EP1298399A1 - Process and apparatus producing liquid oxygen and liquid nitrogen - Google Patents

Process and apparatus producing liquid oxygen and liquid nitrogen Download PDF

Info

Publication number
EP1298399A1
EP1298399A1 EP02019784A EP02019784A EP1298399A1 EP 1298399 A1 EP1298399 A1 EP 1298399A1 EP 02019784 A EP02019784 A EP 02019784A EP 02019784 A EP02019784 A EP 02019784A EP 1298399 A1 EP1298399 A1 EP 1298399A1
Authority
EP
European Patent Office
Prior art keywords
operating state
gas
heat exchanger
liquefied
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02019784A
Other languages
German (de)
French (fr)
Inventor
Jürgen Voit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1298399A1 publication Critical patent/EP1298399A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0075Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0077Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04363Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/50Quasi-closed internal or closed external oxygen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/58Quasi-closed internal or closed external argon refrigeration cycle

Definitions

  • the invention relates to a method for producing liquid oxygen and / or liquid nitrogen, with the gas to be liquefied in a circuit heat exchanger through indirect heat exchange with a circulating medium is liquefied, the circulating medium compressing in a refrigeration cycle, cooled down, relieved of work and / or liquefied, in the circuit heat exchanger warmed and / or evaporated and returned to compression and the circulating medium in a first operating state by a first fluid is formed.
  • Nitrogen liquefaction processes of this type are generally known, for example from DE 2548222 B, DE 3732364 A, EP 316768 A, DE 4030750 A, DE 4303771 A, DE 4418435 A, EP 795727 A or EP 949471 A. From US 5678425 is also known to such a method in two different operating states operate. In one operating state, only liquid nitrogen is produced other liquid nitrogen and liquid oxygen. In both cases air is considered Circulation medium used.
  • the invention has for its object a method of the type mentioned and to provide a corresponding device that is suitable both for the production of liquid oxygen and liquid nitrogen are suitable and especially have low energy consumption.
  • thermodynamic parameter of the two fluids is different, for example Boiling temperature, specific heat of vaporization and / or specific heat.
  • the refrigeration and liquefaction process can optimally match that gas to be liquefied can be adjusted to the lowest possible To achieve energy consumption in liquefaction.
  • first and second operating status can be in the same system different liquid products can be obtained without the Economics of the process have to be compromised. For example 5% less energy is used to generate liquid oxygen, if oxygen, argon or an argon and oxygen as the circulating medium containing mixture is used instead of nitrogen.
  • the gas to be liquefied and the circulating medium preferably have similar ones Boiling points. This means that the boiling points in the in the Liquefaction process occurring pressure by a maximum of 5 K, preferably around differ by a maximum of 3 K.
  • the two media can be the same have chemical composition.
  • the gas to be liquefied and the circulating medium by nitrogen formed whereas in the second operating state oxygen both as and liquefying gas, as well as being used as a circulating medium.
  • argon or at least 80 mol% preferably mixture containing at least 95 mol% of argon is used as the circulating medium become; in practice it is convenient to use a mainly argon and Use oxygen-containing mixture such as raw argon, which is usually in the Raw argon column of a low-temperature air separation plant is manufactured.
  • the gas to be liquefied is preferably made from one in both operating states Air separation plant, in particular a low-temperature air separation plant, taken.
  • a rinsing fraction is passed through the circuit heat exchanger and preferably introduced into a storage container.
  • the rinse fraction can become one later be supplied to the air separation plant. So the Recover the cold content of the rinse fraction and the rinse does not represent a significant one Energy loss.
  • the invention also relates to a device for producing liquid Oxygen and / or liquid nitrogen according to claims 8 to 11.
  • Gas 1 to be liquefied is fed in the method and the device of FIG. 1 under approximately atmospheric pressure via line 2 to a feed gas compressor 3 with aftercooler 4 and compressed there to an intermediate pressure of, for example, 4 to 8 bar, preferably 5 to 6 bar.
  • the circulating medium 6, 7 has the same chemical composition as the gas 1 to be liquefied in both operating states.
  • the two gases are mixed under the intermediate pressure and fed together via line 8 to a circuit compressor 9 with aftercooler 10.
  • There the gas is compressed to a high pressure of, for example, 26 to 32 bar, preferably 28 to 30 bar.
  • a first partial flow 12 of the high pressure gas 11 is in a cycle heat exchanger 13 cooled to a first intermediate temperature and then in a warm turbine 14 relaxed while working to about the intermediate pressure.
  • the relaxed first partial stream of the circulating medium flows via lines 15, 7 and 8 through the circuit heat exchanger 13 to the inlet of the circuit compressor 9 back.
  • a second (22) and third (23) partial flow of high pressure gas 11 are initially together (16) in the series-connected post-compressors 17, 19 with after-coolers 18, 20 to an even higher pressure of, for example, 45 to 60 bar, preferably Brought 48 to 52 bar, which prevails in line 21.
  • the second Partial flow 22 in the circuit heat exchanger 13 to a second, lower one Cooled intermediate temperature and then in a cold turbine 24 relaxed workload to about the intermediate pressure.
  • the resulting two-phase mixture 25 is in an intermediate pressure separator (phase separator) 26th introduced. Steam from the intermediate pressure separator 26 flows over the lines 27, 6 and 8 through the circuit heat exchanger 13 to the inlet of the circuit compressor 9 back.
  • the third partial flow 23 is up to the cold end of the circuit heat exchanger 13 out, then throttle relaxed to about the intermediate pressure (28) and over Line 29 introduced into the intermediate pressure separator (phase separator) 26.
  • the Liquid 30 is further expanded to approximately atmospheric pressure (31) and in one Low-pressure separator 32 is subjected to a further phase separation.
