EP1298303B1 - Verfahren und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine - Google Patents

Verfahren und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine Download PDF

Info

Publication number
EP1298303B1
EP1298303B1 EP20020018418 EP02018418A EP1298303B1 EP 1298303 B1 EP1298303 B1 EP 1298303B1 EP 20020018418 EP20020018418 EP 20020018418 EP 02018418 A EP02018418 A EP 02018418A EP 1298303 B1 EP1298303 B1 EP 1298303B1
Authority
EP
European Patent Office
Prior art keywords
fuel
internal combustion
combustion engine
pressure
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20020018418
Other languages
English (en)
French (fr)
Other versions
EP1298303A2 (de
EP1298303A3 (de
Inventor
Andreas Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1298303A2 publication Critical patent/EP1298303A2/de
Publication of EP1298303A3 publication Critical patent/EP1298303A3/de
Application granted granted Critical
Publication of EP1298303B1 publication Critical patent/EP1298303B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Definitions

  • the invention initially relates to a method for operating an internal combustion engine, in which fuel is conveyed by means of at least one fuel pump into a fuel manifold, from which it passes via at least one fuel injection device directly into at least one combustion chamber of the internal combustion engine.
  • Such a method is known from EP 1 132 613 A2. It is called gasoline direct injection. With him, the fuel from a fuel tank from a first fuel pump (prefeed pump) to a second fuel pump (high-pressure pump) promoted. This promotes the fuel in a fuel rail ("Rail”), in which the fuel is stored under high pressure. To the fuel manifold, a plurality of fuel injection valves are connected, which inject the fuel directly into the corresponding combustion chambers of the internal combustion engine.
  • shift operation By the direct injection of the fuel into the combustion chambers of the fuel in the combustion chamber can be stratified (“shift operation”): This means that only in the area of the spark plug an ignitable fuel-air mixture is present, whereas in the remaining combustion chamber only a very lean fuel-air mixture or at all no fuel is available. This can reduce fuel consumption. But it is also possible to inject the fuel into the combustion chambers so that a homogeneous air-fuel mixture is present in the combustion chamber. Such an operating mode is called “homogeneous operation”. It is chosen especially at high load and high speeds.
  • a problem with internal combustion engines with gasoline direct injection is the start of the internal combustion engine: Since the high-pressure pump is usually mechanically driven by the internal combustion engine and thus stands with the internal combustion engine itself, the pressure in the fuel rail of the internal combustion engine at the start usually only from the electrically driven feed pump generated. This pressure is generally only 3-6 bar. At such a low pressure, however, the atomization of the fuel by the fuel injection device is relatively poor. To compensate for this, a certain amount of fuel is additionally injected at the start of the internal combustion engine in order to obtain an ignitable mixture in the combustion chamber of the internal combustion engine. However, this additional fuel mass leads to an additional fuel consumption and deteriorates the emission characteristics of the internal combustion engine.
  • DE 195 47 644 A1 discloses a method for controlling the fuel metering in an internal combustion engine, in which the amount of fuel to be injected depends on a fuel pressure.
  • the present invention has the object, a method of the type mentioned in such a way that at the start of the engine less fuel is consumed and the emission characteristics of the engine are better.
  • the method according to the invention leads to a particularly high fuel economy when the internal combustion engine is to be started in stratified operation.
  • the injection takes place at least during the compression stroke.
  • the fuel mass to be injected at the start is made at least indirectly dependent on the current pressure in the fuel rail.
  • the pressure in the fuel collecting line is higher than the fuel pressure that can be generated by the prefeed pump.
  • Such a situation may be present, for example, when the internal combustion engine is restarted after a brief switch-off, when the time between switching off the engine and restarting is so short that the pressure in the fuel rail has not yet completely fallen. It is also possible, however, that builds up during the starting process, a pressure in the fuel rail, which is higher than the producible by the feed pump pressure.
  • the fuel is atomized better by the fuel injector than in those situations where only the pressure that can be generated by the prefeed pump is present in the fuel rail. This means that the fuel is more ready to ignite and thus the fuel mass can be reduced. This is taken into account by the method according to the invention.
  • the fuel mass injected during the injection of the fuel injection device into the combustion chamber at the start of the internal combustion engine is formed by determining a standard fuel mass which at startup is at a certain pressure in the fuel rail is to be injected into the combustion chamber, and this standard fuel mass is multiplied by a weighting factor which, when the pressure in the fuel rail is equal to the predetermined pressure, has the value 1 and a deviation of the pressure from the determined pressure Value does not equal 1.
  • the standard fuel mass is by no means a constant, but a fuel mass, which may depend on other parameters, such as the temperature of the internal combustion engine, for example.
  • this pressure is preferably the pressure that can be generated by the prefeed pump - then the weighting factor increases with increasing pressure in the fuel rail a value less than 1.
