EP1299630A1 - Method of ignition and corresponding ignition unit - Google Patents

Method of ignition and corresponding ignition unit

Info

Publication number
EP1299630A1
EP1299630A1 EP01931405A EP01931405A EP1299630A1 EP 1299630 A1 EP1299630 A1 EP 1299630A1 EP 01931405 A EP01931405 A EP 01931405A EP 01931405 A EP01931405 A EP 01931405A EP 1299630 A1 EP1299630 A1 EP 1299630A1
Authority
EP
European Patent Office
Prior art keywords
ignition
operating mode
current
pulse
ignition coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01931405A
Other languages
German (de)
French (fr)
Other versions
EP1299630B1 (en
Inventor
Manfred Vogel
Werner Herden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1299630A1 publication Critical patent/EP1299630A1/en
Application granted granted Critical
Publication of EP1299630B1 publication Critical patent/EP1299630B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • F02P3/051Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/053Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders

Definitions

  • the present invention relates to an ignition method for an internal combustion engine, wherein an injection is alternatively carried out at least in a first operating mode or in a second operating mode and the ignition coil is charged as a function of the current operating mode, and a corresponding ignition device.
  • Homogeneous operation can also be implemented lean and / or with exhaust gas recirculation (EGR) as homogeneous operation H2.
  • EGR exhaust gas recirculation
  • a high flow level is generally required in order to achieve a sufficiently rapid burnout in the combustion chamber given the low energy densities of the mixture. This deflects the spark plasma until it breaks off and reignitions occur.
  • the spark plug may then only appear with increasing spark duration a steadily decreasing small part of the electrical energy from the ignition coil of the flame core formation is available, which is why, as is known, it has been proposed to generate a pulse train within the above KW interval, i.e. to charge and discharge the ignition coil several times.
  • An ignition coil can either be designed for long spark duration (high secondary inductance, ie high number of secondary turns) with a moderate initial current or for short spark duration (low secondary inductance, ie low number of turns). A decision for a discrete interpretation as a compromise is therefore absolutely necessary.
  • the ignition method according to the invention with the features of claim 1 and the corresponding ignition device according to claim 6 have the advantage over the known approaches that a function adapted to the problem of direct petrol injection engines provides optimum ignition both in stratified operation and in homogeneous lean operation and / or with EGR as well as in cold starts or other critical engine conditions.
  • the operating mode can be controlled as required. Only as much energy as is required for ignition is brought in. This avoids unnecessary candle burning.
  • a smaller coil space by lower number of turns on the secondary side or larger Eisenguerites is 'possible for the same B' auraum.
  • a cost advantage can thus be achieved by saving magnets for premagnetizing the iron circuit.
  • the idea on which the present invention is based is that the type of ignition suitable for the respective operating mode is provided via control pulse coding.
  • a pulse train ignition suitable for stratified operation is combined with the possibility of charging the ignition coil in homogeneous operation by increasing the primary current with significantly higher energy, so that it becomes charged but still discharges as a single spark within the desired burning time of approx. 0.3 - 0.6 ms.
  • the first operating mode is a 'homogeneous normal operation, which is divided into the sub- ' odi stoichiometric normal operation and substoichiometric normal operation, and the second operating mode is an inhomogeneous stratified operation.
  • the charging of the ignition coil is carried out in inhomogeneous stratified operation in the form of pulse train ignition with a predetermined primary current and in homogeneous operation the ignition coil is carried out in the form of single pulse ignition while increasing the primary current.
  • control pulse curves characteristic of the current operating mode have different pulse times and / or pulse numbers. In this way, virtually any number of operating states can be coded using simple means.
  • the iron circuit of the ignition coil is driven into the beginning of saturation in an operating mode that requires a high spark current.
  • FIG. 1 shows a representation of the spark current curve i F over time t according to a first embodiment of the present invention
  • - Fig. 2 is a representation of the spark current course i F over the. Time t according to a second embodiment of the present invention
  • FIG. 3 shows a schematic illustration of a control device for realizing the first one or the second one
  • FIG. 1 is a representation of the spark current profile i F over time t according to a first embodiment of the present invention.
  • curve a) the spark-current characteristic as the discharge of the ignition coil (secondary energy 30 mJ, 'circa indication primary cut-off current 10 A) is without the Pulszugeigenschaft 10.
  • the secondary-side spark current is about 110. A with a burning time of approx. 0.35 ms at a spark voltage of 1500 V.
  • Curve b) shows this ignition coil when a 15th pulse train with four pulses is implemented, in which the ignition coil is switched on again on the primary side when the spark current has dropped to approximately 50 mA. To achieve the short recharge time, a battery voltage of 42 V is assumed. ⁇ 20.
  • the short recharge time can be achieved by increasing the primary current from 10 A to 30 A.
  • Curve c shows the spark current curve for homogeneous operation H1 or H2, namely if the coil by increasing the primary-side cut-off current. (from approx. 10 A to 15 A) was charged to approx. twice the energy of 60 mJ. This results in. an initial current now increased to approx. 160 A, a spark burning time of approx. 0.5 ms.
  • This first embodiment assumes that the coil 'is in the linear range of magnetizability.
  • Fig. ⁇ 2 is a representation of the spark current course i F over time t according to a second embodiment of the present invention.
  • Curve a) represents the spark current curve as a discharge of the ignition coil (rod coil, secondary energy approx. 30 mJ, primary cut-off current approx. 10 A) without the pulse characteristic.
  • the secondary spark current is approx. 110 mA with a burning time of approx. 0.35 ms.
  • Curve b) shows this ignition coil when realizing a pulse train with four pulses as in the first example above, in which the ignition coil is switched on again on the primary side when the spark current has dropped to approximately 50 mA. To realize the short recharge time a battery voltage of 42 V is also assumed here.
  • Curve c) shows the spark current curve for homogeneous operation, namely when the coil is charged to approximately twice the energy of 60 mJ by increasing the primary-side cut-off current (from approx. 10 A to 20 A). This now results in an increased spark start current of 200 mA, which is' non-linear, i.e. - initially steeper, declines because there is initially a lower inductance due to the saturation property. Here too there is a sufficiently short spark duration of approx. 0.5 ms.
  • FIG 3 shows a schematic illustration of a control device for realizing the first or second embodiment.
  • MS denote an engine control unit, L a control logic and ES an output stage, which as essential components are a power transistor LT, a spark plug ZK and includes an ignition coil ZS. It is believed that the a 'pulse train generating electronics, that is, the control logic L and the output stage ES, is located on / in the ignition coil ZS.
  • the engine control unit MS delivers a control pulse SI which has a coding from which the control logic L can recognize on site whether a pulse train with low energy or a. Pulse train at high energy, a single pulse at low energy or a single pulse at high energy is desired.
  • Fig. 3 shows an example of suitable codes, ' ⁇
  • the invention is not limited to the illustrated pulse shapes, energies and burning times or the like, but can be generalized as desired. Further or different injection modes can also be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The invention relates to a method of ignition for an internal combustion engine, whereby an injection is alternatively carried out in at least one first operating mode (H1, H2), or in a second operating mode (S) and the charging of the ignition coil is carried out depending on the current operating mode. A characteristic control impulse sequence (SI) of the current operating mode is provided and the charging of the ignition coil (ZS) is carried out by a control logic (L), based on the control impulse sequence (SI), with a correspondingly varied time course for the primary current. According to the invention, a suitable ignition system for an internal combustion engine is produced.