  • the remaining liquid 33 forms the liquid product, while the flash gas over the Lines 34, 35 and 2 through the circuit heat exchanger 13 to the entry of Feed gas compressor 3 flows back.
  • the refrigeration cycle When switching from the first to the second operating state, the refrigeration cycle must be rinsed.
  • the supply of nitrogen gas is first in line 1 ended and instead oxygen is blown into the circuit - initially as Rinse fraction.
  • the connection between the product line 33 and the Consumer or storage for liquid nitrogen interrupted and the liquid instead, passed into a storage tank (not shown) for rinsing liquid. This continues until the desired purity for in the product line 33 the liquid oxygen product is reached. Then the product line 33 with connected to the consumer or storage for liquid oxygen and the second The operating state is reached. (Then the collected Flushing liquid in an air separation plant as described below be processed.) Switching from the second to the first operating state works analog.
  • Both oxygen and nitrogen are in one in the embodiment Low-temperature air separation plant manufactured.
  • This includes one Main heat exchanger 36 and a two-column rectification system with a high-pressure column 37 and low pressure column 38, via a condenser-evaporator (Main condenser) 39 are in heat-exchanging connection (Linde double column).
  • a condenser-evaporator (Main condenser) 39 are in heat-exchanging connection (Linde double column).
  • compressed and cleaned air is the warm end of the Main heat exchanger 36 supplied, cooled there to about dew point temperature and introduced via line 41 into the high pressure column 37.
  • Raw liquid oxygen 42 and liquid nitrogen 43 from the high pressure column 37 or the The main condenser 39 is throttled into the low-pressure column 38 (44, 45).
  • valve 51 When switching over to the second operating state, valve 51 is closed, so that the entire nitrogen product of the air separation plant is gaseous is subtracted (GAN). At the same time the valve 52 is opened and at least one Part of the gaseous oxygen from line 53 via line 1 in the Condensing circuit. This oxygen initially serves as a flushing fraction.
  • the impure liquid (oxygen-nitrogen mixture) accumulating in line 33 during the flushing is as described above in a (not shown) Storage tank caught. As soon as the desired in the product line 33 Oxygen purity is reached, from flushing to the second operating condition switched by the product liquid 33 no longer in the storage container for Flushing liquid, but to a liquid oxygen consumer or storage is directed.
  • the rinsing liquid can gradually flow into the high-pressure column 37 at a suitable point and / or the low pressure column 38 can be fed.
  • Figure 2 largely corresponds to Figure 1. Only the different features are explained in more detail below.
  • an argon-oxygen mixture is used in the second operating state (e.g. about 98 mol% argon and about 2 mol% oxygen containing raw argon) as a circulating medium for the liquefaction of oxygen used.
  • the circuit heat exchanger here has two blocks 13, 213, the Block 213 is designed as a condenser-evaporator.
  • valve 51 When switching from the first to the second operating state, the valve 51 closed so that the entire nitrogen product of the air separation plant is withdrawn in gaseous form (GAN). At the same time, valve 258 is opened and Raw argon flows into the refrigeration circuit via line 259. The raw argon 259 serves initially as a rinse fraction.
  • the impure during line 33 flushing Liquid (argon-oxygen-nitrogen mixture) is as in Figure 1 in a (not illustrated) storage container collected.
  • Desired argon-oxygen content is reached by flushing to alternate second operating state switched by closing valve 254 and valves 255 and 252 are opened.
  • gaseous cold oxygen flows 201 in the condenser-evaporator 213, is liquefied there via line 233 as withdrawn liquid oxygen product and to a liquid oxygen consumer or memory directed (not shown).
  • liquid oxygen liquid circulating medium 256 led into the condenser-evaporator 213, evaporated there and finally flows back via lines 257, 34, 35 and 2 to the feed gas compressor Third
  • the system of Figure 2 can additionally the valve 52 and the corresponding line from Figure 1, via which oxygen can be introduced into the circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Production of liquid oxygen and/or liquid nitrogen comprises liquefying a gas (1) in a circulating heat exchanger (13) with a circulating medium (15, 27, 34); compressing the circulating medium in a cold cycle; cooling; relieving the pressure and/or liquefying; and returning to the compressor (3, 9). The circulating medium is formed from a first fluid in a first operating state and formed from a second fluid in a second operating state. The second fluid has a different thermodynamic properties than the first fluid. <??>An Independent claim is also included for an apparatus for carrying out the process. Preferred Features: The gas to be liquefied is formed from nitrogen in the first operating state. The circulating medium is formed from oxygen, argon or a mixture containing at least 80 mol.% argon in the second operating state. The gas to be liquefied is removed from a low temperature air decomposition plant. During switching from the first to the second operating state or from the second to the first operating state, a rinsing fraction is fed through the heat exchanger.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von flüssigem Sauerstoff und/oder flüssigem Stickstoff, bei dem zu verflüssigendes Gas in einem Kreislauf-Wärmetauscher durch indirekten Wärmeaustausch mit einem Kreislaufmedium verflüssigt wird, wobei das Kreislaufmedium in einem Kältekreislauf verdichtet, abgekühlt, arbeitsleistend entspannt und/oder verflüssigt, in dem Kreislauf-Wärmetauscher angewärmt und/oder verdampft und wieder der Verdichtung zugeführt wird und das Kreislaufmedium in einem ersten Betriebszustand durch ein erstes Fluid gebildet wird.The invention relates to a method for producing liquid oxygen and / or liquid nitrogen, with the gas to be liquefied in a circuit heat exchanger through indirect heat exchange with a circulating medium is liquefied, the circulating medium compressing in a refrigeration cycle, cooled down, relieved of work and / or liquefied, in the circuit heat exchanger warmed and / or evaporated and returned to compression and the circulating medium in a first operating state by a first fluid is formed.