  • the fuel mass to be injected into the combustion chamber when the fuel injection device is started is formed by determining a standard fuel mass which at startup is determined at a specific pressure difference between combustion chamber and fuel Intake manifold is injected into the combustion chamber, and this standard fuel mass is multiplied by a weighting factor, which, when the pressure difference between the combustion chamber and fuel rail is equal to the determined pressure difference, the value 1, and at a deviation of the pressure difference of the particular pressure difference assumes a value not equal to 1.
  • the weighting factor is determined by means of a characteristic curve which is addressed by the pressure in the fuel rail or the pressure difference between combustion chamber and fuel rail. Such a characteristic is easy to program and enables the determination of the weighting factor with high accuracy.
  • the opening duration of the fuel injection device in an injection at the start of the internal combustion engine depends on the fuel mass to be injected during an injection into the combustion chamber and on the pressure difference between the combustion chamber and the fuel manifold.
  • the fuel mass to be injected at the start of the internal combustion engine with particularly high Accuracy be injected according to the present at the start time operating conditions of the internal combustion engine.
  • a pressure of at least 20 bar, in particular at least about 50 bar prevails, fuel is injected from the fuel injection device into the combustion chamber of the internal combustion engine.
  • the pressure build-up in the fuel rail is accelerated during the starting process of the internal combustion engine, since initially only fuel is conveyed into the fuel rail, but no fuel is discharged from the fuel rail.
  • the fuel consumption of the internal combustion engine is further reduced and the emission behavior during the start of the internal combustion engine is further improved.
  • an “emergency circuit” can be ensured that, if the desired pressure can not be achieved even after a certain time, an injection at low pressure and correspondingly increased amount of fuel.
  • At least one fuel pump is at least indirectly electrically driven at least for starting the internal combustion engine. If the pressure in the fuel rail is generated exclusively by an electrically driven fuel pump or by a plurality of electrically driven fuel pumps, can already during the starting process of the internal combustion engine to generate a sufficiently high pressure for the atomization pressure in a simple manner.
  • At least one fuel pump is mechanically driven by the internal combustion engine and when starting the internal combustion engine, an electric starter is actuated.
  • the electric starter thus acts indirectly as the electric drive of the fuel pump.
  • the starter when starting the engine first, the starter must be pressed for a certain time to build up the pressure in the fuel rail. Only when the pressure has reached a certain level, an injection of the fuel through the fuel injectors and its ignition takes place in the combustion chamber.
  • This method can also be implemented in some known internal combustion engines without additional components. The advantages of the invention can thus be achieved without additional costs.
  • the invention also relates to a computer program, a storage medium, and a control or regulating device for operating an internal combustion engine.
  • an internal combustion engine carries the overall reference numeral 10. It comprises a fuel tank 12, from which an electrically driven prefeed pump 14 conveys the fuel into a low-pressure fuel line 16.
  • the low-pressure fuel line 16 leads to a high-pressure fuel pump 18 which is mechanically driven by a camshaft (not shown) of the internal combustion engine. This delivers the fuel into a fuel manifold 20, in which the fuel is stored under high pressure during normal operation.
  • a plurality of fuel injectors 22 are connected to the fuel manifold 20 . These are injectors, which are attached directly to the engine block of the internal combustion engine 10. They inject the fuel directly into combustion chambers 24.
  • the internal combustion engine 10 is started by the actuation of an electric starter 26, which is mechanically connected to a crankshaft 28 of the internal combustion engine 10.
  • the amount of fuel delivered from the high-pressure fuel pump 18 into the fuel rail 20 is adjusted by a quantity control valve 30. This may temporarily connect a working space (not shown) of the high pressure fuel pump 18 with the low pressure fuel line 16 during a delivery stroke.
  • the pressure in the fuel rail 20 is detected by a pressure sensor 32. In normal operation, the pressure in the fuel rail 20 via the pressure sensor 32 and the quantity control valve 30 in the sense of a closed controlled system is kept at a certain value. For this the quantity control valve 30 and the pressure sensor 32 are connected to a control and regulating device 34.
  • the speed of the crankshaft 28 is tapped by a speed sensor 36, which also provides corresponding signals to the control and regulation unit 34.
  • a temperature sensor 38 which picks up the temperature of the internal combustion engine 10, is connected to the control and regulating device 34.
  • the control and regulating unit 34 also receives signals from a starter switch 40. Upon actuation of the starter switch 40, the electric starter 26 is controlled accordingly by the control and regulating unit 34 in order to start the internal combustion engine 10.
  • the fuel injectors 22 are controlled by the control and regulating device 34. (In FIG. 1, for reasons of clarity, only the connection of a fuel injection 22 with the control and regulating device 34 is shown).
  • a start block 42 is in a block 44 queried whether the starter switch 40 has been pressed. If the answer in block 44 is yes, in block 46, the starter 26 is controlled by the control unit 34 so that it rotates the crankshaft 28. Due to the rotation of the crankshaft 28 and the camshaft of the internal combustion engine 10 is rotated, to which in turn the high-pressure fuel pump 18 is connected. By actuating the electric starter 46, the high-pressure fuel pump 18 is thus indirectly also in rotation added.