Description

Zündverfahren und entsprechende ZündvorrichtungIgnition method and corresponding ignition device
STAND DER TECHNIKSTATE OF THE ART
Die vorliegende Erfindung- betrifft ein Zündverfahren für eine Brennkraftmaschine, wobei eine Einspritzung alternativ mindestens in einem ersten Betriebsmodus oder in einem zweiten Betriebsmodus durchgeführt wird und wobei das Laden der Zündspule in Abhängigkeit vom aktuellen Betriebsmodus durchgeführt wird, sowie eine entsprechende Zündvorrichtung. ' The present invention relates to an ignition method for an internal combustion engine, wherein an injection is alternatively carried out at least in a first operating mode or in a second operating mode and the ignition coil is charged as a function of the current operating mode, and a corresponding ignition device. '
Obwohl auf beliebige Kraftstoffe und Motoren beliebiger Fahrzeuge anwendbar, werden die vorliegende Erfindung sowie die ihr zugrundeliegende Problematik in bezug auf eine Benzindirekteinspritzung einer Brennkraftmasσhine eines Perso- nenwagens erläutert.Although applicable to any fuels and engines of any vehicle, the present invention and the problem on which it is based are explained in relation to direct petrol injection of an internal combustion engine of a passenger car.
Fig. 4 illustriert für verschiedene Betriebsarten einer Brennkraftmaschine die Abhängigkeit des Drehmoments M von der Drehzahl N.4 illustrates the dependence of the torque M on the speed N for various operating modes of an internal combustion engine.
Beim sogenannten homogenen Normalbetrieb Hl der -Benzindirekteinspritzung wird der gesamte Brennraum mit einem stö- chiometris-chen Luft-/Krafstoffgemisch homogen (Lambdawert λ = 1) gefüllt, das zum Zündzeitpunkt durch den Zündfunken gezündet wird. Hier -existieren bei hoher Ene giedichte des Gemischs keinerlei Entflammungsprobleme.In the so-called homogeneous normal operation Hl of gasoline direct injection, the entire combustion chamber becomes homogeneous with a stoichiometric air / fuel mixture (lambda value λ = 1) filled, which is ignited by the ignition spark at the time of ignition. There are no ignition problems at high energy density of the mixture.
Der Homogenbetrieb kann aber auch mager und/oder mit Abgasrückführung (AGR) als Homogenbetrieb H2 realisiert werden. Hierbei ist allgemein, um bei den geringen Energiedichten des Gemischs im Brennraum ausreichend schnelles Durchbrennen zu erreichen, ein hohes Strömungsniveau erforderlich. Dieses lenkt das Funkenplasma aus, bis es abreißt und Wiederzündungen erfolgen.Homogeneous operation can also be implemented lean and / or with exhaust gas recirculation (EGR) as homogeneous operation H2. In this case, a high flow level is generally required in order to achieve a sufficiently rapid burnout in the combustion chamber given the low energy densities of the mixture. This deflects the spark plasma until it breaks off and reignitions occur.
Hierdurch verteilt sich die Funkenenergie bei einer Spulenzündung mit typischen Funkendauern unter diesen Umständen von typischerweise ca. 1 ms auf zahlreiche Folgefunken, die jeweils neue Gemischbereiche erreichen.As a result, the spark energy in the case of a coil ignition with typical spark durations of typically approx. 1 ms is distributed among numerous subsequent sparks in these circumstances, each of which reaches new mixture areas.
Da aber magerster Betrieb oder sogenannter Hoch-AGR-Betrieb nur dann erreicht wird, wenn die gesamte Energie der Zünd- ' spule in einen einzigen Flammkern eingebracht wird, • uß also 'die gesamte in der- Zündspule gespeicherte Energie in so kurzer Zeit zugeführt werden," daß innerhalb dieser Zeitspanne (typischerweise ca. 0,3 - 0,6 ms) noch kein Abreißen des Funkens erfolgt.Since, however magerster operation or so-called high-EGR operation is only achieved 'is introduced into a single flame core coil, • So ow' when the total energy of the ignition, the total stored in DER ignition energy in such a short time supplied , " that within this period of time (typically approx. 0.3 - 0.6 ms) the spark is not broken off yet.
Hieraus ergibt sich für diesen Betrieb H2 eine Anforderung nach möglichst hoher Energie und sehr kurzer Funkendauer- (ca. 0,3 - 0,6 ms), was einen hohen erforderlichen Anfangsstrom von 150 - 200 A zur Folge hat. -Bei Brennkraftmaschinen mit Benzindirekteinspritzung wird zur vollständigen Nutzung des Verbrauchsvorteils in bestimmten Betriebsbereichen eine sogenannte Ladungsschich- tung im Brennraum realisiert, was im folgenden als Schichtbetrieb S bezeichnet wird.For this H2 operation, this results in a requirement for the highest possible energy and a very short spark duration (approx. 0.3 - 0.6 ms), which results in a high required initial current of 150-200 A. In internal combustion engines with gasoline direct injection, a so-called charge stratification is implemented in the combustion chamber in order to fully utilize the consumption advantage in certain operating areas, which is referred to as shift operation S in the following.
Beim Schichtbetrieb S hingegen wird lediglich eine kleine' stöchiometrische Wolke in den Brennraum eingebracht, welche lokal zündbar ist, wohingegen der restliche Inhalt desWith shift operation S, on the other hand, only a small ' stoichiometric cloud is introduced into the combustion chamber, which can be ignited locally, whereas the rest of the content of the