Stickstoff-Verflüssigungsverfahren dieser Art sind allgemein bekannt, zum Beispiel aus DE 2548222 B, DE 3732364 A, EP 316768 A, DE 4030750 A, DE 4303771 A, DE 4418435 A, EP 795727 A oder EP 949471 A. Aus US 5678425 ist außerdem bekannt, ein derartiges Verfahren in zwei unterschiedlichen Betriebszuständen zu betreiben. Im einen Betriebszustand wird ausschließlich Flüssigstickstoff produziert, im anderen Flüssigstickstoff und Flüssigsauerstoff. In beiden Fällen wird Luft als Kreislaufmedium eingesetzt.Nitrogen liquefaction processes of this type are generally known, for example from DE 2548222 B, DE 3732364 A, EP 316768 A, DE 4030750 A, DE 4303771 A, DE 4418435 A, EP 795727 A or EP 949471 A. From US 5678425 is also known to such a method in two different operating states operate. In one operating state, only liquid nitrogen is produced other liquid nitrogen and liquid oxygen. In both cases air is considered Circulation medium used.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die sowohl für die Produktion von flüssigem Sauerstoff und flüssigem Stickstoff geeignet sind und einen besonders niedrigen Energieverbrauch aufweisen.The invention has for its object a method of the type mentioned and to provide a corresponding device that is suitable both for the production of liquid oxygen and liquid nitrogen are suitable and especially have low energy consumption.

Diese Aufgabe wird dadurch gelöst, dass das Kreislaufmedium in einem zweiten Betriebszustand durch ein zweites Fluid gebildet wird, das sich in seinen thermodynamischen Eigenschaften von dem ersten Fluid unterscheidet, das in dem ersten Betriebszustand eingesetzt wird. Dies bedeutet, dass mindestens ein thermodynamischer Parameter der beiden Fluide unterschiedlich ist, beispielweise Siedetemperatur, spezifische Verdampfungswärme und/oder spezifische Wärme. This object is achieved in that the circulating medium in a second Operating state is formed by a second fluid, which is in its distinguishes thermodynamic properties from the first fluid, which in the first operating state is used. This means at least one thermodynamic parameter of the two fluids is different, for example Boiling temperature, specific heat of vaporization and / or specific heat.

Auf diese Weise kann der Kälteerzeugungs- und Verflüssigungsprozess optimal an das zu verflüssigende Gas angepasst werden, um einen möglichst geringen Energieverbrauch bei der Verflüssigung zu erzielen. Zu verschiedenen Zeitpunkten (erster und zweiter Betriebszustand) können dabei in derselben Anlage unterschiedliche Flüssigprodukte gewonnen werden, ohne dass bei der Wirtschaftlichkeit des Prozesses Abstriche gemacht werden müssen. Beispielsweise wird bei der Erzeugung von flüssigem Sauerstoff 5 % weniger Energie verbraucht, wenn als Kreislaufmedium Sauerstoff, Argon oder ein Argon und Sauerstoff enthaltendes Gemisch anstelle von Stickstoff verwendet wird.In this way, the refrigeration and liquefaction process can optimally match that gas to be liquefied can be adjusted to the lowest possible To achieve energy consumption in liquefaction. At different times (first and second operating status) can be in the same system different liquid products can be obtained without the Economics of the process have to be compromised. For example 5% less energy is used to generate liquid oxygen, if oxygen, argon or an argon and oxygen as the circulating medium containing mixture is used instead of nitrogen.

Vorzugsweise weisen zu verflüssigendes Gas und Kreislaufmedium ähnliche Siedepunkte auf. Darunter ist zu verstehen, dass sich die Siedepunkte bei den in dem Verflüssigungsverfahren vorkommenden Druck um maximal 5 K, vorzugsweise um maximal 3 K unterscheiden. Die beiden Medien können beispielsweise dieselbe chemische Zusammensetzung aufweisen. Zum Beispiel werden in dem ersten Betriebszustand das zu verflüssigende Gas und das Kreislaufmedium durch Stickstoff gebildet, wogegen in dem zweiten Betriebszustand Sauerstoff sowohl als zu verflüssigendes Gas, als auch als Kreislaufmedium eingesetzt wird. Alternativ kann im zweiten Betriebszustand Argon oder ein mindestens 80 mol%, vorzugsweise mindestens 95 mol% Argon enthaltendes Gemisch als Kreislaufmedium verwendet werden; in der Praxis ist es günstig, zu diesem Zweck ein hauptsächlich Argon und Sauerstoff enthaltendes Gemisch wie Rohargon einzusetzen, das üblicherweise in der Rohargonsäule einer Tieftemperatur-Luftzerlegungsanlage hergestellt wird.The gas to be liquefied and the circulating medium preferably have similar ones Boiling points. This means that the boiling points in the in the Liquefaction process occurring pressure by a maximum of 5 K, preferably around differ by a maximum of 3 K. For example, the two media can be the same have chemical composition. For example, in the first Operating state the gas to be liquefied and the circulating medium by nitrogen formed, whereas in the second operating state oxygen both as and liquefying gas, as well as being used as a circulating medium. Alternatively, in second operating state argon or at least 80 mol%, preferably mixture containing at least 95 mol% of argon is used as the circulating medium become; in practice it is convenient to use a mainly argon and Use oxygen-containing mixture such as raw argon, which is usually in the Raw argon column of a low-temperature air separation plant is manufactured.

Das zu verflüssigende Gas wird vorzugsweise in beiden Betriebszuständen aus einer Luftzerlegungsanlage, insbesondere einer Tieftemperatur-Luftzerlegungsanlage, entnommen.The gas to be liquefied is preferably made from one in both operating states Air separation plant, in particular a low-temperature air separation plant, taken.

Beim Umschalten vom ersten in den zweiten Betriebszustand beziehungsweise umgekehrt wird eine Spülfraktion durch den Kreislauf-Wärmetauscher geleitet und vorzugsweise in einen Speicherbehälter eingeleitet. Die Spülfraktion kann zu einem späteren Zeitpunkt der Luftzerlegungsanlage zugeführt werden. Somit lässt sich der Kälteinhalt der Spülfraktion zurückgewinnen und die Spülung stellt keinen bedeutenden Energieverlust dar. When switching from the first to the second operating state respectively conversely, a rinsing fraction is passed through the circuit heat exchanger and preferably introduced into a storage container. The rinse fraction can become one later be supplied to the air separation plant. So the Recover the cold content of the rinse fraction and the rinse does not represent a significant one Energy loss.