  • the electric fuel pump 14 is turned on. Due to the operation of the electric fuel pump 14 and the high pressure fuel pump 18, a certain fuel pressure builds up in the fuel rail 20. This is further accelerated by the fact that initially no fuel is injected into the combustion chambers 24 of the fuel injectors 22. In a block 48, it is checked whether the pressure in the fuel rail 20 has reached or exceeded a pressure of 50 bar. The corresponding signals are received by the control and regulating device 34 from the pressure sensor 32.
  • the fuel injectors 22 are energized to inject fuel into the combustion chambers 24.
  • the ignition (not shown in Figure 1) is now turned on.
  • the actual start of the internal combustion engine 10 thus takes place at a fuel pressure in the fuel collecting line 20 of at least 50 bar. During the starting process, the pressure in the fuel collecting line 20 continues to increase due to the now faster rotating crankshaft 28.
  • block 52 it is checked whether the starting process of the internal combustion engine 10 can be completed.
  • the corresponding signals are provided by the speed sensor 36 to the control and regulation unit 34.
  • a criterion for the end of the starting process for example, be that the speed of the internal combustion engine 10 reaches or exceeds a certain value. After starting the engine we are turned off in block 54 of the starter. The method ends in end block 56.
  • the injection time of the fuel injection devices 22 must be established.
  • the injection time is understood to be the period during which the fuel injectors 22 are opened during the injection stroke of the respective combustion chamber 24.
  • a standard fuel mass mns for the starting process is calculated.
  • This fuel mass mns is, for example, dependent on the temperature tmot of the internal combustion engine 10, which is provided by the temperature sensor 38. In the case of a cold internal combustion engine 10, more fuel has to be injected in total than in the case of a warm internal combustion engine.
  • the "standard fuel mass” is that fuel mass that would have to be injected at a certain minimum fuel pressure (3 to 6 bar).
  • the fuel pressure in the fuel rail 20 is not constant during the starting process of the internal combustion engine 10. However, since at high pressure in the fuel rail 20, the fuel from the fuel injections 22 in the corresponding combustion chamber 24 is better atomized, so that less fuel can be injected for a successful ignition of the fuel is in the block 60 by means of a characteristic curve a weighting factor wf from the detected pressure from the pressure sensor 32 pr in the fuel rail 20 is formed.
  • the characteristic curve is designed such that when the pressure pr in the fuel rail 20 approximately corresponds to the pressure that can be generated by the electric fuel pump 14 (approximately 3-6 bar), the weighting factor wf has the value 1. At a pressure pr in the fuel rail 20 which is higher than this minimum pressure, the weighting factor wf becomes smaller than 1. The weighting factor wf is multiplied in 62 by the standard fuel mass mns calculated in the block 58.
  • a block 64 the position of the ZOT of the piston (not shown) of the corresponding combustion chamber 24 is determined from the signal of the rotational speed sensor 36.
  • ZOT means an angular position before top dead center ignition.
  • the piston position of a combustion chamber 24 can be detected by the rotational speed sensor 36, since it is designed such that it can also detect the angular position of the crankshaft 28. From the position of the piston of a combustion chamber 24, the current pressure pb prevailing in the combustion chamber 24 can then likewise be determined in the block 64.
  • This pressure difference dprpb like the fuel mass ms determined in FIG. 62 and possibly reduced by the weighting factor wf, is supplied to a block 68 in which, for example by a characteristic map, the injection time ti of the fuel injection device 22 of the corresponding combustion chamber 24 is determined.
  • injection time ti be determined according to the method shown in Figure 4.
  • those blocks which have equivalent functions to the blocks of Figure 3 bear the same reference numerals. They are not explained again in detail.
  • the method illustrated in FIG. 4 is preferably used when the internal combustion engine 10 is to be started in "shift operation". In this case, better results are achieved if the pressure factor in the fuel rail 20, but the pressure difference dprpb, which is determined in 66, is used as the input value for determining the weighting factor wf in block 60.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft zunächst ein Verfahren zum Betreiben einer Brennkraftmaschine, bei dem Kraftstoff mittels mindestens einer Kraftstoffpumpe in eine Kraftstoff-Sammelleitung gefördert wird, aus der er über mindestens eine Kraftstoff-Einspritzvorrichtung direkt in mindestens einen Brennraum der Brennkraftmaschine gelangt.
  • Ein solches Verfahren ist aus der EP 1 132 613 A2 bekannt. Es wird als Benzin-Direkteinspritzung bezeichnet. Bei ihm wird der Kraftstoff aus einem Kraftstoffbehälter von einer ersten Kraftstoffpumpe (Vorförderpumpe) zu einer zweiten Kraftstoffpumpe (Hochdruckpumpe) gefördert. Diese fördert den Kraftstoff in eine Kraftstoff-Sammelleitung ("Rail"), in der der Kraftstoff unter hohem Druck gespeichert ist. An die Kraftstoff-Sammelleitung sind mehrere Kraftstoff-Einspritzventile angeschlossen, die den Kraftstoff direkt in die entsprechenden Brennräume der Brennkraftmaschine einspritzen.
  • Durch die direkte Einspritzung des Kraftstoffs in die Brennräume kann der Kraftstoff im Brennraum geschichtet werden ("Schichtbetrieb"): Dies bedeutet, dass nur im Bereich der Zündkerze ein zündfähiges Kraftstoff-Luftgemisch vorhanden ist, wohingegen im übrigen Brennraum nur ein sehr mageres Kraftstoff-Luftgemisch oder überhaupt kein Kraftstoff vorhanden ist. Hierdurch kann der Kraftstoffverbrauch gesenkt werden. Möglich ist aber auch, den Kraftstoff so in die Brennräume einzuspritzen, dass ein homogenes Luft-Kraftstoffgemsich im Brennraum vorliegt. Eine solche Betriebsart nennt man "Homogenbetrieb". Sie wird vor allem bei hoher Last und hohen Drehzahlen gewählt. Ein Problem bei Brennkraftmaschinen mit Benzin-Direkteinspritzung ist der Start der Brennkraftmaschine: Da die Hochdruckpumpe üblicherweise mechanisch von der Brennkraftmaschine angetrieben wird und somit bei stehender Brennkraftmaschine selbst steht, wird der Druck in der Kraftstoff-Sammelleitung der Brennkraftmaschine bei deren Start bisher üblicherweise nur von der elektrisch angetriebenen Vorförderpumpe erzeugt. Dieser Druck liegt im Allgemeinen nur bei 3-6 bar. Bei einem derartig geringen Druck ist jedoch die Zerstäubung des Kraftstoffs durch die Kraftstoff-Einspritzvorrichtung relativ schlecht. Um dies zu kompensieren, wird bisher eine gewisse Menge an Kraftstoff beim Start der Brennkraftmaschine zusätzlich eingespritzt, um ein zündfähiges Gemisch im Brennraum der Brennkraftmaschine zu erhalten. Diese zusätzliche Kraftstoffmasse führt jedoch zu einem Kraftstoff-Mehrverbrauch und verschlechtert die Emissionseigenschaften der Brennkraftmaschine.
