj and approx.
2 Stunden in deionisiertem Wasser aufbewahrt, danach wird das Wasser ausgetauscht und erneut 2 Stunden dialysiert. Die dialysierte Lösung wird eingefroren (beispielsweise bei -30 °C) und anschließend getrocknet (Gefrier- trocknung). Gegebenenfalls kann man danach das Pulver noch mit einer Aufheizrate f von 2 K/min auf 400°C aufheizen (Luftatmosphäre) und 1 h bei dieser Temperatur halten. Dieser Schritt ist jedoch nicht unbedingt erforderlich. Anschließend wird dasStored in deionized water for 2 hours, after which the water is replaced and dialyzed again for 2 hours. The dialyzed solution is frozen (for example at -30 ° C.) and then dried (freeze-drying). If necessary, the powder can then be heated to 400 ° C. at a heating rate f of 2 K / min (air atmosphere) and kept at this temperature for 1 h. However, this step is not absolutely necessary. Then that will
Pulver mit einer Aufheizrate von 10 K/min auf 800°C gebracht und sofort mit einerPowder brought to 800 ° C with a heating rate of 10 K / min and immediately with a
Aufheizrate von 2 K/min auf 900°C erwärmt. Bei 900°C wird eine Halteperiode von 1 eingefügt.Heating rate of 2 K / min heated to 900 ° C. A hold period of 1 is inserted at 900 ° C.
Das so hergestellte Pulver hat eine spezifische Oberfläche von ca. 18-22 m2/g und eine Dichte von 3,95-3,98 g/cm3. Die Primärpartikelgröße liegt zwischen 40-70 nm, das Pulver ist im redispergierten Zustand schwach agglomeriert. Beispiel 2The powder thus produced has a specific surface area of approx. 18-22 m 2 / g and a density of 3.95-3.98 g / cm 3 . The primary particle size is between 40-70 nm, the powder is weakly agglomerated in the redispersed state. Example 2
Herstellung von gesinterten Aluminiumoxid-Schichten in MehrlagensvstemenProduction of sintered aluminum oxide layers in multi-layer systems
10,5 g des in Beispiel 1 hergestellten α-AI203 werden zusammen mit 2,8 g eines 1:1 Lösungsmittelgemisches aus Ethylenglycol und Diethylengiycolmonobutylether und 0,5 g Polyvinylpyrrolidon als Bindemittel homogen vermischt. Als Mischaggregate können Mörser, Kneter oder Mörsermühlen verwendet werden. Die dabei erhaltene Paste wird zur abschließenden Homogenisierung mehrfach auf einen Dreiwalzenstuhl aufgegeben.10.5 g of the α-Al 2 0 3 prepared in Example 1 are homogeneously mixed together with 2.8 g of a 1: 1 solvent mixture of ethylene glycol and diethylene glycol monobutyl ether and 0.5 g of polyvinylpyrrolidone as a binder. Mortars, kneaders or mortar mills can be used as mixing units. The paste obtained is applied several times to a three-roll mill for the final homogenization.