Die Erfindung betrifft außerdem eine Vorrichtung zur Erzeugung von flüssigem Sauerstoff und/oder flüssigem Stickstoff gemäß den Patentansprüchen 8 bis 11.The invention also relates to a device for producing liquid Oxygen and / or liquid nitrogen according to claims 8 to 11.

Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand zweier Ausführungsbeispiele, die in den Zeichnungen dargestellt sind, näher erläutert. Die einander entsprechenden Vorrichtungsteile und Verfahrensschritte tragen in beiden Zeichnungen dieselben Bezugszeichen.The invention and further details of the invention are described below two exemplary embodiments, which are shown in the drawings, explained in more detail. The corresponding parts of the device and method steps carry in both Drawings the same reference numerals.

Zu verflüssigendes Gas 1 wird bei dem Verfahren und der Vorrichtung von Figur 1 unter etwa atmosphärischem Druck über Leitung 2 einem Feedgas-Verdichter 3 mit Nachkühler 4 zugeführt und dort auf einen Zwischendruck von beispielsweise 4 bis 8 bar, vorzugsweise 5 bis 6 bar komprimiert. Das Kreislaufmedium 6, 7 weist bei dem Ausführungsbeispiel von Figur 1 in beiden Betriebszuständen jeweils die gleiche chemische Zusammensetzung wie das zu verflüssigende Gas 1 auf. Die beiden Gase werden unter dem Zwischendruck vermischt und gemeinsam über Leitung 8 einem Kreislauf-Verdichter 9 mit Nachkühler 10 zugeführt. Dort wird das Gas auf einen hohen Druck von beispielsweise 26 bis 32 bar, vorzugsweise 28 bis 30 bar verdichtet.Gas 1 to be liquefied is fed in the method and the device of FIG. 1 under approximately atmospheric pressure via line 2 to a feed gas compressor 3 with aftercooler 4 and compressed there to an intermediate pressure of, for example, 4 to 8 bar, preferably 5 to 6 bar. In the exemplary embodiment of FIG. 1, the circulating medium 6, 7 has the same chemical composition as the gas 1 to be liquefied in both operating states. The two gases are mixed under the intermediate pressure and fed together via line 8 to a circuit compressor 9 with aftercooler 10. There the gas is compressed to a high pressure of, for example, 26 to 32 bar, preferably 28 to 30 bar.

Ein erster Teilstrom 12 des Hochdruckgases 11 wird in einem Kreislauf-Wärmetauscher 13 auf eine erste Zwischentemperatur abgekühlt und anschließend in einer warmen Turbine 14 arbeitsleistend auf etwa den Zwischendruck entspannt. Der entspannte erste Teilstrom des Kreislaufmediums strömt über die Leitungen 15, 7 und 8 durch den Kreislauf-Wärmetauscher 13 zum Eintritt des Kreislauf-Verdichters 9 zurück.A first partial flow 12 of the high pressure gas 11 is in a cycle heat exchanger 13 cooled to a first intermediate temperature and then in a warm turbine 14 relaxed while working to about the intermediate pressure. The relaxed first partial stream of the circulating medium flows via lines 15, 7 and 8 through the circuit heat exchanger 13 to the inlet of the circuit compressor 9 back.

Ein zweiter (22) und dritter (23) Teilstrom des Hochdruckgases 11 werden zunächst gemeinsam (16) in den seriell geschalteten Nachverdichtern 17, 19 mit Nachkühlern 18, 20 auf einen noch höheren Druck von beispielsweise 45 bis 60 bar, vorzugsweise 48 bis 52 bar gebracht, der in Leitung 21 herrscht. Anschließend wird der zweite Teilstrom 22 im Kreislauf-Wärmetauscher 13 auf eine zweite, niedrigere Zwischentemperatur abgekühlt und anschließend in einer kalten Turbine 24 arbeitsleistend auf etwa den Zwischendruck entspannt. Das dabei entstandene Zwei-Phasen-Gemisch 25 wird in einen Zwischendruck-Abscheider (Phasentrenner) 26 eingeführt. Dampf aus dem Zwischendruck-Abscheider 26 strömt über die Leitungen 27, 6 und 8 durch den Kreislauf-Wärmetauscher 13 zum Eintritt des Kreislauf-Verdichters 9 zurück.A second (22) and third (23) partial flow of high pressure gas 11 are initially together (16) in the series-connected post-compressors 17, 19 with after-coolers 18, 20 to an even higher pressure of, for example, 45 to 60 bar, preferably Brought 48 to 52 bar, which prevails in line 21. Then the second Partial flow 22 in the circuit heat exchanger 13 to a second, lower one Cooled intermediate temperature and then in a cold turbine 24 relaxed workload to about the intermediate pressure. The resulting two-phase mixture 25 is in an intermediate pressure separator (phase separator) 26th introduced. Steam from the intermediate pressure separator 26 flows over the lines 27, 6 and 8 through the circuit heat exchanger 13 to the inlet of the circuit compressor 9 back.

Der dritte Teilstrom 23 wird bis zum kalten Ende des Kreislauf-Wärmetauschers 13 geführt, anschließend auf etwa den Zwischendruck drosselentspannt (28) und über Leitung 29 in den Zwischendruck-Abscheider (Phasentrenner) 26 eingeleitet. Die Flüssigkeit 30 wird weiter auf etwa Atmosphärendruck entspannt (31) und in einem Niederdruck-Abscheider 32 einer weiteren Phasentrennung unterworfen. Die verbleibende Flüssigkeit 33 bildet das Flüssigprodukt, während das Flashgas über die Leitungen 34, 35 und 2 durch den Kreislauf-Wärmetauscher 13 zum Eintritt des Feedgas-Verdichters 3 zurückfließt.The third partial flow 23 is up to the cold end of the circuit heat exchanger 13 out, then throttle relaxed to about the intermediate pressure (28) and over Line 29 introduced into the intermediate pressure separator (phase separator) 26. The Liquid 30 is further expanded to approximately atmospheric pressure (31) and in one Low-pressure separator 32 is subjected to a further phase separation. The remaining liquid 33 forms the liquid product, while the flash gas over the Lines 34, 35 and 2 through the circuit heat exchanger 13 to the entry of Feed gas compressor 3 flows back.