Brennraums nicht gezündet .werden kann. Der Vorteil dieses Schichtbetriebs S liegt in einem erweiterten Magerbetrieb- der Brennkraftmaschine und damit letztendlich in einer Kraftstoffersparnis . Es ist daher wünschenswert, den Be- triebsbereich des. Schichtbetriebs S möglichst groß zu gestalten, also insbesondere auf möglichst hohe Lasten und hohe- Drehzahlen auszudehnen.Combustion chamber cannot be ignited. The advantage of this stratified operation S lies in an extended lean operation of the internal combustion engine and thus ultimately in fuel savings. It is therefore desirable to make the operating range of the shift operation S as large as possible, that is to say in particular to extend it to the highest possible loads and high speeds.
Im Schichtbetrieb S können am Ort des Zündfunkens bei hoher mittlerer Energiedichte in der Gemischwolke deutliche örtliche und/oder zeitliche Lambda-Schwankungen existieren. Um dabei sichere Entflammung zu erreichen, sollte der Funke lang brennen (typischerweise ca. 5 - 10° KW (KW = Kurbelwinkel) ) , so daß innerhalb dieser Zeit die Flammkernbildung immer dann gestartet werden kann, wenn ein brennbarer Gemischbereich durch das Funkenplasma erfaßt wird.In stratified operation S, significant local and / or temporal lambda fluctuations can exist at the location of the ignition spark with a high average energy density in the mixture cloud. In order to achieve safe ignition, the spark should burn for a long time (typically approx. 5 - 10 ° KW (KW = crank angle)), so that within this time the flame core can be started whenever a combustible mixture area is detected by the spark plasma ,
Dabei steht dann unter Umständen, je nach Strömung des Gemischs an der Zündkerze, mit zunehmender Funkendauer nur noch ein sich stetig verringernder kleiner Teil der elektrisch -aus der Zündspule eingebrachten Energie der Flammkernbildung zur Verfügung, weshalb bekanntermaßen vorgeschlagen wurde, innerhalb des obigen KW-Intervalls einen Pulszug zu erzeugen, also die Zündspule mehrfach zu laden und entladen.Depending on the flow of the mixture, the spark plug may then only appear with increasing spark duration a steadily decreasing small part of the electrical energy from the ignition coil of the flame core formation is available, which is why, as is known, it has been proposed to generate a pulse train within the above KW interval, i.e. to charge and discharge the ignition coil several times.
Also werden dieser geschichteten Betriebsweise ein' möglichst lang brennender Einzel-Zündfunke bei einem Anfangs- ström von typischerweise ca. 50 - 80- mA und einer Sekundärenergie von typischerweise ca. 80 -'100 mJ oder ein Pulszug einstellbarer Länge bei einem Anfangsstrom von ca. 100 mA aus einer Spule mit ca. 30 J Sekundärenergie gerecht.So this stratified manner, a 'as long as possible burning single spark at an initial Ström of typically about 50 - 80-mA and a secondary energy of typically about 80 -' 100 mJ or a pulse train of adjustable length at an initial flow rate of approximately 100 mA from a coil with approx. 30 J secondary energy.
Da sich die Anforderungen für die Betriebsbereiche geschichtet S und homogen Hl bzw. H2 also deutlich unterscheiden, ist in einer konventionellen Systemauslegung mit Einzelfunken 'ein Zielkonflikt gegeben, der bisher nur als . Kompromiß angegangen werden kann. Eine Zündspule kann ent- weder für lange Funkendauer (hohe Sekundärinduktivitä , d.h. hohe Sekundär-Windungszahl) mit mäßigem Anfangsstrom oder für kurze Funkendauer (niedrige Sekundärinduktivität, d.h. niedrige Sekundärwindungszahl) ausgelegt werden. Eine Entscheidung für eine diskrete Auslegung als Kompromiß ist also unbedingt erforderlich. Since the requirements for the operating areas stratified S and homogeneous Hl or H2 differ significantly, there is a conflict of objectives in a conventional system design with individual sparks, which so far has only been considered. Compromise can be addressed. An ignition coil can either be designed for long spark duration (high secondary inductance, ie high number of secondary turns) with a moderate initial current or for short spark duration (low secondary inductance, ie low number of turns). A decision for a discrete interpretation as a compromise is therefore absolutely necessary.
VORTEILE DER ERFINDUNGADVANTAGES OF THE INVENTION
Das erfindungsgemäße Zündverfahren mit den Merkmalen des Anspruchs 1 bzw. die entsprechende Zündvorrichtung nach An- spruch 6 weisen gegenüber den bekannten Lösungsansätzen den Vorteil auf, daß eine an die Problematik der Benzindirekt- einspritzungsmotoren angepaßte Funktion eine optimale Entflammung sowohl im geschichteten Betrieb, im homogenen Magerbetrieb und/oder mit AGR sowie im Kaltstart oder sonsti- gen kritischen Motorbedingungen ermöglicht.The ignition method according to the invention with the features of claim 1 and the corresponding ignition device according to claim 6 have the advantage over the known approaches that a function adapted to the problem of direct petrol injection engines provides optimum ignition both in stratified operation and in homogeneous lean operation and / or with EGR as well as in cold starts or other critical engine conditions.