Die Aluminiumoxidpaste wird über ein Dickschichtverfahren (Siebdruck) auf bereits gesinterte Korundsubstrate bzw. grüne (ungesinterte) Substrate aus Yttriumstabilisiertem (3 Mol% Y203) Zirkondioxid in Trockenschichtdicken bis zu 30 μm aufgetragen und im Umlufttrockenschrank bei 80°C rissfrei getrocknet. Die gedruckten Schichten auf den Korundsubstraten werden bei 1200°C (Aufheizrate 5K/min) mit einer Haltezeit von 1 Stunde thermisch verdichtet. Die Verdichtung der auf grüne (ungesinterte) Substrate aus Yttrium-stabilisiertem Zirkondioxid gedruckten α-AI203-Schichten erfolgt zweistufig. In der ersten Stufe wird die im Verbund enthaltene Organik unter Schutzgasatmosphäre (Stickstoff) bei Temperaturen bis zu 450°C durch thermische Zersetzung entfernt. Die Aufheizdauer beträgt 10 Stunden, Haltezeit 3 Stunden. Die thermische Verdichtung bis zum dichten Materialverbund erfolgt in einem Atmosphärenofen bei Temperaturen vonThe aluminum oxide paste is applied using a thick-film process (screen printing) to already sintered corundum substrates or green (unsintered) substrates made of yttrium-stabilized (3 mol% Y 2 0 3 ) zirconium dioxide in dry layer thicknesses of up to 30 μm and dried without cracks in a circulating air drying cabinet at 80 ° C. The printed layers on the corundum substrates are thermally compacted at 1200 ° C (heating rate 5K / min) with a holding time of 1 hour. The compression of the α-Al 2 0 3 layers printed on green (unsintered) substrates made of yttrium-stabilized zirconium dioxide takes place in two stages. In the first stage, the organic matter contained in the composite is removed in a protective gas atmosphere (nitrogen) at temperatures up to 450 ° C by thermal decomposition. The heating up time is 10 hours, holding time 3 hours. The thermal compression up to the dense material composite takes place in an atmosphere furnace at temperatures of
1200X, Haltezeit 3 Stunden, Aufheizrate 5K/min. Beispiel 31200X, holding time 3 hours, heating rate 5K / min. Example 3
Herstellung von gesinterten Aluminiumoxid-Sinterkörper aus erfindungsgemäßem - AI?Q3 PulverProduction of sintered aluminum oxide sintered body from - AI? Q 3 powder according to the invention
5 2 g des in Beispiel 1 hergestellten -Al203-Pulvers werden mit 1 g eines Lösungsmittelgemisches aus Ethylenglycol/Diethylenglycolmonobutylether (1:1) sowie 0,15 g eines Cellulose-Bindemittels homogen vermischt und bei 100°C getrocknet. 200 mg der Mischung werden in einem uniaxialen Preßwerkzeug mit 5 mm Innendurchmesser bei einem Druck von 200 MPa verdichtet. Anschließend wird ~ Q in einer Kaltisostatpresse bei 400 MPa nachverdichtet. Der Preßling wird bei 1200°C (1h) unter Luftatmosphäre thermisch verdichtet. Der Formkörper hat nach der Sinterung eine Dichte von 3,85 g/cm3 ( 96,5 % der Theorie). 5 2 g of the -Al 2 0 3 powder produced in Example 1 are homogeneously mixed with 1 g of a solvent mixture of ethylene glycol / diethylene glycol monobutyl ether (1: 1) and 0.15 g of a cellulose binder and dried at 100 ° C. 200 mg of the mixture are compressed in a uniaxial pressing tool with an inner diameter of 5 mm at a pressure of 200 MPa. Then ~ Q is post-compressed in a cold isostatic press at 400 MPa. The compact is thermally compressed at 1200 ° C (1h) in an air atmosphere. After sintering, the shaped body has a density of 3.85 g / cm 3 (96.5% of theory).

