EP1290108A1 - Procede pour fabriquer un materiau a changement de phase quasi-incompressible et a faible conductivite thermique, et produit obtenu par le procede - Google Patents

Procede pour fabriquer un materiau a changement de phase quasi-incompressible et a faible conductivite thermique, et produit obtenu par le procede

Info

Publication number
EP1290108A1
EP1290108A1 EP01929691A EP01929691A EP1290108A1 EP 1290108 A1 EP1290108 A1 EP 1290108A1 EP 01929691 A EP01929691 A EP 01929691A EP 01929691 A EP01929691 A EP 01929691A EP 1290108 A1 EP1290108 A1 EP 1290108A1
Authority
EP
European Patent Office
Prior art keywords
phase change
pcm
change material
pipes
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01929691A
Other languages
German (de)
English (en)
Inventor
Angèle CHOMARD
Jean-Claude Hipeaux
Jacques Jarrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Saipem SA
Original Assignee
IFP Energies Nouvelles IFPEN
Bouygues Offshore SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Bouygues Offshore SA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1290108A1 publication Critical patent/EP1290108A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/003Insulating arrangements

Definitions

  • the present invention relates to a process for manufacturing a material based on phase change materials (PCM), quasi-incompressible and having a low thermal conductivity, products obtained by the process and applications.
  • PCM phase change materials
  • the material according to the invention can be used as thermal insulator in many fields, in particular for the thermal insulation of conduits or pipes where fluids which are susceptible to significant changes of state under the influence of temperature circulate: crystallization of paraffins, deposits hydrates, ice creams, etc.
  • the thermal insulation can be carried out by various methods. On land or in low immersion, porous cellular or woolly solid materials are used blocking the convection of gases with low thermal conductivity. The compressibility of these porous materials prohibits the use of this technique at a relatively high depth.
  • Another known technique consists in wrapping the pipe with a first layer of a porous material soaked in paraffin, for example, the thermal insulation coefficient of which is lower than those obtained with the gas trapping technique mentioned above, and d 'a second layer of refractory material enhancing the effect of the first layer.
  • a solution cannot be used in water.
  • Phase change materials behave like heat accumulators. They restore this energy during their solidification (crystallization) or absorb this energy during their fusion and this, in a reversible manner. These materials can therefore make it possible to increase the duration of production stoppages without risking clogging of the pipes by premature cooling of their contents.
  • phase change materials As known examples of phase change materials, mention may be made of chemical compounds of the family of alkanes C n H 2n + 2 such as for example paraffins (C 12 to C 60 ), which exhibit a good compromise between thermal properties and thermodynamics (melting temperature, latent heat of fusion, thermal conductivity, heat capacity) and cost. These compounds are thermally stable in the range of envisaged use temperatures and they are compatible with use in a marine environment because of their insolubility in water and their very low level of toxicity. They are therefore for example well suited to the thermal insulation of pipes for deep water. The temperature of change of state of these phase change materials is linked to the number of carbons in the hydrocarbon chain and is therefore adaptable to a particular application. To obtain a phase change around 30 ° C., it is possible for example to use a mixture of predominantly C 18 paraffins such as Limpar 18-20 sold by the company CONDEA Augusta SpA.
  • waxes normal paraffins, long chain isoparaffins (C 30 - C 40 ) very weakly branched (1 or 2 branches), branched long chain alkylcycloalkanes or branched long chain alkylaromatics also weakly branched, fatty alcohols or fatty acids can also be considered.
  • phase change materials are in the liquid phase and their viscosity is low.
  • a thickening agent such as silica to solidify them and prevent leaks.
  • Phase change materials also have the disadvantage that their viscous liquid state promotes thermal losses by convection.
  • the method according to the invention makes it possible to manufacture a material or product based on quasi-incompressible phase change materials (PCM) having a low thermal conductivity at a temperature above their melting temperature Tf.
  • PCM quasi-incompressible phase change materials
  • It comprises the combination, with a phase change material, of a thickening agent chosen to very greatly reduce the thermal convection at a temperature higher than the melting temperature of the phase change material.
  • the method comprises the combination of a thickening agent dispersed in the phase change material.
  • the method comprises the combination of a thickening agent forming with the phase change material a gelled structure.
  • the product based on phase change materials (PCM) having a low thermal conductivity comprises in combination a thickening agent chosen to very strongly reduce thermal convection at a temperature higher than the melting temperature of the change material. phase.
  • the product comprises in combination a phase change material (PCM) and at least one metallic soap, this combination being obtained by the action of bases on fatty acids or fatty substances.
  • PCM phase change material
  • the product comprises in combination a phase change material (PCM) and complex soaps of aluminum, calcium or lithium obtained by in situ neutralization of asymmetric acids.
  • PCM phase change material
  • the product comprises in combination a phase change material (PCM) and at least one inorganic thickener (graphite, hydrophobic silica gel, silico-aluminates rendered oleophilic, etc.).
  • the product comprises in combination at least one organic or organometallic thickener of the aromatic polyurea type or colored pigments, dispersed in a phase change material (PCM).
  • the product may optionally include antioxidants or antibacterial agents, corrosion inhibitors or an insoluble filler intended to adjust its density or thermal conductivity, additives intended to improve its stability or a solvent intended to control viscosity.
  • the product according to the invention finds applications for thermal insulation in general. It can be applied in particular for the thermal insulation of hydrocarbon transport pipes, where it is used as a direct or interposed (injected) coating between the pipes and an external protective envelope.
  • the manufacturing process as we have seen, consists in dispersing, in a phase change material (hereinafter PCM), an insoluble thickening or gelling agent chosen to reduce both the viscosity of the PCM and the thermal convection of the PCM in the liquid state, so as to form an insulating substance with blocked convection having a semi-fluid to solid consistency.
  • PCM phase change material
  • an insoluble thickening or gelling agent chosen to reduce both the viscosity of the PCM and the thermal convection of the PCM in the liquid state, so as to form an insulating substance with blocked convection having a semi-fluid to solid consistency.
  • the liquid component constituting the continuous phase, can be a mixture of chemical compounds of the family of alkanes C n H 2n + 2 such as for example paraffins (C 12 to C 60 ) or waxes, normal paraffins, very weakly branched (1 or 2 branches) long chain isoparaffins (C 30 - C 40 ), branched long chain alkylcycloalkanes or branched long chain alkylaromatics, fatty alcohols or fatty acids.