In einem ersten Betriebszustand wird über Leitung 1 Stickstoff-Gas in das Kreislauf- und Verflüssigungssystem eingeleitet. In Leitung 33 wird flüssiger Stickstoff (LIN) als Produkt entnommen. In einem zweiten Betriebszustand wird über Leitung 1 Sauerstoff-Gas in das Kreislauf- und Verflüssigungssystem eingeführt. Entsprechend wird in Leitung 33 flüssiger Sauerstoff (LOX) gewonnen.In a first operating state, nitrogen gas is fed into the circuit via line 1 and Liquefaction system initiated. In line 33 is liquid nitrogen (LIN) as Product removed. In a second operating state, line 1 is oxygen gas introduced into the circulatory and liquefaction system. Accordingly, in Line 33 obtained liquid oxygen (LOX).

Beim Umschalten vom ersten in den zweiten Betriebszustand muss der Kältekreislauf gespült werden. Dazu wird zunächst die Zufuhr von Stickstoff-Gas in die Leitung 1 beendet und stattdessen Sauerstoff in den Kreislauf eingeblasen - zunächst als Spülfraktion. Gleichzeitig wird die Verbindung zwischen der Produktleitung 33 und dem Verbraucher oder Speicher für Flüssigstickstoff unterbrochen und die Flüssigkeit stattdessen in einen (nicht dargestellten) Speicherbehälter für Spülflüssigkeit geleitet. Dies wird so lange fortgesetzt, bis in der Produktleitung 33 die gewünschte Reinheit für das Flüssigsauerstoff-Produkt erreicht ist. Anschließend wird die Produktleitung 33 mit dem Verbraucher oder Speicher für Flüssigsauerstoff verbunden und der zweite Betriebszustand ist damit erreicht. (Anschließend kann die aufgefangene Spülflüssigkeit in einer Luftzerlegungsanlage, wie sie unten beschrieben wird, wieder aufgearbeitet werden.) Das Umschalten vom zweiten in den ersten Betriebszustand funktioniert analog.When switching from the first to the second operating state, the refrigeration cycle must be rinsed. For this purpose, the supply of nitrogen gas is first in line 1 ended and instead oxygen is blown into the circuit - initially as Rinse fraction. At the same time, the connection between the product line 33 and the Consumer or storage for liquid nitrogen interrupted and the liquid instead, passed into a storage tank (not shown) for rinsing liquid. This continues until the desired purity for in the product line 33 the liquid oxygen product is reached. Then the product line 33 with connected to the consumer or storage for liquid oxygen and the second The operating state is reached. (Then the collected Flushing liquid in an air separation plant as described below be processed.) Switching from the second to the first operating state works analog.

Sowohl Sauerstoff als auch Stickstoff werden bei dem Ausführungsbeispiel in einer Tieftemperatur-Luftzerlegungsanlage hergestellt. Diese umfasst einen Hauptwärmetauscher 36 sowie ein Zwei-Säulen-Rektifiziersystem mit Hochdrucksäule 37 und Niederdrucksäule 38, die über einen Kondensator-Verdampfer (Hauptkondensator) 39 in wärmetauschender Verbindung stehen (Linde-Doppelsäule). Über Leitung 40 wird verdichtete und gereinigte Luft dem warmen Ende des Hauptwärmetauschers 36 zugeführt, dort auf etwa Taupunktstemperatur abgekühlt und über Leitung 41 in die Hochdrucksäule 37 eingeleitet. Flüssiger Rohsauerstoff 42 und flüssiger Stickstoff 43 aus der Hochdrucksäule 37 beziehungsweise dem Hauptkondensator 39 werden in die Niederdrucksäule 38 eingedrosselt (44, 45). Über die Produktleitungen werden Sauerstoff 46, stickstoffreiches Restgas 47 und Stickstoff 48 zum Hauptwärmetauscher 36 geleitet und schließlich unter etwa Umgebungstemperatur und Atmosphärendruck aus der Luftzerlegungsanlage abgezogen (53, 49, 50). Wollte man kein Flüssigprodukt erzeugen, würden alle drei Ströme als gasförmige Produkte GOX, UN2 und GAN abgezogen.Both oxygen and nitrogen are in one in the embodiment Low-temperature air separation plant manufactured. This includes one Main heat exchanger 36 and a two-column rectification system with a high-pressure column 37 and low pressure column 38, via a condenser-evaporator (Main condenser) 39 are in heat-exchanging connection (Linde double column). Via line 40, compressed and cleaned air is the warm end of the Main heat exchanger 36 supplied, cooled there to about dew point temperature and introduced via line 41 into the high pressure column 37. Raw liquid oxygen 42 and liquid nitrogen 43 from the high pressure column 37 or the The main condenser 39 is throttled into the low-pressure column 38 (44, 45). about the product lines become oxygen 46, nitrogen-rich residual gas 47 and nitrogen 48 passed to the main heat exchanger 36 and finally under about Ambient temperature and atmospheric pressure from the air separation plant deducted (53, 49, 50). If you didn't want to produce a liquid product, all three would Streams are subtracted as gaseous products GOX, UN2 and GAN.

Im ersten Betriebsfall der Flüssigproduktion wird mindestens ein Teil des in der Luftzerlegungsanlage abgetrennten gasförmigen Stickstoffs 50 über Ventil 51 zur Leitung 1 geführt und strömt damit in den Verflüssigungskreislauf. Das Ventil 52 ist geschlossen. In Leitung 33 wird flüssiger Stickstoff als Endprodukt erzeugt.In the first case of liquid production, at least a part of the in the Air separation plant separated gaseous nitrogen 50 via valve 51 for Line 1 led and thus flows into the liquefaction circuit. The valve 52 is closed. In line 33, liquid nitrogen is produced as the end product.