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von nanoskaligen Korundpulvern, bei dem man zunächst einen AI203-Precursor herstellt durch Versetzen einer wässrigen1. A process for the preparation of nanoscale corundum powders, in which one first produces an Al 2 0 3 precursor by adding an aqueous one
5 Lösung einer Aluminiumverbindung mit Keimkristallen und Zugabe einer Base und den AI203-Precursor dann durch Calcinieren bei erhöhter Temperatur in Korund überführt, dadurch gekennzeichnet, daß man vor der Caicinierung die neben dem AI203-Precursor vorhandenen Salze abtrennt, das erhaltene Produkt bei Temperaturen von 700 bis 975°C calciniert und gegebenenfalls -10 vorhandene Feinanteile (< 40 nm) entfernt.5 solution of an aluminum compound with seed crystals and addition of a base and the Al 2 0 3 precursor then converted to corundum by calcining at elevated temperature, characterized in that the salts present next to the Al 2 0 3 precursor are separated off before the caicination, the the product obtained is calcined at temperatures from 700 to 975 ° C. and any -10 fine particles present (<40 nm) are removed.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Aluminiumverbindung Aluminium(lll)nitrat, Aluminium(lll)chlorid, Aluminium- (lll)acetat oder Aluminium(lll)ethylat verwendet.2. The method according to claim 1, characterized in that aluminum (III) nitrate, aluminum (III) chloride, aluminum (III) acetate or aluminum (III) ethylate is used as the aluminum compound.
1515
3. ~ Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man als3. ~ Method according to claim 1 or 2, characterized in that as
Keimkristalle Korund- oder Diaspor-Keime verwendet.Seed crystals corundum or diaspore seeds are used.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß 20 man zur Herstellung des AI203-Precursors eine thermisch abtrennbare Base, vorzugsweise Ammoniak verwendet.4. The method according to any one of claims 1 to 3, characterized in that 20 a thermally separable base, preferably ammonia, is used to produce the Al 2 0 3 precursor.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß während und/oder nach der Herstellung des AI203-Precursors eine Reifung5. The method according to any one of claims 1 to 4, characterized in that a ripening during and / or after the preparation of the AI 2 0 3 precursor
25 bei Temperaturen im Bereich von 50 bis 100°C erfolgt.25 at temperatures in the range of 50 to 100 ° C.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man vor der Caicinierung die Salze durch Dialyse und/oder thermische Zersetzung abtrennt.6. The method according to any one of claims 1 to 5, characterized in that the salts are separated by dialysis and / or thermal decomposition before the caicination.
30 30
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Caicinierung bei 800 bis 900°C durchführt.7. The method according to any one of claims 1 to 6, characterized in that one carries out the caicination at 800 to 900 ° C.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß 5 man vorhandenen Feinanteil durch Dispergieren des Korundpulvers und anschließende Zentrifugation entfernt.8. The method according to any one of claims 1 to 7, characterized in that 5 one removes existing fine fraction by dispersing the corundum powder and subsequent centrifugation.
9. Nanoskaliges Korundpulver mit einem Gehalt an α- Al203 von mindestens 80 Gew.-% und einer Dichte von mindestens 3,90 g/cm3, erhältlich nach dem p Verfahren eines der Ansprüche 1 bis 8.9. Nanoscale corundum powder with a content of α-Al 2 0 3 of at least 80% by weight and a density of at least 3.90 g / cm 3 , obtainable by the p method of one of claims 1 to 8.
10. Zusammensetzungen enthaltend ein nanoskaliges Korundpulver nach Anspruch 9 und übliche Verarbeitungshilfsmittel.10. Compositions containing a nanoscale corundum powder according to claim 9 and conventional processing aids.
5 11. Verfahren zur Herstellung von dichten Al203-Sinterkörpern, dadurch gekenn- , zeichnet, daß man eine Zusammensetzung nach Anspruch 10 in einem üblichen Formgebungsverfahren zu einem Formkörper oder einem Bestandteil einer Mehrschichtenstruktur formt und dann sintert.11 process for the production of dense Al 2 0 3 sintered bodies, characterized in that a composition according to claim 10 is formed into a shaped body or a component of a multilayer structure in a conventional molding process and then sintered.
0 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Sinterung bei Temperaturen < 1200°C erfolgt. 0 12. The method according to claim 11, characterized in that the sintering takes place at temperatures <1200 ° C.
EP01960526A 2000-07-21 2001-07-20 Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same Withdrawn EP1301434A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10035679A DE10035679A1 (en) 2000-07-21 2000-07-21 Nanoscale corundum powder, sintered bodies made therefrom and process for their production
DE10035679 2000-07-21
PCT/EP2001/008422 WO2002008124A2 (en) 2000-07-21 2001-07-20 Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same