Eine Steuerung der Betriebsweise kann nach Bedarf erfolgen. Nur so viel Energie, wie zu Entflammung erforderlich ist, wird eingebracht. Hierdurch wird unnötiger Kerzenabbrand vermieden.The operating mode can be controlled as required. Only as much energy as is required for ignition is brought in. This avoids unnecessary candle burning.
Ein kleinerer Spulenbauraum durch geringere Windungszahl auf der Sekundärseite oder größerer Eisenguerschnitt ist ' möglich bei gleichem B'auraum. Damit ist ein Kostenvorteil durch Einsparung von Magneten zur Vormagnetisierung des Eisenkreises erzielbar.A smaller coil space by lower number of turns on the secondary side or larger Eisenguerschnitt is 'possible for the same B' auraum. A cost advantage can thus be achieved by saving magnets for premagnetizing the iron circuit.
Die der vorliegenden Erfindung zugrundeliegende Idee besteht darin, daß die für den jeweiligen Betriebsmodus ge- eignete Zündungsart über eine Steuerimpulskodierung vorgesehen wird. Z.B. wird eine für den geschichteten Betrieb geeignete Pulszugzündung kombiniert mit der Möglichkeit, im Homogenbetrieb die Zündspule über eine Erhöhung des Primärstroms mit deutlich höher Energie zu laden, so daß sie sich aber trotzdem als Einzelfunke noch innerhalb der gewünschten Brenndauer von z.B. ca. 0,3 - 0,6 ms entlädt.The idea on which the present invention is based is that the type of ignition suitable for the respective operating mode is provided via control pulse coding. For example, a pulse train ignition suitable for stratified operation is combined with the possibility of charging the ignition coil in homogeneous operation by increasing the primary current with significantly higher energy, so that it becomes charged but still discharges as a single spark within the desired burning time of approx. 0.3 - 0.6 ms.
In den Unteransprüchen finden sich vorteilhafte Weiterbil- düngen und Verbesserungen des jeweiligen Gegenstandes der Erfindung. .Advantageous further developments and improvements of the respective subject matter of the invention can be found in the subclaims. ,
Gemäß einer bevorzugten Weiterbildung ist der erste Betriebsmodus ein 'homogener Normalbetrieb, der in die Unter- ' odi stöchiometrischer Normalbetrieb und unterstöchio etri- scher Normalbetrieb aufgeteilt ist, und ist der zweite Betriebsmodus ein inhomogener Schichtbetrieb.According to a preferred development, the first operating mode is a 'homogeneous normal operation, which is divided into the sub- ' odi stoichiometric normal operation and substoichiometric normal operation, and the second operating mode is an inhomogeneous stratified operation.
Gemäß einer weiteren bevorzugten Weiterbildung wird das La- den der .Zündspule • im inhomogenen Schichtbetrieb in Form einer Pulszugzündung mit einem vorbestimmten Primärstrom und im homogenen Betrieb die Zündspule unter Erhöhung des Primärstroms in Form einer Einzelpulszündung durchgeführt.According to a further preferred development, the charging of the ignition coil is carried out in inhomogeneous stratified operation in the form of pulse train ignition with a predetermined primary current and in homogeneous operation the ignition coil is carried out in the form of single pulse ignition while increasing the primary current.
Gemäß einer weiteren bevorzugten Weiterbildung weisen die für den- aktuellen Betriebsmodus charakteristischen Steuerimpulsverläufe unterschiedliche Impulszeiten und/oder Impulsanzahlen auf. So lassen sich mit einfachen Mitteln quasi beliebig viele Betriebszustände codieren.According to a further preferred development, the control pulse curves characteristic of the current operating mode have different pulse times and / or pulse numbers. In this way, virtually any number of operating states can be coded using simple means.
Gemäß einer weiteren bevorzugten Weiterbildung wird der Eisenkreis der Zündspule bei einem Betriebsmodus, der einen hohen Funkenanfangsstrom benötigt, bis in die beginnende Sättigung angesteuert. Diese Auslegung hat den Vorteil, daß sich sich mehr Energie speichern läßt und die Spannungsan- stiegsgeschwindigkeit erhöht wegen der anfänglich niedrigeren Sekundärinduktivität erhöht ist.According to a further preferred development, the iron circuit of the ignition coil is driven into the beginning of saturation in an operating mode that requires a high spark current. This interpretation has the advantage that more energy can be stored and the rate of voltage rise is increased because of the initially lower secondary inductance.
ZEICHNUNGENDRAWINGS
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.Embodiments of the invention are shown in the drawings and explained in more detail in the following description.
Fig. 1 eine Darstellung des Funkenstromverlaufs iF über der Zeit t gemäß einer ersten Ausführungsform der vorliegenden Erfindung;1 shows a representation of the spark current curve i F over time t according to a first embodiment of the present invention;
- Fig. 2 eine Darstellung des Funkenstromverlaufs iF über der. Zeit t gemäß einer zweiten Äusführungsfor der vorliegenden Erfindung;- Fig. 2 is a representation of the spark current course i F over the. Time t according to a second embodiment of the present invention;