  • the liquid component preferably represents from 70% to 99.5% of the mass of the product.
  • the thickening agent constituting the dispersed solid phase can be organic (aromatic ureas), organometallic (alkaline or alkaline earth soaps) or purely inorganic (silica, silico-aluminates (bentonite) made oleophilic by grafting an organic chain preferably comprising from 12 to 24 carbon atoms.
  • the thickeners are generally in the form of fibers, crystals or lamellar or spherical particles, of very variable dimensions according to their chemical nature and their method of production.
  • composition with a gelled or dispersed structure is obtained.
  • the elementary particles of the thickening agent form, within the product, a coherent three-dimensional network (entanglement of fibers), with the establishment of internal bonding forces.
  • the liquid phase change material (PCM) is maintained in the network by capillarity.
  • the elementary particles of the thickening agent are in suspension in the PCM.
  • the dispersion is of the colloidal type.
  • the stability of the thickener suspension depends on the dimensions and density of the particles, the viscosity of the medium and above all the inter-particle forces which keep the system in balance.
  • the effectiveness of a phase change material with blocked convection (PCM-CB) therefore depends on four main parameters: the concentration of thickening agent, the elementary dimensions of the thickener, the solvent power of the PCM vis-à-vis thickening and dispersing forces. A judicious combination of these parameters makes it possible to optimize the insulating power of the PCM-CB at temperatures above the melting temperature Tf of the PCM. Different combinations are also possible.
  • compositions according to the nature of the thickening agents are examples of compositions according to the nature of the thickening agents.
  • PCMs can be formed from metallic soaps: lithium soaps, calcium soaps, sodium soaps, aluminum soaps, or mixed lithium / calcium or calcium / sodium soaps. They are obtained in the presence of liquid PCM, either by neutralization of fatty acids, or by saponification of fatty substances with the following bases: lime, lithine, soda or aluminum hydroxide for example.
  • 2- Blocked convection PCMs can also be formed from complex soaps of aluminum, calcium or lithium, which are obtained by in situ neutralization of asymmetric acids in the presence of liquid PCM.
  • the blocked convection PCMs can also be formed without soap from:
  • 3a- inorganic thickeners such as graphite or carbon black, hydrophobic silica gel or oleophilic silico-aluminates (montmorillonite, bentonite, etc.); 3b- organic or organometallic thickeners such as sodium terephthalate or aromatic polyureas or colored pigments (indanthrene, copper phthalocyanine).
  • compositions obtained without soap are formed by dispersion of inorganic or organic compounds in the liquid PCM. These compounds are insoluble in the liquid phase (PCM) at all temperatures.
  • the following compounds can also be included in the compositions for certain applications.
  • Antioxidant additives can be added essentially when the product (PCM with blocked convection) is subjected to a rise in temperature in service.
  • the most frequently encountered are phenolic derivatives (dibutylparacresol, etc.), phenolic derivatives containing sulfur and aromatic amines (phenyl • or • naphthylamine or alkylated amino diphenyls).
  • phenolic derivatives dibutylparacresol, etc.
  • phenolic derivatives containing sulfur and aromatic amines phenyl • or • naphthylamine or alkylated amino diphenyls.
  • soluble in liquid PCM consist of polar chemical compounds which are easily adsorbed on the surface metallic forming a hydrophobic film (fatty amines, alkaline earth sulfonate, etc.)
  • polar modifying additives water, acetone, glycerol, etc. which are intended to stiffen the structure of the entanglement of soap or thickener fibers and to improve the stability of the dispersion of the gelling agent in PCM.
  • Insoluble fillers such as hollow glass microbeads, fly ash, macrobeads, hollow fibers, etc., can be added to the PCM-CB to adjust its density and / or its thermal conductivity.
  • hydrocarbons of petroleum origin such as hydrocarbon solvents, distillation cups, predominantly aromatic, naphthenic or paraffinic oils obtained by solvent extraction processes or by deep hydrotreating, solvents or sections obtained by the hydroisomerization process of paraffinic extracts of petroleum origin or of synthesis of Fischer Tropsch type, solvents and compounds obtained by synthesis, such as for example oxygenated compounds of ester type, synthetic hydrocarbons such as hydrogenated polyolefins, etc.
  • PCM with blocked convection therefore consists of a combination of 70 to 99.5% by mass of liquid PCM and 0.5 to 30% of thickener, to which additives ( ⁇ 10%), fillers (5 to 60%) and solvents (0.2 to 5%). Examples of wording:
  • the following product can be used, consisting of 90% PCM, 9.5% lithium soap and 0.5% antioxidant.
  • Another composition can comprise, for example, 90% oil, 2.5% dispersant (water, acetone, polar products), 7% oleophilic bentone and
  • the blocked convection PCMs which have been described can be used for example for the thermal insulation of subsea pipes.
  • the device comprises an outer coating composed of an almost incompressible liquid / solid phase change (PCM) material having an intermediate melting temperature between the temperature of the effluents flowing in the pipe (s) and the temperature of the outside medium, and an absorbent matrix surrounding the pipe (s) as closely as possible.
  • PCM liquid / solid phase change
  • the external coating consisting of the matrix impregnated with PCM described in the prior document can here be advantageously replaced by one of the PCMs with blocked convection which have just been described, with as a result an improvement in the thermal insulation of the pipes and a simplification of the positioning operations around the pipe or pipes, for example by pumping at a temperature above the melting temperature Tf, very appreciable when the assembly of pipes to be isolated is complex.
  • Applications of the material have been described for the thermal insulation of pipes for conveying fluids and in particular hydrocarbons. It is obvious, however, that such a material can be used in any other application where a very low thermal conductivity is sought, associated with energy restitution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Insulation (AREA)
  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Procédé pour fabriquer un matériau à base de matériaux à changement de phase (PCM), quasi-incompressible et présentant une faible conductivité thermique, produits obtenus par le procédé et applications. Le procédé comporte la combinaison avec un matériau à changement de phase à l'état liquide (PCM) d'un agent épaississant choisi pour réduire très fortement la convection thermique, le matériau formé ayant selon les combinaisons effectuées une structure gélifiée ou bien un système dispersé de type colloïdal. Le PCM est constitué d'un mélange de composés chimiques de la famille des alcanes: paraffines, cires, alcools gras, acides gras, etc., et l'agent épaississant peut être de nature organique (urées aromatiques), organométalliques (savons alcalins ou alcalino-terreux) ou purement inorganique (silice, silico-aluminates tels que bentonite rendue oléophie, etc.). Applications pour l'isolation thermique de récipients ou de conduites, et notamment pour l'isolation de conduites d'hydrocarbures.