Publications (1)

Publication Number Publication Date
EP1301434A2 true EP1301434A2 (en) 2003-04-16

Family

ID=7649816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01960526A Withdrawn EP1301434A2 (en) 2000-07-21 2001-07-20 Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same

Country Status (6)

Country Link
US (1) US7022305B2 (en)
EP (1) EP1301434A2 (en)
JP (1) JP2004504256A (en)
AU (1) AU2001282003A1 (en)
DE (1) DE10035679A1 (en)
WO (1) WO2002008124A2 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838804B1 (en) * 2002-04-18 2004-06-18 Renault Sa METHOD AND DEVICE FOR PRODUCING A PRESSURE SENSOR INTEGRATED IN A TANK
DE10304849A1 (en) * 2003-02-06 2004-08-19 Institut für Neue Materialien gemeinnützige Gesellschaft mit beschränkter Haftung Chemomechanical production of functional colloids
JP4534524B2 (en) * 2003-02-26 2010-09-01 住友化学株式会社 Method for producing fine α-alumina
TWI348457B (en) * 2003-03-04 2011-09-11 Sumitomo Chemical Co Method for producing 帢-alumina particulate
JP4552454B2 (en) * 2003-03-04 2010-09-29 住友化学株式会社 Method for producing fine α-alumina
US7422730B2 (en) * 2003-04-02 2008-09-09 Saint-Gobain Ceramics & Plastics, Inc. Nanoporous ultrafine α-alumina powders and sol-gel process of preparing same
US20040198584A1 (en) * 2003-04-02 2004-10-07 Saint-Gobain Ceramics & Plastic, Inc. Nanoporous ultrafine alpha-alumina powders and freeze drying process of preparing same
JP4595383B2 (en) * 2003-05-19 2010-12-08 住友化学株式会社 Production method of fine α-alumina
JP4572576B2 (en) * 2003-05-19 2010-11-04 住友化学株式会社 Method for producing fine α-alumina
TW200427631A (en) * 2003-05-19 2004-12-16 Sumitomo Chemical Co Method for producing α-alumina powder
DE10332775A1 (en) * 2003-07-17 2005-02-17 Sasol Germany Gmbh Process for the preparation of boehmitic clays with a high a-transformation temperature
TW200531924A (en) * 2004-03-12 2005-10-01 Sumitomo Chemical Co Method for producing α-alumina particle
TW200540116A (en) * 2004-03-16 2005-12-16 Sumitomo Chemical Co Method for producing an α-alumina powder
TWI367864B (en) * 2004-03-17 2012-07-11 Sumitomo Chemical Co A method for producing an α-alumina particle
US7713896B2 (en) * 2004-04-14 2010-05-11 Robert Bosch Gmbh Method for producing ceramic green compacts for ceramic components
TW200604100A (en) * 2004-06-15 2006-02-01 Sumitomo Chemical Co A method for producing an α-alumina powder
JP4670279B2 (en) * 2004-08-25 2011-04-13 住友化学株式会社 Alpha alumina powder for magnetic recording media
JP4810828B2 (en) * 2004-09-03 2011-11-09 住友化学株式会社 Method for producing fine α-alumina
TWI408104B (en) * 2005-03-18 2013-09-11 Sumitomo Chemical Co Process for producing fine α-alumina particles
DE102005033392B4 (en) * 2005-07-16 2008-08-14 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Nanocrystalline sintered bodies based on alpha alumina, process for their preparation and their use
DE102006020515B4 (en) * 2006-04-29 2008-11-27 Clariant International Limited Nanoparticles of aluminum oxide and oxides of elements of the I. and II. Main group of the Periodic Table and their preparation
DE102005033393B4 (en) * 2005-07-16 2014-04-03 Clariant International Limited Process for the preparation of nanocrystalline α-Al 2 O 3
JP2007055888A (en) * 2005-07-25 2007-03-08 Sumitomo Chemical Co Ltd FINE alpha-ALUMINA PARTICLE
NZ578062A (en) 2007-01-15 2012-05-25 Saint Gobain Ceramics Ceramic particulate material and processes for forming same
US9173967B1 (en) 2007-05-11 2015-11-03 SDCmaterials, Inc. System for and method of processing soft tissue and skin with fluids using temperature and pressure changes
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
CN102770574B (en) * 2010-02-24 2016-03-09 贝伦诺斯清洁电力控股有限公司 Certainly clad vessel is monitored for high-pressure medium
ES2374479B1 (en) 2010-08-06 2012-12-26 Universitat De Valencia PROCEDURE FOR OBTAINING NANOCRISTALINE CORINDON FROM NATURAL OR SYNTHETIC STUDENTS.
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
CA2845129A1 (en) 2011-08-19 2013-02-28 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
CN105592921A (en) 2013-07-25 2016-05-18 Sdc材料公司 Washcoats and coated substrates for catalytic converters and method for manufacturing and using same
EP3068517A4 (en) 2013-10-22 2017-07-05 SDCMaterials, Inc. Compositions of lean nox trap
CA2926133A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
CN103570049B (en) * 2013-11-12 2015-07-15 兰州大学 Method for preparing completely dispersed alpha aluminum oxide nano particles
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems
CN108059447A (en) * 2018-01-08 2018-05-22 浙江自立新材料股份有限公司 A kind of big crystallization sintering plate corundum and preparation method thereof
CN115010469A (en) * 2022-06-22 2022-09-06 潮州市三泰陶瓷有限公司 Wear-resistant ceramic material with high hardness and preparation process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069790A2 (en) * 1999-05-14 2000-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method of producing aluminum oxides and products obtained on the basis thereof