Beim Umschalten in den zweiten Betriebszustand wird das Ventil 51 geschlossen, sodass das gesamte Stickstoff-Produkt der Luftzerlegungsanlage gasförmig abgezogen wird (GAN). Gleichzeitig wird das Ventil 52 geöffnet und mindestens ein Teil des gasförmigen Sauerstoffs aus Leitung 53 über Leitung 1 in den Verflüssigungskreislauf geführt. Dieser Sauerstoff dient zunächst als Spülfraktion. Die während der Spülung in Leitung 33 anfallende unreine Flüssigkeit (Sauerstoff-Stickstoff-Gemisch) wird wie oben beschrieben in einem (nicht dargestellten) Speicherbehälter aufgefangen. Sobald in der Produktleitung 33 die gewünschte Sauerstoff-Reinheit erreicht ist, wird von der Spülung auf den zweiten Betriebszustand umgeschaltet, indem die Produktflüssigkeit 33 nicht mehr in den Speicherbehälter für Spülflüssigkeit, sondern zu einem Flüssigsauerstoff-Verbraucher oder -Speicher geleitet wird.When switching over to the second operating state, valve 51 is closed, so that the entire nitrogen product of the air separation plant is gaseous is subtracted (GAN). At the same time the valve 52 is opened and at least one Part of the gaseous oxygen from line 53 via line 1 in the Condensing circuit. This oxygen initially serves as a flushing fraction. The impure liquid (oxygen-nitrogen mixture) accumulating in line 33 during the flushing is as described above in a (not shown) Storage tank caught. As soon as the desired in the product line 33 Oxygen purity is reached, from flushing to the second operating condition switched by the product liquid 33 no longer in the storage container for Flushing liquid, but to a liquid oxygen consumer or storage is directed.

Die Spülflüssigkeit kann nach und nach an geeigneter Stelle in die Hochdrucksäule 37 und/oder die Niederdrucksäule 38 eingespeist werden. The rinsing liquid can gradually flow into the high-pressure column 37 at a suitable point and / or the low pressure column 38 can be fed.

Figur 2 stimmt in weiten Teilen mit Figur 1 überein. Im Folgenden werden nur die unterschiedlichen Merkmale näher erläutert. Figure 2 largely corresponds to Figure 1. Only the different features are explained in more detail below.

Bei dem Verfahren von Figur 2 wird im zweiten Betriebszustand ein Argon-Sauerstoff-Gemisch (beispielsweise etwa 98 mol% Argon und etwa 2 mol% Sauerstoff enthaltendes Rohargon) als Kreislaufmedium zur Verflüssigung von Sauerstoff eingesetzt. Der Kreislauf-Wärmetauscher weist hier zwei Blöcke 13, 213 auf, wobei der Block 213 als Kondensator-Verdampfer ausgebildet ist.In the method of FIG. 2, an argon-oxygen mixture is used in the second operating state (e.g. about 98 mol% argon and about 2 mol% oxygen containing raw argon) as a circulating medium for the liquefaction of oxygen used. The circuit heat exchanger here has two blocks 13, 213, the Block 213 is designed as a condenser-evaporator.

Beim Umschalten vom ersten in den zweiten Betriebszustand wird das Ventil 51 geschlossen, sodass das gesamte Stickstoff-Produkt der Luftzerlegungsanlage gasförmig abgezogen wird (GAN). Gleichzeitig wird das Ventil 258 geöffnet und Rohargon strömt über Leitung 259 in den Kältekreislauf. Das Rohargon 259 dient zunächst als Spülfraktion. Die während der Spülung in Leitung 33 anfallende unreine Flüssigkeit (Argon-Sauerstoff-Stickstoff-Gemisch) wird wie in Figur 1 in einem (nicht dargestellten) Speicherbehälter aufgefangen. Sobald in der Spülleitung 33 der gewünschte Argon-Sauerstoff-Gehalt erreicht ist, wird von der Spülung auf den alternativen zweiten Betriebszustand umgeschaltet, indem Ventil 254 geschlossen und die Ventile 255 und 252 geöffnet werden. Danach strömt gasförmiger kalter Sauerstoff 201 in den Kondensator-Verdampfer 213, wird dort verflüssigt, über Leitung 233 als flüssiges Sauerstoffprodukt abgezogen und zu einem Flüssigsauerstoff-Verbraucher oder -Speicher geleitet (nicht dargestellt). Gegen den kondensierenden Sauerstoff wird flüssiges Kreislaufmedium 256 in den Kondensator-Verdampfer 213 geführt, verdampft dort und strömt schließlich über die Leitungen 257, 34, 35 und 2 zurück zum Feedgas-Verdichter 3.When switching from the first to the second operating state, the valve 51 closed so that the entire nitrogen product of the air separation plant is withdrawn in gaseous form (GAN). At the same time, valve 258 is opened and Raw argon flows into the refrigeration circuit via line 259. The raw argon 259 serves initially as a rinse fraction. The impure during line 33 flushing Liquid (argon-oxygen-nitrogen mixture) is as in Figure 1 in a (not illustrated) storage container collected. As soon as in the flushing line 33 Desired argon-oxygen content is reached by flushing to alternate second operating state switched by closing valve 254 and valves 255 and 252 are opened. Then gaseous cold oxygen flows 201 in the condenser-evaporator 213, is liquefied there via line 233 as withdrawn liquid oxygen product and to a liquid oxygen consumer or memory directed (not shown). Against the condensing oxygen liquid circulating medium 256 led into the condenser-evaporator 213, evaporated there and finally flows back via lines 257, 34, 35 and 2 to the feed gas compressor Third

Die Anlage von Figur 2 kann zusätzlich das Ventil 52 und die entsprechende Leitung aus Figur 1 aufweisen, über die Sauerstoff in den Kreislauf eingeführt werden kann. In diesem Fall ist es möglich, die Anlage im zweiten Betriebszustand alternativ mit Sauerstoff (wie zu Figur 1 beschrieben) oder einem anderen Medium (zum Beispiel Rohargon wie oben bei Figur 2 beschrieben) als Kreislaufmedium zu fahren.The system of Figure 2 can additionally the valve 52 and the corresponding line from Figure 1, via which oxygen can be introduced into the circuit. In In this case, it is possible to use the system alternatively in the second operating state Oxygen (as described for Figure 1) or another medium (for example Crude argon as described above in Figure 2) to drive as a circulating medium.