Description

PROCEDE POUR FABRIQUER UN MATERIAU A CHANGEMENT DE PHASE QUASI-INCOMPRESSIBLE ET A FAIBLE CONDUCTIVITE THERMIQUE, ET PRODUIT OBTENU PAR LE PROCEDE
La présente invention concerne un procédé pour fabriquer un matériau à base de matériaux à changement de phase (PCM), quasi- incompressible et présentant une faible conductivité thermique, produits obtenus par le procédé et applications.
Le matériau selon l'invention peut servir comme isolant thermique dans de nombreux domaines, notamment pour l'isolation thermique de conduites ou pipes où circulent des fluides susceptibles de changements d'état importants sous l'influence de la température : cristallisation de paraffines, dépôts d'hydrates, glaces, etc.
C'est le cas par exemple dans le domaine de la production d'hydrocarbures. L'isolation thermique des conduites sous-marines notamment s'avère dans de nombreux cas nécessaire pour maintenir les fluides en écoulement et pour éviter le plus longtemps possible la formation d'hydrates ou de dépôt riches en paraffines ou en asphaltènes. Les développements de champs pétroliers en mer profonde, cumulent souvent ces inconvénients qui sont particulièrement à redouter dans le cas d'arrêts de production. Etat de la technique
Différentes techniques de calorifugeage sont décrites par exemple dans les documents suivants : FR 98/16.791 , JP 2 176 299, ou WP 97/47174.
Le calorifugeage peut être effectué par différents procédés. A terre ou en faible immersion, on utilise des matériaux solides poreux cellulaire ou laineux bloquant la convection de gaz à faible conductivité thermique. La compressibilité de ces matériaux poreux interdit d'utiliser cette technique à profondeur relativement élevée.
Une autre technique connue consiste à envelopper la conduite d'une première couche d'un matériau poreux imbibé de paraffine par exemple dont le coefficient d'isolation thermique plus faible que ceux obtenus avec la technique de piégeage de gaz rappelée ci-dessus, et d'une deuxième couche d'un matériau réfractaire renforçant l'effet de la première couche. Une telle solution n'est cependant pas utilisable dans l'eau.
D'autres solutions existent convenant mieux pour des utilisations à des profondeurs d'immersion élevées. On peut utiliser par exemple :
- des revêtements en matériaux polymères massifs quasi-incompressibles à base de polyuréthane, polyéthylène, polypropylène etc. qui cependant présentent une conductivité thermique assez moyenne, insuffisante pour éviter les inconvénients en cas d'arrêts de production ; ou
- des revêtements en matériaux syntactiques constituées de billes creuses contenant un gaz et résistantes à la pression extérieure, noyées dans des liants tels que du béton, une résine époxy, etc., dont la conductivité est plus faible que celle des matériaux compacts mais qui sont nettement plus coûteux. On peut également protéger la conduite où circulent les fluides par une conduite extérieure résistant à la pression hydrostatique. Dans l'espace annulaire entre elles, on interpose par exemple un calorifuge à faible conductivité thermique laissé à la pression atmosphérique ou mis sous vide avec des cloisonnements placés à intervalles réguliers pour des raisons de sécurité.
Il est également connu d'interposer, entre la conduite et une enveloppe de protection déformable, une matrice absorbante gainant la conduite, imprégnée d'un matériau quasi incompressible à changement de phase liquide/solide à une température de fusion supérieure à celle du milieu environnant et inférieure à celles des fluides circulant dans la conduite
Les matériaux à changement de phase (PCM) se comportent comme des accumulateurs de chaleur. Ils restituent cette énergie au cours de leur solidification (cristallisation) ou absorbent cette énergie au cours de leur fusion et ce, de manière réversible. Ces matériaux peuvent donc permettre d'augmenter la durée des arrêts de production sans risquer le colmatage des conduites par refroidissement prématuré de leur contenu.
Comme exemples connus de matériaux à changement de phase, on peut citer les composés chimiques de la famille des alcanes CnH2n+2 tels que par exemple des paraffines (C12 à C60), qui présentent un bon compromis entre les propriétés thermiques et thermodynamiques (température de fusion, chaleur latente de fusion, conductivité thermique, capacité calorifique) et le coût. Ces composés sont stables thermiquement dans la gamme des températures d'utilisation envisagées et ils sont compatibles avec une utilisation en milieu marin du fait de leur insolubilité dans l'eau et de leur très faible niveau de toxicité. Ils sont donc par exemple bien adaptés à l'isolation thermique des conduites pour grands fonds. La température de changement d'état de ces matériaux à changement de phase est liée au nombre de carbones de la chaîne hydrocarbonée et est donc adaptable à une application particulière. Pour obtenir un changement de phase autour de 30°C, on pourra par exemple utiliser un mélange de paraffines majoritaire en C18 tel que le Limpar 18-20 commercialisé par la société CONDEA Augusta S.p.A..
L'utilisation de cires, de normal paraffines, d'isoparaffines à chaîne longue (C30 - C40) très faiblement ramifiées (1 ou 2 ramifications), d'alkylcycloalcanes branchés à chaîne longue ou d'alkylaromatiques branchés à chaîne longue également faiblement ramifiés, d'alcools gras ou d'acides gras peut également être considérée.
Au-dessus de leur température de fusion Tf, les matériaux à changement de phase (PCM) sont en phase liquide et leur viscosité est faible. Pour corriger ce défaut particulièrement gênant dans certaines applications, notamment dans la fabrication de récipients à double paroi ou de poches de stockage d'énergie, il est connu de leur ajouter un agent épaississant tel que de la silice pour les solidifier et éviter les fuites.