  • Die DE 195 47 644 A1 offenbart ein Verfahren zur Steuerung der Kraftstoffzumessung in einer Brennkraftmaschine, bei dem die einzuspritzende Kraftstoffmenge von einem Kraftstoffdruck abhängt.
  • Die vorliegende Erfindung hat die Aufgabe, ein Verfahren der eingangs genannten Art so weiterzubilden, dass beim Start der Brennkraftmaschine weniger Kraftstoff verbraucht wird und die Emissionseigenschaften der Kraftmaschine besser werden.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Weitere Lösungen sind in den neben- und untergeordneten Patenansprüchen angegeben.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Verfahren führt vor allem dann zu einer besonders hohen Kraftstoffeinsparung, wenn die Brennkraftmaschine im Schichtbetrieb gestartet werden soll. In einem solchen Schichtbetrieb erfolgt die Einspritzung zumindest auch während des Verdichtungstaktes.
  • Dabei wird bei dem erfindungsgemäßen Verfahren die beim Start einzuspritzende Kraftstoffmasse zumindest indirekt vom aktuellen Druck in der Kraftstoff-Sammelleitung abhängig gemacht. Hierdurch kann berücksichtigt werden, dass in manchen Startsituationen der Druck in der Krafstoff-Sammelleitung höher ist als der von der Vorförderpumpe erzeugbare Kraftstoffdruck. Eine solche Situation kann zum Beispiel bei einem Wiederanlassen der Brennkraftmaschine nach einem kurzzeitigen Ausschalten vorliegen, wenn die Zeit zwischen dem Ausschalten der Brennkraftmaschine und dem Wiederanlassen so kurz ist, dass der Druck in der Kraftstoff-Sammelleitung noch nicht vollständig abgesunken ist. Möglich ist aber auch, dass sich während des Anlassvorgangs ein Druck in der Kraftstoff-Sammelleitung aufbaut, welcher höher liegt als der von der Vorförderpumpe erzeugbare Druck.
  • In all diesen Situationen wird der Kraftstoff von der Kraftstoff-Einspritzvorrichtung besser zerstäubt als in jenen Situationen, in denen nur der von der Vorförderpumpe erzeugbare Druck in der Kraftstoff-Sammelleitung vorliegt. Dies bedeutet, dass der Kraftstoff zündwilliger ist und somit die Kraftstoffmasse verringert werden kann. Dem wird durch das erfindungsgemäße Verfahren Rechnung getragen.
  • Somit wird es durch das erfindungsgemäße Verfahren ermöglicht, in vielen Situationen beim Starten der Brennkraftmaschine den Kraftstoffverbrauch zu senken und das Emissionsverhalten zu verbessern.
  • Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
  • In einer ersten Weiterbildung wird vorgeschlagen, dass die beim Start der Brennkraftmaschine bei einer Einspritzung von der Kraftstoff-Einspritzvorrichtung in den Brennraum einzuspritzende Kraftstoffmasse dadurch gebildet wird, dass eine Norm-Kraftstoffmasse bestimmt wird, die beim Start bei einem bestimmten Druck in der Kraftstoff-Sammelleitung in den Brennraum einzuspritzen ist, und diese Norm-Kraftstoffmasse mit einem Wichtungsfaktor multipliziert wird, der dann, wenn der Druck in der Kraftstoff-Sammelleitung gleich dem bestimmten Druck ist, den Wert 1 hat, und bei einer Abweichung des Drucks von dem bestimmten Druck einen Wert ungleich 1 annimmt.
  • Dieses erfindungsgemäße Verfahren ist softwaretechnisch leicht zu realisieren. Dabei sei darauf hingewiesen, dass es sich bei der Norm-Kraftstoffmasse keineswegs um eine Konstante handelt, sondern um eine Kraftstoffmasse, welche beispielsweise von anderen Parametern, wie der Temperatur der Brennkraftmaschine, abhängen kann. Wenn die Norm-Kraftstoffmasse beispielsweise auf den minimalen Druck in der Kraftstoff-Sammelleitung bezogen ist - bei diesem Druck handelt es sich vorzugsweise um den von der Vorförderpumpe erzeugbaren Druck - dann nimmt der Wichtungsfaktor bei größer werdendem Druck in der Kraftstoff-Sammelleitung einen Wert kleiner 1 an.
  • Dabei wird analog zu dem oben Gesagten vorgeschlagen, dass die beim Start der Brennkraftmaschine bei einer Einspritzung der Kraftstoff-Einspritzvorrichtung in den Brennraum einzuspritzende Kraftstoffmasse dadurch gebildet wird, dass eine Norm-Kraftstoffmasse bestimmt wird, die beim Start bei einer bestimmten Druckdifferenz zwischen Brennraum und Kraftstoff-Sammelleitung in den Brennraum einzuspritzen ist, und diese Norm-Kraftstoffmasse mit einem Wichtungsfaktor multipliziert wird, der dann, wenn die Druckdifferenz zwischen Brennraum und Kraftstoff-Sammelleitung gleich der bestimmten Druckdifferenz ist, den Wert 1 hat, und der bei einer Abweichung der Druckdifferenz von der bestimmten Druckdifferenz einen Wert ungleich 1 annimmt.
  • Bei der Verwendung eines Wichtungsfaktors zur Bestimmung der beim Start einzuspritzenden Kraftstoffmasse ist es vorteilhaft, wenn der Wichtungsfaktor mittels einer Kennlinie bestimmt wird, die mit dem Druck in der Kraftstoff-Sammelleitung oder der Druckdifferenz zwischen Brennraum und Kraftstoff-Sammelleitung adressiert wird. Eine solche Kennlinie ist einfach zu programmieren und ermöglicht die Bestimmung des Wichtungsfaktors mit hoher Genauigkeit.
  • Für das erfindungsgemäße Verfahren wird auch vorgeschlagen, dass die Öffnungsdauer der Kraftstoff-Einspritzuvorrichtung bei einer Einspritzung beim Start der Brennkraftmaschine von der bei einer Einspritzung in den Brennraum einzuspritzenden Kraftstoffmasse und von der Druckdifferenz zwischen Brennraum und Kraftstoff-Sammelleitung abhängt. Hierdurch kann die beim Start der Brennkraftmaschine einzuspritzende Kraftstoffmasse mit besonders hoher Genauigkeit entsprechend den zum Startzeitpunkt vorliegenden Betriebsbedingungen der Brennkraftmaschine eingespritzt werden.