'Fig. 3 eine schematische Darstellung einer Ansteuerein- richtung zur Realisierung der ersten" bzw. zweiten'Fig. 3 shows a schematic illustration of a control device for realizing the first one or the second one
Ausführungsform; undembodiment; and
Fig. 4 . für -verschiedene Betriebsarten einer Brennkraftmaschine die Abhängigkeit des Drehmoments M 'von der Drehzahl N. , Fig. 4. for various operating modes of an internal combustion engine, the dependence of the torque M ' on the speed N.
BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELEDESCRIPTION OF THE EMBODIMENTS
Fig. 1 ist eine Darstellung des Funkenstromverlaμfs iF über der Zeit t gemäß einer ersten Ausführungsform der vorlie- 5 genden Erfindung.1 is a representation of the spark current profile i F over time t according to a first embodiment of the present invention.
In Fig. 1 stellt die Kurve a) den Funkenstromverlauf als Entladung der Zündspule (Sekundärenergie ca. 30 mJ,' primärer Abschaltstrom ca.- 10 A) ohne die Pulszugeigenschaft 10 dar. Der sekundärseitige Funkenanfangsstrom beträgt ca. 110 . A bei einer Brenndauer von ca. 0,35 ms bei einer Funkenbrennspannung von 1500 V.In Fig. 1, curve a) the spark-current characteristic as the discharge of the ignition coil (secondary energy 30 mJ, 'circa indication primary cut-off current 10 A) is without the Pulszugeigenschaft 10. The secondary-side spark current is about 110. A with a burning time of approx. 0.35 ms at a spark voltage of 1500 V.
Die Kurve b) zeigt diese Zündspule bei Realisierung eines 15 .Pulszugs mit vier Pulsen, bei denen das primärseitige Wiedereinschalten der Zündspule jeweils dann erfolgt, wenn der Funkenstrom auf ca. 50 mA abgesunken ist. Zur Realisierung der kurzen Wiederaufladezeit wird eine Batteriespannung von 42 V angenommen. 20 .Curve b) shows this ignition coil when a 15th pulse train with four pulses is implemented, in which the ignition coil is switched on again on the primary side when the spark current has dropped to approximately 50 mA. To achieve the short recharge time, a battery voltage of 42 V is assumed. 20.
Allgemein sei dazu bemerkt, daß bei einer bisher üblichen Batteriespannung von 14 V die kurze Wiederaufladezeit durch Erhöhen des Primärstroms von 10 A auf 30 A erreichbar ist.In general, it should be noted that with a battery voltage of 14 V that has been customary to date, the short recharge time can be achieved by increasing the primary current from 10 A to 30 A.
25 Die Kurve c) zeigt den Funkenstromverlauf für den Homogenbetrieb Hl bzw. H2, nämlich wenn die Spule durch Erhöhung des primärseitgen Abschaltstroms. (von ca. 10 A auf 15 A) auf ca. die doppelte Energie von 60 mJ aufgeladen wurde. Hierbei ergibt sich bei. einem nunmehr auf ca. 160 A erhöhten Anfangsstrom eine Funkenbrenndauer von ca. 0,5 -ms.25 Curve c) shows the spark current curve for homogeneous operation H1 or H2, namely if the coil by increasing the primary-side cut-off current. (from approx. 10 A to 15 A) was charged to approx. twice the energy of 60 mJ. This results in. an initial current now increased to approx. 160 A, a spark burning time of approx. 0.5 ms.
Dieses erste Ausführungsbeispiel setzt voraus, daß sich die Spule 'im linearen Bereich der Magnetisierbarkeit befindet.'This first embodiment assumes that the coil 'is in the linear range of magnetizability.'
Fig.^ 2 ist eine Darstellung des Funkenstromverlaufs iF über der Zeit t gemäß einer zweiten Ausführungsform der vorliegenden Erfindung.Fig. ^ 2 is a representation of the spark current course i F over time t according to a second embodiment of the present invention.
In diesem zweiten Ausführungsbeispiel nach Fig. 2 wird angenommen, daß sich infolge beschränkten Bauraums (Stabspule) eine lineare Erhöhung der Magnetisierbarkeit nicht mehr erreichen läßt, sondern bewußt die -Nichtlinearität der Ma- gnetisierung einbezogen wird.In this second exemplary embodiment according to FIG. 2, it is assumed that a linear increase in the magnetizability can no longer be achieved as a result of the limited installation space (rod coil), but the nonlinearity of the magnetization is consciously included.
Die Kurve a) stellt den Funkenstromverlauf als Entladung der Zündspule (Stabspule, Sekundärenergie ca. 30 mJ, primärer Abschaltstrom ca. 10 A) ohne, die Pulszugeigenschaft dar. Der sekundärseitige Funkenanfangsstrom beträgt wie im obigen ersten Beispiel ca. 110 mA bei einer Brenndauer von ca. 0, 35 ms .Curve a) represents the spark current curve as a discharge of the ignition coil (rod coil, secondary energy approx. 30 mJ, primary cut-off current approx. 10 A) without the pulse characteristic. As in the first example above, the secondary spark current is approx. 110 mA with a burning time of approx. 0.35 ms.
Die Kurve b)- zeigt diese Zündspule bei Realisierung eines Pulszugs mit vier Pulsen wie im- obigen ersten Beispiel,- bei denen das primärseitige Wiedereinschalten der Zündspule jeweils dann erfolgt, wenn der Funkenstrom auf ca. 50 mA abgesunken ist. Zur Realisierung der kurzen Wiederaufladezeit wird hier ebenfalls eine Batteriespannung von 42 V angenommen.Curve b) shows this ignition coil when realizing a pulse train with four pulses as in the first example above, in which the ignition coil is switched on again on the primary side when the spark current has dropped to approximately 50 mA. To realize the short recharge time a battery voltage of 42 V is also assumed here.