Les matériaux à changement de phase (PCM) présentent également l'inconvénient que leur état liquide visqueux favorise les pertes thermiques par convection.
Le procédé selon l'invention permet de fabriquer un matériau ou produit à base de matériaux à changement de phase (PCM) quasi- incompressible présentant une faible conductivité thermique à une température supérieure à leur température de fusion Tf.
II comporte la combinaison, avec un matériau à changement de phase, d'un agent épaississant choisi pour réduire très fortement la convection thermique à une température supérieure à la température de fusion du matériau à changement de phase.
Suivant un mode de mise en en œuvre, le procédé comporte la combinaison d'un agent épaississant dispersé dans le matériau à changement de phase.
Suivant un autre mode de mise en en oeuvre, le procédé comporte la combinaison d'un agent épaississant formant avec le matéπau à changement de phase une structure gélifiée.
Le produit à base de matériaux à changement de phase (PCM) présentant une faible conductivité thermique selon l'invention, comporte en combinaison un agent épaississant choisi pour réduire très fortement la convection thermique à une température supérieure à la température de fusion du matériau à changement de phase.
Suivant un mode de réalisation le produit comporte en combinaison un matériau à changement de phase (PCM) et au moins un savon métallique, cette combinaison étant obtenue par action de bases sur des acides gras ou des corps gras.
Suivant un autre mode de réalisation le produit comporte en combinaison un matériau à changement de phase (PCM) et des savons complexes d'aluminium, de calcium ou de lithium obtenus par neutralisation in situ d'acides dissymétriques.
Suivant un autre mode de réalisation le produit comporte en combinaison un matériau à changement de phase (PCM) et au moins un épaississant inorganique (graphite, gel de silice hydrophobe, silico- aluminates rendus oléophiles, etc.). Suivant un autre mode de réalisation, le produit comporte en combinaison au moins un épaississant organique ou organo-métallique de type polyurée aromatique ou des pigments colorés, dispersé dans un matériau à changement de phase (PCM).
Le produit pourra éventuellement inclure des agents anti-oxydants ou antibactériens, des inhibiteurs de corrosion ou une charge insoluble destinée à ajuster sa densité ou sa conductivité thermique, des additifs destinés à améliorer sa stabilité ou encore un solvant destiné à contrôler la viscosité.
Le produit selon l'invention trouve des applications pour l'isolation thermique en général. Il peut être appliqué en particulier pour l'isolation thermique de conduites d'acheminement d'hydrocarbures, où il est utilisé comme revêtement direct ou interposé (injecté) entre les conduites et une enveloppe extérieure de protection.
D'autres caractéristiques et avantages du procédé et du matériau produit selon l'invention, ainsi que des exemples d'application seront décrits ci-après.
DESCRIPTION DETAILLEE
Le procédé de fabrication comme on l'a vu, consiste à disperser, dans un matériau à changement de phase (ci-après PCM), un agent épaississant ou gélifiant insoluble choisi pour diminuer à la fois la viscosité du PCM et la convection thermique du PCM à l'état liquide, de manière à former une substance isolante à convection bloquée ayant une consistance semi-fluide à solide.
Le composant liquide, constituant la phase continue, peut être un mélange de composés chimiques de la famille des alcanes CnH2n+2 tels que par exemple les paraffines (C12 à C60) ou des cires, des normales paraffines, des isoparaffines à chaîne longue (C30 - C40) très faiblement ramifiées (1 ou 2 ramifications), des alkylcycloalcanes branchés à chaîne longue ou des alkylaromatiques branchés à chaîne longue, des alcools gras ou des acides gras. Le composant liquide représente de préférence de 70% à 99.5% de la masse du produit.
L'agent épaississant constituant la phase solide dispersée, peut être de nature organique (urées aromatiques), organométalliques (savons alcalins ou alcalino-terreux) ou purement inorganique (silice, silico- aluminates (bentonite) rendus oléophiles par greffage d'une chaîne organique comprenant de préférence de 12 à 24 atomes de carbone.
Les épaississants se présentent généralement sous la forme de fibres, cristaux ou particules lamellaires ou sphériques, de dimensions très variables suivant leur nature chimique et leur mode d'obtention.
Selon la nature des épaississants, on obtient une composition à structure gélifiée ou dispersée.
Dans le cas d'une structure gélifiée, les particules élémentaires de l'agent épaississant, forment au sein du produit, un réseau tridimensionnel cohérent (enchevêtrement de fibres), avec établissement de forces de liaisons internes. Le matériau à changement de phase liquide (PCM) est maintenu dans le réseau par capillarité.
Dans le cas d'une structure dispersée, les particules élémentaires de l'agent épaississant sont en suspension dans le PCM. La dispersion est de type colloïdale. La stabilité de la suspension de l'épaississant dépend des dimensions et de la densité des particules, de la viscosité du milieu et surtout des forces inter-particules qui permettent de maintenir le système en équilibre. L'efficacité d'un matériau à changement de phase à convection bloquée (PCM-CB) dépend donc de quatre principaux paramètres : la concentration en agent épaississant, les dimensions élémentaires de l'épaississant, le pouvoir solvant du PCM vis-à-vis de l'épaississant et les forces de dispersion. Une combinaison judicieuse de ces paramètres permet d'optimiser le pouvoir isolant du PCM-CB aux températures supérieures à la température de fusion Tf du PCM. Différentes combinaisons sont également possibles.
Exemples de compositions selon la nature des agents épaississants