  • In vorteilhafter Ausgestaltung des erfindungsgemäßen Verfahrens wird auch vorgeschlagen, dass nur dann, wenn in der Kraftstoff-Sammelleitung ein Druck von mindestens 20 bar, insbesondere mindestens ungefähr 50 bar, herrscht, Kraftstoff von der Kraftstoff-Einspritzvorrichtung in den Brennraum der Brennkraftmaschine eingespritzt wird. Hierdurch wird der Druckaufbau in der Kraftstoff-Sammelleitung während des Startvorgangs der Brennkraftmaschine beschleunigt, da zunächst nur Kraftstoff in die Kraftstoff-Sammelleitung gefördert, jedoch kein Kraftstoff aus der Kraftstoff-Sammelleitung abgeführt wird. Ferner wird sichergestellt, dass bei einem Druck in der Kraftstoff-Sammelleitung, welcher keine ausreichende Zerstäubung des Kraftstoffs im Brennraum ermöglicht, keine Einspritzung erfolgt. Hierdurch wird der Kraftstoffverbrauch der Brennkraftmaschine nochmals reduziert und das Emisionsverhalten während des Starts der Brennkraftmaschine nochmals verbessert.
  • Durch eine "Notfallschaltung" kann sichergestellt werden, dass dann, wenn der gewünschte Druck auch nach einer bestimmten Zeit nicht erreicht werden kann, eine Einspritzung bei geringem Druck und entsprechend erhöhter Kraftstoffmenge erfolgt.
  • Dabei wird besonders bevorzugt, wenn mindestens eine Kraftstoffpumpe wenigstens zum Starten der Brennkraftmaschine wenigstens mittelbar elektrisch angetrieben wird. Wird der Druck in der Kraftstoff-Sammelleitung ausschließlich durch eine elektrisch angetriebene Kraftstoffpumpe oder durch mehrere elektrisch angetriebene Kraftstoffpumpen erzeugt, kann bereits während des Startvorgangs der Brennkraftmaschine ein für die Zerstäubung ausreichend hoher Druck auf einfache Art und Weise erzeugt werden.
  • Möglich ist aber auch, dass mindestens eine Kraftstoffpumpe mechanisch von der Brennkraftmaschine angetrieben und beim Starten der Brennkraftmaschine ein elektrischer Anlasser betätigt wird. Der elektrische Anlasser wirkt somit mittelbar als elektrischer Antrieb der Kraftstoffpumpe. Somit muss beim Starten der Brennkraftmaschine zunächst der Anlasser eine bestimmte Zeit betätigt werden, um den Druck in der Kraftstoff-Sammelleitung aufzubauen. Erst wenn der Druck ein bestimmtes Niveau erreicht hat, erfolgt eine Einspritzung des Kraftstoffs durch die Kraftstoff-Einspritzvorrichtungen und dessen Zündung im Brennraum. Dieses Verfahren ist auch bei einigen bekannten Brennkraftmaschinen ohne zusätzliche Komponenten zu realisieren. Die erfindungsgemäßen Vorteile können somit ohne Zusatzkosten erzielt werden.
  • Die Erfindung betrifft auch ein Computerprogramm, ein Speichermedium, sowie ein Steuer-/oder Regelgerät zum Betreiben einer Brennkraftmaschine.
  • Zeichnung
  • Nachfolgend werden besonders bevorzugte Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:
  • Figur 1
    eine schematische Darstellung einer Brennkraftmaschine mit Benzin-Direkteinspritzung;
    Figur 2
    ein Ablaufdiagramm, welches ein Verfahren zum Starten der Brennkraftmaschine von Figur 1 darstellt;
    Figur 3
    ein Ablaufdiagramm, welches ein erstes Ausführungsbeispiel eines Verfahrens zur Bestimmung der beim Start der Brennkraftmaschine einzuspritzenden Kraftstoffmasse und der Einspritzzeit darstellt; und
    Figur 4
    ein Diagramm ähnlich Figur 3 eines zweiten Ausführungsbeispiels eines Verfahrens zur
    Bestimmung der beim Start einzuspritzenden Kraftstoffmasse und der Einspritzzeit. Beschreibung des Ausführungsbeispiels
  • In Figur 1 trägt eine Brennkraftmaschine insgesamt das Bezugszeichen 10. Sie umfasst einen Kraftstoffbehälter 12, aus dem eine elektrisch angetriebene Vorförderpumpe 14 den Kraftstoff in eine Niederdruck-Kraftstoffleitung 16 fördert. Die Niederdruck-Kraftstoffleitung 16 führt zu einer mechanisch von einer Nockenwelle (nicht dargestellt) der Brennkraftmaschine angetriebenen Hochdruck-Kraftstoffpumpe 18. Diese fördert den Kraftstoff in eine Kraftstoff-Sammelleitung 20, in der der Kraftstoff im Normalbetrieb unter hohem Druck gespeichert ist.
  • An die Kraftstoff-Sammelleitung 20 sind mehrere Kraftstoff-Einspritzvorrichtungen 22 angeschlossen. Bei diesen handelt es sich um Injektoren, welche direkt am Motorblock der Brennkraftmaschine 10 befestigt sind. Sie spritzen den Kraftstoff direkt in Brennräume 24 ein. Gestartet wird die Brennkraftmaschine 10 durch die Betätigung eines elektrischen Anlassers 26, welcher mechanisch mit einer Kurbelwelle 28 der Brennkraftmaschine 10 verbunden ist.
  • Die von der Hochdruck-Kraftstoffpumpe 18 in die Kraftstoff-Sammelleitung 20 geförderte Kraftstoffmenge wird durch ein Mengensteuerventil 30 eingestellt. Dieses kann einen Arbeitsraum (nicht dargestellt) der Hochdruck-Kraftstoffpumpe 18 während eines Fördertaktes zeitweise mit der Niederdruck-Kraftstoffleitung 16 verbinden. Der Druck in der Kraftstoff-Sammelleitung 20 wird von einem Drucksensor 32 erfasst. Im Normalbetrieb wird der Druck in der Kraftstoff-Sammelleitung 20 über den Drucksensor 32 und das Mengensteuerventil 30 im Sinne einer geschlossenen Regelstrecke auf einem bestimmten Wert gehalten. Hierzu sind das Mengensteuerventil 30 und der Drucksensor 32 mit einem Steuer- und Regelgerät 34 verbunden.
  • Die Drehzahl der Kurbelwelle 28 wird von einem Drehzahlsensor 36 abgegriffen, welcher ebenfalls entsprechende Signale an das Steuer- und Regelgerät 34 liefert. Auch ein Temperatursensor 38, welcher die Temperatur der Brennkraftmaschine 10 abgreift, ist an das Steuer- und Regelgerät 34 angeschlossen. Schließlich erhält das Steuer- und Regelgerät 34 auch noch Signale von einem Starterschalter 40. Bei einer Betätigung des Starterschalters 40 wird der elektrische Anlasser 26 vom Steuer- und Regelgerät 34 entsprechend angesteuert, um die Brennkraftmaschine 10 zu starten. Die Kraftstoff-Einspritzvorrichtungen 22 werden vom Steuer- und Regelgerät 34 angesteuert. (In Figur 1 ist aus Gründen der Übersichtlichkeit nur die Verbindung einer Krafstoff-Einspritzung 22 mit dem Steuer- und Regelgerät 34 dargestellt).
  • Der Startvorgang der in Figur 1 dargestellten Brennkraftmaschine 10 wird nun anhand des in Figur 2 gezeigten Ablaufdiagramms erläutert (das dargestellte Verfahren ist als Computerprogramm im Steuer- und Regelgerät 34 gespeichert):