Die Kurve c) zeigt den Funkenstromverlauf für den Homogen- betrieb, nämlich wenn die Spule durch Erhöhung des primär- seitigen Abschaltstroms (von ca. 10 A'auf 20 A) auf ca. die doppelte Energie von 60 mJ aufgeladen wird. Hierbei ergibt sich nunmehr ein erhöhter- Funkenanfangsstrom von 200 mA, der' nichtlinear, d.h. -anfänglich steiler, abfällt, da zu- nächst eine niedrigere Induktivität infolge der Sättigungseigenschaft gegeben ist. Auch hier entsteht eine ausreichend kurze Funkendauer von ca. 0,5 ms.Curve c) shows the spark current curve for homogeneous operation, namely when the coil is charged to approximately twice the energy of 60 mJ by increasing the primary-side cut-off current (from approx. 10 A to 20 A). This now results in an increased spark start current of 200 mA, which is' non-linear, i.e. - initially steeper, declines because there is initially a lower inductance due to the saturation property. Here too there is a sufficiently short spark duration of approx. 0.5 ms.
Diese Auslegung hat zwei Vorteile. Bei begrenztem Bauraum (Stabspule) läßt sich mehr Energie speichern, wenn der Eisenkreis bis in die beginnende Sättigung ausgesteuert wird. Die Spannungsanstiegsgeschwindigkeit erhöht sich wegen der anfänglich niedrigeren Sekundärinduktivität. Die erhöhte Spannungsanstiegsgeschwindigkeit wirkt sich positiv bei Kerzennebenschlüssen, d.h. bei verrußten Kerzen (Kaltstart) aus .This interpretation has two advantages. With a limited installation space (rod coil), more energy can be stored if the iron circuit is controlled to the point of saturation. The rate of voltage rise increases due to the initially lower secondary inductance. The increased rate of voltage rise has a positive effect on candle shunts, i.e. with sooty candles (cold start).
Fig. 3 zeigt eine schematische Darstellung einer Ansteuer- einrichtung zur Realisierung der ersten bzw. zweiten Aus- ' führungsfor .3 shows a schematic illustration of a control device for realizing the first or second embodiment.
Im einzelnen bezeichnen MS ein Motorsteuergerät, L eine Steuerlogik und ES eine Endstufe, die als wesentliche Komponenten einen Leistungstransistor LT, eine Zündkerze ZK sowie eine Zündspule ZS umf ßt. Es wird angenommen, daß die einen' Pulszug erzeugende Elektronik, also die Steuerlogik L und die Endstufe ES, sich an/in der Zündspule ZS befindet.Specifically, MS denote an engine control unit, L a control logic and ES an output stage, which as essential components are a power transistor LT, a spark plug ZK and includes an ignition coil ZS. It is believed that the a 'pulse train generating electronics, that is, the control logic L and the output stage ES, is located on / in the ignition coil ZS.
Vom Motorsteuergerät MS wird abhängig vom aktuellen Ein- spritzmodus ein Steuerimpuls SI geliefert, der eine Codierung aufweist, aus dem die- Steuerlogik L vor Ort erkennen kann, ob ein Pulszug bei niedriger Energie oder ein. Pulszug bei hoher Energie, ein Einzelimpuls bei niedriger Energie oder ein Einzelpuls bei hoher Energie gewünscht wird.Depending on the current injection mode, the engine control unit MS delivers a control pulse SI which has a coding from which the control logic L can recognize on site whether a pulse train with low energy or a. Pulse train at high energy, a single pulse at low energy or a single pulse at high energy is desired.
Fig. 3 zeigt beispielhaft geeignete Codierungen: ' ■ Fig. 3 shows an example of suitable codes, '■
a) ' ein einziger kurzer Steuerimpuls SI (ca. 10 - 100 μs) : Einzelfunke 30 mJ bei homogenem Betrieb mit λ = 1;a) ' a single short control pulse SI (approx. 10-100 μs): single spark 30 mJ in homogeneous operation with λ = 1;
b) zwei kurze Steuerimpulse SI (je ca. 10 - 100 μs).: Einzelfunke 60 mJ bei homogenem Magerbetrieb ggfs. mit AGR;b) two short control pulses SI (approx. 10 - 100 μs each) .: single spark 60 mJ with homogeneous lean operation, possibly with EGR;
c) ein langer Steuerimpuls SI ( ca . 1 - 5 ms ) : Pulszug Basis 30 J bei Schichtbetrieb ;c) a long control pulse SI (approx. 1 - 5 ms): pulse train base 30 J in shift operation;
d) ' ein langer Steuerimpuls SI ( ca . 1 - 5 ms ) nach einem kurzem Steuerimpuls SI ( ca . 10 - 100 μs ) Pulszug Basis 60 mJ bei Kalt- und/oder Rangierstarts oder b ei ' sonstigen besonders kritischen Motorbedingungen . Obwohl die vorliegende Erfindung vorstehend anhand bevorzugter Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar.d) 'a long control pulse SI (approx. 1 - 5 ms) after a short control pulse SI (approx. 10 - 100 microseconds) pulse train base 60 mJ with cold and / or Rangierstarts or b ei' other particularly critical engine conditions. Although the present invention has been described above on the basis of preferred exemplary embodiments, it is not restricted to these but can be modified in a variety of ways.
Insbesondere ist die Erfindung nicht auf die illustrierten Impulsformen, Energien und Brenndauern o.a.- beschränkt, sondern beliebig verallgemeinerbar. Auch können weitere oder andere Einspritzmodi vorgesehen sein. In particular, the invention is not limited to the illustrated pulse shapes, energies and burning times or the like, but can be generalized as desired. Further or different injection modes can also be provided.