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US36323A (en) * 1862-08-26 Water-wheel
US2197896A (en) * 1937-02-15 1940-04-23 Du Pont Artificial wool
US2287099A (en) * 1937-02-15 1942-06-23 Du Pont Artificial wool
US2774129A (en) * 1950-11-06 1956-12-18 Kendall & Co Synthetic felts
IL10853A (en) * 1954-02-26 1900-01-01 fibers and filaments having improving crimp characteristics and methods for their production
UST859640I4 (en) * 1959-12-15 1900-01-01
US3338992A (en) * 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
BE620334A (en) * 1961-07-17 1900-01-01
US3502763A (en) * 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
GB1073181A (en) * 1963-02-05 1967-06-21 Ici Ltd Bonded-web nonwoven products
GB1034207A (en) * 1963-09-24 1966-06-29 British Nylon Spinners Ltd Improvements in or relating to nonwoven fabrics and the method of manufacture thereof
GB1088931A (en) * 1964-01-10 1967-10-25 Ici Ltd Continuous filament nonwoven materials
GB1118163A (en) * 1964-07-30 1968-06-26 Ici Ltd Non-woven fabrics and methods of making them
US3402227A (en) * 1965-01-25 1968-09-17 Du Pont Process for preparation of nonwoven webs
US3272898A (en) * 1965-06-11 1966-09-13 Du Pont Process for producing a nonwoven web
US3589956A (en) * 1966-09-29 1971-06-29 Du Pont Process for making a thermally self-bonded low density nonwoven product
US3533904A (en) * 1966-10-19 1970-10-13 Hercules Inc Composite polypropylene filaments having a high degree of crimp
US3341394A (en) * 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3542615A (en) * 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
US3616160A (en) * 1968-12-20 1971-10-26 Allied Chem Dimensionally stable nonwoven web and method of manufacturing same
US3849241A (en) * 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
DE2048006B2 (en) * 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Method and device for producing a wide nonwoven web
DE1950669C3 (en) * 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Process for the manufacture of nonwovens
CA948388A (en) * 1970-02-27 1974-06-04 Paul B. Hansen Pattern bonded continuous filament web
US3773605A (en) * 1971-03-05 1973-11-20 Minnesota Mining & Mfg Acoustical material
CA1073648A (en) * 1976-08-02 1980-03-18 Edward R. Hauser Web of blended microfibers and crimped bulking fibers
USD264512S (en) * 1980-01-14 1982-05-18 Kimberly-Clark Corporation Embossed continuous sheet tissue-like material or similar article
US4340563A (en) * 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4732809A (en) * 1981-01-29 1988-03-22 Basf Corporation Bicomponent fiber and nonwovens made therefrom
US4374888A (en) * 1981-09-25 1983-02-22 Kimberly-Clark Corporation Nonwoven laminate for recreation fabric
US4787947A (en) * 1982-09-30 1988-11-29 Chicopee Method and apparatus for making patterned belt bonded material
US4493868A (en) * 1982-12-14 1985-01-15 Kimberly-Clark Corporation High bulk bonding pattern and method
IT1184114B (en) * 1985-01-18 1987-10-22 Montedison Spa ALFA ALUMINATES IN THE FORM OF SPHERICAL PARTICLES, NOT AGGREGATED, WITH RESTRIBUTION GRANULOMETRIC RESTRICTED AND OF LESS THAN 2 MICRONS, AND PROCESS FOR ITS PREPARATION
CA1254238A (en) * 1985-04-30 1989-05-16 Alvin P. Gerk Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US4657754A (en) 1985-11-21 1987-04-14 Norton Company Aluminum oxide powders and process
US4659609A (en) * 1986-05-02 1987-04-21 Kimberly-Clark Corporation Abrasive web and method of making same
US4845056A (en) * 1987-10-09 1989-07-04 Allied-Signal Inc. Continuous process for production of fine particulate ceramics