  • Nach einem Startblock 42 wird in einem Block 44 abgefragt, ob der Starterschalter 40 betätigt wurde. Wenn die Antwort im Block 44 ja ist, wird im Block 46 der Anlasser 26 vom Steuer- und Regelgerät 34 so angesteuert, dass er die Kurbelwelle 28 in Drehung versetzt. Aufgrund der Drehung der Kurbelwelle 28 wird auch die Nockenwelle der Brennkraftmaschine 10 in Drehung versetzt, an die wiederum die Hochdruck-Kraftstoffpumpe 18 angeschlossen ist. Durch eine Betätigung des elektrischen Anlassers 46 wird somit mittelbar auch die Hochdruck-Kraftstoffpumpe 18 in Drehung versetzt.
  • Im Block 46 wird auch die elektrische Kraftstoffpumpe 14 eingeschaltet. Aufgrund des Betriebs der elektrischen Kraftstoffpumpe 14 und der Hochdruck-Kraftstoffpumpe 18 baut sich in der Kraftstoff-Sammelleitung 20 ein gewisser Kraftstoffdruck auf. Dies wird noch dadurch beschleunigt, dass zunächst von den Kraftstoff-Einspritzvorrichtungen 22 kein Kraftstoff in die Brennräume 24 eingespritzt wird. In einem Block 48 wird geprüft, ob der Druck in der Kraftstoff-Sammelleitung 20 einen Druck von 50 bar erreicht bzw. diesen überschritten hat. Die entsprechenden Signale erhält das Steuer- und Regelgerät 34 vom Drucksensor 32.
  • Wenn die Antwort im Block 48 ja ist, werden im Block 50 die Kraftstoff-Einspritzvorrichtungen 22 so angesteuert, dass diese nun Kraftstoff in die Brennräume 24 einspritzen. Auch die Zündung (nicht dargestellt in Figur 1) wird nun eingeschaltet. Der eigentliche Start der Brennkraftmaschine 10 erfolgt also bei einem Kraftstoffdruck in der Kraftstoff-Sammelleitung 20 von mindestens 50 bar. Während des Startvorgangs steigt aufgrund der sich nun schneller drehenden Kurbelwelle 28 der Druck in der Kraftstoff-Sammelleitung 20 weiter an.
  • Im Block 52 wird geprüft, ob der Startvorgang der Brennkraftmaschine 10 abgeschlossen werden kann. Die entsprechenden Signale werden vom Drehzahlsensor 36 dem Steuer- und Regelgerät 34 bereitgestellt. Ein Kriterium für das Ende des Startvorgangs kann beispielsweise sein, dass die Drehzahl der Brennkraftmaschinen 10 einen bestimmten Wert erreicht bzw. überschreitet. Nach dem Starten der Brennkraftmaschine wir im Block 54 der Anlasser ausgeschaltet. Das Verfahren endet im Endblock 56.
  • In einem nicht dargestellten Ausführungsbeispiel wird auch die Zeit überwacht, innerhalb der sich der Druck in der Kraftstoff-Sammelleitung aufbaut. Erreicht der Druck beispielsweise wegen einer schwachen Batterie und entsprechend niedriger Anlasserdrehzahl innerhalb eines bestimmten Zeitraums nicht den an sich vorgegebenen Mindestwert, erfolgen dennoch Einspritzungen durch die Injektoren mit entsprechend erhöhter Kraftstoffmasse.
  • Für die Durchführung des Verfahrensblockes 50 in Figur 2 (Einspritzung von Kraftstoff in die Brennräume 24) muss die Einspritzzeit der Kraftstoff-Einspritzvorrichtungen 22 festgelegt werden. Unter der Einspritzzeit wird der Zeitraum verstanden, während der die Kraftstoff-Einspritzvorrichtungen 22 während des Einspritztaktes des jeweiligen Brennraums 24 geöffnet sind.
  • Eine Möglichkeit zur Bestimmung der Einspritzzeit ist in Figur 3 dargestellt: Danach wird in einem Block 58 eine Norm-Kraftstoffmasse mns für den Startvorgang berechnet. Diese Kraftstoffmasse mns ist beispielsweise abhängig von der Temperatur tmot der Brennkraftmaschine 10, welche vom Temperatursensor 38 bereitgestellt wird. Bei kalter Brennkraftmaschine 10 muss insgesamt mehr Kraftstoff eingespritzt werden als bei warmer Brennkraftmaschine. Bei der "Norm-Kraftstoffmasse" handelt es sich um jene Kraftstoffmasse, welche bei einem bestimmten minimalen Kraftstoffdruck (3 bis 6 bar) eingespritzt werden müsste.
  • Wie im Zusammenhang mit Figur 2 erläutert wurde, ist der Kraftstoffdruck in der Kraftstoff-Sammelleitung 20 während des Startvorgangs der Brennkraftmaschine 10 nicht konstant. Da bei hohem Druck in der Kraftstoff-Sammelleitung 20 der Kraftstoff von den Kraftstoff-Einspritzungen 22 im entsprechenden Brennraum 24 jedoch besser zerstäubt wird, so dass für eine erfolgreiche Zündung des Kraftstoffs weniger Kraftstoff eingespritzt werden kann, wird im Block 60 mittels einer Kennlinie ein Wichtungsfaktor wf aus dem vom Drucksensor 32 erfassten Druck pr in der Kraftstoff-Sammelleitung 20 gebildet.
  • Die Kennlinie ist dabei so ausgelegt, dass dann, wenn der Druck pr in der Kraftstoff-Sammelleitung 20 in etwa dem von der elektrischen Kraftstoffpumpe 14 erzeugbaren Druck entspricht (ungefähr 3-6 bar), der Wichtungsfaktor wf den Wert 1 hat. Bei einem Druck pr in der Kraftstoff-Sammelleitung 20, welcher höher ist als dieser Minimaldruck, wird der Wichtungsfaktor wf kleiner als 1. Der Wichtungsfaktor wf wird in 62 mit der im Block 58 berechneten Norm-Kraftstoffmasse mns multipliziert.
  • In einem Block 64 wird aus dem Signal des Drehzahlsensors 36 die Position des ZOT des Kolbens (nicht dargestellt) des entsprechenden Brennraums 24 bestimmt. "ZOT" bedeutet eine Winkelstellung vor dem oberen Totpunkt Zündung. Die Kolbenposition eines Brennraums 24 kann vom Drehzahlsensor 36 erfasst werden, da er so ausgebildet ist, dass er auch die Winkelposition der Kurbelwelle 28 erfassen kann. Aus der Position des Kolbens eines Brennraums 24 kann dann ebenfalls im Block 64 der im Brennraum 24 herrschende aktuelle Druck pb ermittelt werden.
  • In 66 wird die Differenz zwischen dem Druck pr in der Kraftstoff-Sammelleitung 20 und dem Druck pb im Brennraum 24 gebildet. Diese Druckdifferenz dprpb wird ebenso wie die in 62 bestimmte und gegebenenfalls durch den Wichtungsfaktor wf reduzierte Kraftstoffmasse ms einem Block 68 zugeführt, in dem, beispielsweise durch ein Kennfeld, die Einspritzzeit ti der Kraftstoff-Einspritzvorrichtung 22 des entsprechenden Brennraums 24 bestimmt wird.
  • Alternativ zu dem in Figur 3 dargestellten Verfahren kann die Einspritzzeit ti auch nach dem in Figur 4 dargestellten Verfahren ermittelt werden. In Figur tragen solche Blöcke, welche äquivalente Funktionen zu den Blöcken von Figur 3 aufweisen, die gleichen Bezugszeichen. Sie sind nicht nochmals im Detail erläutert.
  • Das in Figur 4 dargestellte Verfahren wird vorzugsweise dann eingesetzt, wenn die Brennkraftmaschine 10 im "Schichtbetrieb" gestartet werden soll. In diesem Fall werden bessere Ergebnisse erzielt, wenn für die Ermittlung des Wichtungsfaktors wf im Block 60 als Eingangsgröße nicht der Druck pr in der Kraftstoff-Sammelleitung 20, sondern die Druckdifferenz dprpb verwendet wird, welche in 66 ermittelt wird.