1- Les PCM à convection bloquée peuvent être formés à base de savons métalliques : savons de lithium, savons de calcium, savons de sodium, savons d'aluminium, ou savons mixtes lithium/calcium ou calcium/sodium. Ils sont obtenus en présence de PCM liquides, soit par neutralisation d'acides gras, soit par saponification de corps gras par les bases suivantes : chaux, lithine, soude ou hydroxyde d'aluminium par exemple.
2- Les PCM à convection bloquée peuvent être formés également à base de savons complexes d'aluminium, de calcium ou de lithium, qui sont obtenus par neutralisation in situ d'acides dissymétriques en présence de PCM liquide.
3- Les PCM à convection bloquée peuvent être formés également sans savon à partir :
3a- d'épaississants inorganiques tels que du graphite ou du noir de carbone, un gel de silice hydrophobe ou des silico-aluminates oléophiles (montmorillonite, bentonite, etc.) ; 3b- d'épaississants organiques ou organo-métalliques tels que du téréphtalate de sodium ou des polyurées aromatiques ou des pigments colorés (indanthrène, phtalocyanine de cuivre).
Ces compositions obtenues sans savon sont formées par dispersion de composés inorganiques ou organiques dans le PCM liquide. Ces composés sont insolubles dans la phase liquide (PCM) à toutes températures.
Additifs
Pour apporter certaines propriétés spécifiques, les composés suivants peuvent également être également inclus dans les compositions pour certaines applications.
1- Additifs solubles :
a) Des additifs antioxydants peuvent être ajoutés essentiellement lorsque le produit (PCM à convection bloquée) est soumise à une élévation de température en service. Les plus fréquemment rencontrés sont les dérivés phénoliques (dibutylparacrésol, etc.), les dérivés phénoliques contenant du soufre et les aminés aromatiques (phényl • ou • naphtylamine ou les diphényles aminés alkylées). Ces antioxydants retardent le processus d'oxydation, grâce à leur action inhibitrice de formation de radicaux libres ou destructive vis-à-vis des hydropéroxydes formés.
b) des agents antibactériens
c) des inhibiteurs de corrosion
d) solubles dans le PCM liquide, sont constitués de composés chimiques à caractère polaire qui s'adsorbent facilement sur la surface métallique en formant un film hydrophobe (aminés grasses, sulfonate d'alcalino-terreux, etc.)
c2) solubles dans l'eau et agissant par passivation de la phase eau (nitrite de sodium par exemple).
d) des additifs modificateurs de structures à caractère polaire (eau, acétone, glycérol, etc.) qui sont destinés à rigidifier la structure de l'enchevêtrement des fibres de savons ou d'épaississant et à améliorer la stabilité de la dispersion de l'agent gélifiant dans le PCM.
2- Charges
Des charges insolubles telles que microbilles de verres creuses, cendres volantes, macrobilles, fibres creuses, etc, peuvent être ajoutées au PCM-CB pour ajuster sa densité et/ou sa conductivité thermique.
3- Solvants
Pour fluidifier le PCM à convection bloquée, on peut utiliser des hydrocarbures d'origine pétrolière tels que des solvants hydrocarbonés, des coupes de distillation, des huiles à prédominance aromatique, naphténique ou paraffinique obtenues par procédés d'extraction au solvant ou par procédés d'hydrotraitement profond, des solvants ou des coupes obtenus par procédé d'hydroisomérisation d'extraits paraffiniques d'origine pétrolière ou de synthèse de type Fischer Tropsch, des solvants et des composés obtenus par synthèse, comme par exemple des composés oxygénés de type ester, des hydrocarbures de synthèse tels les polyoléfines hydrogénées, etc.
Le PCM à convection bloquée est donc constitué d'une combinaison de 70 à 99.5 % en masse de PCM liquide et de 0.5 à 30% d'épaississant, à laquelle on ajoute éventuellement des additifs (<10%), des charges (5 à 60%) et des solvants (0.2 à 5 % ). Exemples de formulation :
Comme PCM à convection bloquée, on peut utiliser le produit suivante formée de 90% PCM, 9,5 % de savon de lithium et 0,5% d'antioxydant. Une autre composition peut comporter par exemple 90% d'huile, 2,5% de dispersant (eau, acétone, produits polaires), 7% de bentone oléophile et
0,5% d'antioxydant.
Applications
Les PCM à convection bloquée qui ont été décrits peuvent être utilisés par exemple pour l'isolation thermique de conduites sous-marines.
Dans la demande de brevet FR 98/16.791 déjà citée, est décrit un dispositif d'isolation thermique de conduites sous-marines destinées à être posée sur le fond à grande profondeur. Le dispositif comporte un revêtement extérieur composé d'un matériau à changement de phase liquide/solide (PCM) quasiment incompressible ayant une température de fusion intermédiaire entre la température des effluents circulant dans la ou les conduites et la température du milieu extérieur, et d'une matrice absorbante entourant au plus près la ou les conduites. Les conduites et leur revêtement sont placées dans une enveloppe de protection résistant et déformable.
Le revêtement extérieur constitué de la matrice imprégnée de PCM décrite dans le document antérieur, pourra ici être avantageusement remplacé par l'un des PCM à convection bloquée qui viennent d'être décrits, avec comme résultat, une amélioration de l'isolation thermique des conduites et une simplification des opérations de mise en place autour de la ou des conduite(s), par pompage par exemple à une température supérieure à la température de fusion Tf, très appréciable quand l'assemblage de conduites à isoler est complexe. On a décrit des applications du matériau à l'isolation thermique de conduites d'acheminement de fluides et notamment d'hydrocarbures. Il est bien évident cependant qu'un tel matériau peut servir dans tout autre application où l'on recherche une très faible conductivité thermique associée à une restitution d'énergie.