Claims

PATENTANSPRÜCHE
1. Zündverfahren für eine Brennkraftmaschine, wobei eine Einspritzung alternativ mindestens in einem ersten Be- triebsmodus (Hl, H2) oder in einem zweiten Betriebsmodus1. Ignition method for an internal combustion engine, with an injection alternatively at least in a first operating mode (Hl, H2) or in a second operating mode
(S) durchgeführt wird und wobei das Laden der Zündspule in Abhängigkeit vom aktuellen Betriebsmodus durchgeführt wird;(S) is carried out and wherein the charging of the ignition coil is carried out as a function of the current operating mode;
dadurch g e k e n n z e i c n e t , daßby e c e n c e i c n e t that
ein für den aktuellen Betriebsmodus charakteristischer Steuerimpulsverlauf (SI) vorgesehen wird; unda control pulse curve (SI) characteristic of the current operating mode is provided; and
das Laden der Zündspule ' (ZS) • von einer Steuerlogik (L) an- ■ sprechend auf den Steuerimpulsverlauf (SI) mit entsprechenden verschiedenen Zeitverläufen des Primarstroms durchgeführt wird.the charging of the ignition coil '(ZS) • by a control logic (L) is speaking Toggle ■ conducted to the control pulse profile (SI) having respective different timings of the primary current.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der erste Betriebsmodus (Hl, H2) ein homogener Normalbetrieb ist, der in die Untermodi -stöchiometrischer Normalbetrieb (Hl) und unterstöchiometrischer Normalbetrieb (H2) aufgeteilt ist, und daß der zweite Betriebsmodus (S) ein inhomogener Schichtbetrieb ist. 2. The method according to claim 1, characterized in that the first operating mode (Hl, H2) is a homogeneous normal operation, which is divided into the sub-modes -stoichiometric normal operation (Hl) and substoichiometric normal operation (H2), and that the second operating mode (S ) is an inhomogeneous shift operation.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Laden der Zündspule im inhomogenen Schichtbetrieb (S) in Form einer Pulszugzündung mit einem vorbestimmten Pri- , märstrom und im homogenen Betrieb (Hl, H2) die Zündspule unter Erhöhung des Primärstroms in Form einer Einzelpulszündung durchgeführt wird.3. The method according to claim 2, characterized in that the loading of the ignition coil in inhomogeneous stratified operation (S) in the form of a pulse train ignition with a predetermined primary, current and in homogeneous operation (Hl, H2) the ignition coil while increasing the primary current in the form of a Single pulse ignition is carried out.
. Verfahren nach einem der vorhergehenden Ansprüche 2 oder.3, dadurch gekennzeichnet, daß die für den aktuellen, Method according to one of the preceding claims 2 or 3, characterized in that for the current
Betriebsmodus charakteristischen Steuerimpulsverläufe (SI) unterschiedliche Impulszeiten und/oder Impulsanzahlen aufweisen.Operating mode characteristic control pulse curves (SI) have different pulse times and / or pulse numbers.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Eisenkreis der Zündspule bei einem Betriebsmodus, der einen hohen Funkenanfangsstrom benötigt, bis in die beginnende Sättigung angesteuert wird.5. The method according to any one of the preceding claims, characterized in that the iron circuit of the ignition coil in an operating mode that requires a high spark current is driven until the beginning of saturation.
6. Zündvorrichtung zur Durchführung des Verfahrens nach mindestens einem der vorhergehenden Ansprüche mit:6. Ignition device for performing the method according to at least one of the preceding claims with:
einer Zündendstufe ,(ES) ;an ignition output stage, (ES);
einer der Zündendstufe (ES) vorgeschalteten Steuerlogik (L) ; und einem Motorsteuergerät (MS)' zum Erzeugen eines für den aktuellen Betriebsmodus charakteristischen Steuerimpulsverlaufs (SI) ;one of the ignition output stage (ES) control logic (L); and an engine control unit (MS) 'for generating a control pulse curve (SI) which is characteristic of the current operating mode;
wobei die Steuerlogik (L) die Endstufe (ES) ansprechend auf den Steuerimpulsverlauf (SI) auf einen entsprechenden Zeit-- verlauf des Primärstroms ansteuert. The control logic (L) controls the output stage (ES) in response to the control pulse curve (SI) to a corresponding time curve of the primary current.
EP01931405A 2000-06-30 2001-04-05 Method of ignition Expired - Lifetime EP1299630B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10031875 2000-06-30
DE10031875A DE10031875A1 (en) 2000-06-30 2000-06-30 Ignition method and corresponding ignition device
PCT/DE2001/001317 WO2002002923A1 (en) 2000-06-30 2001-04-05 Method of ignition and corresponding ignition unit

Publications (2)

Publication Number Publication Date
EP1299630A1 true EP1299630A1 (en) 2003-04-09
EP1299630B1 EP1299630B1 (en) 2006-03-22

Family

ID=7647339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01931405A Expired - Lifetime EP1299630B1 (en) 2000-06-30 2001-04-05 Method of ignition

Country Status (5)