Claims (11)

  1. Verfahren zum Betreiben einer Brennkraftmaschine (10), bei dem Kraftstoff mittels mindestens einer Kraftstoffpumpe (14, 18) in eine Kraftstoff-Sammelleitung (20) gefördert wird, aus der er über mindestens eine Kraftstoff-Einspritzvorrichtung (22) direkt in mindestens einen Brennraum (24) der Brennkraftmaschine (10) gelangt, dadurch gekennzeichnet, dass die beim Start der Brennkraftmaschine (10) bei einer Einspritzung (50) von der Kraftstoff-Einspritzvorrichtung (22) in den Brennraum (24) einzuspritzende Kraftstoffmasse (ms) von einer Druckdifferenz (dprpb) zwischen dem Druck (pb) im Brennraum (24) und dem Druck (pr) in der Kraftstoff-Sammelleitung (20) abhängt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die beim Start der Brennkraftmaschine (10) bei einer Einspritzung (50) von der Kraftstoff-Einspritzvorrichtung (22) in den Brennraum (24) einzuspritzende Kraftstoffmasse (ms) dadurch gebildet wird, dass eine Norm-Kraftstoffmasse (mns) bestimmt wird, die beim Start bei einem bestimmten Druck in der Kraftstoff-Sammelleitung (20) in den Brennraum (24) einzuspritzen ist, und diese Norm-Kraftstoffmasse (mns) mit einem Wichtungsfaktor (wf) multipliziert wird (62), der dann, wenn der Druck (pr) in der Kraftstoff-Sammelleitung (20) gleich dem bestimmten Druck ist, den Wert 1 hat, und der bei einer Abweichung des Drucks (pr) in der Kraftstoff-Sammelleitung (20) von dem bestimmten Druck einen Wert ungleich 1 annimmt.
  3. Verfahren nach einem der Ansperuch 1 oder 2, dass die beim Start der Brennkraftmaschine (10) bei einer Einspritzung (50) von der Kraftstoff-Einspritzvorrichtung (22) in den Brennraum (24) einzuspritzende Kraftstoffmasse (ms) dadurch gebildet wird, dass eine Norm-Kraftstoffmasse (mns) bestimmt wird, die beim Start bei einer bestimmten Druckdifferenz zwischen Brennraum (24) und Kraftstoff-Sammelleitung (20) in den Brennraum (24) einzuspritzen ist, und diese Norm-Kraftstoffmasse (mns) mit einem Wichtungsfaktor (wf) multipliziert wird, der dann, wenn die Druckdifferenz (dpbpr) zwischen Brennraum (24) und Kraftstoff-Sammelleitung (20) gleich der bestimmten Druckdifferenz ist, den Wert 1 hat, und der bei einer Abweichung der Druckdifferenz (dpbpr) von der bestimmten Druckdifferenz einen Wert ungleich 1 annimmt.
  4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der Wichtungsfaktor (wf) mittels einer Kennlinie (60) bestimmt wird, die mit dem Druck (pr) in der Kraftstoff-Sammelleitung (20) oder der Druckdifferenz (dpbpr) zwischen Brennraum (24) und Kraftstoff-Sammelleitung (20) adressiert wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnungsdauer (ti) der Kraftstoff-Einspritzvorrichtung (22) bei einer Einspritzung (50) beim Start der Brennkraftmaschine (10) von der bei einer Einspritzung (50) in den Brennraum (24) einzuspritzenden Kraftstoffmasse (ms) und von der Druckdifferenz (dpbpr) zwischen Brennraum (24) und Kraftstoff-Sammelleitung (20) abhängt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nur dann, wenn in der Kraftstoff-Sammelleitung (20) ein Druck (pr) von mindestens 20 bar, insbesondere mindestens ungefähr 50 bar, herrscht, Kraftstoff von der Kraftstoff-Einspritzvorrichtung (22) in den Brennraum (24) der Brennkraftmaschine (10) eingespritzt wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass mindestens eine Kraftstoffpumpe (14, 18) wenigstens zum Starten der Brennkraftmaschine (10) wenigstens mittelbar elektrisch angetrieben wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass mindestens eine Kraftstoffpumpe (18) mechanisch von der Brennkraftmaschine (10) angetrieben und beim Starten der Brennkraftmaschine (10) ein elektrischer Anlasser (26) betätigt wird (46).
  9. Computerprogramm, dadurch gekennzeichnet, dass es zur Anwendung in einem Verfahren nach einem der vorhergehenden Ansprüche programmiert ist.
  10. Speichermedium für ein Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, , dadurch gekennzeichnet, dass auf ihm ein Computerprogramm zur Anwendung in einem Verfahren der Ansprüche 1 bis 8 abgespeichert ist.
  11. Steuer- und/oder Regelgerät (34) zum Betreiben einer Brennkraftmaschine (10), dadurch gekennzeichnet, dass es zur Anwendung in einem Verfahren nach einem der Ansprüche 1 bis 8 programmiert ist.
EP20020018418 2001-09-27 2002-08-16 Verfahren und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine Expired - Lifetime EP1298303B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10147815 2001-09-27
DE2001147815 DE10147815A1 (de) 2001-09-27 2001-09-27 Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP1298303A2 EP1298303A2 (de) 2003-04-02
EP1298303A3 EP1298303A3 (de) 2004-12-01
EP1298303B1 true EP1298303B1 (de) 2007-04-11