Claims

REVENDICATIONS
1) Procédé pour fabriquer un matériau à base de matériaux à changement de phase (PCM), présentant une faible conductivité thermique, caractérisé en ce qu'il comporte la combinaison avec un matériau à changement de phase, d'un agent épaississant choisi pour réduire très fortement la convection thermique à une température supérieure à la température de fusion du matériau à changement de phase.
2) Procédé selon la revendication 1 , caractérisé en ce qu'il comporte la combinaison d'un agent épaississant dispersé dans le matériau à changement de phase.
3) Procédé selon la revendication 1 , caractérisé en ce qu'il comporte la combinaison d'un agent épaississant formant avec le matériau à changement de phase une structure gélifiée.
4) Matériau à base de matériaux à changement de phase (PCM) présentant une faible conductivité thermique à une température supérieure à la température de fusion du matériau à changement de phase, caractérisé en ce qu'il comporte en combinaison un matériau à changement de phase (PCM) et un agent épaississant choisi pour réduire très fortement la convection thermique à une température supérieure à la température de fusion du matériau à changement de phase.
5) Matériau selon la revendication 4, caractérisé en ce qu'il comporte en combinaison un matériau à changement de phase (PCM) et au moins un savon métallique, cette combinaison étant obtenue par action de bases sur des acides gras ou des corps gras.
6) Matériau selon la revendication 4, caractérisé en ce qu'il comporte en combinaison un matériau à changement de phase (PCM) et des savons complexes d'aluminium, de calcium ou de lithium obtenus par neutralisation in situ d'acides dissymétriques.
7) Matériau selon la revendication 4, caractérisé en ce qu'il comporte en combinaison un matériau à changement de phase (PCM) et au moins un épaississant inorganique.
8) Matériau selon la revendication 4, caractérisé en ce qu'il comporte au moins un épaississant organique ou organo-métallique ou une substance de type polyurée aromatique ou des pigments colorés, dispersé dans un matériau à changement de phase (PCM).
9) Matériau selon l'une des revendications 4 à 9, caractérisé en ce qu'il comporte en outre au moins un additif soluble agissant comme antioxydant ou antibactérien ou un inhibiteur de corrosion ou une substance modifiant sa structure.
10) Matériau selon l'une des revendications 4 à 10, caractérisé en ce qu'il comporte en outre au moins une charge insoluble destinée à ajuster sa densité ou sa conductivité thermique.
11) Matériau selon l'une des revendications 4 à 11 , caractérisé en ce qu'il comporte en outre au moins un solvant destiné à contrôler la viscosité.
12) Application du matériau selon l'un des revendications 4 à 11 à l'isolation thermique de conduites d'acheminement de fluides et notamment d'hydrocarbures, le produit étant utilisé comme revêtement des conduites.
13) Application du matériau selon l'un des revendications 4 à 11 à l'isolation thermique de conduites d'acheminement de fluides et notamment d'hydrocarbures, le produit étant utilisé comme revêtement des conduites et interposé entre elles et une enveloppe extérieure de protection. 14) Application du matériau selon l'un des revendications 4 à 11 à l'isolation thermique de conduites d'acheminement de fluides et notamment d'hydrocarbures par injection du matériau dans l'intervalle entre les conduites et une enveloppe extérieure de protection.
15) Application du matériau selon l'un des revendications 4 à 11 à l'isolation thermique de conduites sous-marines en mer profonde pour l'acheminement de fluides et notamment d'hydrocarbures par injection du matériau dans l'intervalle entre les conduites et une enveloppe extérieure de protection.
EP01929691A 2000-05-19 2001-04-24 Procede pour fabriquer un materiau a changement de phase quasi-incompressible et a faible conductivite thermique, et produit obtenu par le procede Withdrawn EP1290108A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0006489 2000-05-19
FR0006489A FR2809115B1 (fr) 2000-05-19 2000-05-19 Procede pour fabriquer un materiau a changement de phase quasi-incompressible et a faible conductivite thermique, et produit obtenu par le procede
PCT/FR2001/001244 WO2001088057A1 (fr) 2000-05-19 2001-04-24 Procede pour fabriquer un materiau a changement de phase quasi-incompressible et a faible conductivite thermique, et produit obtenu par le procede