US4883707A (en) * 1988-04-21 1989-11-28 James River Corporation High loft nonwoven fabric
US5082720A (en) * 1988-05-06 1992-01-21 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
US5198057A (en) * 1988-12-23 1993-03-30 Fiberweb North America, Inc. Rebulkable nonwoven fabric
US5143779A (en) * 1988-12-23 1992-09-01 Fiberweb North America, Inc. Rebulkable nonwoven fabric
JP2682130B2 (en) * 1989-04-25 1997-11-26 三井石油化学工業株式会社 Flexible long-fiber non-woven fabric
US5108827A (en) * 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
DE4116523C2 (en) * 1990-05-23 1995-08-10 Fraunhofer Ges Forschung Process and agent for the production of alpha-Al¶2¶O¶3¶
DE69121681T2 (en) * 1990-12-14 1997-01-23 Hercules Inc Non-woven fabric with high strength and suppleness
AU650382B2 (en) 1992-02-05 1994-06-16 Norton Company Nano-sized alpha alumina particles
US5270107A (en) * 1992-04-16 1993-12-14 Fiberweb North America High loft nonwoven fabrics and method for producing same
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
KR950703093A (en) * 1992-08-24 1995-08-23 테릴 켄트 퀄리 MELT BONDED NONWOVEN ARTICLES AND METHODS OF PREPARING
US5405682A (en) * 1992-08-26 1995-04-11 Kimberly Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
US5336552A (en) * 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
CA2105026C (en) * 1993-04-29 2003-12-16 Henry Louis Griesbach Iii Shaped nonwoven fabric and method for making the same
CN1031396C (en) 1993-07-20 1996-03-27 浙江大学 Method for preparing alpha-alumina particles with nanometers size
EP0678489A1 (en) * 1994-04-19 1995-10-25 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Sintered alumina and procces for its production
US5622772A (en) * 1994-06-03 1997-04-22 Kimberly-Clark Corporation Highly crimpable spunbond conjugate fibers and nonwoven webs made therefrom
US5707468A (en) * 1994-12-22 1998-01-13 Kimberly-Clark Worldwide, Inc. Compaction-free method of increasing the integrity of a nonwoven web
US5759213A (en) 1995-04-24 1998-06-02 University Of Florida Method for controlling the size and morphology of alpha-alumina particles
US5759926A (en) * 1995-06-07 1998-06-02 Kimberly-Clark Worldwide, Inc. Fine denier fibers and fabrics made therefrom
EP0833973B1 (en) * 1995-06-23 2000-03-15 Minnesota Mining And Manufacturing Company Method of attenuating sound, and acoustical insulation therefor
US5672415A (en) * 1995-11-30 1997-09-30 Kimberly-Clark Worldwide, Inc. Low density microfiber nonwoven fabric
US5858515A (en) * 1995-12-29 1999-01-12 Kimberly-Clark Worldwide, Inc. Pattern-unbonded nonwoven web and process for making the same
US5773375A (en) * 1996-05-29 1998-06-30 Swan; Michael D. Thermally stable acoustical insulation
US5879343A (en) * 1996-11-22 1999-03-09 Kimberly-Clark Worldwide, Inc. Highly efficient surge material for absorbent articles
US6200669B1 (en) * 1996-11-26 2001-03-13 Kimberly-Clark Worldwide, Inc. Entangled nonwoven fabrics and methods for forming the same
US5874160A (en) * 1996-12-20 1999-02-23 Kimberly-Clark Worldwide, Inc. Macrofiber nonwoven bundle
US5931823A (en) * 1997-03-31 1999-08-03 Kimberly-Clark Worldwide, Inc. High permeability liner with improved intake and distribution
AUPP355798A0 (en) * 1998-05-15 1998-06-11 University Of Western Australia, The Process for the production of ultrafine powders
US6217691B1 (en) * 1998-12-24 2001-04-17 Johns Manville International, Inc. Method of making a meltblown fibrous insulation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069790A2 (en) * 1999-05-14 2000-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method of producing aluminum oxides and products obtained on the basis thereof