Family

ID=7700588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020018418 Expired - Lifetime EP1298303B1 (de) 2001-09-27 2002-08-16 Verfahren und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP1298303B1 (de)
JP (1) JP2003155946A (de)
DE (2) DE10147815A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453641B2 (ja) 2005-01-31 2010-04-21 トヨタ自動車株式会社 内燃機関の制御装置
JP2016008553A (ja) 2014-06-25 2016-01-18 スズキ株式会社 燃料噴射制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547644B4 (de) * 1995-12-20 2004-03-11 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
JP3695046B2 (ja) * 1997-02-07 2005-09-14 いすゞ自動車株式会社 エンジンの燃料噴射方法及びその装置
DE19726757B4 (de) * 1997-06-24 2005-04-14 Robert Bosch Gmbh Verfahren zur Steuerung und/oder Regelung einer mit mehreren Brennräumen versehenen Brennkraftmaschine
DE19823280C1 (de) * 1998-05-25 1999-11-11 Siemens Ag Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine während des Starts
DE19913407A1 (de) * 1999-03-25 2000-09-28 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE19937148B4 (de) * 1999-08-06 2012-12-27 Robert Bosch Gmbh Verfahren zur Bestimmung der Kraftstoff-Einspritzmengen
EP1132613B1 (de) * 2000-03-09 2004-05-19 Siemens Aktiengesellschaft Verfahren zum Starten einer Brennkraftmaschine
DE10012024A1 (de) * 2000-03-11 2001-09-27 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE10053091A1 (de) * 2000-10-26 2002-05-08 Bosch Gmbh Robert Verfahren zum Starten einer Brennkraftmaschine

Also Published As

Publication number Publication date
EP1298303A2 (de) 2003-04-02
DE10147815A1 (de) 2003-04-24
EP1298303A3 (de) 2004-12-01
JP2003155946A (ja) 2003-05-30
DE50209905D1 (de) 2007-05-24

Similar Documents

Publication Publication Date Title
DE112014001963B4 (de) Steuervorrichtung für einen Fremdzündungsmotor
DE102012016877A1 (de) Start-Regel- bzw. Steuervorrichtung für einen Selbstzündungsmotor und korresponierendes Verfahren
EP1485596B1 (de) Verfahren zum betreiben einer brennkraftmaschine mit mehrfacheinspritzung in der startphase
DE10254921B4 (de) Kraftstoffzufuhr- und Einspritzsystem sowie Verfahren zum Steuern desselben
EP1438495B1 (de) Verfahren, computerprogramm, steuer- und regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine
DE10240069A1 (de) Kraftstoffeinspritzsammelsystem, das das Startvermögen einer Kraftmaschine gewährleistet
EP1149239B1 (de) Kraftstoffversorgungssystem für eine brennkraftmaschine insbesondere eines kraftfahrzeugs
WO2013075965A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP1090221B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE102004002139A1 (de) Kraftstoffversorgungssystem für eine Brennkraftmaschine
DE102012101010A1 (de) Anlass-Steuervorrichtung für einen Direkteinspritzungs-Verbrennungsmotor
DE10160311C2 (de) Verfahren, Computerprogramm, Steuer- und Regelgerät zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
WO1999020882A1 (de) Verfahren zum starten einer brennkraftmaschine
DE10127516A1 (de) Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine sowie Kraftstoffsystem für eine Brennkraftmaschine
EP1273783A2 (de) Verfahren zum Betrieb einer Brennkraftmaschine
EP1223326B1 (de) Verfahren zur Steuerung einer eingespritzten Kraftstoffmenge während eines Startvorganges und zur Erkennung einer Kraftstoffqualität
DE10302058B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1311750B1 (de) Verfahren, computerprogramm und steuer-und/oder regeleinrichtung zum betreiben einer brennkraftmaschine
DE102009037294A1 (de) Verfahren zum Starten einer direkteinspritzenden Brennkraftmaschine und Einspritzanlage
EP1298303B1 (de) Verfahren und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
EP1464819A2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1436495B1 (de) Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine mit direkteinspritzung
DE10115969B4 (de) Verfahren zur Ermittlung einer zugeführten Kraftstoffmenge während eines Startvorganges einer Verbrennungskraftmaschine
DE10038565C2 (de) Kraftstoffversorgungssystem für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102011002475B4 (de) Kraftstoffeinspritzsteuereinrichtung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20050601

AKX Designation fees paid

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 50209905

Country of ref document: DE

Date of ref document: 20070524

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070722

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090819

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090824

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131025

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209905

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50209905

Country of ref document: DE

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303