Country Link
US (1) US6814047B2 (en)
EP (1) EP1299630B1 (en)
JP (1) JP2004502084A (en)
DE (2) DE10031875A1 (en)
WO (1) WO2002002923A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009991A1 (en) * 2002-07-22 2004-01-29 Zaza Museridze Method for ignition and combustion of fuel mixture in an internal combustion engine
DE10248216B4 (en) * 2002-10-16 2004-09-16 Siemens Ag Operating method for an ignition system
ATE535972T1 (en) * 2005-04-19 2011-12-15 Knite Inc METHOD AND APPARATUS FOR OPERATING A TRAVELING SPARK IGNITION DEVICE AT HIGH PRESSURE
US7401603B1 (en) * 2007-02-02 2008-07-22 Altronic, Inc. High tension capacitive discharge ignition with reinforcing triggering pulses
DE102007051249A1 (en) * 2007-10-26 2009-04-30 Robert Bosch Gmbh Device for controlling a multiple spark operation of an internal combustion engine and associated method
FR2943739B1 (en) * 2009-03-24 2015-09-04 Renault Sas METHOD FOR IGNITING A FUEL MIXTURE FOR A HEAT ENGINE
EP2290223A1 (en) * 2009-08-31 2011-03-02 Robert Bosch GmbH An ignition control unit to control multiple ignitions
DE102010015998A1 (en) 2010-03-17 2011-09-22 Motortech Gmbh Ignition and ignition system for it
US8078384B2 (en) * 2010-06-25 2011-12-13 Ford Global Technologies, Llc Engine control using spark restrike/multi-strike
US20140232256A1 (en) 2011-07-26 2014-08-21 Knite, Inc. Traveling spark igniter
WO2014112197A1 (en) * 2013-01-18 2014-07-24 日産自動車株式会社 Ignition device for internal combustion engine and ignition method
US9951742B2 (en) * 2013-03-21 2018-04-24 Nissan Motor Co., Ltd. Ignition control system for internal combustion engine and ignition control method
US11248555B2 (en) 2017-05-24 2022-02-15 Nissan Motor Co., Ltd. Control method and control device for internal combustion engine
EP3633182A4 (en) * 2017-05-24 2020-06-17 Nissan Motor Co., Ltd Internal combustion engine control method and control device
DE102017212630A1 (en) * 2017-07-24 2019-01-24 Bayerische Motoren Werke Aktiengesellschaft In at least two alternative modes operable signal communication system for a motor vehicle
KR20220153196A (en) * 2021-05-11 2022-11-18 현대자동차주식회사 System of controlling ignition coil
DE102022207300A1 (en) 2022-07-18 2024-01-18 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for controlling a prechamber spark plug

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2700676C2 (en) * 1977-01-08 1985-06-27 Robert Bosch Gmbh, 7000 Stuttgart Ignition system for internal combustion engines
IT1208855B (en) * 1987-03-02 1989-07-10 Marelli Autronica VARIABLE SPARK ENERGY IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES PARTICULARLY FOR MOTOR VEHICLES
US5170760A (en) * 1990-11-13 1992-12-15 Yamaha Hatsudoki Babushiki Kaisha Ignition system for two cycle engine
US5333593A (en) * 1993-01-15 1994-08-02 Ford Motor Company Energy-on-demand ignition coil
DE4328524A1 (en) * 1993-08-25 1995-03-02 Volkswagen Ag Controllable ignition system
US5754011A (en) * 1995-07-14 1998-05-19 Unison Industries Limited Partnership Method and apparatus for controllably generating sparks in an ignition system or the like
JP2000500207A (en) * 1996-06-21 2000-01-11 フィヒト・ゲーエムベーハー・ウント・コンパニー・カーゲー Operating method of fuel injection engine
JPH11513097A (en) * 1996-06-21 1999-11-09 アウトボード・マリーン・コーポレーション Capacitive discharge ignition system for multiple ignition in internal combustion engine
JP3683681B2 (en) * 1997-06-30 2005-08-17 株式会社日立製作所 Control device for direct-injection spark-ignition internal combustion engine
JPH1137030A (en) * 1997-07-14 1999-02-09 Yamaha Motor Co Ltd Ignition device for internal combustion engine
DE19730908C2 (en) * 1997-07-18 2002-11-28 Daimler Chrysler Ag Method for operating a direct-injection Otto engine
JP3945040B2 (en) * 1997-11-26 2007-07-18 マツダ株式会社 Engine control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0202923A1 *

Also Published As

Publication number Publication date
US6814047B2 (en) 2004-11-09
DE10031875A1 (en) 2002-01-10
WO2002002923A1 (en) 2002-01-10
US20030154954A1 (en) 2003-08-21
DE50109291D1 (en) 2006-05-11
JP2004502084A (en) 2004-01-22
EP1299630B1 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
EP1299630A1 (en) Method of ignition and corresponding ignition unit
DE102007034390B4 (en) Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system
DE2340865C3 (en) Ignition device for an internal combustion engine
EP0640761B2 (en) Controllable ignition system
WO2011070089A1 (en) Method for operating an ignition device for an internal combustion engine, and ignition device for an internal combustion engine for carrying out the method
DE102013215663A1 (en) ignition apparatus
EP1254313A2 (en) Method for producing a sequence of high-voltage ignition sparks and high-voltage ignition device
DE102007034399A1 (en) Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system
DE69123395T2 (en) DC ignition system
DE3781309T2 (en) ELECTRONIC PLASMA IGNITION CONTROL IN AN INTERNAL INTERNAL COMBUSTION ENGINE.
DE102013015063B3 (en) Method and device for igniting a gas-fuel mixture
EP0489747B1 (en) Circuit arrangement for operating a gas discharge lamp
DE102014015486A1 (en) Operating mode and map-dependent switchable spark-band ignition
DE60012073T2 (en) Ignition system for a vehicle-driving internal combustion engine
DE19838051A1 (en) Electronic circuit for generating current or voltage pulses, such as ignition sparks for internal combustion engines, with storage capacitors
EP1056936B1 (en) Method of burning off spark plugs in stratified charge mode
DE3442017A1 (en) Ignition spark generator for spark ignition engines
DE19804974C1 (en) Pulse igniter for gas discharge lamp with AC supply e.g. for automobile
EP0250445A1 (en) Ignition system for internal combustion engines.
DE19720534C2 (en) Method for influencing the ignition behavior of spark plugs
DE19748051A1 (en) Ignition system for IC engine
DE102012218705B4 (en) Device and method for igniting a spark plug of a motor vehicle
DE102006020452A1 (en) Method for producing ignition spark and igniter, involves electrical high voltage at an ignition coil and control voltage is pulsed in such way that pulses arrive in resonance area of ignition coil
DE2357475A1 (en) High tension ignition system for IC engines - has astable multi vibrator to increase spark duration and power
DE3124423A1 (en) Device for producing and controlling an ignition process in internal combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030130

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20050418

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD OF IGNITION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50109291

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150624

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150423

Year of fee payment: 15

Ref country code: FR

Payment date: 20150422

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109291

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160405