Also Published As

Publication number Publication date
WO2002008124A3 (en) 2002-09-19
WO2002008124A2 (en) 2002-01-31
DE10035679A1 (en) 2002-01-31
JP2004504256A (en) 2004-02-12
US20030098529A1 (en) 2003-05-29
AU2001282003A1 (en) 2002-02-05
US7022305B2 (en) 2006-04-04

Similar Documents

Publication Publication Date Title
EP1301434A2 (en) Nanoscale corundum powders, sintered compacts produced from these powders and method for producing the same
DE2904996C2 (en) Process for the production of a sintered body from silicon carbide
DE19544107C1 (en) Metal powder granules, process for its preparation and its use
EP0490245A1 (en) Zirconia containing shaped ceramic body
DE2621523B2 (en) METHOD FOR MANUFACTURING CERAMIC SHAPED BODIES
DE2759243A1 (en) SINTERED POLYCRYSTALLINE SILICON NITRIDE BODY AND PROCESS FOR THE PRODUCTION THEREOF
DE3627317A1 (en) SINTERABLE ALUMINUM NITRIDE COMPOSITION, SINTER BODY FROM THIS COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF
EP0629594B1 (en) Method of making polycrystalline dense shaped bodies based on boron carbide by pressureless sintering
DE2724352A1 (en) METHOD FOR MANUFACTURING A MOLDED BODY FROM A CERAMIC MATERIAL
EP0431165A1 (en) Ceramic composite material and method of obtaining it
DE2345778A1 (en) SINTERABLE ALUMINUM TITANATE POWDER
EP0372382B1 (en) Sinterable ceramic powder, method of making same, a silicon nitride ceramic material made thereof, method of making them and their use
DE2923729C2 (en)
EP3331840B1 (en) Production of lead-free piezoceramics in aqueous surroundings
EP0231863B1 (en) Stable slip-casting composition based on fine-grained powders containing aluminium nitride
EP0317701A1 (en) Refractory material and process for producing same
AT406673B (en) USE OF METAL OXIDES FOR PREPARING CERAMIC MOLDS
EP0389962B1 (en) Sinterable ceramic powder and method of making it, silicon nitride ceramic made therefrom, method of making it and its use
EP0351805A2 (en) Process for producing green articles by shaping sinterable ceramic substances based on silicon nitride
DE3149796C2 (en)
EP0797554B1 (en) Method of preparing a sintered material containing aluminium oxide
EP0321975A1 (en) Polycrystalline sintered articles based on aluminium nitride and process for their manufacture
EP1664217B1 (en) A simple and efficient process for the preparation of pencil lead from spent pot-liners
WO2000020352A1 (en) Method for producing composite materials and examples of such composite materials
EP0218026A2 (en) Process for producing shaped articles of alumina and zirconia and shaped articles produced according to the process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021122

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT, HELMUT

Inventor name: NONNINGER, RALPH

Inventor name: GOSSMANN, KAI

Inventor name: GOEBBERT, CHRISTIAN

Inventor name: DRUMM, ROBERT

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEIBNIZ-INSTITUT FUER NEUE MATERIALIEN GEMEINNUET

17Q First examination report despatched

Effective date: 20071018

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080429