Publications (1)

Publication Number Publication Date
EP1290108A1 true EP1290108A1 (fr) 2003-03-12

Family

ID=8850458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01929691A Withdrawn EP1290108A1 (fr) 2000-05-19 2001-04-24 Procede pour fabriquer un materiau a changement de phase quasi-incompressible et a faible conductivite thermique, et produit obtenu par le procede

Country Status (10)

Country Link
US (1) US7105104B2 (fr)
EP (1) EP1290108A1 (fr)
CN (1) CN1295294C (fr)
AU (1) AU2001256397A1 (fr)
BR (1) BR0110905A (fr)
CA (1) CA2409026C (fr)
FR (1) FR2809115B1 (fr)
MX (1) MXPA02011383A (fr)
OA (1) OA12331A (fr)
WO (1) WO2001088057A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840314B1 (fr) * 2002-06-03 2004-08-20 Inst Francais Du Petrole Methode d'isolation thermique, procede de preparation d'un gel isolant et gel isolant obtenu
CN100467565C (zh) * 2005-05-26 2009-03-11 同济大学 制备有机分子合金相变储能材料的方法
CN1322091C (zh) * 2006-01-06 2007-06-20 华南理工大学 聚乙二醇/二氧化硅复合定形相变材料的制备方法
FR2937706B1 (fr) * 2008-10-29 2013-02-22 Saipem Sa Ensemble de conduites coaxiales comprenant un manchon d'isolation thermique
DE102010040829B4 (de) * 2010-09-15 2020-07-09 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur indirekten Ladeluftkühlung sowie Verfahren zur indirekten Ladeluftkühlung
US9417013B2 (en) * 2010-11-12 2016-08-16 Toyota Motor Engineering & Manufacturing North America, Inc. Heat transfer systems including heat conducting composite materials
FR2973473B1 (fr) 2011-03-29 2014-06-13 Saipem Sa Materiau d'isolation thermique et/ou de flottabilite rigide pour conduite sous-marine
US9314768B2 (en) 2011-04-08 2016-04-19 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Mixture of an adsorbent and a phase change material with an adapted density
FR2973807B1 (fr) * 2011-04-08 2020-09-18 Air Liquide Melange d'un adsorbant et d'un materiau a changement de phase a densite adaptee
US9714374B2 (en) 2011-07-15 2017-07-25 Exxonmobil Upstream Research Company Protecting a fluid stream from fouling
US10590742B2 (en) 2011-07-15 2020-03-17 Exxonmobil Upstream Research Company Protecting a fluid stream from fouling using a phase change material
WO2014052409A2 (fr) 2012-09-25 2014-04-03 Cold Chain Technologies, Inc. Gel comprenant un matériau à changement de phase, procédé de préparation du gel, et équipement à échange thermique comprenant le gel
US9598622B2 (en) 2012-09-25 2017-03-21 Cold Chain Technologies, Inc. Gel comprising a phase-change material, method of preparing the gel, thermal exchange implement comprising the gel, and method of preparing the thermal exchange implement
CN103908912A (zh) * 2014-03-13 2014-07-09 安徽明讯新材料科技有限公司 一种相变恒温配胶容器
CA2943364C (fr) 2014-03-26 2019-11-12 Richard M. Formato Gel comprenant un materiau a changement de phase, procede de preparation dudit gel, et ustensile d'echange thermique comprenant le gel
US10281079B2 (en) 2015-08-31 2019-05-07 General Electric Company Insulated fluid conduit
US9903525B2 (en) 2015-08-31 2018-02-27 General Electronic Company Insulated fluid conduit
US10487986B2 (en) 2017-06-16 2019-11-26 Exxonmobil Upstream Research Company Protecting a fluid stream from fouling
CN111022784B (zh) * 2019-12-20 2021-03-09 信达科创(唐山)石油设备有限公司 超长保温管道及其加工方法
CN114059974A (zh) * 2021-11-17 2022-02-18 北京大学 海域水合物藏径向井复合液固相变材料的防砂方法、装置及实验方法
CN116640366A (zh) * 2023-06-27 2023-08-25 广东力王新材料有限公司 一种橡胶相变材料及其制备工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2022683C (fr) * 1989-08-04 2000-10-10 Chiaki Momose Materiau servant au stockage d'energie thermique latente
CA2029611A1 (fr) * 1989-12-04 1991-06-05 Bruce A. Flora Appareil de chauffage muni d'un regulateur de temperature de changement de phase
US5370814A (en) * 1990-01-09 1994-12-06 The University Of Dayton Dry powder mixes comprising phase change materials
ZA974977B (en) * 1996-06-12 1997-12-30 Univ Dayton Gel compositions for thermal energy storage.
DE19813562A1 (de) * 1997-05-21 1998-11-26 Schuemann Sasol Gmbh & Co Kg Latentwärmekörper
US6108489A (en) * 1997-10-17 2000-08-22 Phase Change Laboratories, Inc. Food warning device containing a rechargeable phase change material
US6000438A (en) * 1998-02-13 1999-12-14 Mcdermott Technology, Inc. Phase change insulation for subsea flowlines
CA2300618C (fr) * 1999-03-12 2009-10-20 Ted J. Malach Systeme d'emballage a temperature constante et formulation a changement de phase
DE10023572A1 (de) * 2000-05-15 2001-11-22 Merck Patent Gmbh Verfahren zur Herstellung eines Speicherverbundes zur Speicherung von Wärme und Kälte
DE10102250A1 (de) * 2000-07-21 2002-01-31 Rubitherm Gmbh Latenwärmespeichermaterial, Schallabsorber und Biofilter
DE10250249A1 (de) * 2002-10-28 2004-05-13 Sgl Carbon Ag Mischungen für Wärmespeicher