Claims (11)

Verfahren zur Erzeugung von flüssigem Sauerstoff und/oder flüssigem Stickstoff, bei dem zu verflüssigendes Gas (1,, 201) in einem Kreislauf-Wärmetauscher (13) durch indirekten Wärmeaustausch mit einem Kreislaufmedium (15, 27, 34, 256) verflüssigt wird, wobei das Kreislaufmedium in einem Kältekreislauf verdichtet (9), abgekühlt (13), arbeitsleistend entspannt (14, 24) und/oder verflüssigt, in dem Kreislauf-Wärmetauscher (13, 213) angewärmt und/oder verdampft und wieder der Verdichtung (3, 9) zugeführt (6, 7, 15, 25, 27, 34, 35, 257) wird und das Kreislaufmedium in einem ersten Betriebszustand durch ein erstes Fluid gebildet wird, dadurch gekennzeichnet, dass das Kreislaufmedium in einem zweiten Betriebszustand durch ein zweites Fluid gebildet wird, das sich in seinen thermodynamischen Eigenschaften von dem ersten Fluid unterscheidet.Method for the production of liquid oxygen and / or liquid nitrogen, in which the gas to be liquefied (1, 201) is liquefied in a circuit heat exchanger (13) by indirect heat exchange with a circuit medium (15, 27, 34, 256), whereby the circulating medium compresses (9), cools (13), relaxes work (14, 24) and / or liquefies in a refrigeration circuit, warms and / or evaporates in the circuit heat exchanger (13, 213) and again compresses (3, 9 ) is supplied (6, 7, 15, 25, 27, 34, 35, 257) and the circulating medium is formed by a first fluid in a first operating state, characterized in that the circulating medium is formed by a second fluid in a second operating state which differs from the first fluid in its thermodynamic properties. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das zu verflüssigende Gas in dem ersten Betriebszustand durch Stickstoff gebildet wird.A method according to claim 1, characterized in that the gas to be liquefied is formed by nitrogen in the first operating state. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kreislaufmedium in dem zweiten Betriebszustand durch Sauerstoff, Argon oder ein mindestens 80 mol% Argon enthaltendes Gemisch gebildet wird.A method according to claim 1 or 2, characterized in that the circulating medium in the second operating state is formed by oxygen, argon or a mixture containing at least 80 mol% argon. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das zu verflüssigende Gas (1, 201) aus einer Luftzerlegungsanlage, insbesondere einer Tieftemperatur-Luftzerlegungsanlage (36, 37, 38, 39), entnommen (46, 48, 50, 51, 52, 53) wird.Method according to one of Claims 1 to 3, characterized in that the gas (1, 201) to be liquefied is removed (46, 48, 50, 51) from an air separation plant, in particular a low-temperature air separation plant (36, 37, 38, 39) , 52, 53). Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass beim Umschalten vom ersten in den zweiten Betriebszustand und/oder beim Umschalten vom zweiten in den ersten Betriebszustand eine Spülfraktion durch den Kreislauf-Wärmetauscher geleitet wird.Method according to one of claims 1 to 4, characterized in that when switching from the first to the second operating state and / or when switching from the second to the first operating state, a rinsing fraction is passed through the circuit heat exchanger. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Spülfraktion stromabwärts des Kreislauf-Wärmetauschers (13) in einen Speicherbehälter eingeleitet wird. A method according to claim 5, characterized in that the rinsing fraction is introduced downstream of the circuit heat exchanger (13) into a storage tank. Verfahren nach Anspruch 4 und 6, dadurch gekennzeichnet, dass nach dem Umschalten mindestens ein Teil der Spülfraktion aus dem Speicherbehälter in die Luftzerlegungsanlage (36, 37, 38, 39) eingeleitet wird.Method according to claims 4 and 6, characterized in that after the switchover, at least part of the rinsing fraction from the storage tank is introduced into the air separation plant (36, 37, 38, 39). Vorrichtung zur Erzeugung von flüssigem Sauerstoff und/oder flüssigem Stickstoff, mit einem ersten Einlass (53, 201) für Sauerstoffgas und mit einem zweiten Einlass (50) für Stickstoffgas, mit einem Kältekreislauf, der einen Kreislauf-Verdichter (9) zur Verdichtung eines Kreislaufmediums, eine Entspannungsmaschine (14, 24) zur arbeitsleistenden Entspannung und einen Kreislauf-Wärmetauscher (13, 213) zur Anwärmung und/oder Verdampfung von entspanntem und/oder verflüssigtem Kreislaufmedium gegen zu verflüssigendes Gas aufweist, wobei der Kreislauf-Wärmetauscher (13, 213) umschaltbar (51, 52) mit dem ersten und dem zweiten Einlass für zu verflüssigendes Gas verbunden (1, 2, 5, 8, 11, 16, 23) ist.Device for producing liquid oxygen and / or liquid nitrogen, with a first inlet (53, 201) for oxygen gas and with a second inlet (50) for nitrogen gas, with a refrigeration circuit, the circuit compressor (9) for compressing a circulating medium, a relaxation machine (14, 24) for work-related relaxation and a circuit heat exchanger (13, 213) Heating and / or evaporation of relaxed and / or liquefied Has circulating medium against gas to be liquefied, the circulating heat exchanger (13, 213) switchable (51, 52) with the first and the second Inlet for gas to be liquefied is connected (1, 2, 5, 8, 11, 16, 23). Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der erste Einlass und/oder der zweite Einlass mit einer Produktleitung (46, 47, 48) einer Luftzerlegungsanlage, insbesondere einer Tieftemperatur-Luftzerlegungsanlage (36, 37, 38, 39), verbunden ist.Device according to claim 8, characterized in that the first inlet and / or the second inlet is connected to a product line (46, 47, 48) of an air separation plant, in particular a low-temperature air separation plant (36, 37, 38, 39). Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Kreislauf-Wärmetauscher (13) mit einem Speicherbehälter für eine Spülfraktion verbindbar ist.Apparatus according to claim 8 or 9, characterized in that the circuit heat exchanger (13) can be connected to a storage tank for a rinsing fraction. Vorrichtung nach Anspruch 9 und 10, dadurch gekennzeichnet, dass der Speicherbehälter mit der Luftzerlegungsanlage (36, 37, 38, 39) verbindbar ist.Apparatus according to claims 9 and 10, characterized in that the storage container can be connected to the air separation plant (36, 37, 38, 39).
EP02019784A 2001-09-28 2002-09-04 Process and apparatus producing liquid oxygen and liquid nitrogen Withdrawn EP1298399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10148166 2001-09-28
DE10148166A DE10148166A1 (en) 2001-09-28 2001-09-28 Method and device for producing liquid oxygen and liquid nitrogen

Publications (1)

Publication Number Publication Date
EP1298399A1 true EP1298399A1 (en) 2003-04-02

Family

ID=7700817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02019784A Withdrawn EP1298399A1 (en) 2001-09-28 2002-09-04 Process and apparatus producing liquid oxygen and liquid nitrogen

Country Status (2)

Country Link
EP (1) EP1298399A1 (en)
DE (1) DE10148166A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3625509A4 (en) * 2017-05-16 2021-02-10 Ebert, Terrence, J. Apparatus and process for liquefying gases
CN114674112A (en) * 2022-04-07 2022-06-28 安阳钢铁股份有限公司 Automatic oxygen-nitrogen conversion method for liquefaction device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285028A (en) * 1964-01-06 1966-11-15 Air Prod & Chem Refrigeration method
EP0580348A1 (en) * 1992-07-20 1994-01-26 Air Products And Chemicals, Inc. Hybrid air and nitrogen recycle liquefier
US5337571A (en) * 1991-09-18 1994-08-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen gas under high pressure by air distillation
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions
US6220053B1 (en) * 2000-01-10 2001-04-24 Praxair Technology, Inc. Cryogenic industrial gas liquefaction system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3285028A (en) * 1964-01-06 1966-11-15 Air Prod & Chem Refrigeration method
US5337571A (en) * 1991-09-18 1994-08-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen gas under high pressure by air distillation
EP0580348A1 (en) * 1992-07-20 1994-01-26 Air Products And Chemicals, Inc. Hybrid air and nitrogen recycle liquefier
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions
US6220053B1 (en) * 2000-01-10 2001-04-24 Praxair Technology, Inc. Cryogenic industrial gas liquefaction system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3625509A4 (en) * 2017-05-16 2021-02-10 Ebert, Terrence, J. Apparatus and process for liquefying gases
US11204196B2 (en) 2017-05-16 2021-12-21 Terrence J. Ebert Apparatus and process for liquefying gases
CN114674112A (en) * 2022-04-07 2022-06-28 安阳钢铁股份有限公司 Automatic oxygen-nitrogen conversion method for liquefaction device

Also Published As

Publication number Publication date
DE10148166A1 (en) 2003-04-17

Similar Documents

Publication Publication Date Title
EP1067345B1 (en) Process and device for cryogenic air separation
WO2007104449A1 (en) Method and apparatus for fractionating air at low temperatures
EP0093448A2 (en) Process and apparatus for obtaining gaseous oxygen at elevated pressure
DE10153252A1 (en) Process for recovering krypton and/or xenon by low temperature decomposition of air, comprises passing compressed purified process air to a rectifier system, removing a fraction containing krypton and xenon, and further processing
EP2963370B1 (en) Method and device for the cryogenic decomposition of air
EP1074805B1 (en) Process for producing oxygen under pressure and device therefor
DE19732887A1 (en) Air separation process
EP0669509A1 (en) Process and apparatus for obtaining pure argon
DE10332863A1 (en) Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
EP2963369B1 (en) Method and device for the cryogenic decomposition of air
EP0363861B1 (en) Process for obtaining impure argon
DE19951521A1 (en) Recovering pressurized product by low temperature decomposition of air in rectification system comprises cold compressing heat carrier stream before introducing into mixing column
EP1227288A1 (en) System with three columns for cryogenic separation of air
DE102006021620B4 (en) Pretreatment of a liquefied natural gas stream
EP2312247A1 (en) Method and device for generating liquid nitrogen from low temperature air separation
EP1298399A1 (en) Process and apparatus producing liquid oxygen and liquid nitrogen
EP1300640A1 (en) Process and device for producing ultra-high purity Nitrogen by cryogenic separation of air
DE10153919A1 (en) Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises cooling the heat exchange fluid downstream of the high pressure column sump vaporizer and upstream of a pressure relieving device
EP1189001B1 (en) Process and apparatus for the production of high purity nitrogen through cryogenic air separation
EP1134524B1 (en) Process for producing gaseous nitrogen
DE10332862A1 (en) Cryogenic assembly to extract krypton and/or xenon gas from air has intermediate pipe on the methane removal column alongside a base panel above the sump
DE10045121A1 (en) Method and device for obtaining a gaseous product by low-temperature separation of air
DE10015605A1 (en) Process and assembly for the production of xenon by cryogenic fractionated distillation of oxygen and xenon
EP1001236A2 (en) Process for producing ultra pure nitrogen
DE10058332A1 (en) Method and device for generating oxygen and nitrogen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030923

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050304