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0188057A1 *

Also Published As

Publication number Publication date
MXPA02011383A (es) 2005-06-30
CA2409026A1 (fr) 2001-11-22
OA12331A (en) 2006-05-15
CN1429261A (zh) 2003-07-09
AU2001256397A1 (en) 2001-11-26
CN1295294C (zh) 2007-01-17
FR2809115A1 (fr) 2001-11-23
US20040030016A1 (en) 2004-02-12
FR2809115B1 (fr) 2002-07-05
WO2001088057A1 (fr) 2001-11-22
US7105104B2 (en) 2006-09-12
BR0110905A (pt) 2003-03-11
CA2409026C (fr) 2009-12-08

Similar Documents

Publication Publication Date Title
CA2409026C (fr) Procede pour fabriquer un materiau a changement de phase quasi-incompressible et a faible conductivite thermique, et produit obtenu par le procede
WO2002062918A1 (fr) Procede de fabrication d&#39;un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement et a faible conductivite thermique
WO2001083640A1 (fr) Composition lubrifiante biodegradable et ses utilisations, notamment dans un fluide de forage
EP2150740B2 (fr) Element filete tubulaire muni d&#39;un revetement protecteur sec
EP1328566A1 (fr) Composition isolante a base de gel elastomere polyurethane et son utilisation
EP1513908B1 (fr) METHODE D ISOLATION THERMIQUE, PROCEDE DE PREPARATION D&amp;apos ;UN GEL ISOLANT ET GEL ISOLANT OBTENU
EP2691449B1 (fr) Materiau d&#39;isolation thermique et/ou de flottabilite rigide pour conduite sous-marine
EP2164919B1 (fr) Utilisation d&#39;une composition fluide a reticulatiqn retardee pour le maintien d&#39;un tubage a l&#39;interieur d&#39;un puits de forage et procede de consolidation d&#39;un puits de forage
EP1328605B1 (fr) Composition hydrophobe et utilisation sur un substrat pour pr venir la formation de glace et la corrosion
FR2820752A1 (fr) Procede de fabrication d&#39;un materiau a changement de phase, quasi-incompressible, fluidifie sous cisaillement a faible conductivite thermique
CA2758655C (fr) Fluide de forage pour grands fonds
CA2858177A1 (fr) Composant filete tubulaire et procede de revetement d&#39;un tel composant filete tubulaire
OA12432A (en) Utilisation d&#39;une composition d&#39;isolation thermique pour l&#39;isolation de canalisations contenues dansune conduite de transfert de produits pétroliers.
EP1098950B1 (fr) Procede d&#39;utilisation de boues de forage biodegradables
WO2022253992A1 (fr) Utilisation d&#39;une composition de refroidissement pour proteger une batterie
OA16919A (fr) Composant fileté tubulaire et procédé de revêtement d&#39;un tel composant fileté tubulaire.
FR3008710A1 (fr) Materiau de protection biologique a base d&#39;une matrice de polymere silicone et de charges.
CA2318341A1 (fr) Fluide et methode pour liberer des elements tubulaires coinces dans un puits
OA16564A (fr) Matériau d&#39;isolation thermique et/ou de flottabilité rigide pour conduite sous-marine.
BE673038A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20061120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120104